Multi Objectives Optimization of an Automotive Fan Blade using an Advanced Parameterization Method

M. N'Diaye* C. Rambeau* P. Ferrand♣ S. Moreau♦

* Fluorem SAS
♣ LMFA (CNRS UMR 5509) Ecole Centrale de Lyon
♦ Valeo Motors and Actuators

ERCOFTAC - Design Optimisation Methods & Applications
Las Palmas de Gran Canaria, Spain
5-7 April 2006
Presentation outlines

- The parametric approach
 Parameterization method
 Optimization principles

- Industrial test-case
 Flow modeling
 Parameterization

- Results

- Conclusions
CFD issues

- 3D RANS codes can predict flow with good accuracy
- CFD more and more used to predict flow (design, optimization,...)

BUT

- RANS code take CPU time (5h or more)
- A large number of flow and geometric parameters:
 - pitch, chord, stagger angle, thickness, flow rate, rotational speed
 - 10 values by parameter $\Rightarrow 10^5$ Navier Stokes simulations for 5 parameters

SOLUTIONS ?

- Simplification of flow simulation \Rightarrow real optimization ?
- Expertise \Rightarrow need to make some choices
Classical Design cycling

5 hours by loop

1 day (ing.)

loop a geometry driven
loop b flow driven

sequential iterations means weak cycling

User profile: CFD expert
A new way for CFD

• Classical solvers (Fluent, elsA, Turb’Flow, …):

\[F(q) = 0 \]

With \(F \) local conservative flux vector, \(q \) (local velocity, energy, dissipation…)

• Parametrized solvers (Turb’Design, Turb’Opty):

\[F(q,p) = 0 \]

\(p \) the parameters (geometric, flow conditions)

\[\frac{\partial q}{\partial p} \] the derivatives of local velocity, pressure… function of parameters

⇒ The derivatives are calculated in the all 3D domain
⇒ A database solution is built and stored

• Using the database, for example with Taylor series

\[q(p_1 + \Delta p_1, p_2 + \Delta p_2) = q(p_1, p_2) + \Delta p_1 \frac{\partial q}{\partial p_1} + \Delta p_2 \frac{\partial q}{\partial p_2} + \Delta p_1 \Delta p_2 \frac{\partial^2 q}{\partial p_1 \partial p_2} + \ldots \]
Turb’Opty principle

- Define the Taylor series expansion to high order derivatives with
 \(q \) the vector of conservative variables (\(\rho, \rho u, \ldots \))
 \(p \) the vector of parameters (outlet static pressure, chord, \ldots)

\[
q(p+\Delta p) = q(p) + \Delta p \frac{\partial q}{\partial p} + \frac{1}{2!} \Delta p^2 \frac{\partial^2 q}{\partial p^2} + \ldots + \frac{1}{n!} \Delta p^n \frac{\partial^n q}{\partial p^n} + T_n
\]

- \(\text{Turb’Opty}^{TM} \) objectif : to calculate unknowns \(q^{(1)}, q^{(2)}, \ldots, q^{(n)} \)

- \(\text{Turb’Opty}^{TM} \) needs :
 - external information : reference solution : \(q_{\text{ref}}(p_{\text{ref}}) \)
 - internal information : equilibrium functions \(F(q,p) = 0 \)
Turb’Opty technology

- external information for Turb’Opty™: reference solution: \(g_{\text{ref}}(p_{\text{ref}}) \)

\[
\text{Files from TASCflow, Turb’Flow, elsA, …}
\]

\[
q_{\text{ref}}.
\]

- internal information: Turb’Flow™ discretized N-S Equations \(F(q,p) = 0 \)

\[
\frac{\partial F}{\partial q} \frac{\partial q}{\partial p} = -\frac{\partial F}{\partial p}
\]
Turb’Opty differenciation

\[\frac{G \partial q}{\partial p} = R \]

L.S. (l) \quad G : jacobian matrix; \quad \frac{\partial F}{\partial p}

\[\frac{G \partial^2 q}{\partial p^2} = R^{(1)} - G^{(1)} \frac{\partial q}{\partial p} \]

\[\vdots \]

\[\frac{G \partial^n q}{\partial p^n} = R^{(n-1)} - \sum_{i=1}^{n-1} C_{n-1}^i G^{(i)} \frac{\partial^{n-i} q}{\partial p^n} \]

Extrapolation by interrogation of the stored **database**:

\[q(p + \Delta p) = q(p) + \Delta p \frac{\partial q}{\partial p} + \frac{1}{2!} \Delta p^2 \frac{\partial^2 q}{\partial p^2} + \ldots + \frac{1}{n!} \Delta p^n \frac{\partial^n q}{\partial p^n} + T_n \]
G from Turb’Flow solver

- Unsteady, compressible RANS equations, incompressible preconditioning

- Multi-domain structured quadrangular meshes.

- Roe, Liou,… flux splitting on a MUSCL finite volume formulation.

