ERCOFTAC 2006 April 5-7, 2006 Gran Canaria, Canary Islands, Spain

INTERNATIONAL CONFERENCE

Game Theory with gradient based optimization algorithm

L. Parussini*, V. Pediroda+

University of Trieste, Mechanical Engineering Dep., Via Valerio 10, 34100 Trieste, Italy

- * E-mail: <u>Iparussini@units.it</u>
- + E-mail: pediroda@units.it

OUTLINE

- INTRODUCTION
- THEORY NASH THEORY SIMPLE GRADIENT METHOD DACE MODEL
- TEST
- APPLICATION
- CONCLUSION

INTRODUCTION

REDUCTION OF NUMBER OF DESIGNS TO COMPUTE FOR OBTAINING GOOD RESULTS BY OPTIMIZATION MULTI OBJECTIVE OPTIMIZATION

INTEGRATION OF CAD, CAE, CFD, etc. TECHNIQUES WITH NUMERIC OPTIMIZATION METHODS WITH ADVANTAGE FOR INDUSTRY

INTRODUCTION

GAME THEORY

NASH THEORY

NASH THEORY

Consider two-player Nash game

 $\begin{array}{l} f_A(x, y) \colon AxB \Rightarrow \Re\\ f_B(x, y) \colon AxB \Rightarrow \Re \end{array} \qquad \text{are the objective functions to minimize} \end{array}$

A search space for first player B search space for second player

 $(x_*, y_*) \in AxB$ is NASH EQUILIBRIUM if:

$$f_A(x_*, y_*) = \inf_{x \in A} f_A(x, y_*)$$
$$f_B(x_*, y_*) = \inf_{y \in B} f_B(x_*, y)$$

where f_A gain for first player f_B gain for second player

GRADIENT METHOD

iterative method :

$$X^{(K+1)} = X^{(K)} + a^{(K)}S(X^{(K)})$$

- $X^{(K)}$ actual variables
- $X^{(K+1)}$ estimated variables for next step
- $a^{(K)}$ step length
- S(X) searching function of right direction

GRADIENT METHOD

 $\frac{\text{SIMPLE GRADIENT METHOD}}{X^{(K+1)} = X^{(K)} - \boldsymbol{a}^{(K)} \nabla f(X^{(K)})}$

where $\boldsymbol{\alpha}$ is costant and gradient is the searching function

computing of partial derivatives by

central finite difference method

on DACE model

COMPUTATIONAL SAVING

DACE MODEL

modelling phenomena by **SRF** Spatial Random Fields

simplifing hypoteses

linear estimators

$$Y(x) = \sum_{h=1}^{k} \boldsymbol{b}_{h} f_{h}(x) + \boldsymbol{e}(x)$$

<u>CORRELATION FUNCTION</u> between errors: $Corr[\boldsymbol{e}(x(i)), \boldsymbol{e}(x(j))] = \exp[-d(x(i), x(j))]$ $d(x(i), x(j)) = \sum_{h=1}^{k} \boldsymbol{q}_{h} |x_{h}(i) - x_{h}(j)|^{p_{h}} \quad \boldsymbol{q}_{h} > 0 \quad p_{h} \in [1, 2]$ <u>LIKELYHOOD:</u> 1 (y-1m)'R⁻¹(y-1m)

$$\frac{1}{(2\boldsymbol{p})^{n/2}\boldsymbol{s}^{2^{n/2}}(\det R)^{1/2}}\exp\frac{(y-1\boldsymbol{m})^{n/2}\boldsymbol{R}^{-1}(y-1\boldsymbol{m})}{\boldsymbol{s}^{2}} \longrightarrow \theta, \boldsymbol{\mu}$$

BEST LINEAR UNBIASED PREDICTOR

MEAN SQUARED ERROR OF THE PREDICTOR

 $\hat{y}(x^*) = \hat{\mu} + r'R^{-1}(y - l\hat{\mu})$

$$s^{2}(x^{*}) = \sigma^{2} \left[1 - r' R^{-1} r + \frac{(1 - 1R^{-1}r)^{2}}{1' R^{-1} 1} \right]$$

ADAPTIVE DACE MODEL

ALGORITHM

Resuming..

TEST

$$Test1(\mathbf{x}) = 1 + (A_1 - B_1)^2 + (A_2 - B_2)^2$$

$$Test2(\mathbf{x}) = (\mathbf{b}_1 + 3)^2 + (\mathbf{b}_2 + 1)^2$$
with $A_i = \sum_{j=1}^2 (a_{ij} \sin(\mathbf{a}_j) + b_{ij} \cos(\mathbf{a}_j))$ for i=1,2
 $B_i = \sum_{j=1}^2 (a_{ij} \sin(\mathbf{b}_j) + b_{ij} \cos(\mathbf{b}_j))$ for i=1,2
 $\mathbf{a} = \begin{pmatrix} 0.5 & 1.0 \\ 1.5 & 2.0 \end{pmatrix}$ $\mathbf{b} = \begin{pmatrix} -2.0 & -1.5 \\ -1.0 & -0.5 \end{pmatrix}$
 $\mathbf{a} = (1.0, 2.0)$ $\mathbf{b} = \begin{pmatrix} \sum_{i=1}^{n/2} x_i, \sum_{i=n/2+1}^n x_i \\ \sum_{i=1}^n x_i, \sum_{i=n/2+1}^n x_i \end{pmatrix}$
where $\mathbf{x} \in \left[-\frac{\mathbf{p}}{n/2}, \frac{\mathbf{p}}{n/2} \right]^n$ and $n = 16$

April 5-7, 2006 Gran Canaria.

