

Transitionsmodellierung technischer Strömungen

Florian Menter; Robin Langtry ANSYS Germany, 83624 Otterfing Florian.Menter@ansys.com

Transition Modelling in Industrial CFD

Effects

- Re number effects
- Heat transfer
- Wall shear stress
- Separation behaviour
- Efficiency of many technical devices

Modelling

- Numerous developments:
 - Correlation based models
 - Low-Re models
 - eⁿ linear stability
 - PSE models
 - LES
 - DNS

~75% of all technical flows are in a Re range of 10⁴-10⁶ and therefore in transitional regime

Almost all industrial CFD simulations are calculated without a transition model

DNS Rodi et al.

Spanwise vorticity iso-surfaces (Sims. 1,2)

- Wakes impact on boundary layer cause bypass transition
- Re=60,000
- Periodic in spanwise direction
- No of grid nodes ~ 30x10⁶

Transition on T106 LPT blade (Re = 148000)

LES of Michelassi et al (2003)

- -10 mio grid points Dynamic SGS model
- Isolines of vertical velocity
- Span/Chord ~ 0.15

Full 3D	LES	Rans
Nodes	~150-300x10 ⁶	~3-5x10 ⁶
Dt- steady	~105	~10²
Dt – unsteady	~2x10 ⁵	~2x10 ³

LES/RANS Ratio

Ratio steady	~ 50,000
Ratio	~ 5,000
unsteady	

Siemens 15 STAGE AXIAL COMPRESOR

- 15 rows x ~ 60 blades ~ 1000 blades
- Optimization (x 100 1000 configurations)

Transition Modelling: Status Quo in Engineering

- Low-Re models (only bypass transition)
 - Based on transport equations for e.g. k and ε (compatible with modern CFD codes)
 - Cannot be calibrated independently of viscous sublayer model
 - Poor accuracy and robustness not used in industry
- e^N method (only natural transition)
 - Very accurate predictions for 2D airfoils (low FSTI)
 - N-S codes are not accurate enough to evaluate stability equations
 - Extension to generic 3D flows very difficult (impossible?)
 - Cannot account of non-linear effects (e.g. high FSTI, roughness)

Correlation based model

- Reasonably accurate
- Correlations can be found for many different transition mechanisms (e.g. FSTI, dp/dx, Roughness)
- Not compatible with 3D flows and unstructured/parallel CFD codes non-local formulation

Goal – correlation based model using transport equations

Transition Model Requirements

Compatible with modern CFD code:

- Unknown application
- Complex geometries
- Unknown grid topology
- Unstructured meshes (no search directions)
- Parallel codes domain decomposition

Requirements:

- Absolutely no search algorithms
- Absolutely no integration along lines
- Local formulation
- Different transition mechanisms
- Robust
- No excessive grid resolution

Transition Onset Correlations

- Transition onset is affected by:
 - Free-stream turbulence turbulence intensity (FSTI)
 - Pressure gradients (λ_{θ})
 - Separation
 - Reynolds number (Re_e)
 - Mach number
 - Freestream length scale
 - Surface conditions:
 - Roughness
 - Temperature
 - Curvature
 - The history of the above parameters

$$\operatorname{Re}_{\theta t} = f(Tu, \lambda_{\Theta})$$

Non-local formulations

- Transition onset:
 - Compute Re_o for all laminar bl-profiles and compare with Re_{ot}
- Length of transition
 - Trigger turbulence model with rampfunction
- Correlation
 - Evaluated at edge of the boundary layer

$$\theta = \int_{0}^{\delta} \frac{u}{U} \left(1 - \frac{u}{U} \right) dy \rightarrow \operatorname{Re}_{\theta} = \frac{\rho U \theta}{\mu}$$

$$\operatorname{Re}_{\theta t} = f(Tu, \lambda_{\Theta})$$

Transport Equation for Intermittency γ

$$\frac{\partial(\rho\gamma)}{\partial t} + \frac{\partial(\rho U_{j}\gamma)}{\partial x_{j}} = P_{\gamma} - E_{\gamma} + \frac{\partial}{\partial x_{j}} \left[\left(\mu + \frac{\mu_{t}}{\sigma_{f}} \right) \frac{\partial\gamma}{\partial x_{j}} \right]$$

Transition Sources

$$P_{\gamma} = F_{length} c_{a1} \rho S \left[\gamma F_{onset} \right]^{0.5} \left(1 - c_{e1} \gamma \right) \qquad \mathbf{F}_{onset} \text{ transition onset when } \operatorname{Re}_{\theta} \geq \operatorname{Re}_{\theta \, t}$$

$$E_{\gamma} = c_{a2} \rho \Omega \gamma F_{turb} \left(c_{e2} \gamma - 1 \right)$$

F_{length} length of transition

Onset

New Idea: Vorticity Reynolds Number

$$\operatorname{Re}_{v} = \frac{\rho y^{2}}{\mu} \left| \frac{\partial u}{\partial y} \right|$$

Blasius Boundary Layer

$$(Re_{\nu})_{max} = (Re_{\Theta}) \cdot 2.193$$

- Maximum value of Re_ν in the B.L. is proportional to Re_θ
- Can relate Re_{θt} from correlation to Re_ν
- Allows empirical correlations to be used with 3d, unstructured parallel solvers

