Direct Numerical Simulations of Transitional Flow in Turbomachinery

J.G. Wissink and W. Rodi

Institute for Hydromechanics University of Karlsruhe

Unsteady transitional flow over turbine blades

- Periodic unsteadiness caused by rotor-stator interaction
- Relatively low Reynolds numbers
- Both phenomena directly affect blade boundary-layer transition, tendency to separation, heat transfer and losses

Overview of the Calculations

- Flow very complex and difficult to predict with RANS
- Phenomena need to be understood and reliable data need to be generated for improving transition models
- Because of low Re this is possible with DNS and calculations carried out in the DFG project are summarized here:
 - (i) Flat plate boundary layer separation
 - 1. Oscillating inflow
 - 2. Free-stream fluctuations
 - (ii) Flow around turbine blades
 - 1. Separating flow past T106 blade
 - 2. Flow past and heat transfer to MTU blade

Flat plate boundary layer separation

Geometry

Periodic boundary conditions in spanwise direction Reynolds number, Re=60 000, is based on the mean inflow velocity U_0 and the length-scale L (see figure).

At the inlet either a streamwise oscillation or free-stream disturbances

Structure of a Laminar Separation Bubble

Separating flow affected by inflow oscillations

Main Flow Features

- Without oscillating inflow, the shape of the upper wall generates an adverse pressure gradient for x / L > 0.3
- The adverse pressure gradient is alternately enhanced and decreased by the oscillating inflow
- As a result the location of separation moves back and forth
- Every period a new separation bubble is formed that moves downstream some time after the inflow accelerates
- Along the flat plate a pattern of turbulent patches, separated by becalmed flow, can be observed

Separating flow affected by inflow oscillations

Simulations performed

Simulation	Grid	Size span	Amplitude	Period
O1	966x 226 x 128	0.12L	0.20	0.61
O2	1286x 310 x 128	0.08L	0.10	0.30
О3	966x 226 x 128	0.12L	0.05	0.30

Separating flow affected by inflow oscillations (3D film)

Simulation O1

Laminar Separation Bubble

at Re = 60000

Iso-surface of the spanwise vorticity at $\omega_z = -150$

Separating flow affected by inflow oscillations (3D film)

Simulation O3

Iso-surface of the spanwise vorticity at $\omega_z = -150$

DNS of a separating flow affected by inflow oscillations

Summary of Results

- The basic instability is a (2D inviscid) Kelvin-Helmholtz (KH) instability of the separated boundary layer.
- This instability is triggered by the inflow oscillation.
- The frequency of the most unstable (KH) mode is found to correspond to the inflow oscillation frequency or one of its higher harmonics.
- Increasing the amplitude of the inflow oscillation results in a stronger triggering of the KH instability.

DNS of a Laminar Separation Bubble at Re=60000 with Free-Stream Disturbances

Simulations performed

Sim.	grid	Spanwise size	l_{x}	Inlet disturbances
F1	1038 x 226 x 128	0.08L	1.6L	none
F2	1926 x 230 x 128	0.08L	3.0L	<i>Tu</i> =5%
F3	1926 x 230 x 128	0.08L	3.0L	<i>Tu</i> =7%
F4	966 x 226 x 128	0.08L	1.4L	oncoming wakes, period=0.6L/U _e

Tu: turbulence level

l_x: actual length of flat plate as employed in the DNS

DNS of a Laminar Separation Bubble at Re=60000 comparison spanwise vort. iso-surfaces (Sim. F1 & F3)

Phase-averaged statistics (film) Simulation F1 vs. Simulation F3

Boundary layer of Simulation F4 (made visible using an iso-surface of the spanwise vorticity)

Vortical structures in translucent box at the back belong to impinging wakes and are made visible with the λ_2 -criterion

Phase-averaged statistics of Simulation F4

Passing wakes induce elevated levels of <k>fin the free stream

DNS of a Laminar Separation Bubble at Re=60000 with Free-Stream Disturbances

Time-averaged shape factor

Shape factor of Simulation F1 reaches a peak value of H=77.3

DNS of a Laminar Separation Bubble at Re=60000 with free-stream disturbances

Summary of Results and Discussion

- In all simulations, a Kelvin-Helmholtz instability is found to play an important role in the first stage of transition.
- With increasing level of free-stream fluctuations, the size of the separation bubble is found to decrease.
- Concentrated disturbances carried by periodically oncoming wakes are found to be more effective in decreasing the size of the bubble than the uniformly distributed disturbances
- In the simulation without free-stream fluctuations, numerical round-off error is responsible for triggering the K-H instability.

DNS of Separating Flow in a T106A Turbine Cascade at Re = 51 831

Geometry

Periodic boundary conditions in the spanwise direction Reynolds number is based on the inflow velocity U and axial chord L

DNS of Flow in a T106A Turbine Cascade at Re = 51 831

Main Flow Features:

- The large angle of attack (α =45.5°) causes a strong adverse pressure gradient along the suction side for x/L > 0.6.
- In the absence of wakes, a large separation bubble is found along the downstream half of the suction side.
- Fascinating vortical structure is detected along the pressure side in a simulation with incoming wakes (also detected by Wu and Durbin (2001)).
- Periodically separating boundary layer flow along the downstream half of the suction side.

