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OBJECTIVES

® Explosions of large amount of combustible gases mixed with air are responsible for the
major part of losses and damages among many industrial accidents

® Growing utilization of hydrogen as future energy carrier requires better understanding of
hydrogen related safety aspects

® The outcome of a hydrogen related accident depends on many parameters and
complex physics

® Need to develop a mechanistic understanding and complete modeling procedure
- to predict accident progress and consequences
- to develop efficient mitigation measures
- to support development of safe hydrogen technologies

- to provide reliable data base for rules, codes and standards

® The presentation describes approach and current status of FZK analysis methodology




ANALYSIS METHODOLOGY

® FZK develops numerical codes and methods for consistent analysis of hydrogen behavior in
accident scenarios, four main steps:
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1. MIXTURE GENERATION

* Release of cold GH, (22K) from LH,-tank at bottom of vehicle in garage
® 1 W energy deposition, 170 g GH./d, 5 x 34g H, releases, effect of release rate on risk?
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MIXTURE GENERATION : Case 2

® GH, source of 0,34 g H,/s for 100s duration

Zeit:  0.204
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MIXTURE GENERATION :Case 2

® Calculated H,-concentration field for 0.34 g H,/s release in a garage, x = 0,6 vol%
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Il. HAZARD POTENTIAL

® What hazard is actually presented by the calculated H,-air distribution ?
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® Hydrogen hazard is mainly determined by the
fastest possible combustion regime of the
mixture
- slow deflagration
- fast turbulent deflagration
- detonation

® Transition criteria were developed to estimate
conservative (fastest) combustion regime
possible for a given H,-air mixture and geometry
- inert /slow
- slow/fast
- deflagration/detonation




GP-CODE

® All criteria implemented in interactive
GP-code

f(Pos Tos X2s Xo2s XH20s Xnz:D)
® Example for H,-air-steam mixtures

- mixtures above 60 vol% are inert

- flammability and flame acceleration
limits nearly coincide on the rich side

- the DDT limit is scale dependent,
in larger system (D) leaner mixtures
can undergo a deflagration-to-
detonation transition
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HAZARD FOR GARAGE EXAMPLE

® Criteria are evaluated on-line in
GASFLOW from known H,-distribution

® CASE 1:
- significant and stable volume of
combustible mixture
- potential for flame acceleration and
DDT exists during and shortly after
release

® CASE 2:

- only small volume is able to support
deflagrations, disappears shortly
after end of release

- no DDT hazard

. . . . e 0
- inherent mixing mechanisms sufficient ®
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® H, release in confined spaces above a
certain critical rate (here 0.3 g/s)
requires additional measures for
hazard control
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lll. COMBUSTION SIMULATION
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¢ Different physics involved in different combustion
modes

® Three CFD codes under development and in use at FZK

® Codes model stable combustion regimes, while
transition phenomena are covered by criteria




LOCAL EXPLOSION IN CONFINED VOLUME
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® Structural stability against dynamic pressure

— loads tested under conservative conditions
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COM3D SIMULATION FOR FZK TEST CHAMBER

® Fast local turbulent H,-air deflagration in ® Numerical simulation
FZK Ee83t clrjlamber COMS3D: A x = 3.45 cm, total ~ 7-10° cells
g H Fast combustion followed by detonation

of 8 g H, in stoichiometric mixture in cube
69 x 69 x 69 cm

- Py =0.1 MPa
= X = 29.8 vol%




IV. CONSEQUENCE ANALYSIS

® Output of CFD combustion calculation allows to estimate the consequences
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® Example: Pressure loads of 8g H, test in FZK facility




STRUCTURAL RESPONSE: Test chamber results

® Response of FZK test chamber simulated with ABAQUS
-input :  P(t) at 8000 locations (COM3D — ABAQUS)
- output: stress and strain

® Maximum displacement in frame (mm) ® Maximum stress in inner wall (MPa)
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® Result: Walls and framework structure can confine tested fast local combustions,
limiting H, mass estimated with model




STRUCTURAL RESPONSE: Damage thresholds for civil buildings

® Comparison of measured blast wave parameters in FZK test chamber to known damage
limits of civil buildings.
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HUMAN EFFECTS: Injury thresholds

® Comparison of measured blast wave parameters in FZK test chamber to known injury
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HUMAN EFFECTS: Injury thresholds

° Comparison of measured blast wave parameters Ap* and T+ in FZK test chamber to
known injury thresholds
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TEST SITE AT FZK FOR HYDROGEN EXPERIMENTAL RESEARCH

Experimental studies: Kontrollraum H, Testraum

3
« Development of transition / (160 m?)

criteria
« Validation of CFD tools

» Development of scaling
methodology 10m

" Behalter A3

- (30 m3, 60 bar)
- Facility for H, release and

distribution studies under
controlled flow conditions

Gebaude 608
(450 m?)

* Large-scale facilities for
combustion studies

Behalter A1

« Combustion tubes (110 m3, 100 bar)




LARGE-SCALE COMBUSTION EXPERIMENTS

Facilities of scales relevant to industrial dimensions

Multipurpose vessels for research connected with combustion processes in large
scales

A1 - 100 bar

A3 - 60 bar




MEDIUM-SCALE COMBUSTION EXPERIMENTS

Study of combustion, LA,
turbulent deflagration, A R T
DDT and detonation =l = __L_i“ L‘!&
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SUMMARY

® A mechanistic procedure for analysis of hydrogen behavior was developed.
The methodology is based on 3D CFD tools.

® It addresses:
- prediction of accident consequences

- development of efficient mitigation measures
- support of safe use of hydrogen technologies

® Two examples for hydrogen behavior in confined spaces were presented

- hydrogen release is safe up to a critical release rate, which depends on
details and which can be evaluated

- structural damage of the enclosure can be modeled (ABAQUS)

- combustion of up to 16 g hydrogen can cause :
- glass fraction but no structure damage to normal civil buildings
- ear damage but no lung rupture

- blast effects from local explosions (2-16g H.,) are restricted to ear damage