- Turbulence effects described by LES or the 2-equations k-ω model of Wilcox, Kok,…

- Time integration implemented by explicit or implicit scheme, multi grid.
Design cycling

The parametric approach
Industrial test-case
Results
Conclusions

Parameterization method
Optimization principles

Design, Optimization,
Other physics

1-3 days (ing.)
1.5 hours by derivate
5 hours by loop

User profile: CFD expert
User profile: designer

-loop a geometry-driven
-loop b flow driven

sequential iterations means weak cycling
no iteration just automation
Optimization principle

- Function to minimise

\[\mathcal{F}_{\text{obj}} \]

- Gradient Method

- Adjoint State

- High order derivation

Reference Minimum 1 Minimum 2 Parameter
Turb’flow blind test

\[\Delta P_s : \]
- Experiment = 235 pa
- Turb’Flow = 240 pa

3D Mesh : 1.9 M points
Flow maps with Turb’Opty

The parameterization

Results

Conclusions
Building the database

ΔPs:
Experiment = 235 pa
Turb’Flow = 240 pa

Blade to blade cutting plane to build the database

3D Mesh: 1,9 M points
Fluid characteristics

- Viscous perfect gas
 - perfect gas constant (r) | 287 J kg$^{-1}$ K$^{-1}$
 - heat capacity ratio (γ) | 1.4
 - dynamic viscosity (μ) | 1.81×10^{-5} kg m$^{-1}$ s$^{-1}$
 - thermal conductivity (λ) | 2.61 kg m s$^{-3}$ K$^{-1}$

- Wilcox k – ω turbulence model

- No-slip condition (adiabatic)
Flow configuration

- **inlet boundary conditions**

 \[
 \begin{align*}
 \rho_{\text{in}} & = 1.17 \text{ kg m}^{-3} \\
 U_{x \text{ in}} & = 34 \text{ m s}^{-1} \\
 V_{y \text{ in}} & = -7.5 \text{ m s}^{-1} \\
 \omega_{\text{in}} & = 3000 \text{ tr mn}^{-1}
 \end{align*}
 \]

- **outlet boundary conditions**

 \[P_{s \text{out}} = 10^5 \text{ Pa}\]
The parametric approach

Industrial test-case

Results

Conclusions

14 geometric parameters

chord

Stagger angle

camber

camber location
Robust Design

Sensibility study for Robust Design

Mono parametric exploration

Loss factor

Parameter

stagger
chord
A
B
d
xd
rbaa
rbab
Ta
e
xe
Rc
rbf
Tf

reference value
minimum value
maximum value
The parametric approach

Industrial test-case

Results

Conclusions

Flow configuration

The parameterization

The optimization

The second order influence

The parameterization

The optimization

- Reference value
- Turb'Opty extrapolation - order 1
- Turb'Opty extrapolation - order 2

Reference value
- minimum value
- maximum value

Parameter

stagger
chord
A
B
d
xd
rbaa
rbab
Ta
c
xe
Rc
rbf
Tf

Loss factor

0.15
0.145
0.14
0.135
0.13

90%
100%
110%

parameter value (%)
1st Optimization result

Loss Coefficient:

\[\tilde{\omega} = \frac{P_t^{\text{in}} - P_t^{\text{out}}}{P_t^{\text{in}} - P_s^{\text{in}}} \]

Cascade Power:

\[\Delta P_s \]

- 12.6%

+ 7.0%

269 pa

Profil modifications 0.141
Map flow analysis

Cascade Power:

\[F = \dot{m} \Delta W_\theta = \dot{m}(V_{\text{out}} - V_{\text{in}}) \]

Loss Coefficient:

\[\tilde{\omega} = \frac{P_{\text{in}} - P_{\text{out}}}{P_{\text{t}} - P_{\text{s}}} \]
The parametric approach
Industrial test-case
Results
Conclusions

PARETO Front

1 data base = 40 hours

5 coupled design parameters, 2 objectives

GA parameters
- $N_{pop} = 500$
- $N_{gen} = 100$
- $N_{arch} = 20$

GA performances
- $N_{sol} = 241$
- CPU time = 1850 s.
PARETO Front

50 000 evaluations = 3/4 hour

5 coupled design parameters, 3 objectives
Adjustment 2D/3D

The parameterization

The optimization

The parametric approach

Industrial test-case

Results

Conclusions
Two steps optimization (1/3)

4 objectives
Two steps optimization (2/3)

<table>
<thead>
<tr>
<th></th>
<th>Reference</th>
<th>1st optimization</th>
<th>2nd optimization (Turb'Opty)</th>
<th>2nd optimization (Turb'Flow)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td>0.671</td>
<td>0.713</td>
<td>0.750</td>
<td>0.750</td>
</tr>
<tr>
<td>Pressure rise</td>
<td>290</td>
<td>319.5</td>
<td>312</td>
<td>297</td>
</tr>
<tr>
<td>Loss factor</td>
<td>0.1002</td>
<td>0.0677</td>
<td>0.0472</td>
<td>0.0506</td>
</tr>
<tr>
<td>Torque</td>
<td>0.540</td>
<td>0.559</td>
<td>0.519</td>
<td>0.495</td>
</tr>
</tbody>
</table>
Operation range

Pressure rise

Loss factor
Experimental result (ECL)

The parametric approach
Industrial test-case
Results
Conclusions

Blade Force

Incidence

Turb’Opty Blade
Reference Blade

CD
CD optim
Summary

- A multi-objectives optimization using a parametrization technique has been realized.

- This cutting edge approach offers:
 - a high flexibility: simplicity, use for robust design and parametric studies, no problem of convergence of the CFD solver, only one grid.
 - a significant reduction of time: coupling with other physics, use of optimization algorithms that need lots of evaluations.

- Future works for complex physics (bifurcation, shocks, …)