
Artificial Neural Networks for the Solution of Inverse Problems

P. Dadvand, R. Lopez and E. Oñate

International Center for Numerical Methods in Engineering (CIMNE)
Edificio C1, Campus Norte UPC. Gran Capitan s/n. 08034 Barcelona, Spain.
E-mail: pooyan@cimne.upc.edu, rlopez@cimne.upc.edu, onate@cimne.upc.edu

Web page: www.cimne.upc.edu

Kew Words: Inverse Problems, Functional Analysis, Variational Calculus, Artificial Neural
Networks, Multilayer Perceptron, Partial Differential Equations, Finite Element Method.

Abstract

In this work we present a variational formulation for neural networks. Within this
formulation, the learning problem for the multilayer perceptron lies in terms of finding a
function which is an extremal for some functional. As we will see, a variational formulation
for neural networks provides a direct method for the solution of general variational problems,
in any dimension and up to any degree of accuracy. In order to validate this technique for
the solution of inverse problems we train multilayer perceptron networks to solve an input
estimation problem and a properties estimation problem.

1 Introduction

Inverse problems can be described as being opposed to direct problems. In a direct problem the
cause is given, and the effect is determined. In an inverse problem the effect is given, and the
cause is estimated [1]. There are two main types of inverse problems: input estimation problems,
in which the system properties and output are known and the input is to be estimated; and
properties estimation problems, in which the the system input and output are known and the
properties are to be estimated [1]. Inverse problems are found in many areas of science and
engineering.

Mathematically, inverse problems fall into the more general class of variational problems [2].
The aim of a variational problem is to find a function which is the minimal or the maximal value
of a specified functional. By a functional, we mean a correspondence which assigns a number
to each function belonging to some class. Also, inverse problems might be ill-posed [2]. In an
ill-posed problem the solution might not meet existence, uniqueness or stability.

While some simple inverse problems can be solved analytically, the only practical technique
for general problems is to approximate the solution using direct methods [2]. The fundamental
idea underlying the so called direct methods is to consider the variational problem as a limit
problem for some function optimization problem in many dimensions. Unfortunately, due to
both their variational and ill-posed nature, inverse problems are difficult to solve. Hence, new
numerical methods need to be developed in order to overcome that troubles.

Neural networks is one of the main fields of artificial intelligence. The multilayer perceptron
is an important model of neural network, and much of the literature in the field is referred to that
model. Traditionally, the learning problem for the multilayer perceptron has been formulated
in terms of the minimization of an error function of the free parameters in the network, in
order to fit the neural network to an input-target data set [3]. In that way, the only learning
tasks allowed for the multilayer perceptron are data modelling type problems, such as function
regression or pattern recognition.

1

In this work we present a variational formulation for neural networks. Within this formu-
lation, the learning problem for the multilayer perceptron lies in terms of solving a variational
problem by minimizing a performance functional of the function space spanned by the network.
The choice of a suitable performance functional depends on the variational problem at hand. In
order to evaluate the performance functional we might need to integrate a function, an ordinary
differential equation or a partial differential equation.

As we will see, neural networks are not only able to solve data modelling problems, but also a
wide range of mathematical and physical problems. More specifically, a variational formulation
for neural networks provides a direct method for solving general variational problems, and
therefore inverse problems. Also, this numerical method allows the use of any regularization
technique in order to obtain well-posed solutions. By way of illustration, we train a multilayer
perceptron to solve an input estimation problem and a properties estimation problem.

2 A Variational Formulation for the Multilayer Perceptron

The multilayer perceptron can be seen as a mathematical model of the performance in a biolog-
ical neural network. Here we present a theory of the multilayer perceptron from the perspective
of functional analysis and variational calculus. Within this theory, a multilayer perceptron
is described by four concepts: a neuron model, the perceptron, a network architecture, the
feed-forward, and associated performance functionals and training algorithms.

2.1 The Perceptron Neuron Model

A neuron model is the basic information processing unit in a neural network. The perceptron is
the characteristic neuron model in the multilayer perceptron [4]. It computes a net input signal
u as a function h of the input signals x and the free parameters (b,w). The net input signal is
then subjected to an activation function g to produce an output signal y [5]. Figure 1 shows a
perceptron with n inputs.

h

w1

x1

xn

b

1

.

.

