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Περίληψη

Οι δυνάμεις τριβής αντιστοιχούν σε περίπου 15% της ενέργειας του καυσίμου που

χάνεται στα οχήματα με μηχανές εσωτερικής καύσης. Για να μειωθεί το ποσοστό αυ-

τό, πρέπει να σχεδιαστούν νέα λιπαντικά. Προηγούμενες μελέτες στα ιονικά υγρά και

στους υγρούς κρυστάλλους αναδεικνύουν ανομοιογενείς ή ανισότροπες συμπεριφορές,

αντίστοιχα. Με βάση τις μελέτες αυτές, η διπλωματική εργασία στοχεύει να μελε-

τήσει τέτοιες συμπεριφορές με σκοπό την πιθανή βελτίωση των χαρακτηριστικών της

λίπανσης.

Στη διπλωματική αυτή εργασία, η ανομοιογένεια προσομοιώνεται στον συνεχή χώρο

με την εισαγωγή ενός εγγενούς ανομοιογενούς πεδίου συνεκτικότητας στις εξισώσεις

Navier-Stokes. Προγραμματίζονται σχήματα παραμετροποίησης της συνεκτικότητας
και εισάγονται στο περιβάλλον OpenFOAM. Με τη χρήση εξελικτικών αλγορίθμων
μέσω του λογισμικού EASY, βελτιστοποιούνται τα πεδία συνεκτικότητας, με σκοπό τη
μείωση των χαρακτηριστικών τριβής του λιπαντικού σε συνήθεις γεωμετρίες λίπανσης.

Πραγματοποιούνται, επίσης, παραμετρικές μελέτες με σκοπό την καλύτερη κατανόηση
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των φαινομένων που παρατηρούνται στις περιπτώσεις αυτές.

Η ανισότροπη συμπεριφορά προσεγγίζεται με τη χρήση τανυστικής συνεκτικότητας.

Οι εξισώσεις Navier-Stokes τροποποιούνται για να συμπεριλάβουν τη νέα διατύπωση
της συνεκτικότητας και δημιουργείται ένα αντίστοιχο μοντέλο το οποίο εισάγεται στο

περιβάλλον OpenFOAM. Με τη χρήση του μοντέλου και εξελικτικών αλγορίθμων
διερευνάται η επιρροή των όρων του τανυστή της συνεκτικότητας σε σχέση με την

απόδοση του λιπαντικού.

Η μελέτη επεκτείνεται στην κλίμακα των νανομέτρων. Με τη χρήση προσομοιώσεων

μοριακής δυναμικής, διαλέγονται τύποι σωματιδίων που παρουσιάζουν όμοιες ανομοιο-

γένειες με αυτές που βρέθηκαν στον συνεχή χώρο. Με την κατάλληλη ρύθμιση των

παραμέτρων που περιγράφουν τα σωματίδια, προσομοιώνονται ροές που παρουσιάζουν

ανομοιογενή συνεκτικότητα. Παρατηρείται μείωση των δυνάμεων τριβής σε σχέση με

ένα ομοιογενές ρευστό.

Το μεγαλύτερο μέρος αυτής της εργασίας πραγματοποιήθηκε στις εγκαταστάσεις της

Toyota Motor Europe στις Βρυξέλλες, κατά τη διάρκεια ενιάμηνης πρακτικής άσκησης.

vi



National Technical University of Athens
School of Mechanical Engineering
Fluids Department
Parallel CFD & Optimization Unit

Preliminary Design of New Lubricants Featuring
Inhomogeneous or Anisotropic Viscosity

Diploma Thesis

Georgios Bletsos

Academic Advisor:
Kyriakos C. Giannakoglou, Professor NTUA

Industrial Advisor:
Dr. Konstantinos Gkagkas, Expert Toyota Motor Europe

Athens, June 2019

Abstract

Friction accounts for approximately 15% of fuel energy losses in internal combustion
engine vehicles. To reduce it, new lubricants should be designed. Inspired by stud-
ies and observations on ionic liquids and liquid crystals, their inhomogeneous and
anisotropic characteristics are studied as potential beneficial attributes to lubrica-
tion.

In this diploma thesis, inhomogeneity is emulated in the continuum domain by in-
troducing an inherently inhomogeneous viscosity in the Navier-Stokes equations.
Viscosity parameterization schemes are programmed and implemented in the Open-
FOAM environment. Using an evolutionary algorithm, implemented within the
generic optimization platform EASY, optimal viscosity profiles leading to a potential
improvement in friction performance are identified for a converging hydrodynamic
slider. Parametric studies are carried out to further understand the complexities
involved in such lubricating methods.

In the anisotropic approach, a tensorial viscosity description is adopted. The Navier-
Stokes equations are adapted accordingly and a model is programmed and included
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in the OpenFOAM environment. The model is then coupled with an evolution-
ary algorithm targeting to identify the impact of the tensor’s terms on lubrication
performance.

The study is then extended to the nano-scale. Specific particle typologies, featuring
optimized viscosity variations, as identified in the continuum domain, are selected
using coarse grain molecular dynamics simulations. Through the appropriate tun-
ing of the particles’ properties, viscosity inhomogeneity is achieved and friction is
reduced compared to a homogeneous case.

Major part in this diploma thesis was carried out in the premises of Toyota Motor
Europe in Brussels, Belgium, during a 9 month long internship.
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Chapter 1

Introduction

Tribology [1] is the science of interacting surfaces in relative motion. It includes the
study and application of the principles of friction, lubrication and wear. Tribology is
highly interdisciplinary in nature and draws upon several academic areas including:
physics, chemistry, materials science and engineering.

While tribology can be considered a rather new field of study, its worldwide im-
portance is considerable. In 2017, K. Holmberg and A. Erdemir [2] attempted to
quantify the impact of friction, wear and energy consumption worldwide. Some of
their conclusions are the following:

• In total, 23% of the world’s total energy consumption originates from tribo-
logical contacts. Of that, 20% is used to overcome friction and 3% is used to
remanufacture worn parts.

• By taking advantage of the new surface, materials, and lubrication technologies
for friction reduction and wear protection in vehicles, machinery and other
equipment worldwide, energy losses due to friction and wear could potentially
be reduced by 40% in the long term (15 years).

Taking the above into consideration, research on the field of tribology and optimiza-
tion of the lubrication materials is a matter of interest for the automotive industry
but also for the worldwide community aiming to reduce the total energy consump-
tion.
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1.1 Lubrication

Lubrication is one of the key areas involved in the science of tribology. It is the
process or technique employed to reduce friction between, and wear of one or both,
surfaces in proximity and moving relative to each other, by interposing a substance
called lubricant in between them. It can be divided in three general categories:

1. Boundary lubrication, where the solid surfaces come into direct contact
and the load is supported mainly by surface asperities. It is characterized by
high friction.

2. Mixed lubrication, where partial asperity contact exists and the load is
supported by both the lubricant and asperities.

3. Hydrodynamic lubrication, where the asperity contact is negligible and
the load is supported by mainly the lubricant.

Figure 1.1: Stribeck curve. It is used to determine in which regime of lubrication the
component is functioning depending on the relative speed of its surfaces [3].

This diploma thesis is exclusively dealing with hydrodynamic lubrication.

1.1.1 Hydrodynamic Lubrication

Hydrodynamic lubrication or fluid film lubrication occurs when a viscous fluid has
the ability to separate two inclined surfaces in relative motion, by developing hy-
drodynamic pressure in a thin lubricating film. In order for the fluid film to sustain
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the ability of separating the two surfaces, it is of utmost importance that one of the
two surfaces be inclined as seen in fig. 1.2.

Figure 1.2: Couette flow in A, where hydrodynamic pressure isn’t developed. Hydro-
dynamic lubrication slider in B [4].

The most used mathematical equation describing this phenomenon is the Reynolds
equation [5], which is an integrated version of the N-S across the film thickness.
However, there are some inherent limitations in the Reynolds approach. Gradients
of fluid properties and velocity across the film thickness are either assumed to be zero
or greatly simplified. On the other hand, with a CFD approach to hydrodynamic
lubrication, it is possible to resolve all gradients across the film which is necessary
on a non-homogeneous or anisotropic approach of the fluid properties. One of the
necessary assumptions for the Reynolds equation involve constant viscosity of the
lubricant throughout the fluid domain. This assumption is contrasted with the
scope of the work set for this diploma thesis and, thus, the governing equations of
the steady, laminar flow are the N-S for an incompressible fluid.

1.2 Lubrication in Internal Combustion Engines

A conventional internal combustion engine is comprised of dozens of moving parts.
Without proper oiling, these parts may run against each other with tremendous
speed, creating friction which then leads to heat. This heat can wear the mechani-
cal parts of an engine. Worn parts due to friction lead to increased emissions since
the engine is pushed to work harder. Improvement of the tribology systems found in
an internal combustion engine, through novel lubrication techniques, is, therefore,
necessary for an automotive company. In this section, several mechanical compo-
nents where friction is present are briefly discussed.
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1.2.1 Piston Rings

Piston rings are circular metallic rings placed around the piston with a certain
pretension, and their main purpose is to isolate the combustion chamber volume
with minimum friction. A typical sketch of a piston with its piston rings can be
seen in 1.3.

Figure 1.3: Sketch of a piston ring-pack operation. Engine oil is designed to produce
an oil film on the cylinder wall. A thin film should remain throughout the operation
of the engine [6].

The main purpose of piston rings is to keep gas blow-by from the combustion cham-
ber to the crankcase to a minimum. The combustion gases can flow past the piston
ring from three locations, the piston ring gap, the front face of the ring and its
backside. Piston rings seal the gas by expanding outwards towards the liner due to
the gas pressure acting on their back and the pretension force.

Piston rings also spread the lubricating oil up and down the liner uniformly and at
the same time scrape off the excessive oil and return it to the crankcase during the
downstroke.

Piston rings also stabilize the piston, preventing it from coming into contact with
the liner, especially during cold starts. While the piston moves along the liner, the
piston ring creates a thin lubricating film between it and the liner, preventing metal
to metal contact [7].
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1.2.2 Journal Bearings

Journal bearings [1] are mechanical components appearing in the majority of engi-
neering applications. They are used either to support the radial load of a rotating
shaft or simply as a guide for the smooth transmission of torque with minimum both
power loss and wear. The geometry of a journal bearing consists of a hollow cylinder,
enclosing a solid shaft that rotates about its axis. The bearing cylinder is usually
held stationary. The hydrodynamic film which supports the radial load is generated
between the surfaces of the rotating shaft and the stationary bearing. A typical
sketch of a journal bearing during operation, including the developed hydrodynamic
film is shown in 1.4.

Figure 1.4: Journal bearing sketch with the developed oil film [8].

1.3 Literature Review and Outline of the Thesis

In engineering applications, there is always a drive for reduced emissions, reduced
wear, increased service intervals and last but not least, reduced friction. A deeper
understanding of lubrication mechanisms as well as how to accurately model them
is, thus, necessary prior to proposing new lubricant design concepts.

A proposed solution is the use of ionic liquids (ILs) in the next generation of lubri-
cants [9]. Over the last decades, the field of computational lubricated nanotribology
has been well established [10, 11] allowing the application of such methods in studies
of ILs [12, 13]. At the same time, a large number of experimental studies of ILs as
base lubricants [14, 15] or lubricant additives [16, 17] has shown good potential,
with friction reduction up to 55% [18] compared to conventional hydrocarbon oils.
One of the observations made from both computational and experimental studies is
that, under confinement, the liquid exhibits a layering behaviour as well as near-wall
solidification. It is assumed that significant friction reduction is due to the inherent
ability of the molecules to react with the metallic surfaces and form a lubricative
boundary tribo-film [18].
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In previous studies, inhomogeneities have been studied using molecular dynamics
(MD) simulations, in sheared ultrathin lubricating films, reporting a highly vis-
cous, adsorbed layer in contact with a less viscous fluid layer, within the film [19].
The findings are in agreement with Surface Forces Apparatus experiments [20, 21]
concluding that films with inhomogeneities, due to the existence of regions with
dramatically different viscosities, exist.

Most of the studies target at resolving features and complexities on the nano-scale
while macro-scale models fall short on studying the nuances of the phenomena in-
volved. An apparent disparity between the fields of expertise relevant to the highly
interdisciplinary topic of tribology is, thus, created [22]. Recent works address
complex phenomena across the scales [23] while others present hybrid atomistic-
continuum models capable of resolving nano-scale features of fluid flow [24]. Coher-
ent analysis across the scales and disciplines is shown to be necessary for a deeper
understanding of the lubrication complexities.

Driven by the observations made in studies on ILs, as well as other studies reporting
coexistence of layers with different rheological behaviour within the same film, in-
homogeneity and anisotropy is studied herein, targeting to identify through the use
of CFD-based optimization optimal patterns beneficial to lubrication. The contents
of this diploma thesis are outlined as follows:

• Chapter 2: The flow equations, the geometry under investigation as well as
the optimization method are presented. A case of isotropic and homogeneous
fluid properties is presented to validate the CFD results by comparing them
with data from literature on similar problems.

• Chapter 3: Fluids with inhomogeneous viscosity in the geometry’s longitudinal
and transversal directions are studied, respectively. Results are presented and
discussed.

• Chapter 4: Anisotropic fluids are modeled through the implementation of a
tensorial viscosity in the flow equations. Results are presented and discussed.

