

Turbulenter Impuls- und Wärmetransport in Flüssigmetallen- Experimentelle Methoden und Berechnungsansätze

Stieglitz, R.

Batta, A., Grötzbach, G., Class, A., Daubner, M., Lefhalm, C.-H.,
Otic, I.
and the KALLA team

Institute for Nuclear and Energy Technologies (IKET)
Forschungszentrum Karlsruhe GmbH

Content

- Technical appearance of liquid metal flows
- Specific properties of liquid metals
- Turbulent heat exchange
 - Analogies between momentum and heat exchange
 - Experimental observations in a heated pipe
 - Closure methods for turbulent heat flux
- Measurement techniques in liquid metals
- Engingeering applications
 - The heated pipe am old story
 - Heated Rod in a cylindrical cavity in KALLA
 - MEGAPIE target
- SUMMARY and outlook

Technical Liquid Metal flows

- Liquid metals are known to mankind since about 6000 years (natural Mercury)
- They are refined and casted since more than 4000 years (bronze, copper)
- Production of iron started in Turkey since 3000 years
- Alumina and alloy production on large scales in the last 200years

Liquid mercury in glass capsule

Bronze casting

Raw iron refinement

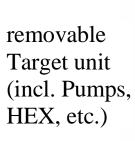
- Current industrial interest:
 - Adaptive materials with certain properties for specific use in e.g. car insdustry, aeronautics, etc. like AlLi-alloys
 - Minimization of primary energy input during refinement
 - Higher demand on quality of surfaces and reduction of number of secondary machining processes

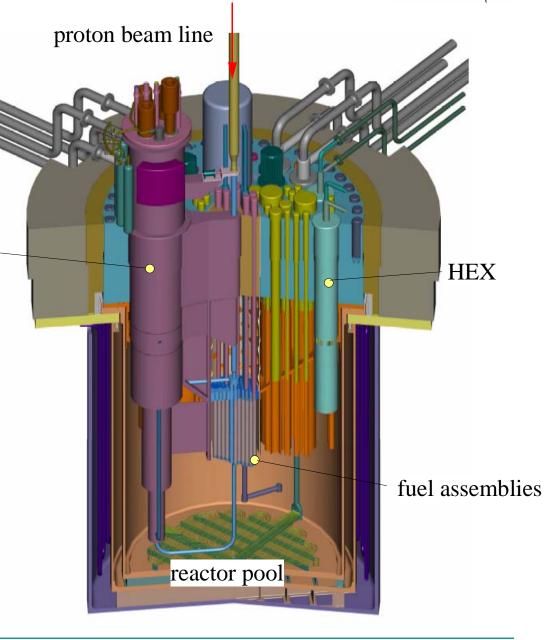
Alumina preparation for casting

Requirements:

Measurement techniques, heat transport phenomena, phase change problems

FISSION: MYRRAH


- a planned 50MW Experimental ADS


Features

- Free surface target
- Criticality k_{eff}~0.95
- Thermal power P_{th}=50MW
- Proton beam 350MeV at 5mA
- Lead bismuth cooled

Critical thermal hydraulic issues

- Free surface flows with turbulence
- Mixed convection (Buoyancy) in the core
- LM technology in Target and Core
- Instrumentation and monitoring

Specific properties of liquid metals

GENERAL FEATURES

- opaque, totally reflecting
- high temperatures,
- corrosive,
- large surface tension
- high thermal conductivity

HEAVY LIQUID METALS

- high density
- low kinematic viscosity,

		Unit	Pb ⁴⁵ B ⁱ⁵⁵	Lithium	Water
			300°C	300°C	25°C
density	ρ	$[kg/m^3]$	10325	505	1000
heat capacity	c_{p}	[J/(kgK)]	146.33	4279	4180
kinematic viscosity	ν	$[m^2/s]\cdot 10^{-7}$	1.754	9	9.1
heat conductivity	λ	[W/(m K)]	12.68	29.2	0.6
electric conductivity	$\sigma_{ m el}$	$[A/(V m)] \cdot 10^5$	8.428	33.5	2·10 ⁻⁴ (tap)
thermal expansion	α	/	6.7·10 ⁻³	43.6.10-3	6.10-3
coefficient					

Specific properties of liquid metals

Force ratio		$X_{PbBi(300^{\circ}C)}/$ $X_{Water(25^{\circ}C)}$	$\begin{array}{c} X_{\text{Li(300°C)}} / \\ X_{\text{Water(25°C)}} \end{array}$	Energy ratio		$X_{PbBi(300^{\circ}C)}/$ $X_{Water(25^{\circ}C)}$	$X_{\text{Li(300°C)}}/X_{\text{Water(25°C)}}$
Reynolds	$Re = \frac{u \cdot l}{v}$	5	0.98	Peclet	$Pe = \frac{u \cdot l}{\kappa}$	0.017	0.01
Grashof	$Gr = \frac{g \cdot \alpha \cdot \Delta T \cdot l^3}{v^2}$	30	7.4	Fourier	$Fo = \frac{l^2}{\kappa \cdot t}$	0.017	0.01
Prandtl	$Pr = \frac{v}{\kappa}$	0.003	0.008	heat conduct. $[m^2/s]$	$\kappa = \frac{\lambda}{\rho \cdot c_p}$	58.5	94.1

