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Transition Modelling in Industrial 

CFD

Transition Modelling in Industrial 

CFD

• Re number effects

• Heat transfer

• Wall shear stress

• Separation behaviour

• Efficiency of many 
technical devices

Effects Modelling

• Numerous developments:

– Correlation based models

– Low-Re models

– en linear stability

– PSE models

– LES

– DNS

~75% of all technical flows are in a Re 
range of 104-106 and therefore in 

transitional regime
Almost all industrial CFD simulations 

are calculated without a transition model
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Spanwise vorticity iso-surfaces (Sims. 1,2)

DNS Rodi et al. DNS Rodi et al. 

• Wakes impact on 
boundary layer cause 
bypass transition

• Re=60,000

• Periodic in spanwise
direction

• No of grid nodes ~ 
30x106
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Transition on T106 LPT blade 

(Re = 148000)

Transition on T106 LPT blade 

(Re = 148000)

LES of 
Michelassi et al (2003)

-10 mio grid points
Dynamic SGS model

- Isolines of vertical
velocity

- Span/Chord ~ 0.15

~2x103~2x105Dt – unsteady

~102~105Dt- steady

~3-5x106~150-300x106Nodes

RansLES Full 3D

~ 5,000Ratio 
unsteady

~ 50,000Ratio steady

LES/RANS Ratio
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Siemens 15 STAGE AXIAL 

COMPRESOR

Siemens 15 STAGE AXIAL 

COMPRESOR

• 15 rows x ~ 60 blades ~ 1000 blades

• Optimization (x 100 – 1000 configurations) 
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Transition Modelling: Status Quo 

in Engineering

Transition Modelling: Status Quo 

in Engineering

• Low-Re models (only bypass transition)
– Based on transport equations for e.g. k and εεεε (compatible with modern CFD codes)

– Cannot be calibrated independently of viscous sublayer model

– Poor accuracy and robustness – not used in industry

• eN method (only natural transition)
– Very accurate predictions for 2D airfoils (low FSTI)

– N-S codes are not accurate enough to evaluate stability equations

– Extension to generic 3D flows very difficult (impossible?)

– Cannot account of non-linear effects (e.g. high FSTI, roughness)

• Correlation based model
– Reasonably accurate

– Correlations can be found for many different transition mechanisms (e.g. FSTI, dp/dx, 
Roughness)

– Not compatible with 3D flows and unstructured/parallel CFD codes – non-local formulation

Goal – correlation based model using

transport equations
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Transition Model RequirementsTransition Model Requirements

• Compatible with modern CFD code:
– Unknown application

– Complex geometries

– Unknown grid topology

– Unstructured meshes (no search 

directions)

– Parallel codes – domain decomposition

• Requirements:
– Absolutely no search algorithms

– Absolutely no integration along lines

– Local formulation

– Different transition mechanisms 

– Robust 

– No excessive grid resolution

Laminar Flow

Transitional

Fully Turbulent
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Transition Onset CorrelationsTransition Onset Correlations

• Transition onset is affected by:

– Free-stream turbulence 
turbulence intensity (FSTI)

– Pressure gradients (λλλλθθθθ)

– Separation 

– Reynolds number (Reθθθθ)

– Mach number

– Freestream length scale 

– Surface conditions:

• Roughness

• Temperature

• Curvature

– The history of the above 
parameters

),(Re Θ= λθ Tuft
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Non-local formulationsNon-local formulations

• Transition onset:

– Compute ReΘΘΘΘ for all 
laminar bl-profiles and 
compare with ReΘΘΘΘt

• Length of transition

– Trigger turbulence 
model with ramp-
function

• Correlation 

– Evaluated at edge of the 
boundary layer
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Transport Equation for Intermittency γTransport Equation for Intermittency γ

Transition Sources

Fonset transition onset when

Flength length of transition 
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New Idea: Vorticity Reynolds 

Number

New Idea: Vorticity Reynolds 

Number

• Maximum value of Rev in the B.L. is proportional to Re
θ

• Can relate Re
θt from correlation to Rev

• Allows empirical correlations to be used with 3d, unstructured 
parallel solvers

