

W. Haase¹, J. Grashof², G. Wedekind³

^{1,2} Flight Physics Department ³ Preliminary Design Department EADS Deutschland GmbH Military Aircraft D-81663 Munich, Germany

Part of this work was sponsored by the EU via the AEROSHAPE project

SUMMARY

- Aircraft design cycle
- Inverse two-point airfoil optimisation
- Drag reduction of RAE2822, a three-point optimisation challenge
- Supersonic commercial transport optimisation
- High Altitude Long Endurance (Hale) Loiter time optimisation
- Why ,Robust Design'?
- Conclusion

2-point airfoil

Drag minimisation on RAE2822

SCT drag minimisation

Hale – Loiter time

Robust Design

Conclusions

Optimisation in Aeronautics

2-point (inverse?) airfoil design - Test Case Description

- Minimisation of an objective function which is the difference between computed/optimised pressure distribution at two different design points with two pre-defined target pressures (originally proposed by T. Labruyere, NLR)
- The objective function reads:

$$F(\alpha_1, \alpha_2, x(s), y(s)) = \sum_{n=1}^{2} \left[W_n \int_{0}^{1} \left(C_p^n(s) - C_{p, target}^n(s) \right)^2 \right] ds$$

Optimisation in Aeronautics

EADS

Two-point airfoil design - Test Case Description

Two different design conditions (i=1,2):

2-point airfoil

i=1: Typical high-lift airfoil at subsonic conditions

Drag minimisation on RAE2822

i=2: Typical high-speed airfoil at transonic conditions

SCT drag minimisation

Hale – Loiter time

Robust Design

Conclusions

Case	i=1	i=2
Ma	0.20	0.77
Re	$5x10^{6}$	10 ⁷
Incidence	10.8°	1.0°
X _{trans} /c	0.03	0.03

2-point airfoil

Drag minimisation on RAE2822

SCT drag minimisation

Hale – Loiter time

Robust Design

Conclusions

Optimisation in Aeronautics

Inverse/two-point airfoil design - Numerical approach

Approach

- 2D (full) Navier-Stokes method
- Mesh resolution has been set to the lowest possible level (with respect to predictive accuracy) of 128x32 mesh points
- Computation time for one individual: < 60 sec. on 850MHz PC
- Parameterisation via Bezier Splines

First test on transonic case only

Inverse airfoil design - GA results (64x16)

2-point airfoil

on RAE2822

SCT drag minimisation

Optimisation in Aeronautics

Inverse airfoil design - ES results by NUTECH

Fitness vs. first and second design parameter - low drag case

Two-point airfoil design - Parameterisation

Design network 30 hi**gh-**lift airfail 0.05 0. сó 2-point airfoil **Axes values:** Objective function = **Drag minimisation** Difference in pressure **on RAE2822** 0.10 SCT drag minimisation Pareto "gap" due to <u>10</u> Ś Hale – Loiter time **Parameterisation** 0.20 **Robust** Design 52 0.00 ے -0.15 -0.10 -0.05-0.20 low-drag airfoil

Two-point airfoil design - Pareto results

Design network

2-point airfoil

Drag minimisation on RAE2822

SCT drag minimisation

Hale – Loiter time

Robust Design

Conclusions

Individual 25 is the best
non-dominated
individual for the high
lift airfoil with
objective function values
of:
LD: $1.21 \cdot 10^{-1}$
HL: $2.60 \cdot 10^{-2}$

Individual 5 denotes thebest low-drag, non-dominated individualwith objective functionvalues of:LD: $2.03 \cdot 10^{-2}$ HL: $1.39 \cdot 10^{-1}$

2-point airfoil

Optimisation in Aeronautics

Non-dominated individual 34 from Pareto frontier as an

Two-point airfoil design - "Compromise" result

engineering compromise between low-drag and high-lift airfoil

*
X
iii 🧳 🥔 🛓

RAE2822

Three-point

airfoil design

Drag minimisation

=

Design network

2-point airfoil

Drag minimisation on RAE2822

SCT drag minimisation

Hale – Loiter time

Robust Design

Conclusions

Optimisation in Aeronautics

Design points:

1. $M_1 = 0.734, \alpha_1 = 2.8^\circ$, Re = 6.5 x 10⁶ 2. $M_2 = 0.754, \alpha_2 = 2.8^\circ$, Re = 6.2 x 10⁶ 3. $M_3 = 0.680, \alpha_3 = 1.8^\circ$, Re = 5.7 x 10⁶

Objective:

 $OBJ = 2 C_d(\alpha_1, M_1) + C_d(\alpha_2, M_2) + C_d(\alpha_3, M_3)$

Constraints:

1. $C_{l}(\alpha_{1}, M_{1}) \geq C_{l}^{t}(\alpha_{1}, M_{1})$, 2. $C_{m}(\alpha_{1}, M_{1}) \simeq C_{m}^{t}(\alpha_{1}, M_{1})$ - variation of $\pm 2\%$ allowed, 3. $C_{l}(\alpha_{2}, M_{2}) \geq C_{l}^{t}(\alpha_{2}, M_{2})$, 4. $C_{m}(\alpha_{2}, M_{2}) \simeq C_{m}^{t}(\alpha_{2}, M_{2})$ - variation of $\pm 2\%$ allowed, 5. $C_{l}(\alpha_{3}, M_{3}) \geq C_{l}^{t}(\alpha_{3}, M_{3})$, 6. $C_{m}(\alpha_{3}, M_{3}) \simeq C_{m}^{t}(\alpha_{3}, M_{3})$ - variation of $\pm 2\%$ allowed, 7. leading - edge - radius $\geq 0.91.e.r^{t}$, 8. trailing - edge - angle $\geq 0.8 t.e.a^{t}$, 9. thickness(5\%) > 0.96 th.^{*}(5\%).