.

y
w2

wn

g

x2

u

Figure 1: A perceptron with n inputs.

Mathematically, a perceptron neuron model spans a parameterized function space V from
an input X ⊆ Rn to an output Y ⊆ R [6]. Elements of V are parameterized by the free
parameters of the neuron (b,w). The dimension of the function space V is therefore n+1. The
elements of the function space spanned by a perceptron are of the form

2

y : Rn → R

x 7→ y(x; b,w),

where

y(x; b,w) = g

(
b +

n∑
i=1

wixi

)
. (1)

Two of the most used activation functions are the sigmoid function, g(u) = tanh(u), and
the linear function, g(u) = u [7].

2.2 The Feed-forward Network Architecture

Neurons can be combined to form a neural network. The architecture of a neural network refers
to the number of neurons, their arrangement and connectivity [4]. The characteristic network
architecture in the multilayer perceptron is the so called feed-forward architecture. A feed-
forward architecture typically consists on an input layer of sensorial nodes, one or more hidden
layers of neurons, and an output layer of neurons. Communication proceeds layer by layer
from the input layer via the hidden layers up to the output layer [4]. In this way, a multilayer
perceptron is a feed-forward network architecture of perceptron neuron models. Figure 2 shows
a multilayer perceptron with n inputs, one hidden layer with h1 neurons and m neurons in the
output layer.

In a similar way as it happens with a single perceptron, a multilayer perceptron spans a
parameterized function space V from an input X ⊆ Rn to an output Y ⊆ Rm [6]. Elements
of V are parameterized by the free parameters in the network, which can be grouped together
in a s-dimensional free parameter vector α = (α1, ..., αs). The dimension of the function space
V is therefore s. The elements of the function space spanned by the multilayer perceptron in
Figure 2 are of the form

y : Rn → Rm

x 7→ y(x;α),

where

yk(x;α) = g(2)

b
(2)
k +

h1∑
j=1

w
(2)
kj · g(1)

(
b
(1)
j +

n∑
i=1

w
(1)
ji xi

) , k = 1, ...,m. (2)

A multilayer perceptron with as few as one hidden layer of sigmoid neurons and an output
layer of linear neurons provides a general framework for approximating any function from one
finite dimensional space to another up to any desired degree of accuracy, provided sufficiently
many hidden neurons are available. In this sense, multilayer perceptron networks are a class of
universal approximators [8].

3

y1
(1)

yh1
(1)

y1
(2)

ym
(2)

w11
(1)

wh11
(1)

w1n
(1)

wh1 n
(1)

w11
(2)

wm1
(2)

wm h1
(2)

w1 h1
(2)

x1

xn

.

.

.

b1
(1)

bh1
(1)

b1
(2)

bm
(2)

y1

1

1

1

1

.

.

.

.

.

.

ym

Figure 2: A two-layer perceptron with n inputs, one hidden layer with h1 neurons and m neurons
in the output layer.

2.3 The Performance Functional

Traditionally, the learning problem for the multilayer perceptron has been formulated in terms
of the minimization of an error function of the free parameters in the network, in order to fit
the neural network to an input-target data set [3]. In that way, the only learning tasks allowed
for the multilayer perceptron are data modelling type problems.

In a variational formulation for the multilayer perceptron, the concept of error function, e(α),
is changed by the concept or performance functional, F [y(x;α)] [6]. A performance functional
for the multilayer perceptron is of the form

F : V → R

y(x;α) 7→ F [y(x;α)].

The performance functional defines the task that the network is required to accomplish and
provides a measure of the quality of the representation that the network is required to learn. In
this way, the choice of a suitable performance functional depends on the particular application.
As we will see, changing the concept of error function by the concept of performance functional
allows us to extend the number of learning tasks for the multilayer perceptron to any variational
problem. Some examples are optimal control problems [6], inverse problems or optimal shape
design problems. The learning problem for the multilayer perceptron can then be formulated

4

in terms of the minimization of a performance functional of the function space spanned by the
neural network [6]:

Problem 1 (Variational problem for the multilayer perceptron) Let V be the space of
all functions y(x;α) spanned by a multilayer perceptron, and let s be the dimension of V . Find
a function y∗(x;α∗) ∈ V for which the functional F [y(x;α)], defined on V , takes on a minimum
or a maximum value.