• Chapter 5: Based on the optimal transversal viscosity distribution identified in
the continuum domain, the study is extended towards the atomistic domain,
where through the use of coarse grain molecular dynamics (MD) simulations,
an identification of particle typologies that exhibit similar viscosity variations
is sought.

• Chapter 6: This work is summarised and conclusions are drawn.
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Chapter 2

Governing Equations &

Optimization

2.1 Governing Equations

The problem under investigation is governed by the N-S equations for an incompress-
ible fluid in a steady, laminar flow. The equations to be solved are the conservation
of mass and momentum, namely the continuity (eq. 2.1) and momentum (eq. 2.2)
equations, respectively.

Rp =
∂vi
∂xi

= 0 (2.1)

Ru
i = vj

∂vi
∂xj
− ∂

∂xj

[
ν
( ∂vi
∂xj

+
∂vj
∂xi

)]
+
∂p

∂xi
= 0 (2.2)

where i,j=1,2 for a 2D analysis, ν is the kinematic viscosity, p is the pressure di-
vided by the density and vi the velocity components. In the cases of inherently,
inhomogeneous viscosity media, kinematic viscosity is distributed throughout the
flow domain and differentiated accordingly. In contrast, in an anisotropic fluid,
kinematic viscosity is described by a, constant in space, tensor.
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2.2 Geometry

The geometry under investigation is that of a converging hydrodynamic slider, fig.
2.1, unless stated otherwise. The computational domain is discretized using a struc-
tured grid with approximately 12000 computational cells.

Figure 2.1: Sketch of a typical converging hydrodynamic slider geometry [25].

Parameters of fig. 2.1 correspond to L = 1 mm, h1 = 2.2 µm, h2 = 1.0 µm and
U = 1 m/s. The corresponding values are decided in order to match a common
configuration for hydrodynamic lubrication applications. As this diploma thesis
targets at the design of lubricants, the geometrical parameters are not investigated
further.

2.3 Finite Volume Method

Equations 2.1 & 2.2 are discretized using the finite volume method (FVM). FVM
[26] is a method for representing and evaluating partial differential equations in the
form of algebraic equations. Similar to the finite difference method or finite element
method, values are calculated at discrete places on a meshed geometry. The FVM
subdivides the flow domain into a finite number of smaller non-overlapping control
volumes. The transport equations are, then, integrated over each of these control
volumes by approximating fluxes with appropriate differencing schemes.

The geometry is discritized into a number of cells, or control volumes, through the
use of a structured grid. These are contiguous, meaning that they do not overlap
one another and fill the domain completely. Generally, variables are stored at the
cell centres. After the computational grid is generated, the system of the partial
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differential equations (PDEs) is transformed into algebraic expressions which can be
expressed as

M λ = b (2.3)

where λ is the vector of the dependent variable and b the source vector. Finite
volume discretization of each term is formulated by integrating the term over a cell
volume V. Since the flow PDEs are non-linear, matrix M depends on λ and a first
step for its numerical solution is to linearise it. This gives rise to a solution scheme
based on an iteratively used linear solver (either explicit or implicit). The above
methodology is carried out through the use of a pressure-based algorithm, namely
the SIMPLE algorithm, within OpenFOAM [27].

2.3.1 Boundary Conditions

In order to solve the problem, boundary conditions for each independent variable
at each boundary patch of the grid should be defined. The two main boundary
condition types are:

1. Dirichlet, prescribes the value of the variable on the boundary.

2. Neumann, prescribes the gradient of the variable normal to the boundary.

In specific, a zero Neumann condition for the pressure is imposed along the top and
bottom walls, while inlet and outlet are held at constant pressure (zero Dirichlet).
While zero pressure is unphysical, from an engineering point of view, it is used
herein considering that the fluid is incompressible and therefore computation of
only the derivatives of pressure is required. Therefore, a zero pressure, in terms
of boundary conditions, could theoretically correspond to any given value. For the
velocity, no-slip conditions (equivalent to Dirichlet condition) are imposed along the
walls, with the bottom one moving while the top one being stationary, and zero
Neumann conditions at the inlet and outlet.

2.3.2 The SIMPLE algorithm

In what follows, the variant of the SIMPLE algorithm, for the solution of the primal
equations is briefly presented [28].
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The momentum equations, 2.2, can be written in a semi-discretized form as

aPvP,i =

NB(P )∑
N=1

aNvN,i −
∂p

∂xi
(2.4)

where P is used to denote both the cell index and its centroid in which the mo-
mentum equations are discretized and NB(P ) are its adjacent cells, fig. 2.2. The
coefficients aP and aN result from the discretization of the convection and diffusion
terms. It is assumed that the coefficient aP is the same for all the components
of the momentum equations. The iterative solution of eq. 2.4 using the pressure
field p∗, obtained through the previous iteration results in a velocity field, v∗, which
does not necessarily satisfy the continuity equation. However, no equation in which
the pressure field is updated exists so far. For that reason, an equation, in which
pressure is computed and velocity corrected, needs to be derived.

Figure 2.2: Mesh cell, centered at P and one of its adjacent mesh cells centered at
N . The two cells share a single face f [28].

Let the velocity and pressure fields that satisfy the momentum and continuity equa-
tions be denoted as vi and p, respectively. The semi-discretized eq. 2.4 can be
written as

aPv
∗
P,i =

NB(P )∑
N=1

aNv
∗
N,i −

∂p∗

∂xi
(2.5)

Once the above equation is solved in the current iteration of the solution algorithm,
a prediction of the velocity components is given by

v∗P,j = v̂P,j −
1

aP

∂p∗

∂xj
(2.6)
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where

v̂P,j =
1

aP
HP,j(ν

∗) (2.7)

HP,j(ν
∗) =

NB(P )∑
N=1

aNv
∗
N,j (2.8)

Subtracting eq. 2.6 from 2.4 and assuming that coefficients (aP , aN) are approxi-
mately the same, the following equation holds

aPv
′
P,i =

NB(P )∑
N=1

aNv
′
N,i −

∂p′

∂xi
(2.9)

in which v′ and p′ correspond to the velocity and pressure corrections that need to
be added to v∗ and p∗, respectively, in order to also satisfy the continuity equation.

An assumption made by SIMPLE is that the first term on the right hand side of eq.
2.9 is negligible compared to the gradient of the pressure correction. Therefore, eq.
2.9 is simplified to

v′P,i = − 1

aP

∂p′

∂xi
(2.10)

From the continuity equation one can also derive the following

∂vj
∂xj

= 0⇒
∂v′j
∂xj

= −
∂v∗j
∂xj

(2.11)

and by substituting 2.10 into 2.11 yields

∂

∂xj

( 1

aP

∂p′

∂xj

)
=
∂v∗j
∂xj

(2.12)

Equation 2.12 can be further processed after taking eq. 2.6 into account
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∂

∂xj

( 1

aP

∂p′

∂xj

)
=

∂

∂xj

(
v̂P,j −

1

aP

∂p∗

∂xj

)
⇒ (2.13)

∂

∂xj

( 1

aP

∂p

∂xj

)
=
∂v̂P,j
∂xj

(2.14)

giving rise to the pressure equation. Further analysis related to the computation of
the volume flux, mf and skew correction can be found in [28].

The steps of the SIMPLE algorithm are as follows:

1. Solve eq. 2.5 to acquire the velocity field, v∗, based on the pressure and velocity
fields of the previous iteration (or the boundary conditions).

2. Compute v̂P,i through eq. 2.7 and interpolate its values to the cell faces.

3. Compute the pressure field through eq. 2.14.

4. Update the volume flux mf .

5. Explicitly relax the pressure field.

6. Update the velocity field vi at the cell centres using the relaxed pressure gra-
dient.

7. Update the turbulence model equations, if turbulence is activated.

8. If the desired level of convergence is met for all equations, terminate the run.
Otherwise, go to step 1.

2.4 Evolutionary Algorithms

Optimization methods [29] can be split into two main categories, gradient-based
(deterministic) methods and stochastic methods. Deterministic optimization meth-
ods use the general definition of the derivative of the objective function, which is
required to be computed. On the other hand, stochastic methods, as the name sug-
gests, are using randomised search to find the optimal solution. It is clear, therefore,
that in order to use a deterministic method the computation of the derivatives of
the objective function is necessary w.r.t. the design variables.

Evolutionary algorithms are the main representatives of the stochastic methods.
They are based on principles derived from natural evolution, such as reproduction,
mutation, recombination and selection. Basic characteristic of this method, in con-
trast with other stochastic methods, is that it uses a population of candidate solu-
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tions (population-based methods) instead of a single solution in every optimization
iteration. The principles of natural evolution, mentioned above, can be translated
into mathematical operators. The evolution of the population takes place after the
repeated application of these operators with the goal of driving a population of
candidate solutions towards better regions of the search space w.r.t. the selected
objective function.
The main characteristics of an evolutionary algorithm can be summarized by the
following

• They use populations of individuals (candidate solutions) which evolve simul-
taneously, instead of single individuals.

• The evolution of the population is determined by the objective function values
of its individuals.

• Populations must change dynamically by creating new individuals and elimi-
nating other depending on their objective function value.

• During the evolution of the population, hereditary operations are employed.
Features of the parent population should be found in the offspring population
but new features must also appear.

Like every optimization method, evolutionary algorithms have both advantages and
disadvantages in comparison with other methods.

One great disadvantage of an evolutionary algorithm, in its standard form, is that
it requires a, relatively, large number of evaluations to identify the optimal solution.
Therefore, the evaluation software, which is the ’expensive’ part of the optimization
procedure, must be used a lot of times. Another disadvantage is that the more
the design variables, the more the evaluations needed to actually find the optimal
solution. Therefore, the computational cost greatly increases with the increase of the
design variables. Nevertheless, there are methods that can reduce the total number
of evaluations thus decreasing the total cost/time of an optimization procedure. Such
a method is a metamodel assisted evolutionary algorithm. Metamodels replicate
costly calls to the CFD evaluation software, by approximating the objective function
at negligible cost, after training them on data collected from candidate solutions
already evaluated, on the CFD tool, during the evolution.

On the other hand, evolutionary algorithms in contrast with deterministic methods
will always find the global optimum of the problem, provided that an ”infinite”
number of evaluations can be performed. Another advantage is that, as already
mentioned, an evolutionary algorithm can be used directly in a new problem without
changing anything on the optimization software to fit the problem requirements. The
only requirement for an evolutionary algorithm to function is an output from the
evaluation software with the value/s of the objective function/s for the individual
to be evaluated.

Weighting the advantages and disadvantages of each optimization method it is de-
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cided that an EA better fits the requirements of the problem.

2.4.1 EA-Based Optimization

The EA-based optimization [29] can be summarized in the following steps

1. Basic parameters, such as the size of the parent and offspring population, are
selected, depending on the problem. The symbols Sg,µ and Sg,λ correspond to
the parent and offspring population, respectively. Letter g refers to the gener-
ation count. The procedure begins with a random selection of the individuals
of S0,λ.

2. The λ individuals of Sg,λ are evaluated through the use of an evaluation soft-
ware. After the flow fields are computed, a post-processor is used to calculate
the objective function of each individual.

3. The members of the elite population denoted by Sg,e are renewed by the mem-
bers of Sg,λ that have a better objective function value. This step can be
expressed as:

Sg+1,e = Te(S
g,λ ∪ Sg,e) (2.15)

where Te is the operator identifying elite members.

There is always a chance that, at this step, no individual of Sg,λ is better than
the ones of Sg,e and, therefore, the population of the elites remain the same.
This is an indication that the EA didn’t manage to find a better solution in
the last iteration.

4. The elitism operator, Te2, is used to replace individuals of Sg,λ by individuals
of Sg,e . Usually the worst individuals of the offspring population are chosen.
Depending on the value of this operator, the search engine can be more elitistic
or less elitistic. Through this step, getting a new generation (iteration) with
an optimal solution worse than the one of the previous one, is avoided. This
step can be expressed as:

Sg,λ = Te2(Sg,λ ∪ Sg+1,e) (2.16)

5. The new parent population Sg+1,µ is created through the use of the operator
Tµ. Usually this is done through the use of the current offspring and parent
population

Sg+1,µ = Tµ(Sg,µ ∪ Sg,λ) (2.17)
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6. The next step is the generation of a new offspring population, Sg+1,λ. To ac-
complish this, individuals of Sg+1,µ and Sg+1,e are randomly selected. For each
combination of parents selected some operators, such as the mutation opera-
tor (Tm) and crossover operator (Tr), are used to produce the final offspring
population of the new generation.

Sg+1,λ = Tm(Tr(S
g+1,µ ∪ Sg+1,e) (2.18)

7. Convergence criteria for a single objective optimization, such as the optimal
value remaining the same for N generations, are checked and, if satisfied, the
algorithm stops. If not, a new generation begins by repeating steps 2 to 6.

2.4.2 EASY

EASY [30] is a general purpose optimization platform developed by PCopt of NTUA.
It can be used for single-(SOO) and multi-objective (MOO), constrained or uncon-
strained optimization problems.

EASY offers a variety of options, such as hybrid optimization (using both stochas-
tic and gradient-based optimization techniques), metamodel assisted evolutionary
algorithms and more. Most importantly, though, EASY is enabled for cluster and
grid-computing.