Scale separation of thermal and viscous boundary layer

Strategy (EU, HGF and internal programs)

- Liquid metal adapted heat transfer models (several approaches possible)
- Detailed measurements in simple geometries (model development and verification, statistical features of u and T, measurement technology)

Turbulent heat transfer

Turbulent energy equation

$$\rho c_{p} \left(\overline{u} \frac{\partial \overline{T}}{\partial x} + \overline{v} \frac{\partial \overline{T}}{\partial y} \right) = -\frac{\partial}{\partial y} \left(-\lambda \frac{\partial \overline{T}}{\partial y} + \rho c_{p} \overline{v' T'} \right) ,$$

- Analogous to the turbulent viscosity $\varepsilon_{\!\scriptscriptstyle M}\!\!=\!\!\mu_{\!\scriptscriptstyle t}/\rho$ a turbulent heat flux appears and thus
- a turbulent eddy heat diffusivity $\varepsilon_H = \lambda_t / (\rho c_p)$ can be defined, the ratio is called
- the turbulent Prandt number Pr_t

$$Pr_{t} = \frac{\varepsilon_{M}}{\varepsilon_{H}} = f\left(Re, Pr, \frac{y}{R}\right) = \frac{\frac{\partial T}{u v}}{v'T'} \frac{\frac{\partial T}{\partial y}}{\frac{\partial u}{\partial y}}$$

Consequences

- Pr_t is far of being a constant (in reality a tensor)
- Difficult to measure directly (measure of dimensions and available sensor sizes, temporal resolution)
- Involves several modelling problems

Turbulent heat transfer

Closure methods for turbulent heat flux

- Semi-empirical models of zero and first order developed since late fourties yield mostly to **Reynolds analogy** results and to $Pr_{t}=f(Pr, ε_{M}/v)$ (momentum-field≈temperature field)
- Turbulent Prandtl Pr_t number from analytic solutions account for the statistics of the turbulence field (see Yakhot et al., 1987), but only applicable to simple geometries problematic with buoyant flows.

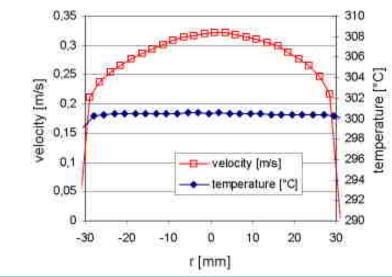
$$\left[\frac{\left(Pr^{-1} - 1.1793\right)}{\left(Pr^{-1} - 1.1793\right)}\right]^{0.65} \left[\frac{\left(Pr^{-1} + 2.1793\right)}{\left(Pr^{-1} + 2.1793\right)}\right]^{0.35} = \frac{1}{\left(1 + \varepsilon_{M} / \nu\right)} \quad \text{with} \quad Pr_{eff} = \frac{\left(1 + \varepsilon_{M} / \nu\right)}{\left(\frac{\varepsilon_{M} / \nu}{Pr_{t}} + \frac{1}{Pr}\right)} \quad .$$

- Turbulent heat transport modelling by means of transport equations (e.g. the turbulent fluxes $u_i T$ temperature variance T^2 , and its dissipation ε_T^2 (TMBF –model) but each higher level of modelling leads to new constant and triple correlations a priori not known. Potential Solution approach:
 - Determination of constants and triple correlations from
- Direct numerical simulation of the temperature field in simple geometries
- CURRENT STATUS: sophisticated models for u-field but 0-dim. for T-field

Velocity: Intrusive methods

Pitot and Prandtl tubes

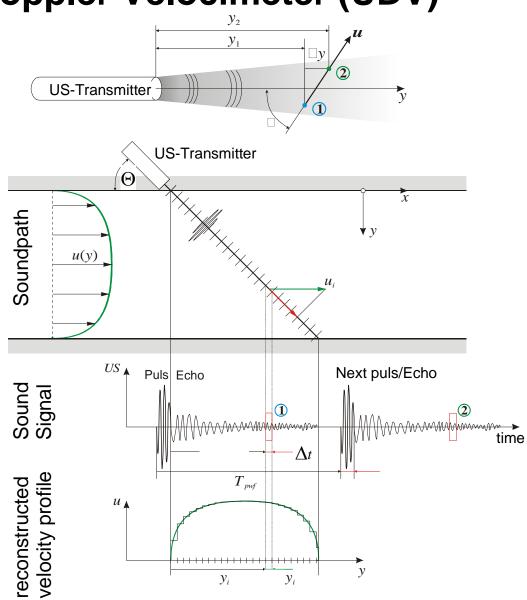
measurement of pressure or pressure differences in fluid domains (coupled with TC)