The performance functional, F [y(x;α)], has a performance function associated, f(α), which
is defined as a function of the free parameters in the network [6]. A performance function for
the multilayer perceptron is of the form

f : Rs → R

α 7→ f(α).

The minimum or maximum value of the performance functional is achieved for a vector of
free parameters at which the performance function takes on a minimum or maximum value,
respectively. Therefore, the learning problem for the multilayer perceptron, formulated as a
variational problem, can be reduced to a function optimization problem [6]:

Problem 2 (Reduced function optimization problem for the multilayer perceptron)
Let Rs be the space of all vectors α spanned by the free parameters of a multilayer perceptron.
Find a vector α∗ ∈ Rs for which the function f(α), defined on Rs, takes on a minimum or a
maximum value.

In this sense, a variational formulation for the multilayer perceptron provides a direct method
to approximate the solution of general variational problems, in any dimension and up to any
desired degree of accuracy [6].

2.4 The Training Algorithm

The training algorithm is entrusted to solve the reduced function optimization problem. There
are many different training algorithms for the multilayer perceptron, which have different re-
quirements and characteristics. Moreover, there is no one best suited to all locations. According
to the information they require, training algorithms can be classified as:

1. Zero order algorithms, which make use of the performance function only (genetic algo-
rithm, ...).

2. First order algorithms, which make use of the performance function and its gradient vector
(conjugate gradient, ...).

3. Second order algorithms, which make use of the performance function, its gradient vector
and its Hessian matrix (quasi-Newton, ...).

According to their character, training algorithms can be classified as:

1. Local algorithms (conjugate gradient, quasi-Newton, ...).

2. Global algorithms (genetic algorithm, ...).

5

3 Application to Inverse Problems

A variational formulation for the multilayer perceptron provides a direct method for the solution
of general variational problems, and consequently inverse problems. Here we train a multilayer
perceptron to solve an input estimation problem and a properties estimation problem. Both
problems are solved with the Flood library [9]. The partial differential equations are integrated
in the Kratos library [10].

3.1 The Boundary Temperature Estimation Problem

For the boundary temperature estimation problem, consider the heat equation in the square
Ω = {(x, y) : |x| ≤ 0.5, |y| ≤ 0.5} with boundary Γ = {(x, y) : |x| = 0.5, |y| = 0.5},

∇2u(x, y; t) =
∂u(x, y; t)

∂t
in Ω, (3)

for t ∈ [0, 1], with initial condition u(x, y; 0) = 0 in Ω. The problem is to estimate the boundary
temperature y(t) on Γ and for t ∈ [0, 1], from measurements of the temperature at the center
of the square u(0, 0; t) for t ∈ [0, 1],

t1 u1(0, 0; t1)
t2 u2(0, 0; t2)
...

...
tP uP (0, 0; tP)

where P is the number of time steps considered. For this problem we use 101 time steps.
The first stage in solving this problem is to choose a network architecture to represent the

boundary temperature y(t) for t ∈ [0, 1]. Here a multilayer perceptron with a sigmoid hidden
layer and a linear output layer is used. This neural network is a class of universal approximator
[8]. The network must have one input and one output neuron. We guess a good number of
neurons in the hidden layer to be six. This neural network spans a family V of parameterized
functions y(t;α) of dimension s = 19, which is the number of free parameters in the network.

The second stage is to derive a performance functional for the boundary temperature esti-
mation problem. This is to be the mean squared error between the computed temperature at
the center of the square for a given boundary temperature and the measured temperature at
the center of the square,

E[y(t;α)] =
1
P

P∑
i=1

(
ûy(t;α)(0, 0; ti)− ui(0, 0; ti)

)2
. (4)

Please note that evaluation of the performance functional (4) requires a numerical method
for integration of partial differential equations. Here we choose the Finite Element Method [11].
For this problem we use a triangular mesh with 888 elements and 485 nodes.

The boundary temperature estimation problem for the multilayer perceptron can then be
formulated as follows:

6

Problem 3 (Boundary temperature estimation problem for the multilayer perceptron)
Let V be the space consisting of all functions y(t;α) spanned by a multilayer perceptron with 1
input, 6 sigmoid neurons in the hidden layer and 1 linear output neuron. The dimension of V
is 19. Find a vector of free parameters α∗ ∈ R19 that addresses a function y∗(t;α∗) ∈ V for
which the functional (4), defined on V , takes on a minimum value.