In the cases to be presented, the evaluation cost is small due to the simplicity of
both the geometry and the equations needed to be solved. Therefore, running the
solver of the governing equations in parallel would make little to no sense. On the
other hand the procedure sketched on 2.4.1 can be parallelized with great profit on
the time needed for the procedure to finish. Each evaluation can be computed at
one CPU independently of any other through the use of a cluster, provided by TME.

EASY is a synchronous EA, i.e. there is a sychronization barrier at the end of each
generation. The software does not proceed to a new generation if all the evaluations
of the previous one have not been completed.

Assuming that for a different set of design variables the evaluation time remains
almost the same and if the number of CPUs occupied by EASY are equal to the
offspring population, then one generation will be computed in clock time equal to
that of a single evaluation.
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2.5 Performance Parameters

The optimization procedure targets at either minimizing or maximizing an objec-
tive function. After the numerical solution of the N-S, the flow fields p and vi
become available and these should be post-processed to compute the parameters
that characterize the efficiency of a lubricant. In hydrodynamic lubrication, two are
the performance parameters of interest.

• Friction between the lubricant and the lubricated surface, that is the total
force acting on the tangential direction of the surface. It is a quantity to be
minimized.

• Load capacity, that is the total force acting on the normal direction of the
surface. Load capacity is to be maximized.

A post-processor is developed within OpenFOAM to compute the aforementioned
quantities.

Friction force is obtained by integrating τxy along the longitudinal direction of the
slider. Although friction appears on both surfaces, the most affected surface is the
moving one, namely the bottom horizontal wall as shown in fig. 2.1. Following the
above, friction on the bottom horizontal wall is defined as :

F =

∫ L

0

τxydx =

∫ L

0

ν(
∂ux
∂y

+
∂uy
∂x

)dx (2.19)

Since no-slip condition is imposed for the velocity components on the walls, ∂uy
∂x

can
be neglected. This quantity is to be minimized since it is associated with wear of
the lubricated components and energy losses.

Load capacity is the parameter that quantifies the force that can be implemented on
the normal direction of the components without squeeze film phenomenon, where
the two components start moving towards each other and the fluid moves outside
of the lubricated area. This parameter can be obtained by integrating the pressure
distribution along the longitudinal direction

W =

∫ L

0

pdx (2.20)

This quantity is to be maximised in order to develop a lubricant that can sustain
bigger forces without the squeeze film phenomenon.
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In order to avoid a multi-objective optimization problem, a synthetic objective func-
tion is defined. The specific friction

SF =
F

W
(2.21)

of the bottom wall is used as a single function to be minimized during the optimiza-
tion.

2.6 Isotropic-Homogeneous Viscosity Case

The terms of isotropy and homogeneity in physics are defined as following:

• Isotropy is uniformity in all directions. In the study of mechanical proper-
ties of materials, isotropic means having identical values of a property in all
directions. So, isotropic viscosity of a fluid means that the measurement of
viscosity, in a specific point in space, is independent of the orientation of the
measurement.

• An homogeneous material has the same properties at every point in space.
Therefore, a fluid with homogeneous viscosity can be considered having the
same value of viscosity irrespective of where the measurement takes place.

The definitions of anisotropic and inhomogeneous can be derived by considering the
exact opposite of the above definitions.

In order to understand the value of implementing continuum models that consider
the properties of the analysed medium to be either anisotropic or inhomogeneous, a
comparison metric is due. Therefore, in this section, the parameters of interest are
computed using CFD and validated using data from literature, for an isotropic and
homogeneous fluid, thus validating the model accuracy and creating a comparison
measure for what follows.

For the CFD simulations, a kinematic viscosity ν = 3·10−6 m2

s
is used, corresponding

to a common engine oil at 373 K. The convergence history of the simulation is
shown in fig. 2.3 . As can be seen, the grid as well as the solution scheme used to
simulate the homogeneous-isotropic viscosity case is able to converge in less than
5000 iterations.

Through the use of the developed post-processor, the performance parameters of
the lubricant are computed and compared with equivalent results in the literature
[1], as shown in table 2.1. A small difference of 4% is noted for the friction and
load capacity results. In the literature, the equation used to describe the problem
is the Reynolds equation which is expected to lead to a small error compared to the
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Figure 2.3: Non-dimensional residuals of the discretized N-S reduced more than 9
orders of magnitude.

results of the N-S analysis. However, the results are deemed satisfactory and the
model validated. The CFD results are to be used as a comparison metric to what
follows.

Table 2.1: Performance parameters for lubricant with ν = 3 · 10−6 m2

s . Comparison
between CFD and literature [1]. Parameters Fh, Wh, SFh correspond to the computed
values from CFD.

Performance Parameters CFD Literature

Friction Fh 0.96Fh
Load Capacity Wh 0.96Wh

Specific Friction SFh SFh
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Chapter 3

Inhomogeneous Viscosity

While the properties of a material are usually assumed homogeneous, this is not
always true. Nanoscale analysis of certain materials shows that the behaviour of the
material can vary in space. In lubrication, inhomogeneities can be caused due to the
inherent ability of the lubricant’s molecules to interact differently with the lubricated
walls or by external causes such as electric/magnetic fields. In this chapter, inho-
mogeneity is studied as a potential beneficial attribute to modern lubricants. This
characteristic is emulated in a continuum approach by introducing an inhomoge-
neous viscosity field in the N-S equations. To exploit the aforementioned behaviour
for the specific friction minimization, the viscosity field is optimized.
This chapter is split into the following sections :

• Viscosity is distributed along the longitudinal direction of the geometry with
the use of a Bézier curve. The curve is optimized w.r.t. the values of the three
control points. Results are presented and discussed.

• Viscosity is distributed along the transversal direction of the geometry with
the use of a piecewise linear interpolation scheme. The optimal viscosity con-
figuration is tested in different geometries to investigate the sensitivity of the
result to different tribological configurations. Results are presented and dis-
cussed.

To perform the above, the OpenFOAM environment is enriched with appropriate
viscosity parameterization pre-processors.
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3.1 Viscosity Varying in the Longitudinal Direc-

tion

Prior to the solution of eqs. 2.1 & 2.2, the kinematic viscosity field needs to be
parameterized. In this section, interest is given to the impact of a non-uniform
viscosity distribution along the longitudinal direction. Thus, a parameterization
scheme of the form ν = ν(x) is required. This is realized through the use of a
quadratic Bézier curve.

3.1.1 Bézier Curve

In contrast to already existent viscosity schemes of Non-Newtonian fluids, the vis-
cosity parameterization scheme used herein is a pre-processor and does not renew
the viscosity values of each computational cell throughout the solution of the flow
equations.

A Bézier curve on the (x, ν) plane is used to parameterize viscosity along the longi-
tudinal direction. It is a parametric curve that is defined by a set of control points
P0 through Pn, where n is called its order. The first and last control points are al-
ways the end points of the curve; however, the intermediate control points generally
do not lie on the curve.

An explicit definition expresses the nth degree Bézier curve as follows:

B(t) =
n∑
i=0

(
n

i

)
(1− t)n−itiPi (3.1)

where
(
n
i

)
are the binomial coefficients and t is a non-dimensional parameter with

values from 0 to 1. For a quadratic Bézier curve with n = 2 , eq. 3.1 takes the
following form:

B(t) = (1− t)2P0 + 2(1− t)tP1 + t2P2 (3.2)

Since interest is given on parameterizing ν, the problem is 1D and thus the control
points of eq. 3.2 are scalar values and can be written as P0, P1 and P2. An optimiza-
tion could now start with the control points being the design variables and t = x

L
,

where L is the length of the hydrodynamic slider. However, an optimal distribution
of t is also sought, thus providing extra control to the final viscosity curve. In order
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to achieve this, the x coordinates of the grid are also described by a quadratic Bézier
curve, as follows:

x = (1− t)2x0 + 2(1− t)tx1 + t2x2 (3.3)

By setting x0 = 0 and x2 = L, we end up with

t2(L− 2x1) + 2x1t− x = 0

t2(1− 2
x1

L
) + 2

x1

L
t− x

L
= 0

t2(1− 2k) + 2kt− x

L
= 0 (3.4)

where k = x1
L

and x are the known coordinates of the grid. An extra design variable,
k, is therefore used to control the distribution of t. Knowledge of k and of the grid
coordinates produces a distribution of t through the solution of eq. 3.4. Field t is
used for the production of the viscosity field through eq. 3.2.

The requirement of Pi corresponding to values of viscosity is inconvenient for a
problem in which the search space is unknown. Therefore, during the optimization
the search space is constrained by a predefined minimum value of viscosity (νmin),
which helps avoiding non-physical results (i.e. negative viscosity) and an average
value (νave) to fairly compare with the homogeneous case, presented in sect. 2.6.
The maximum value of viscosity is not explicitly defined. According to this param-
eterization, the nodal viscosity values are:

νi = νmin + fi(νmax − νmin) (3.5)

where i is the ID of the cell, fi is the non-dimensional field produced by the afore-
mentioned procedure and νmax is the maximum viscosity value, computed based on
the average and minimum viscosity values as:

νmax =
νmin(fave − 1) + νave

fave
(3.6)

fave =
1

A

K∑
i=1

Aifi (3.7)

where Ai is the area of cell (i), A =
∑K

i=1 Ai and K the total number of cells.

The input required is summarized in the following table.
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Parameters Values Units Interpretation
k [0-1] None Controls the final shape of the

curve along the x-direction.
Closer to 1 the curve moves
closer to x = L

νmin (0-∞) m2/s Minimum allowed value that the
curve of kinematic viscosity may
reach.

νave (0-∞) m2/s Average value that the curve of
kinematic viscosity has.

P0 [0-1] None First control point. Values closer
to 0 move the control point closer
to νmin

P1 [0-1] None Second control point. Values
closer to 0 move the control point
closer to νmin

P2 [0-1] None Third control point. Values closer
to 0 move the control point closer
to νmin

Table 3.1: Input required by the user for the Bézier curve viscosity model.

3.1.2 Optimization

The optimization target is to minimize the specific friction of the lubricant w.r.t.
the design variables. A study -not presented herein- is carried out, prior to the
optimization procedure, where it is concluded that specific friction is reduced when
viscosity decreases along the flow. Based on this, the design variables are k, P0 and
P2 with the intermediate control point set to P1 = −

√
P0P2 in order for the curve

to reach the minimum value. This decision is made to minimize the search space of
the optimization. The minimum value of kinematic viscosity is set to 3 ·10−7 (m2/s)
corresponding to the value of water at 373 K, and the average value to 3 · 10−6

(m2/s) in order for the result to be fairly comparable to the homogeneous case of
section 2.6.

The optimization procedure is set up on EASY using the following settings :

1. Design variables:

The design variables are ’translated’ into a binary form by 10 bits each. Using
the evolutionary algorithm terminology, the chromosome of each candidate
solution consists of 30 bits.

2. Search Engine: In order to have a faster convergence of the optimization
procedure, four demes are used. Each deme is populated by 5 parents and 15
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Design Variables Minimum Maximum Bits
P0 0 1 10
P2 0 1 10
k 0.1 0.9 10

Table 3.2: Design variables for longitudinal viscosity distribution.

offspring, leading to a total population of 20 parents (µ) and 60 offspring (λ).
The mutation probability is set to 0.02. The evolution is allowed to expand for
maximum 70 generations or stops after 20 idle generations, i.e. 20 successive
generations unable to locate a better solution, or 1500 evaluations based on
the computational budget set (whatever comes first).

3. Parallel Evaluations: The optimization procedure is parallel. Thirty CPUs
are used to parallelize the optimization process.

3.1.3 Results

The convergence history of the optimization is shown in fig. 3.1a. The optimized
viscosity field is presented in fig. 3.1b and 3.2. The computational budget was
kept at 370 CFD evaluations which was quite reasonable considering that the opti-
mization procedure was parallelized. It is also worth noting that the evolutionary
algorithm managed to locate the optimal ”neighbourhood” in the first generation
(60 CFD evaluations), due to the small number of design variables, after which little
fluctuations around the optimized value are observed. The optimized field depicts
high viscosity at the inlet and outlet of the slider, reaching the minimum value in
the middle.
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Velocity and pressure results for a homogeneous fluid with ν = νave and the opti-
mized inhomogeneous fluid are presented and compared. Velocity profiles are pre-
sented in fig. 3.3b at three distinct longitudinal positions. Velocity is hardly affected
by the viscosity inhomogeneity. Therefore, the computation of friction depends al-
most exclusively on the absolute value of viscosity at each computational cell along
the wall. Non-dimensional pressure profiles along the bottom wall are shown in fig.
3.3a. In contrast to velocity, pressure is significantly affected. In specific, not only
the shape of the profile is changed compared to the homogeneous one but also a
considerable increase is noted.
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Figure 3.3: Flow fields. Comparison between the homogeneous case with ν = νave
and the optimized case.

Based on the above, the optimized case results in 27% SF reduction compared to
the homogeneous case with ν = νave. In specific, friction is increased by 1.8% and
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load capacity by 62%. It is, thus, shown that the optimized longitudinal viscosity
distribution does not improve friction results. However, such a distribution could
potentially improve drastically the lubricant’s load capacity. Overall, the optimized
behaviour, as shown in this section, could potentially provide significant insight to
how to ”strengthen” a lubricant against extreme normal loads on the walls.