DNS of Flow in a T106A Turbine Cascade at Re = 51 831

Simulations performed

Simulation	grid	Span	WD	WHW
T1	771 x 262 x 128	0.25L	-	-
T2	1014 x 266 x 64	0.20L	25%	0.03L

WD: Mean wake deficit

WHW: wake half-width

LES generated inflow wake data have been kindly made available by Wu and Durbin of Stanford University

DNS of Flow in a T106A Turbine Cascade at Re=51831 with Periodically Passing Wakes

Close-up of Suction Side Separation near Trailing Edge

Illustration of Kelvin-Helmholtz Instability

DNS of Flow in a T106A Turbine Cascade at Re=51831 with Periodically Passing Wakes

Vortical Structures at the Pressure Side

DNS of Flow in a T106A Turbine Cascade at Re=51831 with Passing Wakes (Phase-Averaged Statistics)

DNS of Flow in a T106A Turbine Cascade at Re=51831 with Periodically Passing Wakes

Summary of Results

- The presence of wakes hardly affects the wall static-pressure coefficient C_p distribution
- The Pressure side boundary layer remains laminar at all times
- Elongated vortical structures are found along the pressure side
- A large separation bubble is intermittently found to be present along the downstream half of the suction side.
- As a consequence separation induced transition is observed somewhat upstream of the trailing edge.
- The separation bubble is periodically suppressed by the impinging wakes
- As this happens, the location of transition moves downstream

DNS of Passive Heat Transport in a MTU Turbine Cascade at Re = 72000 (exp: Liu and Rodi)

Geometry

Periodic boundary conditions in the spanwise direction Reynolds number is based on the inflow velocity U and the axial chord-length L (see figure)

MTU blade - test case

• Experimental study (Liu and Rodi 1992)

case	Α	В	С	D	Е
f(Hz)	0	60	120	180	240
cyl. No:	0	24	24	48	48
cyl. pitch (mm)	inf	85	85	42.5	42.5
Vcyl./m/s):	0	5.1	10.2	7.66	10.2
Str. No.	0	1.84	3.68	5.52	7.36
T (ms)	inf	16.667	8.33	5.56	4.167
Tuinf (%)	0.9	2.3	2.8	3.1	4.8
dt (ms)	0.2	0.5	0.2	0.2	0.2

Cascade Test Cases

• Heat transfer measurements (time-mean h)

Cases A (o), B (∆), C (+), D (x), E (⋄)

DNS of Passive Heat Transport in a MTU Turbine Cascade at Re = 72000 (exp: Liu and Rodi)

Overview of the simulations performed

Sim.	Wake Vel. deficit	Wake Half-width	$\mathrm{D}_{\mathrm{cyl}}$	Tu _{min}	Exp.
M1	-	-	-	0%	A
M2	30%	0.045L	½L	2.8%	С
M3	30%	0.045L	1/4L	8.4%	Е

Spanwise size: 0.20L

 D_{cyl} is the distance between two wake-generating cylinders Tu_{min} is the minimum turbulence level in the plane x/L = -0.20 Re=72000 based on inflow conditions and axial chord-length L 1254x582x128 point mesh is employed in all simulations

DNS of Flow in a MTU Turbine Cascade with Passive Heat Transport: turbulent spots

Contours of the instantaneous v-velocity along downstream half of suction side (Simulation M2)

t/T=3.900

trailing edge

DNS of Flow in a MTU Turbine Cascade with Passive Heat Transport

Shape factor suction side BL (comparison to experiment C)

Simulation M3: Contours of the temperature and vector-field of the fluctuating velocity

DNS of Flow in a MTU Turbine Cascade with Passive Heat Transport

Nusselt number (comparison to experiments A, C, E)

Suction Side

Pressure Side

DNS of Flow in a MTU Turbine Cascade with Passive Heat Transport

Summary of Results

- The suction side boundary layer is predominantly laminar, only in the simulation with impinging disturbances transition is observed near the trailing edge.
- As a consequence, the transport of heat from the wall to the free stream is promoted, which is reflected in a locally increased Nusselt number.
- The pressure side remains laminar; with impinging wakes, vortical structures increase the heat transfer by 30%.
 - But the large increase at higher frequencies and in the pre-transitional suction side part could not be reproduced
 - This is most likely due to the fact that the incoming wake's turbulence used has smaller scales, typical of the far-field of a wake, while in the experiment larger near-wake structures were present.

Conclusions

- DNS of transitional flow over turbine blades is possible
 - Still limited to moderate Re and simplified geometries (2D)
- Calculations are very expensive
 - Up to 100 Mio. grid points, $\Delta t \sim 10^{-5}$ L/U
 - Several months of clock time on supercomputers
- DNS not for practical applications, but increasingly important tool for studying transitional flows
 - Allows to extract all flow details
 - Provides valuable data for developing more economic/accurate transition models
- Further increase in computational power will allow to handle more complex geometries