Advantages

- Sufficient time resolution
- Simple set-up

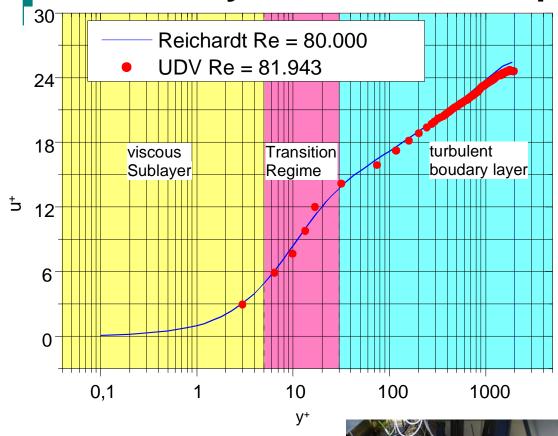
<u>Disadvantages</u>

- Disturbance of flow (intrusive method)
- Limited spatial resolution (boundary layer)
- Several corrections required.
- High fabrication effort in miniaturizing
- Sophisticated fill and drain necessary.
- Variable measurement ranges necessary for resolution of smallest fluctuations.
- Only one component measurable (flows in complex geometries?)


Velocity: Ultra-Sound Doppler Velocimeter (UDV)

Principle (particle tracking)

- Distance change from sensor due to motion from 1→2 between two pulses.
- Determination of the time difference from the phase shift between received echoes
- Velocity at a discrete distance


Profile

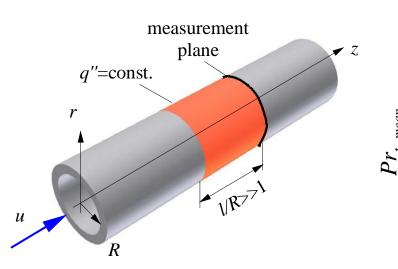
- Separation of sound path in time intervals (gates Δt) allows recording of a velocity profile. Therefore,
 - Coupling of a time t_i with a measurement position
 - Determination of the local velocity u_i in the interval i

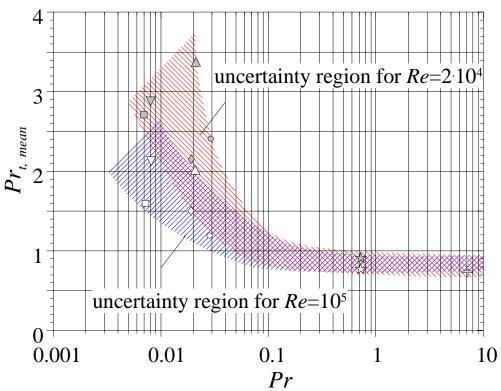
Velocity: Ultra-Sound Doppler Velocimeter (UDV)

UDV-Sensor developed in cooperation with F7R

Result in the boundary layer All parts of the viscous boundary captured by UDV

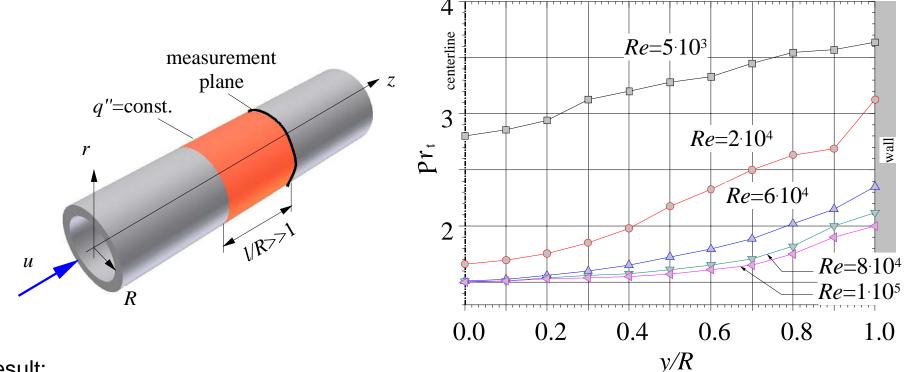
- Max. deviation in the transtion regime of 5%
- UDV-measurements possible into the viscous sublayer (y+=3 ~46μm)
- Temporal resolution currently up to 30Hz


Problems


- Long-term wetting of the sensor
- Temporal resolution (Turbulence spectra)
- What are the scattering particles?
- More effective wave guides (Temperature, sound losses)
- Enhancement of math algorithm effectivity
- Only applicable in isothermal flows.
- Only one velocity component (3D-flows?)