3.2 Viscosity Varying in the Transversal Direc-

tion

Nano-scale phenomena are important in an increasing number of applications, one
of them being the piston ring lubrication in an internal combustion engine vehicle.
These phenomena could present complexities that are nearly impossible to study,
computationally or experimentally, at a finite period of time and computational
power. In previous studies, inhomogeneities have been reported, through the use
of MD, in the form of strong viscosity variations normal to the walls. Herein, a
CFD-based optimization is carried out, seeking beneficial viscosity patterns in the
transversal direction of the geometry targeting to provide valuable insight to a more
extensive and computationally painful study on the nano-scale. In this section,
the parameterization of ν, its optimization alongside with parametric studies are
presented.

3.2.1 Parameterization

Due to the shape of the geometry, where one surface is inclined, a viscosity param-
eterization scheme of the form ν = ν(ŷ) is required, where ŷ is the non-dimensional
slider’s height at each distinct position x. The viscosity transversal parameteri-
zation scheme selected consists of 11 control points piecewise linearly interpolated
in each mesh cell. An appropriate viscosity model is included in the OpenFOAM
environment. Through this model, the user is allowed to change the values of the
control points as well as their distance leading to the creation of a viscosity field.
An example case is presented in fig. 3.4 for random input from the user.

Similarly to what is presented in sect. 3.1.1, the search space is constrained by
a predefined minimum value of viscosity (νmin) and an average value (νave). The
maximum value is not explicitly defined. By allowing very high viscosity values, this
scheme enables the continuum approach to mimic potential solidification of the fluid.
The importance of this is highlighted by taking the beneficial effect of lubricative
boundary tribo-films, reported in studies of ILs, into consideration.
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(a) Viscosity iso-areas for example case.

(b) Viscosity plot across the film thick-
ness at x = 0.5L. Control points are
depicted with circles.

Figure 3.4: Example Case. Output of multiple control points-viscosity model for
random input.

The input required is summarized in table 3.3.

Parameters Values Units Interpretation
νmin (0-∞) m2/s Minimum allowed value that the

field of viscosity may reach.
νave (0-∞) m2/s Average value that the field of vis-

cosity has.
P1,2,...,11 [0-1] None Non-dimensional viscosity values

of the control points. Values
closer to 1 move the control point
closer to νmax .

C1,2,...,11 [0-1] None Non-dimensional ŷ values of the
control points. Values closer to 1
move the control point closer to
ŷmax.

Table 3.3: Input required by the user for the piecewise linear interpolation viscosity
model.

3.2.2 Optimization

The target is, once again, to minimize the specific friction. The control points are
fixed in space and equidistant. Therefore, parameters C1,2,...,11 are constant in each
CFD evaluation. In specific, the values used are calculated as

Ci+1 = Ci + 0.1 i = 1, 2, ..., 11 (3.8)
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where C1 = 0.

The minimum value of kinematic viscosity is fixed at 3·10−7(m2/s) while the average
value is 3 · 10−6(m2/s). The design variables are all the parameters P1,2,...,11.

The optimization is initialized using the following EASY settings:

1. Design variables:

Design Variables Minimum Maximum Bits
P1 0 1 10
P2 0 1 10
... 0 1 10
P11 0 1 10

Table 3.4: Design variables for transversal viscosity distribution.

2. Metamodels: The metamodels used are of the radial basis function (RBF)
type. The minimum database entries required is 20 while the data used for
the training ranged from 10 to 40.

3.2.3 Results

The convergence history of the optimization is shown in fig. 3.5a. The optimized
viscosity field is presented in fig. 3.5b. Velocity and pressure results for a homoge-
neous fluid with ν = νave and the optimized inhomogeneous fluid are presented and
compared. Velocity profiles are presented in fig. 3.6 at three distinct longitudinal
positions alongside the shear rate at the bottom wall. Non-dimensional pressure
profiles along the bottom wall are shown in fig. 3.7.

A change in the shear rate sign along the longitudinal direction is observed. In-
tegrating this quantity along the x direction, negative contributions to friction are
negated by a part of the positive ones. It is also shown that the optimized case
depicts a lower absolute value of shear rate along the x direction, compared to the
homogeneous case, for the 90% of the slider’s length. Therefore, even though viscos-
ity is increased near the wall, friction is greatly reduced. Additionally, an increased
pressure profile is observed leading to an overall increase in load capacity. The
optimized inhomogeneous case resulted in 65% SF reduction compared to the ho-
mogeneous case. In specific, the optimized case exhibits 60% friction reduction and
14% load capacity increase.
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Figure 3.5: Optimization results.
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Figure 3.6: Velocity and shear rate results.
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3.2.4 Parametric Studies

In order to evaluate the sensitivity of the optimal viscosity profile to different slider
configurations, parametric studies are carried out for different converging ratios (K),
as in fig. 2.1, where:

K =
h1 − h2

h2

(3.9)

For each distinct value of K, CFD simulations are carried out for a homogeneous
fluid with ν = νave and a fluid with the optimized viscosity profile as identified for
K=1.2. The outcome of this parametric study for various K values is shown in fig.
3.8.
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Figure 3.8: Reduction in SF w.r.t. the homogeneous viscosity case for different con-
verging ratios. The circled point corresponds to the converging ratio used to compute
the optimized viscosity profile.

It is worth mentioning that the percentage increase in load capacity is found to be
independent of the converging ratio of the slider. Based on that, it is concluded
that, as the plates tend to become parallel, the aforementioned beneficial velocity
mechanism is intensified leading to a higher decrease in friction. Through this
parametric study it is, therefore, shown that the optimal viscosity transversal profile,
identified for a specific converging ratio, leads to beneficial friction results, compared
to a conventional homogeneous lubricant, for different slider configurations. The
importance of this is highlighted by taking into consideration that throughout the
operation lifetime of a lubricated system, i.e. the piston rings, the geometry is bound
to changes.

Figure 3.8 does not include results for parallel plates (K=0) due to the fact that,
for a homogeneous fluid, the uniform pressure field obtained in such a case does not
generate any extra load carrying capacity compared to the one obtained from the
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reference pressure. Nevertheless, a study is carried out for a parallel plate configura-
tion in order to identify the impact of the geometry’s height on the friction results.
In specific, the flows with homogeneous and optimized inhomogeneous viscosity are
simulated for three different slider heights h and results are presented in table 3.5.

Table 3.5: Friction results for parallel plates. Comparison between homogeneous and
inhomogeneous fluids for different distances h between the plates.

Plate Distance Homogeneous Inhomogeneous

h = 1 µm Fh 0.26Fh
h = 0.5 µm 2Fh 2 · (0.26Fh)
h = 2 µm 0.5Fh 0.5 · (0.26Fh)

The optimized ν iso-areas alongside with the velocity profiles are shown in fig. 3.9 for
two parallel plates. As shown in fig. 3.9b, in the case of the parallel plates, the shear
rate along the walls does not change sign. However, its absolute value is drastically
decreased leading to 73% friction reduction when compared to the homogeneous
case. Through this study, it is also shown that the percentage decrease of friction is
independent of the distance h between the parallel plates as long as the proportion
of the high viscosity zone thickness w.r.t. h is kept constant.
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(a) Optimized ν iso-areas for parallel
plates (not in scale).
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Figure 3.9: Parallel plates results.

However, in practice, managing to maintain the same proportion of the liquid with
high viscosity through a large gap would be a difficult task, in terms of controlling
the lubricant properties far from the lubricated walls. For this reason, a second
study of parallel plates with varying distance h is carried out, this time with a fixed
thickness of the high viscosity layer. In specific, CFD simulations are carried out in
which the high viscosity zones correspond to an absolute value of 0.4 µm thickness
normal to the walls and viscosity value equal to 80% of the maximum value observed
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in the optimized case. The low viscosity value is calculated for each case based on
the slider’s height in order for the inhomogeneous simulation to be fairly comparable
with a homogeneous case with ν = νave.

This study shows, fig. 3.10a, a negligible impact of viscosity inhomogeneity in case
of large gaps, where the bulk properties of the lubricant play the main role. Also,
for computational efficiency, even if it can be assumed that viscosity inhomogeneity
does occur near the walls, it can be safely ignored when the total height of the slider
is significantly larger than the thickness of the high viscosity zone. However, when
the thickness of the high viscosity zone becomes significant as a proportion of the
total height (e.g. 8% for the 10 µm case), then a quantifiable benefit can be observed
and thus such inhomogeneities cannot be ignored. Corresponding velocity profiles
are shown in fig. 3.10b for different slider heights. It is observed that when the gap
is significantly larger than the high viscosity zone, the velocity of the homogeneous
and inhomogeneous cases are practically the same.
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Chapter 4

Anisotropic Fluids

In material science and engineering, anisotropy is a material’s directional depen-
dence of a physical property. One such material is liquid crystals. The anisotropic
behaviour of liquid crystals is due to the elongated shape of the molecules. The
physical properties of the molecules are different when measured parallel or per-
pendicular to their length. Residual alignment of the rods in the fluid leads to
anisotropic bulk properties. This residual alignment occurs as a result of preferen-
tial packing arrangements and electrostatic interactions between molecules that are
most favourable (lowest in energy) in aligned configurations.

In this chapter, a model of an anisotropic incompressible viscous fluid is presented.
The model is implemented in the OpenFOAM environment targeting at simulating
the aforementioned rheological behaviour in the continuum domain. In specific, this
study tries to identify the effect, of inherently anisotropic molecular systems, on
lubrication performance through a continuum approach.

4.1 Anisotropic Viscous-Stress Tensor

Adopting the approach to the description of inherently anisotropic homogeneous
continua that was proposed by Oldroyd [31], a simple linear model of an anisotropic
incompressible viscous fluid whose local structure is represented by a physical con-
stant tensor, is presented.

The viscous stress is due to the relative motion on the continuum scale and therefore
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depends on velocity gradients

∂ui
∂xj

,
∂2ui
∂xj∂xk

....

The relation between the viscous stress (τij) and the velocity gradient ( ∂ui
∂xj

) is con-

sidered linear. For second-rank tensors, the most general linear relation is:

τij = Cijlm
∂ul
∂xm

(4.1)

where Cijlm is a coefficient tensor of rank four. In principle, there are 34 = 81 coef-
ficients for a three-dimensional approach and decrease to 16 for a two-dimensional.
It can be shown that, in an isotropic fluid, the fourth-rank tensor is of the following
form:

Cijlm = λδijδlm + µ(δilδjm + δimδjl) (4.2)

Therefore 81 coefficients reduce to two, λ and µ and are called viscosity coefficients.
By this definition, the viscous stress tensor is:

τij = µ
(∂ui
∂xj

+
∂uj
∂xi

)
+ λ

∂ul
∂xl

δij (4.3)

and for an incompressible fluid, w.r.t the continuity equation, reduces to:

τij = ν
(∂ui
∂xj

+
∂uj
∂xi

)
(4.4)

In the proposed model, the definition of the isotropic viscous stress tensor 4.4 is
altered in order for this to be in accordance with 4.1 and is denoted as τ ′ij.

τ ′ij = Cijlm
∂ul
∂xm

τ ′ij = (cijlm + νijlm)
∂ul
∂xm

(4.5)
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where

cijlm = νc(δilδjm + δimδjl)

and νc corresponds to a bulk kinematic viscosity. The decision of ’splitting’ tensor
Cijlm into cijlm and νijlm is made due to the fact that even in an anisotropic approach,
the fluid is expected to correspond to a bulk viscosity value, expressed by cijlm, which
due to anisotropy is to illustrate minor differences depending on the orientation,
expressed by νijlm. It also provides the study with the ability of fairly comparing
the fluid under investigation with an isotropic one with the same bulk viscosity
value.

From equation 4.5, the sum of the components cijlm and νijlm correspond to a
physical constant that one would naturally call viscosity tensor. Component cijlm
depicts the isotropic term of the tensor while νijlm the term under evaluation.

This description leads to an altered momentum equation:

uj
∂ui
∂xj
− ∂

∂xj

[[
νc(δilδjm + δimδjl) + νijlm

] ∂ul
∂xm

]
+
∂p

∂xi
=0

uj
∂ui
∂xj
− ∂

∂xj

[
νc

(∂ui
∂xj

+
∂uj
∂xi

)
+ Aij

]
+
∂p

∂xi
=0

uj
∂ui
∂xj
− ∂

∂xj

[
νc

(∂ui
∂xj

+
∂uj
∂xi

)]
+
∂p

∂xi
− ∂

∂xj

(
Aij

)
=0, i, j = 1, 2 (4.6)

where Aij = νijlm
∂ul
∂xm

and

(δilδjm + δimδjl)
∂ul
∂xm

= δil(δjm
∂ul
∂xm

) + δim(δjl
∂ul
∂xm

) (4.7)

= δil
∂ul
∂xj

+ δim
∂uj
∂xm

=
∂ui
∂xj

+
∂uj
∂xi

= 2εij

where εij is the rate of strain (strain-rate) tensor.

While this model is programmed and included in the OpenFOAM environment in
its most general form, as presented in equation 4.6, some assumptions are made for
its applications.
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Assuming that there are no finite body couples per unit mass in the fluid, the stress
tensor is symmetric and

νijlm = νjilm (4.8)

4.2 Developed SimpleAnisoFoam

The set of equations to be solved is the continuity equation for an incompressible
fluid and the momentum equation 4.6. The formulation of equation 4.6 leads to a
purely isotropic part (corresponding to the classic N-S equations) and an anisotropic

term
(

∂
∂xj

(Aij)
)

. Thus, the implementation of the model in the OpenFOAM envi-

ronment is realized through the alteration of the already existent simpleFoam solver.
The anisotropic term is included explicitly into the solution process, meaning that
its values at iteration n are expressed, only, as function of values obtained at n− 1.

