Forschungszentrum Karlsruhe

in der Helmholtz-Gemeinschaft

INVESTIGATION OF HYDROGEN DISTRIBUTION AND COMBUSTION IN ACCIDENT SCENARIOS

Applications

- Introduction
- Analysis steps
 - Mixture generation
 - II. Hazard evaluation
 - III. Combustion simulation
 - IV. Consequence analysis
 - V. Experimental research
- Summary

W. Breitung, <u>A. Kotchourko</u>
Institute for Nuclear and Energy Technologies (IKET)
Research Center Karlsruhe, Germany (FZK)

OBJECTIVES

- Explosions of large amount of combustible gases mixed with air are responsible for the major part of losses and damages among many industrial accidents
- Growing utilization of hydrogen as future energy carrier requires better understanding of hydrogen related safety aspects
- The outcome of a hydrogen related accident depends on many parameters and complex physics
- Need to develop a mechanistic understanding and complete modeling procedure
 - to predict accident progress and consequences
 - to develop efficient mitigation measures
 - to support development of safe hydrogen technologies
 - to provide reliable data base for rules, codes and standards
- The presentation describes approach and current status of FZK analysis methodology

ANALYSIS METHODOLOGY

 FZK develops numerical codes and methods for consistent analysis of hydrogen behavior in accident scenarios, four main steps:

More than 150 person-years of experience

1. MIXTURE GENERATION

- Release of cold GH₂ (22K) from LH₂-tank at bottom of vehicle in garage
- 1 W energy deposition, 170 g GH_2/\bar{d} , 5 x 34g H_2 releases, effect of release rate on risk?

MIXTURE GENERATION: Case 2

• GH₂ source of 0,34 g H₂/s for 100s duration

MIXTURE GENERATION: Case 2

• Calculated H_2 -concentration field for 0.34 g H_2 /s release in a garage, x = 0.6 vol%

II. HAZARD POTENTIAL

What hazard is actually presented by the calculated H₂-air distribution?

- Hydrogen hazard is mainly determined by the fastest possible combustion regime of the mixture
 - slow deflagration
 - fast turbulent deflagration
 - detonation
- Transition criteria were developed to estimate conservative (fastest) combustion regime possible for a given H₂-air mixture and geometry
 - inert /slow
 - slow/fast
 - deflagration/detonation

GP-CODE

- All criteria implemented in interactive GP-code f(p₀, T₀, x_{H2}, x_{O2}, x_{H2O}, x_{N2},D)
- Example for H₂-air-steam mixtures
- mixtures above 60 vol% are inert
- flammability and flame acceleration limits nearly coincide on the rich side
- the DDT limit is scale dependent, in larger system (D) leaner mixtures can undergo a deflagration-todetonation transition

HAZARD FOR GARAGE EXAMPLE

 Criteria are evaluated on-line in GASFLOW from known H₂-distribution

• CASE 1:

- significant and stable volume of combustible mixture
- potential for flame acceleration and DDT exists during and shortly after release

• CASE 2:

- only small volume is able to support deflagrations, disappears shortly after end of release
- no DDT hazard
- inherent mixing mechanisms sufficient to dilute source
- H₂ release in confined spaces above a certain critical rate (here 0.3 g/s) requires additional measures for hazard control

III. COMBUSTION SIMULATION

 Different physics involved in different combustion modes

Three CFD codes under development and in use at FZK

 Codes model stable combustion regimes, while transition phenomena are covered by criteria

LOCAL EXPLOSION IN CONFINED VOLUME

 Test chamber at FZK for hydrogen release and local explosion experiments in confined spaces under controlled flow conditions

- volume 160 m³
- air ventilation up to 24,000 m³/h

 Structural stability against dynamic pressure loads tested under conservative conditions

- stoichiometric, homogeneous mixture
- locally concentrated (2-16g H₂)
- obstacles to reach high flame speeds

COM3D SIMULATION FOR FZK TEST CHAMBER

- Fast local turbulent H₂-air deflagration in FZK test chamber
 - 8 g H₂
 - $-p_0 = 0.1 \text{ MPa}$
 - $-x_{H2} = 29.8 \text{ vol}\%$

Numerical simulation

COM3D: $\Delta x = 3.45$ cm, total $\sim 7 \cdot 10^6$ cells Fast combustion followed by detonation of 8 g H₂ in stoichiometric mixture in cube 69 x 69 x 69 cm

IV. CONSEQUENCE ANALYSIS

Output of CFD combustion calculation allows to estimate the consequences

STRUCTURAL RESPONSE: Test chamber results

- Response of FZK test chamber simulated with ABAQUS
 - P(t) at 8000 locations (COM3D \rightarrow ABAQUS)
 - output: stress and strain
- Maximum displacement in frame (mm)
 Maximum stress in inner wall (MPa)

 Result: Walls and framework structure can confine tested fast local combustions, limiting H₂ mass estimated with model

STRUCTURAL RESPONSE: Damage thresholds for civil buildings

Comparison of measured blast wave parameters in FZK test chamber to known damage limits of civil buildings.

HUMAN EFFECTS: Injury thresholds

Comparison of measured blast wave parameters in FZK test chamber to known injury thresholds

HUMAN EFFECTS: Injury thresholds

 Comparison of measured blast wave parameters ∆p⁺ and T⁺ in FZK test chamber to known injury thresholds

TEST SITE AT FZK FOR HYDROGEN EXPERIMENTAL RESEARCH

Experimental studies:

- Development of transition criteria
- Validation of CFD tools
- Development of scaling methodology

- Facility for H₂ release and distribution studies under / controlled flow conditions
- Large-scale facilities for combustion studies
- Combustion tubes

LARGE-SCALE COMBUSTION EXPERIMENTS

Facilities of scales relevant to industrial dimensions

Multipurpose vessels for research connected with combustion processes in large scales

A1 - 100 bar

A3 - 60 bar

MEDIUM-SCALE COMBUSTION EXPERIMENTS

Study of combustion, turbulent deflagration, DDT and detonation

Partially vented geometry

Confined geometry

SUMMARY

- A mechanistic procedure for analysis of hydrogen behavior was developed.
 The methodology is based on 3D CFD tools.
- It addresses:
- prediction of accident consequences
- development of efficient mitigation measures
- support of safe use of hydrogen technologies
- Two examples for hydrogen behavior in confined spaces were presented
 - hydrogen release is safe up to a critical release rate, which depends on details and which can be evaluated
 - structural damage of the enclosure can be modeled (ABAQUS)
 - combustion of up to 16 g hydrogen can cause :
 - glass fraction but no structure damage to normal civil buildings
 - ear damage but no lung rupture
 - blast effects from local explosions (2-16g H₂) are restricted to ear damage