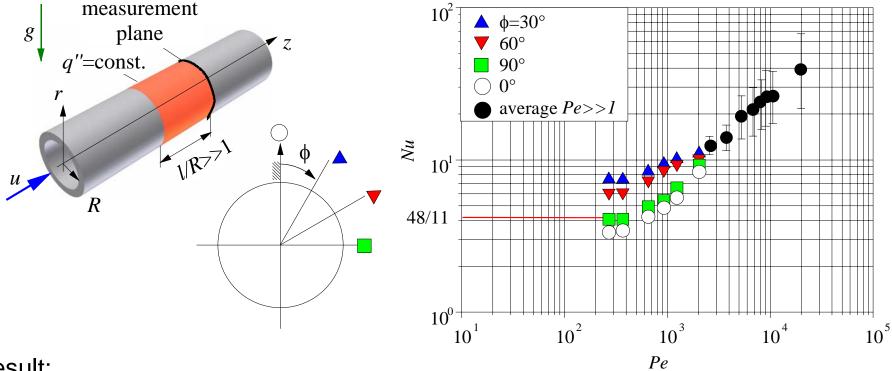
The Heated Pipe- "An old Story"

Fully developed turbulent (hydraulically and thermally) flow heated with a constant heat flux at different Reynolds (Re) and molecular Prandtl numbers (Pr)


Result:

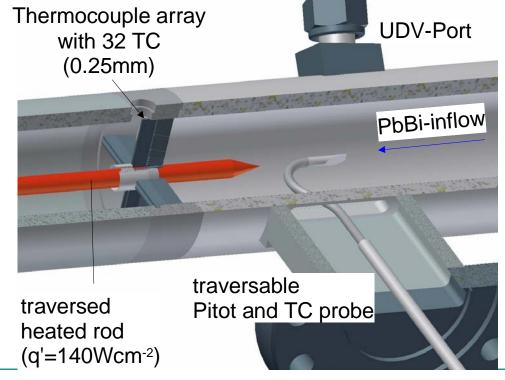
- Mean turbulent Prandtl number $(Pr_{t,mean})$ depends on molecular Prandtl number Pr.
- Mean turbulent Prandtl number $(Pr_{t,mean})$ is a function of the Reynolds number Re.
- But, for model development an unacceptably large uncertainty exists.

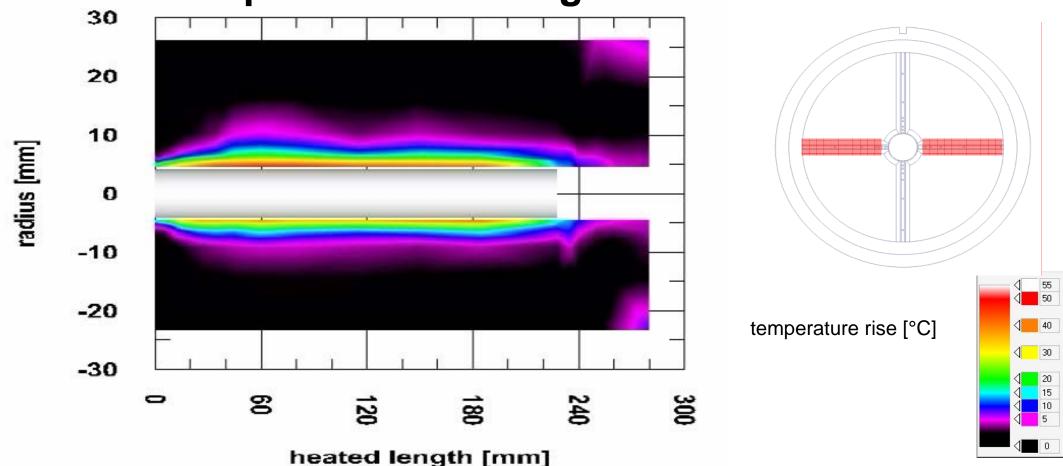
The Heated Pipe- "An old Story"


• Measured local turbulent Prandtl number (Pr_t) in a fully developed turbulent flow heated with a constant heat flux at different Reynolds (Re)

- Result:
 - Local turbulent Prandtl number (Pr_t) is a function of the Reynolds number Re **and** the radial coordinate v/R.
 - But, be careful with experimental data because boundary conditions and buoyancy play a considerable role.

The Heated Pipe- "An old Story"