The input required is the same as with simpleFoam, with the addition of four,
rank two, non-dimensional tensors (C11

lm, C12
lm, C21

lm, C22
lm) that are called constructing

tensors. As the name suggests, these tensors are required by the user for the con-
struction of the final νijlm. The constructing tensors are multiplied with the bulk
value of kinematic viscosity νc as used in equation 4.6.

The code proceeds to compute the double inner product of the four tensors with the
gradients of velocity on each iteration of SIMPLE

Aij = Cij
lm :

∂ul
∂xm

with i,j,l,m = 1, 2

For instance, term A11 is calculated as

A11 = C11
11

∂u1

∂x1

+ C11
12

∂u1

∂x2

+ C11
21

∂u2

∂x1

+ C11
22

∂u2

∂x2

(4.9)

where C11
11 , C

11
12 , ... are the terms of the constructing tensor C11

lm. The computed term
is then added to the momentum equation as described in eq. 4.6 and the algorithm
continues until convergence.
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4.3 Couette and Poiseuille Flow

Prior to any optimization, an investigation of the anisotropic model on the parallel
plate geometry is carried out in order to evaluate the validity of the model on
simple flows. In specific, the geometry is depicted by two parallel plates of total
height h = 2 µm and the boundary conditions are set to express a Couette and a
Poiseuille flow, respectively. Both flows are expressed by simple analytical solutions
and are, thus, used to obtain new analytical expressions based on eq. 4.6. Based
on these expressions -their derivation is shown below- the model is used to evaluate
whether the analytical results are the same with the simulation ones.

As regards the Couette flow, the boundary conditions are the same to the ones used
in the previous chapters of this thesis. The velocity profile is considered to be fully
developed and thus

∂ux
∂x

= 0

Based on this and taking into consideration the continuity equation, it is also true
that

∂uy
∂y

= 0

Since ∂uy
∂y

= 0 and uy|wall = 0, therefore uy = 0 in the whole domain. Based on the
above, the convection term of the N-S equations is zero and the momentum equation
as described by eq. 4.6 can be written:

∂

∂xj

[
νc

(∂ui
∂xj

+
∂uj
∂xi

)]
+

∂

∂xj

(
Aij

)
=

∂p

∂xi
(4.10)

In the Couette flow, it is assumed that there is no pressure gradient in the longitu-
dinal direction of the flow and thus ∂p

∂x
= 0. Also, all gradients of velocity are zero

except ∂ux
∂y

which leads to ∂p
∂y

= 0. Therefore, eq. 4.10 can be written as:
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∂

∂y

[
νc
∂ux
∂y

]
+

∂

∂y
Axy =0 (4.11)

∂

∂y

[
(νc + νxyxy)

∂ux
∂y

]
=0

(νc + νxyxy)
∂2ux
∂y2

= 0

It is, thus, shown that by implementing an anisotropic term in eq. 4.6 for a Couette
flow, the velocity profile does not change compared to the isotropic. Nevertheless,
simulations are carried out for an isotropic and an anisotropic case, respectively. In
specific, in the isotropic case Aij = 0 and νc = 3 · 10−6 m2

s
. As for the anisotropic

case, νc remains the same and the constructing tensor C12
lm is activated with C12

12 = 1
and the rest of its terms remaining zero. The resulted velocity profile is depicted in
fig. 4.1. It is shown, therefore, that for both cases the velocity profile is the same.
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(a) Velocity iso-areas for both isotropic
and anisotropic case (not in scale).
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Figure 4.1: Velocity results. Comparison between the isotropic and anisotropic case.

However, in order to be consistent to the description of eq. 4.6, friction computation
on the walls is altered to include the tangential to the wall force coefficient of Aij.
Therefore, the programmed post-processor is enhanced with

F =

∫ L

0

τ ′xydx =

∫ L

0

[
νc
∂ux
∂y

+ Axy

]
dx (4.12)

Based on this, the computed friction for the anisotropic case is doubled compared
to the one of the isotropic case.

As concerns the Poiseuille flow, the geometry of the problem remains the same but
the boundary conditions change. In specific, for the velocity no-slip is assumed at the
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still walls and a zero Neumann at the inlet and outlet. For the pressure, a constant
Dirichlet P1 is applied in the inlet and a constant P2 at the outlet, with P1 > P2. At
the walls, a zero Neumann condition is applied for the pressure. Following the same
assumptions as for the Couette flow, it can be shown that the governing equations
simplify to:

∂p

∂x
=
∂

∂y
(νc

∂ux
∂y

) +
∂

∂y
(Axy) (4.13)

∂p

∂y
=0

It can be assumed that the quantity ∂p
∂x

= −∆p
L

, where ∆p = P1 − P2 and L is the
total length of the geometry. Also, similar to the Couette flow it can be assumed
that the only ”rational” term of anisotropy is νxyxy and thus:

−∆p

L
= (νc + νxyxy)

∂2ux
∂y

(4.14)

Since the flow is considered fully developed, the partial derivative can be changed
to an ordinary one and, by integrating twice, eq. 4.14 the velocity profile along the
film thickness can be expressed as:

ux(y) = − ∆p

2L(νc + νxyxy)
y2 + C1y + C2 (4.15)

and by applying the boundary conditions:

ux(y) =
∆p

2L(νc + νxyxy)
(h2 − y2) (4.16)

where h is the total height of the geometry. At this point, it is reminded that in
the programmed model, terms of anisotropy are included in proportion to the bulk
viscosity value νc. Therefore, eq. 4.16 can be written as:

ux(y) =
∆p

2L(1 + k)νc
(h2 − y2) (4.17)

where νxyxy = kνc. In order to evaluate the model based on the previous analysis,
two simulations of isotropic and anisotropic fluids, respectively, are carried out. In
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specific, for the isotropic case k = 0 while for the anisotropic one k = 1. The velocity
results are presented in figs. 4.2 and 4.3. It can be seen that the anisotropic case
exhibits half the velocity in each computational cell compared to the isotropic one,
as expected from eq. 4.17. However, based on the new calculation 4.12, friction
does not exhibit any change.
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(a) Velocity iso-areas for the isotropic
case with k = 0 (not in scale).
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Figure 4.2: Velocity iso-areas. Comparison between the isotropic and anisotropic
case.
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Figure 4.3: Velocity profiles for Poiseuille flow of an isotropic and an anisotropic
fluid.

Based on the above studies, the model is deemed to be valid and an optimization
process can commence.

4.4 Optimization

The optimization target is to minimize the specific friction w.r.t. the values of the
constructing tensors. By changing the values of these tensors, this study enables
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the investigation of the impact of anisotropy, in the form of tensorial viscosity, to
lubrication performance parameters. However, instead of setting one optimization
targeting to minimize specific friction, two are used. One targets at minimizing fric-
tion and one at maximizing load capacity (the computation of load capacity remains
the same and the impact of anisotropy is investigated solely through the pressure
field). The geometry under examination is that of the converging hydrodynamic
slider (fig. 2.1).

The bulk viscosity is set to νc = 3 · 10−6m2

s
, in order to compare with the isotropic

case. Interest is given to the impact of the non-diagonal terms of τ ′xy and thus terms
of C12

lm and C21
lm are used as design variables, while C11

lm = C22
lm = 0. In specific, all

terms Cij
lm with i 6= j and l 6= m are selected. Based on the assumption 4.8 the

design variables are 2, C12
12 and C12

21 with C12
12 = C21

12 and C12
21 = C21

21 . For the sake
of simplicity, the first design variable is denoted as A and the second one as B.
Therefore, the viscous stress tensor can be written as

τ ′ij =

[
2νc

∂2ux
∂x2

νc(1 + A)∂ux
∂y

+ νc(1 +B)∂uy
∂x

νc(1 + A)∂ux
∂y

+ νc(1 +B)∂uy
∂x

2νc
∂2uy
∂y2

]
(4.18)

The optimizations is carried out by the following EASY settings:

1. Design variables:

Design Variables Minimum Maximum Bits
A −0.5 1.5 10
B −0.5 1.5 10

Table 4.1: Design variables for tensorial viscosity.

The design variables are ’translated’ into a binary form by 10 bits each. The
range of design variables, illustrated in table 4.1, is decided based on the fact
that minor changes to the bulk viscosity are expected on a molecular system.
Negative values are also allowed since, as shown in 4.18, they don’t correspond
to unphysical negative diffusion.

4.4.1 Results

The convergence history for the optimization targeting at minimum friction and the
one targeting at maximum load capacity are presented in fig. 4.4a & 4.4b, respec-
tively. Both optimizations computed the optimal solution in only a few evaluations
due to the small number of design variables (2).

41



 50

 51

 52

 53

 54

 55

 56

 57

 0  10  20  30  40  50

(F
/F

is
o
) 

x
 1

0
0

%

CFD Evaluations

(a) Convergence history for the op-
timization targeting minimum friction.
Quantity Fiso corresponds to the com-
puted value of friction for the isotropic
fluid.

 249.8

 249.85

 249.9

 249.95

 250

 250.05

 250.1

 250.15

 250.2

 0  10  20  30  40  50

(W
/W

is
o
) 

x
 1

0
0

%

CFD Evaluations

(b) Convergence history for the opti-
mization targeting to maximum load ca-
pacity. Quantity Wiso corresponds to the
computed value of load capacity for the
isotropic fluid.

In specific, the design variables of the optimization targeting minimum friction both
reached their minimum allowed values A = B = −0.5. On the other hand, the
one targeting maximum load capacity had A = 1.5 and B = −0.5 in the optimal
solution. Bearing in mind that B is involved in the ∂uy

∂x
contribution of the viscous

stress tensor, it is significantly less important compared to A.

However, as regards the friction reduction case, 50% load capacity reduction is
observed as well. Similarly, in the maximized load capacity case, friction is increased
by 250%. Therefore, no case managed to locate an optimized result for specific
friction. Nevertheless, it is shown that by implementing anisotropic properties on
the fluid, which in turn could result in a different design on a molecular basis, one
can manipulate the friction and load capacity of a potential lubricant.

In conclusion, through this preliminary study it is shown that an inherently anisotropic
fluid cannot benefit lubrication, in terms of specific friction reduction. However, it
is expected that by coupling anisotropy with inhomogeneity, by assuming that the
values of the constructing tensors are spatial dependent, one can achieve signifi-
cantly optimized results. Relevant studies have been made on the nano-scale for
liquid crystals showing favourable friction results [32].
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Chapter 5

Nano-scale Study

Continuum methods, while capable of efficiently solving macroscopic problems, can-
not resolve features and flow patterns at the nano-scale, due to the breakdown of
the continuum assumption. On the other hand, atomistic simulations can provide
fundamental insights in the fluid behaviour but at a high computational cost. In
this chapter, a brief description of the simulation technique of molecular dynamics
(MD), alongside with applications set on an attempt to bridge the macro-scale with
the nano-scale, are presented.

Figure 5.1: The interdisciplinary multi-scale material modeling framework [33].

Traditionally different disciplines focus on different length scales. Multi-scale mod-
eling of materials across the length scales requires overcoming the borders between
the disciplines for a seamless integration of the models at different length scales into
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one coherent multi-scale modeling framework.

5.1 Molecular Dynamics

The idea of molecular dynamics (MD) [34] is that of numerically integrating the
classical equations of motion to generate a trajectory of a system with N particles
in time. The particles are characterized by 3N coordinates, namely positions and
momenta in a three dimensional volume space. The Newton’s equations for a particle
i subjected to a force fi at time t are:

d2~ri
dt2

=
~fi(~r1, ~r2, ..., ~v1, ~v2, ...)

mi

(5.1)

where the force depends on the particle positions and eventually velocities.

A typical MD program follows this scheme:

1. At time t = 0, initialize the system by choosing positions and velocities of
the particles. Choose also a value of ∆t, the time step used in the numerical
integration of the equations of motion.

2. Compute the forces on all particles based on their potential energy.

3. Integrate the Newton’s equations of motion using an appropriate integration
scheme. Update positions and velocities of particles at time t+ ∆t.

4. Go back to step 2.

Differently from the stochastic Monte Carlo simulations, MD is a deterministic
method. Given an initial condition, a MD program always generates the same
trajectory in phase space.
Physical quantities are computed from time averages along the trajectories. Let A
be a quantity depending on positions and velocities such as

A(t) = A(~r1(t), ... ~rN(t), ~v1(t), ... ~vN(t))

Then, its average value is defined as

〈A〉 =
1

N

N−1∑
n=0

A(t0 + n∆t) (5.2)

where t0 is an initial time. Typically, a physical quantity is characterized by some
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relaxation time τA, which is the time one has to wait until A reaches an average
equilibrium value. If one is interested in equilibrium quantities, it is safer to take
averages starting from a given time t0 > τA.