Canary Island

TEST

MULTI OBJECTIVE MINIMIZATION

OF Test1 AND Test2

	ь	init.data set DACE	Test1	Test2	n°exchan ges	n°computa tions
nash1	5	3	17.870	0.045	16	356
nash2	3	3	14.735	0.025	14	246
nash3	2	3	15.132	0.016	24	322
nash4	3	10	17.982	0.007	6	128

Comparison between Nash equilibrium and Pareto frontier computed by MOGA (Multi Objective Genetic Algorithm)

APPLICATION

DESIGN OF A TRANSONIC AIRFOIL IN STOCHASTIC OPERATIVE CONDITIONS

APPLICATION

 $F(xy): \mathfrak{R}^{n+m} \to \mathfrak{R}$ function to optimize

where

- x deterministic variables
- y stochastic variables
- OPTIMIZATION OF
 EXPECTED VALUE

MINIMIZATION OF STANDARD DEVIATION

 $M_{\infty} = 0.73 \pm 0.05$

STOCHASTIC VARIABLES

- ANGLE OF ATTACK $a = 2^{\circ} \pm 0.5^{\circ}$
- MACH NUMBER OFFREE STREAM

DETERMINISTIC VARIABLES

OBJECTIVES AND CONSTRAINTS

with

$$\begin{cases} \overline{C}_{d} \leq \overline{C}_{dRAE} \\ \mathbf{S}_{Cd} \leq \mathbf{S}_{CdRAE} \\ \overline{C}_{l} \geq \overline{C}_{IRAE} \\ \mathbf{S}_{Cl} \leq \mathbf{S}_{CIRAE} \\ t_{max} \geq t_{max RAE} \end{cases}$$

COMPUTING OF \overline{C}_d , S_{Cd} , \overline{C}_l AND S_{Cl} COMPUTATIONALLY and TIME EXPENSIVE

$$\mathbf{s}_{f}(x) = \sqrt{\frac{\sum_{i=1}^{n} (f_{i} - \bar{f})^{2}}{n-1}}$$

err 0.006 0.0005 0.0055 0.005 0.004 0.0004 0.00/ 0.00035 0.003 0.0003 0.003 0.00025 0.002 0.0002 0.00015 0.0001 5E-05 Mach

DACE MODEL OF C_d AND C_1 Re = 1.5E06 $M_{\infty} = 0.68 \div 0.78$ $a = 1.5^{\circ} \div 2.5^{\circ}$

OPTIMIZED AIRFOIL

EXPLORATIVE DESIGN

- 4 exchanges of variables between players
- 87 fluid dynamics simulations
- Nash frequency equal to 2

	optimized airfoil	RAE2822 airfoil
\overline{C}_d	0.017351	0.017297
$oldsymbol{S}_{C_d}$	0.006128	0.006087
\overline{C}_{l}	0.604603	0.610551
$oldsymbol{s}_{C_l}$	0.053835	0.053760
t _{max}	0.121223	0.121294

Comparison between objectives of optimized airfoil (explorative design) and RAE2822.

CONSERVATIVE DESIGN

	optimized airfoil	RAE2822 airfoil
\overline{C}_d	0.017133	0.017297
$oldsymbol{s}_{C_d}$	0.005996	0.006087
\overline{C}_{I}	0.608349	0.610551
$oldsymbol{s}_{C_l}$	0.053552	0.053760
t _{max}	0.121334	0.121294

- 3 exchanges of variables between players
- 134 fluid dynamics simulations
- Nash frequency equal to 3

Comparison between objectives of optimized airfoil (conservative design) and RAE2822.

REMARKS

- Cause of constant step lenght of SGM difficult to find solutions inside constraints.
- Choice of domain space decomposition is very important for the efficiency of optimization as it has been demonstrated in "Application of Game Strategy in Multi-objective Robust Design Optimisation Implementing Self-adaptive Search Space Decomposition by Statistical Analysis", A.Clarich, V.Pediroda, L.Padovan, C.Poloni, J. Periaux, (2004), *European Congress on Computational Methods in Applied Sciences and Engineering* ECCOMAS 2004. An adaptive strategy for variables distribution is needed.

- \mathbf{X} Significant for mean C_D
- O Significant for deviation C_D

CONCLUSION

- IMPLEMENTATION OF A <u>NASH THEORY</u> WITH GRADIENT BASED OPTIMIZATION ALGORITHM FOR MULTI OBJECTIVE PROBLEMS
- <u>SGM</u> TO OPTIMIZE EACH ONE OF OBJECTIVES
- <u>ADAPTI VE DACE MODEL</u>, A PARTICULAR EFFICIENT EXTRAPOLATION METHOD, TO CALCULATE THE DERIVATIVES REQUIRED BY SGM
- ✤ TESTS ON MATHEMATICAL FUNCTIONS

✤ APPLICATION TO DESIGN UNDER UNCERTAINTIES OF AN AIRFOIL IN TRANSONIC FIELD

CONCLUSION

FURTHER STEPS

 in mathematical test cases great efficiency : quick and accurate, but limits due to lack of adaptivity to different problems.
 In particular

- constrained problems require more investigation
- introduction of a criteria for the re-distribution of variables to players
- in Robust Design application:

- explorative design has been really successful: we can think of using Nash/SGM to investigate an unknown problem, with the advantage to get quickly an optimum point, and next, starting from the Nash equilibrium, to obtain more accurate solutions by Pareto Games