Production of Intermittency

$$\operatorname{Re}_{v} = \frac{\rho y^{2}}{\mu} \left| \frac{\partial u}{\partial y} \right|$$

$$F_{onset} \sim \max(\frac{\operatorname{Re}_{v}}{2.193 \operatorname{Re}_{\theta t}} - 1, 0) \stackrel{\text{\$}}{\approx} 0.8$$

$$0.6$$

$$0.4$$

$$\operatorname{Re}_{\theta t} = f(Tu, \lambda_{\theta})$$

12

Modification to SST Turbulence Model

$$\frac{\partial}{\partial t}(\rho k) + \frac{\partial}{\partial x_j}(\rho U_j k) = \tilde{P}_k - \tilde{D}_k + \frac{\partial}{\partial x_j}\left(\left(\mu + \sigma_k \mu_t\right) \frac{\partial k}{\partial x_j}\right)$$

$$P_k = \mu_t S^2$$

$$D_k = \beta^* \rho k \omega$$

$$\widetilde{P}_{k} = \gamma_{eff} P_{k}$$

$$\widetilde{D}_k = \min(\max(\gamma_{eff}, 0.1), 1.0)D_k$$

S - invariant form of strain-rate

Flat Plate Results: dp/dx=0

Flat Plate Results: dp/dx (change in Re number)

Separation Induced Transition

- Previous versions predicted separation induced transition too late
- Solution: Allow intermittency to increase above 1.0 in laminar separation bubbles

Test Cases: Genoa Turbine Blade

17

Test Cases: Zierke (PSU) Compressor Blade

Separation Induced Transition On an LP-Turbine

Pratt and Whitney Pak-B LP turbine blade

 $Re_x = 50\ 000, 75$ 000 and 100 000

FSTI = 0.08, 2.25,6.0 percent

Computations performed by Suzen and Huang, Univ. of Kentucky

Test Cases: 3D RGW Compressor Cascade

RGW Compressor (RWTH Aachen)

FSTI = 1.25 %

 $Re_{x} = 430\,000$

Loss coefficient, (Yp) = 0.097

Yp = (poinlet - pooutlet)/pdynoutlet

Schulz, H.D., Gallus, H.D., 1988, "Experimental Investigation of the Three-Dimensional Flow in an Annular Compressor Cascade", ASME *Journal of Turbomachinery*,

Test Cases: 3D RGW Compressor Cascade

Fully Turbulent Yp = 0.19

Experimental Oil Flow Yp = 0.097

Transition Model Yp = 0.11

Unsteady Wake Induced Transition (George Huang)

Stieger et al. (2003)

22

Wind Turbine Airfoil

3D NREL Wind Turbine (\$809 Airfoil)

- Full 3D Wind Turbine
- Wind Speeds = 7 to 25 m/s
- S809 airfoil profile for the NREL Phase IV full wind turbine experiment, (Simms, 2001)
- All CFD computations performed with ANSYS CFX 10
 - Transitional and Fully Turbulent
 - •Grid = 10 million Nodes
 - •Each run made overnight on a 16 CPU Linux cluster
 - •Max y + = 1

Simms, D., Schreck, S., Hand, M, and Fingersh, L.J. (2001). "NREL Unsteady Aerodynamics Experiment in the NASA-Ames Wind Tunnel: A Comparison of Predictions to Measurements", *NREL Technical report*, *NREL/TP-500-29494*.

NREL Wind Turbine: Shaft Torque

McDonnell Douglas 30P-30N 3-Element Flap

Exp. hot film transition location measured as f(x/c)

Eurocopter – Wake induced transition

 $Re_x = 30$ million

Convergence and Cost of using the transition model

- Eurocopter configuration
- 6 million nodes
- Max y + = 1
- 16 CPU's
- **Total Additional CPU cost** 17%
 - Discritization (High Res) 12%
 - Linear Solution 5%

Team Alinghi in Action

Wind Tunnel Facility

Wind Tunnel testing carried out at NRC's 9m x 9m wind tunnel in Ottawa (Canada)

- 1.5:1 model scale (to match Re)
- measure of force on the whole appendage and on each appendage component (keel, bulb, winglets)
- transition location study (with thermography)
- Study on the dependency on inflow turbulence levels

Transition Modelling Calibration

Inflow turbulence intensity calibration:

- Comparison with high turbulence wind tunnel run
- Good force and transition location matching for TU=0.5%

TU	Global Drag	Error	Bulb Lam %	Keel Lam %
0.10%	-0.0460	16%	18-26	57
0.15%	-0.0483	12%	8-12	57
0.25%	-0.0495	10%	5-6	54
0.50%	-0.0558	1%	2-2.5	29-36
Wind Tunnel	-0.0550		2	27-30

Transition Modelling Testing

Wind Tunnel Thermography

Bulb: 7%-15%

Keel (suction side): 12.5% - 23.5%

Keel (pressure side): 62%

CFD Analysis

CFX

Keel (suction side): 24%

Keel (pressure side): 57%

Bulb: 8%

Summary

- New correlation based transition model has been developed
 - Based strictly on local variables
 - Applicable to unstructured massively parallelized codes
- Onset prediction is completely automatic
 - User must specify correct values of inlet Tu and R_T
- Validated for a wide range of 2-D and 3-D turbomachinery and aeronautical test cases – one set of correlations for all flows
- Strong potential that 1st Order effects of transition can be captured in everyday industrial CFD simulations
- Opens many new opportunities in industrial CFD Implementation into Fluent 6.4 – Formula One teams …

Flat Plate Transition with Roughness

 Included Correlations for the effect of Roughness on transition onset

Flat Plate Transition with Roughness

Flat Plate Relaminarization

Flat Plate Relaminarization with Roughness Strip