5.1.1 Integration schemes

The simplest integration scheme and also the mostly used is the so-called Verlet’s
algorithm. Through a Taylor expansion up to the fourth order for position

~ri(t+ ∆t) = ~ri(t) + ~vi(t)∆t+
~ai(t)

2
∆t2 +

~gi(t)

6
∆t3 +O(∆t4) (5.3)

~ri(t−∆t) = ~ri(t)− ~vi(t)∆t+
~ai(t)

2
∆t2 − ~gi(t)

6
∆t3 +O(∆t4) (5.4)

where ~vi = d~ri
dt

, ~ai = d2~ri
dt2

and ~gi = d3~ri
dt3

. By summing up eqs. 5.3 & 5.4, one arrives
at the Verlet algorithm:

~ri(t+ ∆t) = 2~ri(t)− ~ri(t−∆t) + ~ai(t)∆t
2 +O(∆t4) (5.5)

Therefore, through this equation, positions are computed accurate up to ∆t4. The
velocities are not explicitly calculated, but they can be derived from the knowledge
of the trajectory as

~vi(t) =
~ri(t+ ∆t)− ~ri(t−∆t)

2∆t
+O(∆t2) (5.6)

which is accurate only to the order ∆t2. Hence, quantities depending on the veloci-
ties, as the total kinetic energies are not accurately determined. As shown from eq.
5.5, the position of the particles at time step t+ ∆t depends on positions at times t
and t−∆t. Therefore, initial conditions in which the t = 0 positions and velocities
are given, are not enough. The problem is solved by approximating

~ri(∆t) ≈ ~ri(0) + ~vi(0)∆t+
~ai(0)

2
∆t2 (5.7)

From it, forces can be computed, hence ~ai(∆t) and then apply iteratively eq. 5.5.
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5.1.2 Velocity Verlet Algorithm

An alternative and much better integration scheme, where positions and velocities
are simultaneously updated, is the so-called Velocity Verlet algorithm. It can be
expressed by the following two equations

~ri(t+ ∆t) = ~ri(t) + ~vi(t)∆t+
~ai(t)

2
∆t2 +O(∆t4) (5.8)

~vi(t+ ∆t) = ~vi(t) +
~ai(t+ ∆t) + ~ai(t)

2
∆t (5.9)

An important feature of the Verlet and Velocity Verlet algorithms is that they are
fully time reversal: eq. 5.5 remains invariant by interchanging ∆t→ −∆t. Another
property of the Velocity Verlet algorithm is that it is a symplectic integrator1.

What is impractical of the Velocity Verlet algorithm as given by eqs. 5.8 & 5.9 is that
it requires storage of accelerations at two different time steps. An implementation
avoiding this is the following

1. Given ~ri(t), ~vi(t) and ~ai(t) update the positions through eq. 5.8.

2. Calculate the velocities at an intermediate time step

~vi(t+
∆t

2
) = ~vi(t) +

1

2
~ai(t)∆t (5.10)

3. From the positions at t + ∆t calculate the forces and hence accelerations. If
forces are derived from a velocity independent potential V then

~ai(t+ ∆t) = − 1

m
5 Vi(~r1(t+ ∆t)... ~rN(t+ ∆t)) (5.11)

4. Update the velocities to

~vi(t+ ∆t) = ~vi(t+
∆t

2
) +

1

2
~ai(t+ ∆t)∆t (5.12)

The aforementioned algorithm is identical to eqs. 5.8 and 5.9. However the latter
equation is implemented in two steps. This way memory requirements are decreased
since there is no need to store data at two different time steps. For a system of N

1Such algorithms have the property that their trajectories conserve exactly ”pseudo-energy”
which differs from the true energy by a small amount (vanishing as ∆t→ 0).
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particles in three dimensions, one needs 9N memory locations: 3N for positions,
velocities and accelerations, respectively.

5.1.3 Initialization

A MD simulation begins by giving a set of initial positions and velocities to the
particles. The positions can be initialized by putting the particles in some lattice
points or through the use of a random number generator. The velocities can be se-
lected from some distribution. One imposes the condition that the total momentum
vanishes. So, if the initial selection yields

~PTOT =
N∑
i=1

mi~vi(0) 6= 0 (5.13)

then

~vi(0)→ ~vi(0)−
~PTOT
miN

(5.14)

The most important test that needs to be made to check the stability of the MD
simulation is the conservation of the total energy.

5.1.4 Lennard-Jones Potential

A widely studied system is the Lennard-Jones (LJ) fluid, which is defined by the
potential

VLJ(r) = 4ε
[
(
σ

r
)12 − (

σ

r
)6
]

(5.15)

where σ is the zero potential distance and ε the well depth. This potential is illus-
trated in fig. 5.2.

The potential has a short range repulsive term (∼ 1
r12

) and a long range attractive
term (∼ 1

r6
). The origin of the attractive force is quantum-mechanical and due to

fluctuating dipoles (Van der Waals interactions). The choice of a power ∼ 1
r12

at
short distances has no theoretical justification and is chosen exclusively because of
ease of computation. Its origin is related to the Pauli principle, which states that
when the electronic clouds surrounding the atoms start to overlap, the energy of the
system increases abruptly.
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Figure 5.2: The Lennard-Jones pair potential.

In this thesis, all particle interactions are described through the use of the LJ poten-
tial. There are other intramolecular interactions such as electrostatic interactions or
molecular ones but they are not considered herein to ease the computational process.

5.2 Parallel Plates Model

In the previous chapters, an extensive study is presented in order to determine the
optimal distribution of viscosity in a fluid’s flow through a converging hydrodynamic
slider. On an attempt to bridge the information provided from the macro-scale with
the nano-scale, coarse grain molecular dynamics simulations 2 are set and results
are presented and discussed.

Through the atomistic approach, optimal patterns of the macro-scale are sought on
the nano-scale, in order to verify their beneficial behaviour on lubrication. An exact
representation is, however, impossible due to inherent restrictions of the modeling
process. Such restrictions are:

1. Necessity of periodic boundary condition at the inlet and outlet of the simula-
tion box, restricts the representation of a longitudinal inhomogeneous viscosity
flow.

2. Dimensions are greatly reduced.

Based on this, a transversal viscosity inhomogeneity is sought in accordance with
sect. 3.2. The 2D geometry used to model the shear flows involves two parallel plates

2Coarse-grained modeling, aim at simulating the behaviour of complex systems using a simpli-
fied representation. In this models, molecules are represented by ’pseudo-atoms’ approximating
groups of atoms. Much longer simulation times can be studied. [35]

48



and the space between them. The top plate is forced to remain stationary while the
bottom plate is moving with a constant velocity ~V = (Vx, 0). The simulation box
is ∼ 160 Å long in the x- and ∼ 80 Å in the y- direction. The fluid is kept at
a temperature of T=303 K by means of a Nosé-Hoover NVT thermostat. Finally,
periodic conditions are applied at the left and right boundary, ensuring that particles
can interact across the boundary, and non-periodic ones along the y- direction, as
the plates are artificially forced to remain at their starting y-position.

5.2.1 Bulk fluid properties

Driven by the findings of the continuum study, sect. 3.2 a reproduction of three
bulk fluids with different viscosities is sought. In specific, one particle type is used
to reproduce the homogeneous fluid and two particle types for the optimized inho-
mogeneous one. The particle type describing the homogeneous fluid is denoted by
(I) while the ones describing the inhomogeneous one by (H) and (L). The LJ parame-
ters, describing each particle interaction, are tuned accordingly in order for particles
(H), (L) and (I) to have high, low and intermediate viscosity values, respectively.

For each particle description, a viscosity computation using the Green-Kubo relation
is made. Temperature is set to 303 K by means of a Nosé-Hoover NVT thermostat.
A total of 1600 particles are randomly placed on a simulation box with dimensions
as described above. Due to the stochasticity of the procedure, 5 independent trajec-
tories are simulated for each fluid. The LJ tuned parameters for each particle type
are shown in table 5.1. The averaged viscosity and density for each fluid, containing
solely particles of one type, are shown in table 5.2.

Table 5.1: List of LJ parameters for particle types (I), (H) and (L). Parameters
correspond to E = 0.250 eV, Σ = 2.5 Å.

Pair ε σ Rc

(I)-(I) E Σ 4Σ
(H)-(H) 1.2E Σ 4Σ
(L)-(L) 0.8E Σ 4Σ

In order to be consistent with the shear flow simulations, all viscosity computations
are performed in a 2D simulation box, with the aforementioned dimensions. The
simulation is periodic in both directions and no walls are included. Results presented
in table 5.2 are computed by assuming a nominal depth of 1 Å. Each particle molar
mass is set equal to 18 g

mol
.
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Table 5.2: Statistically averaged viscosity and density results based on the Green-
Kubo computations for three bulk fluids I, H and L containing solely particles (I), (H)
and (L), respectively. Parameters correspond to µ = 1.34Pa · s, ρ = 3.74 g

cm3 and

ν = 3.6 · 10−4m2

s .

Fluid Viscosity Density Kin. Viscosity

I µ ρ ν
H 1.54µ ρ 1.54ν
L 0.55µ ρ 0.55ν

5.2.2 Homogeneous fluid

The coarse grain model targets to reproduce a shear flow of a homogeneous fluid
and consists of two particle types, (W) and (I), corresponding to the wall and fluid,
respectively, as described in sect. 5.2.1. Particle interactions are governed by the
LJ potential with parameters as in table 5.3.

Table 5.3: List of LJ parameters for homogeneous fluid shear flow simulation. Pa-
rameters correspond to E = 0.250 eV, Σ = 2.5 Å.

Pair ε σ Rc

(I)-(I) E Σ 4Σ
(W)-(W) 3.6E Σ 4Σ
(I)-(W) 2.8E Σ 4Σ

A sufficiently higher value -compared to that of the fluid particle interaction- of
potential well depth is set to describe the interactions between the particles of the
wall. The same parameter is also significantly higher for the interactions between the
fluid particles and the wall particles compared to that of the fluid-fluid interaction
in order to approximate the no-slip condition between the walls and the fluid. The
wall particles are arranged according to a square unit cell lattice configuration. In
specific, two basis particles are used, one at the corner and the other at the centre
of the square.

The total simulation time is 50 ns with a time step of 1.0 fs. The fluid particles
are implemented by a random placement in the domain between the walls. After
their placement, a potential energy minimization of the system is performed, by
iteratively adjusting particle coordinates. Once a local potential energy minimum
is found, a constant velocity Vx is applied to the bottom wall.
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5.2.3 Inhomogeneous fluid

The simulation model targets to reproduce the shear flow of an inhomogeneous
fluid as in the continuum domain, fig. 3.9a. As shown in sect. 3.2, the relative fric-
tion reduction is independent of the plate distance, as long as the non-dimensional
transversal viscosity distribution remains constant. Based on this, a three layer con-
figuration is sought, in the nano-scale, with high viscosity layers near the two walls
separated by a low viscosity one. Due to the fact that viscosity follows a continuous
description in the continuum domain, a quantification of the layers’ height needs to
be made on a particle-based approach. It is assumed that, on a continuum basis,
the high viscosity layer corresponds to the height of the slider on which the viscosity
is at least 60% of its maximum value. Based on the optimized solution, this height
is 20% of the distance between the plates. Therefore, in terms of particles, 20% of
the total number of fluid particles, are used to reproduce each high viscosity layer
and 60% the low viscosity one.

Based on the above, 700 particles of type (H) and 900 particles of type (L) are used
to reproduce the fluid. The LJ parameters used to describe each pair of particles’
interaction is shown in table 5.4.

Table 5.4: List of LJ parameters for inhomogeneous fluid shearing flow simulation.
Parameters correspond to E = 0.250 eV, Σ = 2.5 Å.

Pair ε σ Rc

(H)-(H) 1.2E Σ 4Σ
(L)-(L) 0.8E Σ 4Σ
(H)-(L) 0.6E Σ 1.12Σ
(W)-(W) 3.6E Σ 4Σ
(H)-(W) 2.8E Σ 4Σ
(L)-(W) 0.2E Σ 1.12Σ

As seen from table 5.4, a small repulsive interaction (Rc = 1.12σ) is set for the
pairs (H)-(L) and (L)-(W) in order to minimize mixing of the two fluids during
the shearing process and, thus, maintain a non-homogeneous viscosity distribution
spanwise.

The simulation is carried out similarly to the homogeneous fluid, as described in
sect. 5.2.2. Fluid particles are implemented by a random placement in the domain
between the walls with 50% of the (H) particles placed close to the bottom wall and
50% close to the top wall. As an extra measure against potential mixing of fluid
particles (H) and (L), a small repulsive interaction is set among the (H) particles
belonging to the different (top and bottom) layers. After their random placement,
a potential energy minimization of the system is performed, after which a constant
velocity Vx is applied to the bottom wall.
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5.2.4 Results

Snapshots of the simulation box are shown in figs. 5.3 and 5.4 for two time instants,
for the homogeneous and inhomogeneous fluid shear flow, respectively. As can be
seen from the different colors of the same particles in fig. 5.3, a complete homog-
enization is achieved. On the other hand, as shown in fig. 5.4, a three-layer film
is achieved with particles (H) sticking at the walls and particles (L) staying in the
middle.
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Figure 5.3: Snapshots of the homogeneous fluid flow between parallel plates at two
distinct time instants. Wall particles (W) are displayed in dark grey while fluid parti-
cles (I) in blue and yellow. Different colour is used for the fluid particles to emphasize
the homogeneity of the fluid.
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Figure 5.4: Snapshots of the inhomogeneous fluid flow between parallel plates at two
distinct time instants. Wall particles (W) are displayed in dark grey, fluid particles
(H) in green and cyan and fluid particles (L) in purple.