Blasius Boundary Layer
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Production of IntermittencyProduction of Intermittency

Re
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Modification to SST Turbulence ModelModification to SST Turbulence Model
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T3B 

FSTI = 6.5 %
T3A 

FSTI = 3.5 %

Flat Plate Results: dp/dx=0

T3A-

FSTI = 0.9 % Schubauer and 

Klebanoff

FSTI = 0.18 %
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T3C5 

FSTI = 2.5 %

Flat Plate Results: dp/dx (change in 

Re number)

T3C2 

FSTI = 2.5 %

T3C3

FSTI = 2.5 %

T3C4 

FSTI = 2.5 %
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Separation Induced TransitionSeparation Induced Transition

• Previous versions predicted separation induced transition too late

• Solution:  Allow intermittency to increase above 1.0 in laminar separation 
bubbles

Laminar 

Separation

Turbulent  

Reattachment
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Test Cases: Genoa Turbine Blade

Transition

Tu

tΘRe
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Test Cases: Zierke (PSU) Compressor Blade

Tu

L.E 

Separation 

Induced 

Transition Pressure Side 

Transition

Tu Velocity
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Separation Induced Transition On an LP-

Turbine 

Increasing Rex

In
c
re

a
s
in

g
 F

S
T

I

• Pratt and 
Whitney Pak-B 
LP turbine blade

• Rex= 50 000, 75 
000 and 100 000

• FSTI = 0.08, 2.25, 
6.0 percent

• Computations 
performed by 
Suzen and 
Huang, Univ. of 
Kentucky
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RGW Compressor (RWTH Aachen)

FSTI = 1.25 % 

Rex =  430 000

Loss coefficient, (Yp) = 0.097
Yp = (poinlet - pooutlet)/pdynoutlet

Test Cases: 3D RGW Compressor 

Cascade

Hub 

Vorte

x

Tip 

Vorte

x

Laminar 

Separatio

n Bubble

Transitio

n

Schulz, H.D., Gallus, H.D., 1988, “Experimental 
Investigation of the Three-Dimensional 

Flow in an Annular Compressor Cascade”,  ASME 
Journal of Turbomachinery,         
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Experimental Oil Flow

Yp = 0.097 

Test Cases: 3D RGW Compressor 

Cascade

Transition Model

Yp = 0.11

Fully Turbulent

Yp = 0.19
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Unsteady Wake Induced 

Transition (George Huang)

Unsteady Wake Induced 

Transition (George Huang)

t/T = 0.0
t/T = 0.5

Steady Laminar 

Separation

Steady Turbulent  

Reattachment

Wake  induced   

transition

Turbulent patch

Stieger et al. (2003) 
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Wind Turbine Airfoil

Transition

Transition

Tu Contour

Transition
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• Full 3D Wind Turbine 

• Wind Speeds = 7 to 25 m/s 

• S809 airfoil profile for the
NREL Phase IV full wind 
turbine experiment, (Simms, 
2001)

• All CFD computations
performed with ANSYS CFX 10

•Transitional and Fully
Turbulent 

•Grid = 10 million Nodes

•Each run made overnight on 
a 16 CPU Linux cluster

•Max y+ = 1

3D NREL Wind Turbine (S809 Airfoil)

Simms, D., Schreck, S., Hand, M, and Fingersh, L.J. (2001). “NREL Unsteady 

Aerodynamics Experiment in the NASA-Ames Wind Tunnel: A Comparison 

of Predictions to Measurements”, NREL Technical report, NREL/TP-500-

29494.
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NREL Wind Turbine:  Shaft Torque

Transitional (20 m/s)

Turbulent (20 m/s)

Flow Direction



© 2006 ANSYS, Inc.  All rights reserved. 26 ANSYS, Inc. Proprietary

McDonnell Douglas 30P-30N 3-Element Flap

Slat transition:

CFX = -0.056

Exp.= -0.057

Error: 0.1 %

Tu ContourRe = 9 million

Mach = 0.2

C = 0.5588 m

AoA = 8°

Exp. hot film 

transition 

location 

measured 

as f(x/c) 

Main upper transition:

CFX = 0.068

Exp. = 0.057

Error: 1.1  %

Main lower transition:

CFX = 0.587

Exp. = 0.526

Error: 6.1  %

Flap transition:

CFX = 0.909

Exp. = 0.931

Error: 2.2 %
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Eurocopter – Wake induced 

transition

Eurocopter – Wake induced 

transition

Rex = 30 million

Laminar Flow

Transitional

Transition
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Convergence and Cost of using 

the transition model

Convergence and Cost of using 

the transition model

• Eurocopter configuration

• 6 million nodes

• Max y+ = 1

• 16 CPU’s

• Total Additional CPU cost 
17%

– Discritization (High Res) 
12% 

– Linear Solution 5%

Fully 

Turbulent

Transitional

Drag reduced 5 

% compared to 

fully turbulent

Drag 

Lift 



© 2006 ANSYS, Inc.  All rights reserved. 29 ANSYS, Inc. Proprietary

Team Alinghi in ActionTeam Alinghi in Action
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Wind Tunnel FacilityWind Tunnel FacilityWind Tunnel FacilityWind Tunnel FacilityWind Tunnel FacilityWind Tunnel FacilityWind Tunnel FacilityWind Tunnel Facility

Wind Tunnel testing carried 

out at NRC's 9m x 9m wind 

tunnel in Ottawa (Canada)

• 1.5:1 model scale (to match Re)

• measure of force on the whole 

appendage and on each appendage 

component (keel, bulb, winglets)

• transition location study (with 

thermography)

• Study on the dependency on 

inflow turbulence levels  
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TU=0.1% TU=0.15% TU=0.25% TU=0.5%

TU Global Drag Error Bulb Lam % Keel Lam %

0.10% -0.0460 16% 18-26 57

0.15% -0.0483 12% 8-12 57

0.25% -0.0495 10% 5-6 54

0.50% -0.0558 1% 2-2.5 29-36

Wind Tunnel -0.0550 2 27-30

Inflow turbulence intensity calibration:

• Comparison with high turbulence wind tunnel run

• Good force and transition location matching for TU=0.5%

Transition Modelling Transition Modelling Transition Modelling Transition Modelling 

CalibrationCalibrationCalibrationCalibration

Transition Modelling Transition Modelling Transition Modelling Transition Modelling 

CalibrationCalibrationCalibrationCalibration
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Bulb: 7%-15%

Keel (suction side):  12.5% - 23.5%

Keel (pressure side): 62%

Wind Tunnel 

Thermography

CFD Analysis

Bulb: 8%

Keel (suction side):  24%

Keel (pressure side): 57%

Transition Modelling TestingTransition Modelling Testing
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SummarySummary

• New correlation based transition model has been 
developed

– Based strictly on local variables

– Applicable to unstructured massively parallelized codes

• Onset prediction is completely automatic

– User must specify correct values of inlet Tu and RT

• Validated for a wide range of 2-D and 3-D turbomachinery
and aeronautical test cases – one set of correlations for 
all flows

• Strong potential that 1st Order effects of transition can be 
captured in everyday industrial CFD simulations

• Opens many new opportunities in industrial CFD –
Implementation into Fluent 6.4 – Formula One teams …
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Flat Plate Transition with 

Roughness

Flat Plate Transition with 

Roughness

• Included Correlations for the effect of 
Roughness on transition onset

Transition Model Without 
Roughness Correlation

Transition Model with 
Roughness Correlation
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Flat Plate

Transition with Roughness

Flat Plate

Transition with Roughness

Case 1 - 4 have increasing 
Roughness Reynolds 
number, ReK
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Flat Plate

Relaminarization

Flat Plate

Relaminarization

Trip due to Blowing
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Flat Plate Relaminarization with 

Roughness Strip

Flat Plate Relaminarization with 

Roughness Strip

Roughness Strip