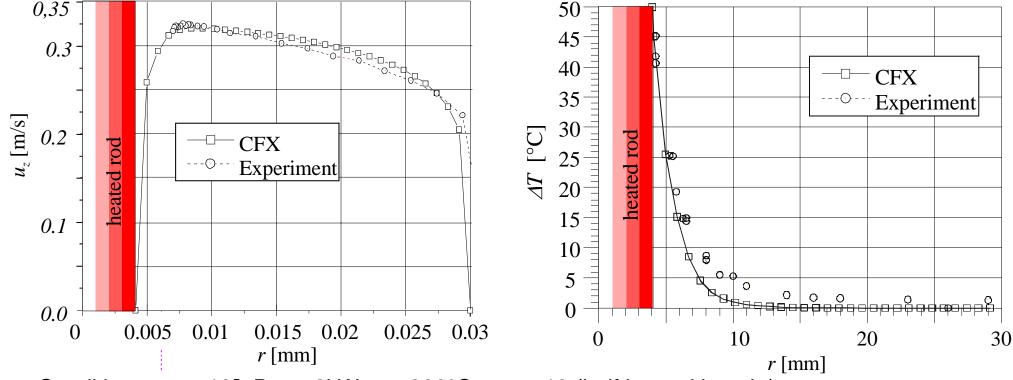

- The problem of free convection distortion. Liquid metals exhibit due to their large thermal expansion and low kinematic viscosity buoyancy distortion effects even at large Re (Hg, PbBi at Re>10⁵)
- The horizontal pipe


- Result:
 - Even large Re does not ensure a pure forced convective flow.

The Heated Rod in THESYS(KALLA)

- Fully developed turbulent flow facing a heated rod concentrically in an annular cavity.
- Horizontal arrangement with defined boundary conditions regarding
 - Detailed measurement of the inflow velocity profile
 - Local velocity and temperature measurements.
 - Heat balance and heat loss evaluation (monitoring temperatures at outside insulation).
 - Pre- and post test analysis of the test section.
- CFD analysis with commercial code packages using different turbulence models.

Temperaturfield along the Heated Rod


Conditions: $Re = 10^5$, $P_{HR} = 2kW$, $T_{in} = 300$ °C

- Only in front part a symmetric temperature profile
- Distortion of the temperature field for z/d > 13.9 (asymmetry of rod, buoyancy)

The Heated Rod-CFD

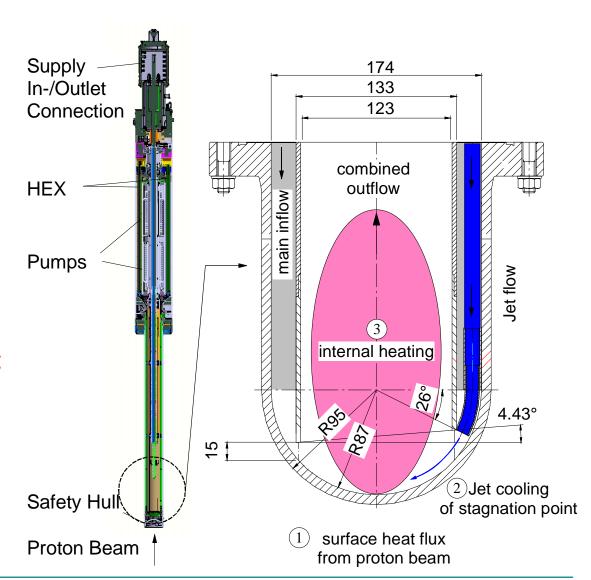
• CFD with SST-model (k- Ω -model near wall and k- ε in the bulk), y^+ ~1 in heated part, but use of Reynolds-analogy between u and T field with a prescribed and constant Pr_t (mostly Pr_t =0.9),

Conditions: $Re = 10^5$, $P_{HR} = 2kW$, $T_{in} = 300$ °C at z/d = 13 (half heated length)

- Coincidence of measured and computed velocity.
- Resonable temperature agreement of CFD with Experiment at fluid- wall interface. But,
- Thermal boundary layer is thicker in experiment like expected (different heat fluxes).

MEGAPIE – Liquid metal cooled "Beam window"

Features

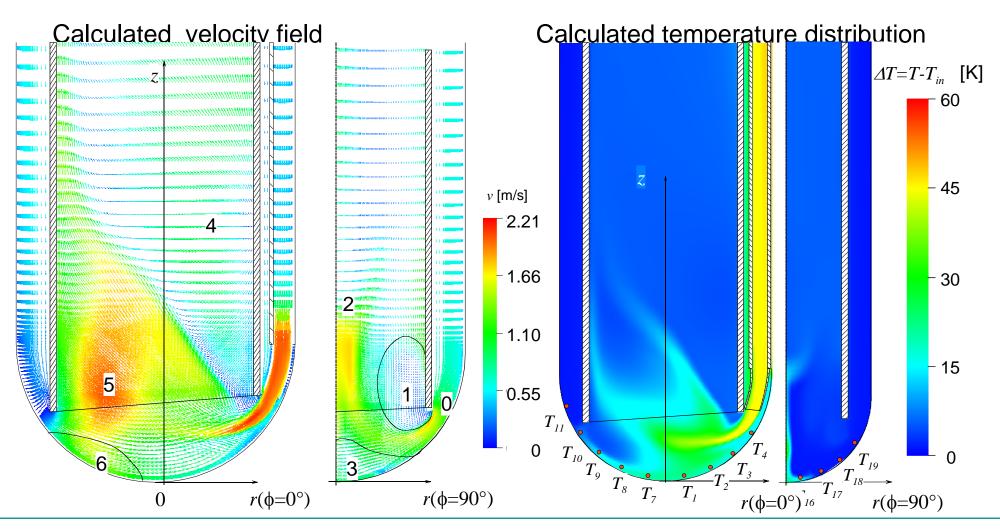

- 1MW power release in spallation target
- 82 litres PbBi-inventory containing pump, HEX,cover system, etc.