Throughout the simulation, tangential to the wall force data are stored. Since the
simulations involve a random placement of particles, 5 independent trajectories are
simulated for each case. Statistical analysis is carried out after the first 10 ns of the
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simulation and for all trajectories, for tangential to the wall force and velocity results.
A 45% decrease in the tangential force is found for the inhomogeneous fluid compared
to the homogeneous one. It is shown that, even on the nano-scale, an inhomogeneity
in the form of viscosity variations normal to the walls could potentially decrease the
friction of the lubricated walls.

Even though the Green-Kubo computations showed that particles (H), (L) and (I)
correspond to viscosities consistent with the continuum analysis, the interactions
between different particle types in the shear flow simulations are bound to change
the bulk liquid viscosities. Nevertheless, a fluid’s effective viscosity is a quantification
measure of its resistance to flow. Therefore, in order to further study the viscosity
of the two films, velocity profile results are shown in fig. 5.5.
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Figure 5.5: Statistically time-averaged velocity profiles along the film thickness. Com-
parison between the homogeneous and inhomogeneous fluid. Continuous (red) line cor-
responds to the inhomogeneous fluid results, dashed (green) line to the homogeneous
ones.

The homogeneous fluid flow corresponds to a Couette-like flow and the velocity
along the film thickness is approximated by a linear increase from the immobilized
top wall to the moving bottom wall. On the other hand, the inhomogeneous fluid
flow exhibits two zones of lower shear rate for heights equal to approximately 20%
of the total height of the fluid domain. From results presented in table 5.2 and
fig. 5.5, simulation described in sect. 5.2.3 is deemed to exhibit an inhomogeneous
behaviour, in the form of significant viscosity variations normal to the walls.

Finally, comparing the velocity results of the particle-based description (fig. 5.5)
with that of the continuum analysis (fig. 3.9b), a coherent velocity behaviour is
observed through the scales for inhomogeneous-viscosity media. It is, thus, shown
that nano-scale phenomena related to confined flows can be studied, to a certain
extent, by continuum models as long as the implemented material’s properties are
consistent with the peculiarities and complexities of the nano-scale.
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Chapter 6

Overview and Conclusions

6.1 Overview

In this diploma thesis, fluids with inhomogeneities and anisotropies are studied for
potential implementation in lubricating engineering systems. The description of vis-
cosity, in the classical N-S equations, is altered accordingly in order to emulate an
inherently inhomogeneous or anisotropic media. For an inhomogeneous one (chap-
ter 3), a spatial viscosity distribution is applied through proper parameterization
schemes that are programmed and implemented in the OpenFOAM environment.
On the other hand, a tensorial viscosity is used to describe an anisotropic media
(chapter 4).

In specific, a Bézier curve (sect. 3.1.1) is used to parameterize viscosity along the
longitudinal direction of a conventional hydrodynamic slider while a piecewise linear
interpolation scheme (sect. 3.2.1) is used for the transversal direction. Through
the use of an evolutionary algorithm, viscosity profiles are optimized, w.r.t. the
control points of each scheme, leading to minimum specific friction. Parallelized or
metamodel-assisted optimizations are used depending on the computational budget
set for each case.

On the anisotropic approach, a proposed model is presented and implemented in
OpenFOAM. A tensor is used to describe viscosity, the terms of which are studied
for potential benefits on lubrication.

Finally, based on the results of the optimized transversal viscosity distribution, the
study is extended on the nano-scale (chapter 5). Specific particle typologies featuring
viscosity inhomogeneities normal to the walls, are selected using coarse grain MD
simulations. Viscosity computations are carried out for customized particles in order
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to identify consistent variations to those of the optimized case on the continuum
domain. After that, shear flows are simulated to evaluate whether or not such
viscosity variations are beneficial to lubrication even on the nano-scale.

6.2 Conclusions

Through this thesis, preliminary designs and models of new lubricants minimizing
specific friction are presented. Novel lubricating ideas are necessary not only for the
automotive industry but also for the majority of engineering systems, considering the
performance and environmental impact of poorly lubricated configurations. Based
on the studies presented on previous chapters, the following conclusions are drawn:

1. Through the longitudinal non-uniform viscosity distribution of a fluid in hy-
drodynamic lubrication applications, this work presents beneficial results com-
pared to an homogeneous lubricant. In specific, while there is little variation to
friction, a significantly increased load capacity is reported. It is, thus, shown
that by managing to sustain a high viscosity in the inlet and outlet of the
slider, the problem of squeeze film is diminished. Higher loads can be applied
on the lubricated surfaces without the system moving out of the hydrodynamic
lubrication regime and into the ”painful” dry regime.

2. On the case of transversal viscosity variability, an optimal configuration, con-
sisting of high viscosity layers near the walls separated by a low viscosity one,
is identified. The key mechanism leading to the optimized lubrication results
compared to a usual homogeneous lubricant is shown to be the change in the
velocity profile along the film thickness. In the case of a converging hydrody-
namic slider, the shear rate values along the moving wall change sign leading
to the minimization of the friction force. This beneficial mechanism is shown
to exist for different converging ratios. Additionally, in a parallel plates case,
a drastically decreased absolute value of shear rate near the walls compared
to a homogeneous fluid, leading to significantly less friction, is found.

3. It is also shown that viscosity inhomogeneity could be safely ignored when
the height of the total film thickness is markedly larger than the thickness of
the high viscosity zone. Furthermore, if the proportionality between the total
film thickness and the high viscosity thickness remains constant then the rela-
tive result is unaffected. Based on this, particle based simulations are carried
out, where the total film thickness is reduced to the scale of nanometers. It
is shown that by applying consistent viscosity distributions, benefits to lubri-
cation exist even on the nano-scale. Therefore, this thesis presents coherent
results in different scale computational analysis, showing potential for a two-
scale approach. While macro-scale models cannot accurately predict complex
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nano-scale phenomena, they can provide valuable insight to a particle based
approach.

4. It is found that anisotropy, as applied in chapter 4, does not effectively change
the lubricant’s specific friction. However, it is expected that a coupled anisotropic-
inhomogeneous approach could potentially depict beneficial results.
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Appendix A

Molecular Dynamics

Computations

Temperature

For a system in equilibrium at a given temperature T , the theorem of equipartition
states that the average kinetic energy per particle is related to T as

m

2
〈v2〉 =

3

2
kBT (A.1)

where kB is Boltzmann’s constant. In a MD simulation, a computation of tempera-
ture can be made through the total kinetic energy of the system using

TK =
1

3NkB

∑
i

miv
2
i (A.2)

As the kinetic energy fluctuates in time so does the computed temperature. There-
fore, it is called ”instantaneous temperature”. Usually if one simulates a sufficiently
large number of particles, TK converges to roughly constant values.

59



Pressure

Usually pressure is computed from the virial theorem

PV = NkbT +
1

3

N∑
i=1

〈~ri · ~Fi〉 (A.3)

where N is the number of particles in the system, kb the Boltzmann constant, T
the temperature, V the volume of the system and ~Fi is the force acting on the i-th
particle due to the interaction with all other particles in the system. The second
term of the right hand side of eq.A.3 is the virial if divided by V .

Diffusion Coefficient

The diffusion coefficient can be computed from the mean squared displacement of
the particles as

D = lim
t→∞

〈[~r(t)− ~r(0)]2〉
6t

(A.4)

Alternatively -as used in this thesis- the Green-Kubo [36] relation can be used. The
diffusion coefficient is related to the integral of the velocity auto-correlation function
through equation

D =
1

3
lim
t→∞

∫ t

0

〈~v(τ) · ~v(0)〉dτ (A.5)

Simulations at Constant Temperature

In experimental conditions the temperature is usually fixed. There are various meth-
ods of ’fixing’ the temperature in a MD simulation and are called thermostats. The
simplest thermostat consists in a rescaling of all the velocities after each integration
step. It can be expressed as

~vi
′(t) = λ~vi(t) (A.6)
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where the factor λ is obtained from

λ =

√
T0

TK(t)
(A.7)

where TK(t) is the instantaneous temperature defined by eq. A.1 and T0 is the
desired temperature.

Another thermostat is the Nosé-Hoover [37] one. In this scheme, the system is
brought in contact with a ”thermal bath”. The system plus the bath form a closed
system, so their total energy is conserved. The system however exchanges energy
with the bath. This thermostat is deterministic and time evolution is described by
the following equations of motion

~̈ri =
~Fi
mi

− γ~ri (A.8)

γ̇ =
1

Q

(∑
i

p2
i

mi

− 3NkBT0

)
(A.9)

Equation A.8 is the Newton equation with an additional friction term with a time-
dependent ”friction” coefficient equal to γ, whose time evolution is described by eq.
A.9. This quantity can be either positive or negative in the course of time. If γ is
positive, energy is taken from the system whereas, if negative energy is given to the
system. Eqs. A.8 and A.9 follow from an extended Hamiltonian in which system
and bath degrees of freedom are coupled.
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Appendix B

LAMMPS

LAMMPS [38] is a classical MD code that models ensembles of particles in a liquid,
solid or gaseous state. It can model atomic, polymeric, biological, solid-state (metals,
ceramics, oxides), granular, coarse-grained or macroscopic systems using a variety
of interatomic potentials and boundary conditions. It can model 2D or 3D systems
with only a few particles up to millions or billions.

LAMMPS is designed for parallel computers, however it can be run in personal ones.
It will run on any parallel machine that supports the MPI message-passing library.
LAMMPS is written in C++ and is designed in a way that makes it easy to modify
or extend with new capabilities, such as new force fields, atom types, boundary
conditions or diagnostics.

In the most general sense, LAMMPS integrates Newton’s equations of motion for
a collection of interacting particles. It uses neighbor lists to keep track of nearby
particles. The lists are optimized for systems with particles that are repulsive at
short distance, so that the local density of particles never becomes too large.

On parallel machines, LAMMPS uses spatial-decomposition techniques to partition
the simulation domain into small sub-domains of equal computational cost, one of
which is assigned to each processor.
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Appendix C

Flowcharts

Figure C.1: Optimization of inhomogeneous viscosity cases flowchart.
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Figure C.2: Molecular dynamics simulation flowchart.
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Εισαγωγή

Οι δυνάμεις τριβής αντιστοιχούν σε περίπου 15% της ενέργειας του καυσίμου που χάνε-

ται στα οχήματα με μηχανές εσωτερικής καύσης. Η περιβαλλοντική αλλά και οικονομική

ανάγκη για μείωση αυτού του ποσοστού καθιστά τον σχεδιασμό νέων λιπαντικών αναγ-

καίο. Στην διπλωματική αυτή εργασία μελετούνται εφαρμογές υδροδυναμικής λίπανσης,

κατά τις οποίες υδροδυναμικό φιλμ λιπαντικού παρεμβάλλεται μεταξύ δύο επιφανειών

σε σχετική κίνηση.

Με βάση μοριακές μελέτες στα ιονικά υγρά ως λιπαντικά [1,2], τα οποία παρουσι-

άζουν εγγενείς ανομοιογένειες, και στους υγρούς κρυστάλλους [3], που παρουσιάζουν

ανισότροπα χαρακτηριστικά, η διπλωματική εργασία στοχεύει στη μελέτη και βελτι-

στοποίηση ιδεατών λιπαντικών με ανομοιογενή ή ανισότροπη συνεκτικότητα. Για την

ανάλυση ρευστών με ανομοιογενή συνεκτικότητα προγραμματίζονται και εισάγονται

στο περιβάλλον OpenFOAM σχήματα παραμετροποίησης της συνεκτικότητας. Οι εξι-
σώσεις προς επίλυση είναι οι Navier-Stokes. Με τη χρήση εξελικτικών αλγορίθμων,
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μέσω του λογισμικού EASY, βελτιστοποιούνται τα πεδία συνεκτικότητας, με στόχο τη
μείωση των χαρακτηριστικών τριβής του λιπαντικού.

Η ανισότροπη συμπεριφορά προσεγγίζεται με τη χρήση τανυστικής συνεκτικότητας.

Στην κατεύθυνση αυτή, προγραμματίζεται επιλύτης της ροής που εισάγει την τανυστική

περιγραφή της συνεκτικότητας. Η μελέτη επεκτείνεται στην κλίμακα των νανομέτρων.

Με έναυσμα τη μελέτη στον συνεχή χώρο και τη χρήση προσομοιώσεων μοριακής

δυναμικής, διερευνάται η δυνητική βελτίωση των χαρακτηριστικών τριβής σε ακραίες

καταστάσεις λίπανσης.

Η γεωμετρία στην οποία αναλύεται η στρωτή, ισοθερμοκρασιακή ροή, ασυμπίεστου

ρευστού είναι αυτή του σχ. 1.

Σχήμα 1: Σχηματικό τυπικού συγκλίνοντος υδροδυναμικού ολισθητή [4].