The third stage in solving this problem is to choose a suitable training algorithm. Here
we use a conjugate gradient with Polak-Ribiere train direction and Brent optimal train rate
[3]. The tolerance in the Brent’s method is set to 10−6. Training of the neural network with
the conjugate gradient algorithm requires the evaluation of the performance function gradient
vector ∇f(α). This is carried out by means of numerical differentiation [3]. In particular, we
use the symmetrical central differences method [3] with an ε value of 10−6.

In this example, we set the training algorithm to stop when the norm of the performance
function gradient ∇f(α) falls below 10−6. That means that the necessary condition for a
local minimum has about been satisfied. The neural network is initialized with a vector of
free parameters chosen at random in the interval [−1, 1]. During the training process the
performance function decreases until the stopping criterium is satisfied. Table 1 shows the
training results for this problem. Here N denotes the number of epochs, M the number of
performance evaluations, F [y∗(t;α∗)] the final performance, and ∇f(α∗) the final performance
function gradient norm.

N M F [y∗(t;α∗)] ∇f(α∗)
421 25352 2.456 · 10−4 8.251 · 10−7

Table 1: Training results for the boundary temperature estimation problem.

Figure 3 shows the actual boundary temperature, the boundary temperature estimated
by the neural network, and the measured temperature at the center of the square for this
problem. The solution here is good, since the estimated boundary temperature matches the
actual boundary temperature.

3.2 The Diffusion Coefficient Estimation Problem

For the diffusion coefficient estimation problem, consider the equation of diffusion in an inho-
mogeneous medium in the square Ω = {(x, y) : |x| ≤ 0.5, |y| ≤ 0.5} with boundary Γ = {(x, y) :
|x| = 0.5, |y| = 0.5},

∇ (κ(x, y)∇u(x, y; t)) =
∂u(x, y; t)

∂t
in Ω, (5)

for t ∈ [0, 1] and where κ(x, y) is called the diffusion coefficient, with boundary condition
u(x, y; t) = 0 on Γ and for t ∈ [0, 1], and initial condition u(x, y; 0) = 1 in Ω. The problem
is to estimate the diffusion coefficient κ(x, y) in Ω, from measurements of the temperature at
different points on the square u(x, y; t) in Ω and for t ∈ [0, 1],

7

Figure 3: Actual boundary temperature (red), estimated boundary temperature (green) and
measured temperature at the center of the square (blue) for the boundary temperature estima-
tion problem.

t1 u11(x1, y1; t1) u12(x2, y2; t1) . . . u1Q(xQ, yQ; t1)
t2 u21(x1, y1; t2) u22(x2, y2; t2) . . . u2Q(xQ, yQ; t2)
...

...
...

. . .
...

tP uP1(x1, y1; tP) uP2(x2, y2; tP) . . . uPQ(xQ, yQ; tP)

where P and Q are the number of points and time steps considered, respectively. For this
problem we use 485 points and 11 time steps.

The first stage in solving this problem is to choose a network architecture to represent the
diffusion coefficient κ(x, y) in Ω. Here a multilayer perceptron with a sigmoid hidden layer and
a linear output layer is used. This neural network is a class of universal approximator [8]. The
neural network must have two inputs and one output neuron. We guess a good number of
neurons in the hidden layer to be six. This neural network is denoted as a 2 : 6 : 1 multilayer
perceptron. It spans a family V of parameterized functions κ(x, y;α) of dimension s = 25,
which is the number of free parameters in the network.

The second stage is to derive a performance functional for the diffusion coefficient estimation
problem. The performance functional for this problem is to be the mean squared error between
the computed temperature for a given diffusion coefficient and the measured temperature,

E[κ(x, y;α)] =
1

PQ

P∑
i=1

 Q∑
j=1

(
ûκ(x,y;α)(xj , yj ; ti)− uij(xj , yj ; ti)

)2

 , (6)

The diffusion coefficient estimation problem for the multilayer perceptron can then be for-
mulated as follows:

8

Problem 4 (Diffusion coefficient estimation problem for the multilayer perceptron)
Let V be the space consisting of all functions κ(x, y;α) spanned by a multilayer perceptron with
2 inputs, 6 sigmoid neurons in the hidden layer and 1 linear output neuron. The dimension of
V is 25. Find a vector of free parameters α∗ ∈ R25 that addresses a function κ∗(x, y;α∗) ∈ V
for which the functional (6), defined on V , takes on a minimum value.