THERMALHYDRAULICS

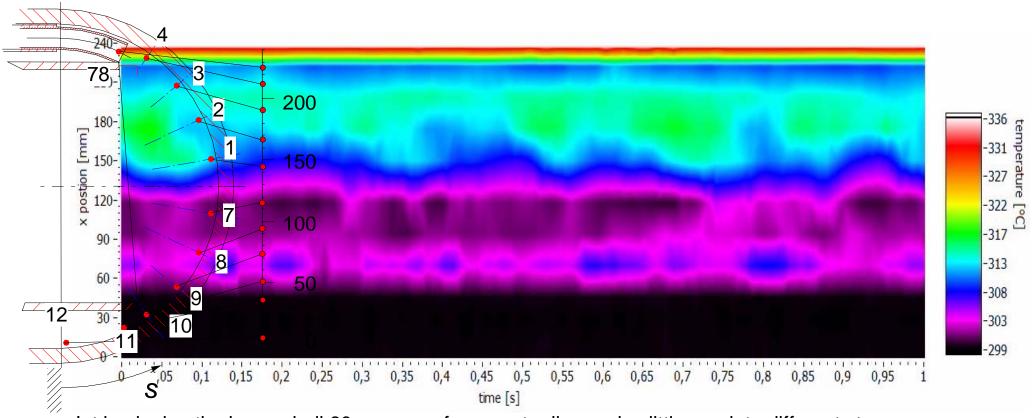
- Complex flow in 3D geometry
- Internal heat generation by spallation reactions (85-92%).
- Surface heat removal from proton heated "beam window" (8-15%).
- Jet cooling of stagnation point (turbulent mixing of heat by cross flow).

<u>AIM</u>

- Spallation demonstration
- Neutron source for Physics
- Full power operation since Aug. 2006



MEGAPIE-Simulation-Heated Jet Experiment

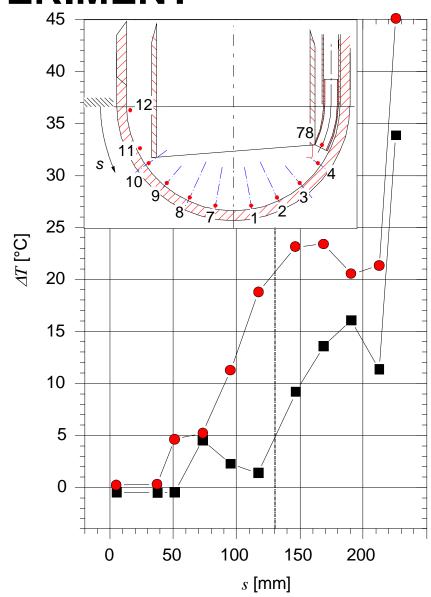

CFD (SST, Reynolds –analogy, symmetry assumption) simulation of the

- momentum field in a complex geometry and the corresponding
- temperature field.

MEGAPIE -Heated Jet Experiment

Temporal behavior of the temperature distribution at the lower shell in nozzle plane for $Q_{main}=18m^3/h$, $Q_{jet}=1.2m^3/h$, $T_{in}=300^{\circ}C$, $T_{jet}=360^{\circ}C$, $T_{recording}=128Hz$.

- Jet impinging the lower shell 60mm away from center line and splitting up into different streams.
- Part of jet stream hitting shell opposite the nozzle exit.
- ■Temperature field time dependent at nominal operation conditions strong fluctuations at centerline ((→LES)


MEGAPIE-CFD-EXPERIMENT

Temperature distribution in the lower shell in nozzle plane (experiment-simulation)

- (1) Significant differences already at calc. inlet temperature.
 - Experiment different to model (history),
 - Inadequate turbulence model.
- (2) No double peaks in simulation an jet covering the center line.
 - different geometry (differential elongation and change of exp. configuration)
 - different velocity distribution (exp.-CFD) because of complex geometry (expressed by non-symmetric *T*-Profiles

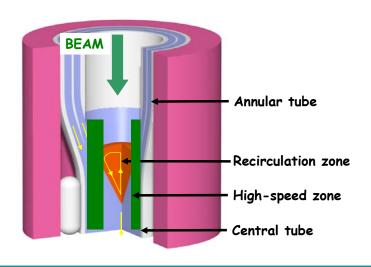
Consequence

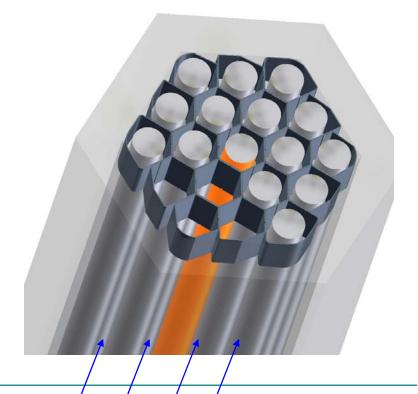
Detailed analysis of both experimental and CFD data is an <u>iterative process</u>