Κατανομή Συνεκτικότητας στη Διαμήκη Διεύθυνση

Η συνεκτικότητα παραμετροποιείται στη διαμήκη διεύθυνση του υδροδυναμικού ολι-

σθητή με χρήση καμπύλης Bézier τριών σημείων ελέγχου. Συγκεκριμένα, το σχήμα
παραμετροποίησης προγραμματίζεται έτσι ώστε να υπάρχει έλεγχος της κατώτατης δυ-

νατής τιμής (3 · 10−7 m2

s
) και της μέση τιμής (3 · 10−6 m2

s
), από τον χρήστη. Με τον

τρόπο αυτό αποφεύγονται αφύσικες τιμές της συνεκτικότητας (μηδενικές ή αρνητικές)

και δημιουργείται η δυνατότητα για σύγκριση με αντίστοιχο ομογενές ρευστό. Στην

συνέχεια με χρήση εξελικτικών αλγορίθμων εντοπίζονται κατανομές συνεκτικότητας

οι οποίες μειώνουν τον λόγο της εφαπτομενικής δύναμης προς την κάθετη δύναμη στον

κινούμενο τοίχο. Η βελτιστοποιημένη κατανομή, όπως φαίνεται στο σχ. 2, οδήγησε

σε 27% μείωση του SF = Fx

Fy
, σε σχέση με αντίστοιχο ομογενές ρευστό.

Κατανομή Συνεκτικότητας στην Εγκάρσια Διεύθυνση

Το σχήμα παραμετροποίησης που προγραμματίζεται, αποτελείται απο 11 σημεία ελέγχου

γραμμικώς συνδεόμενα μεταξύ τους. Ομοίως με προηγουμένως, υπάρχει έλεγχος της

2



κατώτατης και μέσης τιμής, από τον χρήστη, όπου για τη διαδικασία βελτιστοποίησης

επιλέγονται ίδιες τιμές με την περίπτωση της κατανομής στη διαμήκη κατεύθυνση. Η

διαδικασία βελτιστοποίησης υποβοηθείται από χαμηλού κόστους προσεγγιστικά πρότυ-

πα αξιολόγησης. Η βελτιστοποιημένη κατανομή, όπως φαίνεται στο σχ. 3, οδήγησε σε

65% μείωση του SF , σε σχέση με αντίστοιχο ομογενές ρευστό.

Αποτελέσματα Βελτιστοποίησης Ανομοιογενούς Συνεκτικότητας
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(βʹ) Βελτιστοποιημένη καμπύλη Bézier.
Η τιμή νhom = νave αντιστοιχεί στην τιμή
συνεκτικότητας του ομογενούς ρευστού.

Σχήμα 2: Αποτελέσματα βελτιστοποίησης για κατανομή της συνεκτικότητας στη δια-

μήκη διεύθυνση του ολισθητή.
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Σχήμα 3: Αποτελέσματα βελτιστοποίησης για κατανομή της συνεκτικότητας στην εγ-

κάρσια διεύθυνση του ολισθητή.
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Ανισότροπο Μοντέλο

Για τη δημιουργία του μοντέλου, γίνεται η υπόθεση ότι η σχέση μεταξύ του τανυστή

συνεκτικών τάσεων (τij) και των παραγώγων της ταχύτητας (
∂vi
∂xj
) είναι γραμμική.

Συγκεκριμένα,

τij =Cijlm
∂vl
∂xm

τij =(cijlm + νijlm)
∂vl
∂xm

όπου,

cijlm = νc(δilδjm + δimδjl)

Εισάγοντας την παραπάνω διατύπωση στις εξισώσεις Navier-Stokes προκύπτει η α-
κόλουθη τανυστική έκφραση των εξισώσεων ορμής:

vj
∂vi
∂xj
− ∂

∂xj

[
νc

( ∂vi
∂xj

+
∂vj
∂xi

)]
+
∂p

∂xi
− ∂

∂xj

(
Aij

)
= 0, i, j = 1, 2 (1)

όπου Aij = νijlm
∂vl
∂xm
.

΄Ετσι, με την παραπάνω μεθοδολογία, δίνεται η δυνατότητα ελέγχου των ΄κυρίαρχων΄

χαρακτηριστικών του ρευστού, μέσω του όρου cijlm και των αποκλίσεων από αυτά λόγω
της δυνητικής ανισότροπης συμπεριφοράς, μέσω του όρου νijlm.

Ανάπτυξη Επιλύτη SimpleAnisoFoam

΄Οπως φαίνεται από την εξίσωση 1, η διατύπωση των εξισώσεων της ορμής αποτελείται

από την κλασική διατύπωση των Navier-Stokes και ενός ανισότροπου όρου Aij. Για την

υλοποίηση του επιλύτη της ροής, λοιπόν, μεταβάλλεται ο ήδη υπάρχων αλγόριθμος sim-
pleFoam, επίλυσης της ροής ασυμπίεστων ρευστών, με την εισαγωγή του ανισότροπου
όρου.

Συγκεκριμένα, απαιτούνται από τον χρήστη τα ίδια αρχεία εισόδου με αυτά του sim-
pleFoam. Επιπλέον απαιτούνται τα (αδιάστατα) στοιχεία τεσσάρων, δεύτερης τάξης
τανυστών (Cij

lm), όπου κατασκευάζονται από προ-επεξεργαστή. Οι τανυστές αυτοί

πολλαπλασιάζονται με την τιμή νc, της εξίσωσης 1 και, στη συνέχεια, χρησιμοποιούν-
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ται για την κατασκευή του όρου Aij. Αναλυτικά, ο όρος προκύπτει ως εξής:

Aij = Cij
lm :

∂vl
∂xm

Προσομοιώσεις Μοριακής Δυναμικής

Η έρευνα επεκτείνεται στην κλίμακα των νανομέτρων με χρήση προσομοιώσεων μο-

ριακής δυναμικής. Στόχος είναι η μελέτη πιθανής μείωσης των δυνάμεων τριβής σε

ακραίες καταστάσεις λίπανσης, στις οποίες η παραδοχή συνεχούς χώρου καταρρέει.

Μέσω αυτής της διαδικασίας δίνονται, επίσης, ιδέες για πιο εκτενή σχεδιασμό του

βελτιστοποιημένου λιπαντικού. Συγκεκριμένα, οι προσομοιώσεις μοριακής δυναμικής

στοχεύουν να επεκτείνουν τη μελέτη που πραγματοποιήθηκε για ανομοιογενή ρευστά,

με κατανομή συνεκτικότητας στην εγκάρσια διεύθυνση του ολισθητή.

Η βασική ιδέα της μοριακής δυναμικής είναι η αριθμητική ολοκλήρωση στον χρόνο των

κλασικών εξισώσεων κίνησης, με σκοπό να παράγουν την τροχιά ενός συστήματος

αποτελούμενου από Ν σωματίδια. Η αλληλεπίδραση των σωματιδίων προσομοιώνεται

μέσω του δυναμικού Lennard-Jones, σύμφωνα με το οποίο

VLJ(r) = 4ε
[
(
σ

r
)12 − (

σ

r
)6
]

(2)

Χαρακτηριστικά μεγέθη της εξίσωσης 2 είναι η απόσταση μηδενικού δυναμικού σ και

το βάθος του ενεργειακού πηγαδιού ε.

Η δύναμη μεταξύ των σωματιδίων περιγράφεται από την εξίσωση:

F = −∇VLJ (3)

Με βάση την μελέτη στον συνεχή χώρο, δημιουργούνται 2 είδη εικονικών σωματιδίων,

ένα υψηλής συνεκτικότητας και ένα χαμηλής. Δημιουργείται επίσης εικονικό σωματίδιο

για την περιγραφή ομογενούς ρευστού, με τιμή συνεκτικότητας ενδιάμεση των προη-

γούμενων δύο. ΄Επειτα, κατασκευάζονται δύο μοντέλα ροής, ένα για το ανομοιογενές

ρευστό και ένα για το ομοιογενές. Πραγματοποιούνται προσομοιώσεις για 50ns, κατά
τη διάρκεια των οποίων αποθηκεύονται οι εφαπτομενικές δυνάμεις στο στερεό τοίχωμα.

Παρατηρείται ότι το μοντέλο ανομοιογενούς ρευστού παρουσίασε 45% μείωση της δύνα-

μης τριβής στα στερεά τοιχώματα σε σχέση με το μοντέλο ομοιογενούς ρευστού. Στιγ-

μιότυπα των δύο υπολογιστικών μοντέλων παρουσιάζονται στα σχ. 4 & 5. Συγκρίνον-
ται επίσης οι κατανομές ταχυτήτων των δύο ροών στο σχ. 6.
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Αποτελέσματα Προσομοιώσεων Μοριακής Δυναμικής
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Σχήμα 4: Χρονικά στιγμιότυπα ροής ομογενούς ρευστού ανάμεσα σε παράλληλες

πλάκες. Τα σωματίδια του τοίχου παρουσιάζονται με σκούρο γκρι χρώμα ενω τα σωματίδια

του ρευστού με μπλε και κίτρινο. Ο διαφορετικός χρωματισμός των ίδιων σωματιδίων του

ρευστού γίνεται με στόχο να φανεί η ομοιογένεια.
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Σχήμα 5: Χρονικά στιγμιότυπα ροής ανομοιογενούς ρευστού ανάμεσα σε παράλληλες

πλάκες. Τα σωματίδια υψηλής συνεκτικότητας χρωματίζονται με πράσινο και κυανό ενώ

αυτά με χαμηλή συνεκτικότητα με μωβ.
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Σχήμα 6: Κατανομές ταχύτητας καθ΄ύψος του υδροδυναμικού φιλμ. Σύγκριση μεταξύ

του ομογενούς και ανομοιογενούς ρευστού. Η συνεχής (κόκκινη) γραμμή αντιστοιχεί στο

ανομοιογενές ρευστό, η ασυνεχής (πράσινη) γραμμή στο ομοιογενές.

Επιπλέον Αποτελέσματα στον Συνεχή Χώρο

Πραγματοποιούνται, επίσης, παραμετρικές μελέτες στον συνεχή χώρο για την περίπτω-

ση των παράλληλων πλακών. Συγκεκριμένα, χρησιμοποιώντας την κατανομή στην

εγκάρσια διεύθυνση που βρέθηκε μέσω της διαδικασίας βελτιστοποίησης, προσομοι-

ώνονται και συγκρίνονται ροές ομογενούς και ανομοιογενούς ρευστού. Παρατηρείται

πως, στην περίπτωση των παράλληλων πλακών, η τριβή στις πλάκες μειώνεται κατά

73% με χρήση του βελτιστοποιημένου ανομοιογενούς ρευστού.
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Σχήμα 7: Αποτελέσματα προσομοιώσεων παράλληλων πλακών.
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Τέλος, παρουσιάζονται αποτελέσματα μελέτης της επίδρασης του συνολικού ύψους του

ολισθητή, για την περίπτωση παράλληλων πλακών, καθώς και του λόγου σύγκλισης,

για την περίπτωση συγκλίνοντος ολισθητή.
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Σχήμα 8: Αποτελέσματα παραμετρικής μελέτης για διαφορετικά ύψη h.
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Σχήμα 9: Μείωση του SF ως προς το ομοιογενές ρευστό για διαφορετικούς λόγους
σύγκλισης K. Ο κύκλος αντιστοιχεί στον λόγο σύγκλισης που πραγματοποιήθηκε η βελ-
τιστοποίηση.

8



Σύνοψη-Συμπεράσματα

Στην διπλωματική αυτή εργασία μελετούνται ρευστά με ανομοιογενή ή ανισότροπη

συνεκτικότητα με στόχο τον δυνητικό σχεδιασμό τους για χρήση σε μηχανολογικά

συστήματα λίπανσης. Στην περίπτωση των ανομοιογενών ρευστών, η συνεκτικότητα

κατανέμεται στον χώρο μέσω σχημάτων παραμετροποίησης τα οποία προγραμματίζονται

και εισάγονται στο περιβάλλον OpenFOAM. Για τα ανισότροπα ρευστά, προγραμμα-
τίζεται επιλύτης της ροής ο οποίος δίνει την δυνατότητα στον χρήστη να περιγράψει με

τανυστική μορφή την συνεκτικότητα. Τέλος, με βάση τα αποτελέσματα απο τη μελέτη

στον συνεχή χώρο, η έρευνα επεκτείνεται στην κλίμακα των νανομέτρων με τη χρήση

προσομοιώσεων μοριακής δυναμικής.

Με βάση τα αποτελέσματα που παρουσιάζονται στην εργασία, καταλήγουμε στα εξής

συμπεράσματα:

1. Στην περίπτωση της βελτιστοποιημένης κατανομής της συνεκτικότητας στην εγ-

κάρσια διεύθυνση, παρατηρείται υψηλή συνεκτικότητα κοντά στα στερεά τοιχώμα-

τα με ένα στρώμα χαμηλής συνεκτικότητας να παρεμβάλλεται. Η βελτιστοποι-

ημένη κατανομή δοκιμάζεται και σε διαφορετικές γεωμετρίες, όπου διατηρεί τα

θετικά αποτελέσματα σε σχέση με αντίστοιχο ομογενές ρευστό.

2. Συμπεραίνουμε πως η ανομοιογένεια της συνεκτικότητας μπορεί να αμεληθεί όταν

το ύψος του υδροδυναμικού ολισθητή είναι σημαντικά μεγαλύτερο από τη ζώνη

υψηλής συνεκτικότητας.

3. Παρουσιάζονται συναφή αποτελέσματα σε μελέτες διαφορετικής κλίμακας. Φα-

ίνεται, λοιπόν, πως, παρόλο που τα μοντέλα του συνεχούς χώρου δεν μπορούν

να περιγράψουν επακριβώς τις ιδιαιτερότητες του μικρόκοσμου, μπορούν να προ-

σφέρουν σημαντική πληροφορία σε μία ανάλυση σωματιδίων.
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