Evaluation of the performance functional (6) requires a numerical method for integration of
partial differential equations. Here we choose the Finite Element Method [11]. For this problem
we use a triangular mesh with 888 elements and 485 nodes.

The third stage is to choose a suitable algorithm for training. Here we use a conjugate
gradient with Polak-Ribiere train direction and Brent optimal train rate methods for training
[3]. The tolerance in the Brent’s method is set to 10−6. Training of the neural network with
the conjugate gradient algorithm requires the evaluation of the performance function gradient
vector ∇f(α) [3]. This is carried out by means of numerical differentiation. In particular, we
use the symmetrical central differences method [3] with ε = 10−6.

In this example, we set the training algorithm to stop when the norm of the performance
function gradient falls below 10−6. That means that the necessary condition for a local minimum
has about been satisfied. The neural network is initialized with a vector of free parameters
chosen at random in the interval [−1, 1]. Table 1 shows the training results for this problem.
Here N denotes the number of epochs, M the number of performance evaluations, F [κ∗(x, y;α∗)]
the final performance, and ∇f(α∗) the final performance function gradient norm.

N M F [κ∗(x, y;α∗)] ∇f(α∗)
312 22652 1.562 · 10−5 7.156 · 10−7

Table 2: Training results for the diffusion coefficient estimation problem.

Figure 3 shows the actual diffusion coefficient and the diffusion coefficient estimated by
the neural network for this problem. The solution here is good, since the estimated diffusion
coefficient matches the actual diffusion coefficient.

(a) (b)

Figure 4: Actual diffusion coefficient (a) and estimated diffusion coefficient (b) for the diffusion
coefficient estimation problem.

9

4 Conclusions and Future Work

A variational formulation for neural networks provides a direct method for the solution of general
variational problems. The solution of the boundary temperature estimation problem and the
diffusion coefficient estimation problem demonstrates the capability of the method in dealing
with different types of inverse problems and in many dimensions. Ongoing work focuses on the
solution of inverse problems of real engineering interest.

References

[1] A. Kirsch. An Introduction to the Mathematical Theory of Inverse Problems, Springer,
1996.

[2] M. Tanaka (Editor). Inverse Problems in Engineering Mechanics IV, Elsevier, 2003.

[3] C. Bishop. Neural Networks for Pattern Recognition, Oxford University Press, 1995.

[4] J. Š́ıma and P. Orponen. General-Purpose Computation with Neural Networks: A Survey
of Complexity Theoretic Results, Neural Computation 15 (2727-2778), 2003.

[5] S. Haykin. Neural Networks: A Comprehensive Foundation, Prentice Hall, 1994.

[6] R. Lopez, E. Balsa-Canto and E. Oñate, Artificial Neural Networks for the Solution of
Optimal Control Problems, Proceedings of the Sixth Conference on Evolutionary and De-
terministic Methods for Design, Optimisation and Control with Applications to Industrial
and Societal Problems (65-66), 2005.

[7] H. Demuth and M. Beale. Neural Network Toolbox for Use with MATLAB. User’s Gide,
The MathWorks, 2002.

[8] K. Hornik, M. Stinchcombe and H. White. Multilayer feedforward networks are universal
approximators, Neural Networks 2-5 (359-366), 1989.

[9] R. Lopez. Flood: An Open Source Neural Networks C++ Library, www.cimne.com/flood,
2005.

[10] Kratos: An Object-Oriented Environment for Development of Multi-Physics Analysis Soft-
ware, www.cimne.upc.edu/kratos, 2005.

[11] O. Zienkiewicz and R. Taylor The Finite Element Method, Volumes 1 and 2, Mc Graw Hill,
1988.

10

	Introduction
	A Variational Formulation for the Multilayer Perceptron
	The Perceptron Neuron Model
	The Feed-forward Network Architecture
	The Performance Functional
	The Training Algorithm

	Application to Inverse Problems
	The Boundary Temperature Estimation Problem
	The Diffusion Coefficient Estimation Problem

	Conclusions and Future Work