SUMMARY of LIQUID METAL HEAT TRANSFER

Turbulent heat exchange modelling

- State of the art Pr_t-correlations in codes!,
- Better buoyant flow modeling (+Qualified user),
- At least ASM based turbulent heat flux models (u'T')
- DNS required to improve and validate advanced heat flux models to be embedded in commercial codes

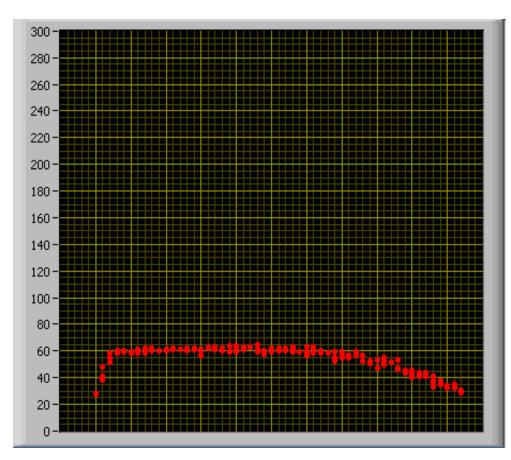

MEASUREMENT TECHNIQUES


- Improved sensors to capture local flow velocities (accuracy, multi-components and spatial and especially temporal resolution, best non-intrusive)
- Defined benchmarks (regarding CFD,LES and DNS but also related to the BC's with supplementary water experiments)

OUTLOOK at KALLA

- Repetition of heated rod with u', v', u'T', T'^2 and related mean values
 - Accompanying CFD and potentially DNS (ressources)
- Experiments in rod bundles
 - Water experiments with optic means (LDA,LLS,PIV)
 - Liquid metal teat transfer in bundle flows (Local T, T')(mixed, forced and buoyant)
- Free surface target
 - Surface position (stability, meas. technique)
 - CFD modelling (Level-Set, com. codes)

SUPPLEMENTARY FIGURES

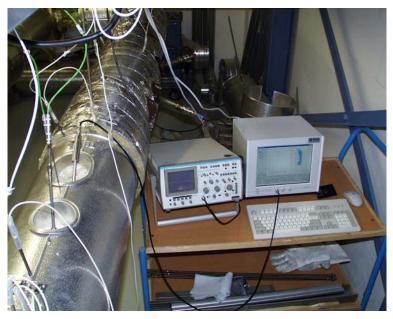

CFD-Calculation strategies for liquid metal flows

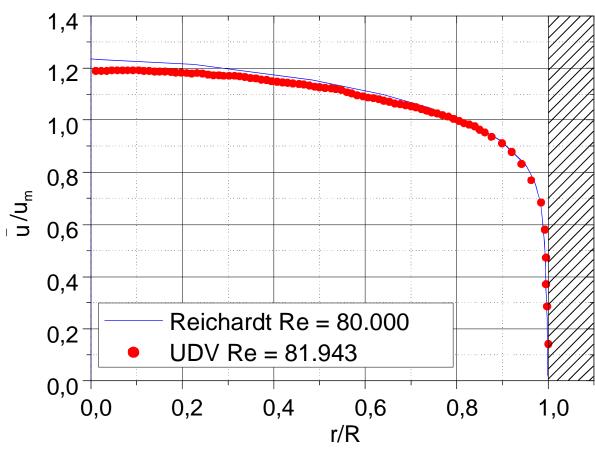
Model-Procedure	Momentum	Heat	Time horizon	Comment	
Mixed models	k-ε-model	Reynolds Analogy	current	isotropic in all scales WF, mesh,	
	k - Ω -model hybrides (SST) (isotropic)	Pr_t -correlations Pr_t = $f(Re,Pr,y^+)$ +adequate wall functions for T^+	near		
TMBF model	$\frac{k}{\epsilon}$ - ϵ -model (isotropic)	Transport equations $\overline{u'T'}, \overline{T'^2}, \varepsilon_{T'}$ (still problems with temp. variance dissipation)	near not in comm. codes	performance in conv. purely buoy. flow ? + low <i>Pe</i> ?	
mixed higher order	kubic k-ε-model ASM RSM	Transport equations $\overline{u'T'}, \overline{T'^2}, \varepsilon_{T'}$ (Constants fort ransport eq. from DNS)	req. scientific benchmark	promising results (lacking exp. data)	
Exact solution	DNS	DNS	future benchmark		

0th order direct coupling 2nd order Tensorial GDH
1st order Gradient diffusion hypotesis exact solutions