2-point airfoil

Drag minimisation on RAE2822

Optimisation in Aeronautics

RAE2822 Drag minimisation - Pressure results

MMES (20,2,20) with 1 Objective Coarse mesh / Design 251 Hybrid approach with NLPQLP

Pressure distributions for optimised and initial shape for all three points

2-point airfoil

Optimisation in Aeronautics

RAE2822 Drag minimisation - Results

EADS

FMOGA (16,16) with 3 Objectives Coarse mesh / Design 148

2-point airfoil

Drag minimisation on RAE2822

SCT drag minimisation

Hale – Loiter time

Robust Design

Optimisation in Aeronautics

RAE2822 Drag minimisation - Results

Supersonic Commercial Aircraft - Drag minimisation

Design network

2-point airfoil

Drag minimisation on RAE2822

SCT drag minimisation

Hale – Loiter time

Robust Design

Conclusions

2-point airfoil

S

Drag minimisation on RAE2822 Parameterisation with ICEM's COMAK tool Coupled to ICEM HEXA for grid generation

M=2.0, free angle of attack, Euler solution

	Objective	Minimum drag
CT drag	Design parameters	Defining fuselage contraction, angle of attack,
inimisation		asymmetric wing profiles at four spanwise positions,
		twist at four spanwise positions,
ale – Loiter time		25 parameters in total
	Constraints	Pitching moment coeff. (about –0.029),
abust Design		location and range of fuselage contraction,
obdst Design		minimum fuselage radius,
		minimum of wing spanwise profile thickness
onclusions		distribution, and a
		lift coefficient = 0.12 - to be kept in the range of 10^{-4}

Optimisation in Aeronautics

Supersonic Commercial Aircraft - Test case definition

2-point airfoil

Drag minimisation on RAE2822

SCT drag minimisation

Hale – Loiter time

Robust Design

Conclusions

Optimisation in Aeronautics

Supersonic Commercial Aircraft -Convergence and objective space

Initial population: $\mu = 50$ Number of generations: T = 10

2-point airfoil

Drag minimisation on RAE2822

SCT drag minimisation

Hale – Loiter time

Robust Design

Conclusions

Optimisation in Aeronautics

Optimisation of loiter-time for "Hale"

Task/Objective

2-point airfoil

Design network

Drag minimisation on RAE2822

SCT drag minimisation

Hale – Loiter time

Robust Design

Conclusions

Computation of **maximum loiter time** as a function of wing-chord, profile thickness, Mach number, wing weight and the resulting drag.

According to Ma, altitude, weight and Wing-area, a "design lift coefficient" is derived – from which the drag coefficient of the optimal profile (turbulent flow) is computed.

Design variables

Mach number at start of loiter Wing area [m**2] Relative wing thickness [-] Altitude at start of loiter is fixed (15km and 16 km, 17 km "not met" according to selected engine) Wing span [m] – we have changed upper bound in different runs (!)

2-point airfoil

Drag minimisation on RAE2822

SCT drag minimisation

Hale – Loiter time

Robust Design

Conclusions

Optimisation in Aeronautics

Optimisation of loiter-time for "Hale"

Constraints

Drag < thrust for the given engine

Critical Mach number Max. take-off weight Max. drag: to be lower than max. thrust Wing thickness > 0.24

Optimiser

DES (single objective ES) [additional GA and NLPQLP runs]

Optimisation of loiter-time for "Hale" Conclusions

2-point airfoil

Design network

Drag minimisation on RAE2822

SCT drag minimisation

Hale – Loiter time

Robust Design

Conclusions

- As mentioned, the "fixed-span" optimisation turned out to be an extremely "peaky" optimum, i.e., in the close vicinity of this design no other can be found.
- Using an NLPQLP (SQP) method resulted in completely non-feasible solutions around the B=45m goal, because
- a collision between max. take-off weight and wing thickness occurred; either thickness or take-off weight were violated and small changes in the constraints gave rise to completely different solutions.
- Thus we must find another way to (maybe) reach the B=45m goal if it is then one: **Robust design**

2-point airfoil

SCT drag

Drag minimisation

Optimisation in Aeronautics

Robust design

- It has been seen that the **best solution is NOT identical to the best** • average solution (an averaged variables distribution)
- Thus two additional objectives are to be employed: ٠ Maximise average function inside the variables distribution and minimise standard deviation – leading to multi-objective optimisation

2-point airfoil

Drag minimisation on RAE2822

SCT drag minimisation

Hale – Loiter time

Robust Design

Conclusions

Optimisation in Aeronautics

We are far from being self-satisfied and have hopefully stressed advantages and open questions in equal shares.

- What problem to optimise?
- How can a known problem be optimised?
- What parameterisation to use?
- Taking new mesh generation or mesh movement, and
- how does the mesh quality influence the optimum?
- Which analysis method to apply ?
- Definition of constraints correct?
- Objective functions? (combined or separate, i.e. multi-objective) (even combined objectives AND constraints)
- What optimiser to choose ?
- Robust design needed ?