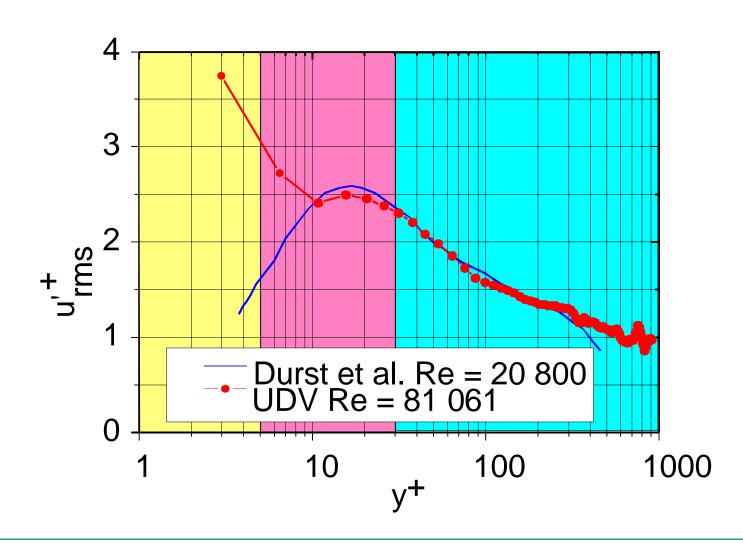
- Model coefficients depend also (!) on Re, Pr, geometry
- Similar classification for LES

Velocity: Ultra-Sound Doppler Velocimeter (UDV)




Transient start-up behaviour of EM pump in THESYS Loop

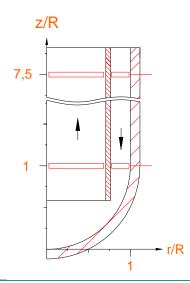
- Fluid temperature: 400°C
- Temperatur compensation durch (Wave Guide)
- Inclination angle: 45°
- Tube diameter: 60 mm


Velocity: Ultra-Sound Doppler Velocimeter (UDV)

- Excellent agreement between measurement and literature profile
- Detailed resolution of the velocity profile
- Deviation from literature profile for r/R>0.6 less than 0.5%

UDV Fluctuation measurements in boundary layer in a tube

Supporting Water experiments



Simulation of the momentum exchange in MEGAPIE

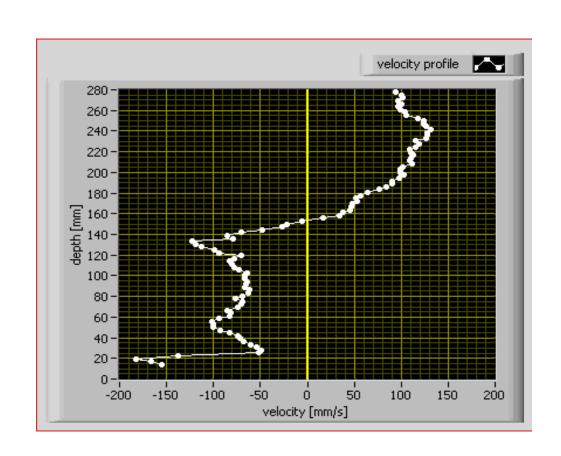
- Optimization of the nozzle (Geometry, Location).
- Determination of best operation point ratio of main to jet flow rate.
- Verification of CFD simulation for momentum transport

Experiments in transparent media at the same Reynolds- numbers using optic methods (LDA,LLS,UDV)

Batta, Grötzbach, 2003, Jahrestagung Kerntechnik(Numerik), Eiselt 2003 (FZKA-6618)

Axial Velocity Profile down the riser pipe at $\phi=0^{\circ}$

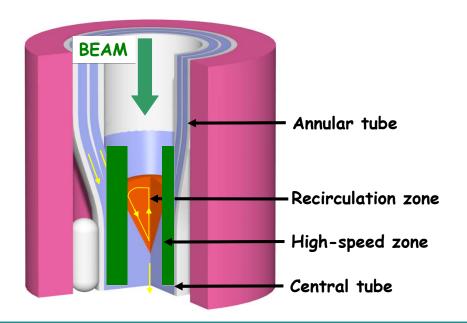
Experimental Set-UP


- UDV technique
- 4MHz sensor parallel to the riser pipe at $\phi=0^{\circ}(r/R=0.66)$
- $Re=5.2\cdot10^4$

Observation

- Highly turbulent flow
- Oscillation of the stagation point along the riser tube.
- Time dependent two stagnation points appear.

RESULT


Strong time dependence (LES started)

OUTLOOK- LIQUID METAL FLOWS

- So far only single phase heat transfer considered.
- But, advanced technical concepts in nuclear community and industrial processes involve new physical aspects, which are of challenging character, such as
 - Free surface flows
 - Two-phase flows
 - Freezing/remelting

