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Abstract

Over the past few decades, Computational Fluid Dynamics (CFD) has experienced
a significant growth across various fields, in both industrial and research applica-
tions. This rise is mainly driven by the continuous increase in computational power
of modern systems. With this, the demand for more complex and large-scaled simu-
lations has also risen. These simulations’ increased computational cost emerge from
the need of very fine meshes. To address this problem, mesh adaptation methods
have emerged. These methods aim to solve this problem by dynamically refining
the mesh in regions where high solution accuracy is necessary. This diploma thesis
explores the theory and practical application of mesh adaptation, particularly the
h-refinement, when applied to tetrahedral element meshes. The principles governing
the refinement of tetrahedral meshes are established, along with the criteria used to
identify regions requiring higher resolution. An algorithm that incorporates these
principles with an emphasis on efficient data and memory management is detailed.

In order to apply the proposed algorithm to actual CFD aplications, a dedicated
software tool is developed in the C++ programming language. This software is
designed to integrate with PUMA, the in-house GPU accelerated flow analysis soft-
ware of the PCOpt Unit/NTUA, which is used for all CFD simulations performed

in this thesis.

Using this software, the presented refinement algorithm is applied to two common
CFD benchmark problems in order to validate and showcase its efficiency. The
first case involves an internal aerodynamic problem, specifically the flow inside a
channel with a small bump. Two variants of this problem are examined; one with a
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symmetrical bump and one with an added peak on its surface in order to introduce
3D features to the flow. The second case involves an external aerodynamic problem,
particularly the flow around a sphere. This study also includes two variants with
different freestream Mach numbers and is inspired by a similar study that examines
the transient version of the flow without mesh refinement. The results of these
simulations are presented and compared with the findings of then reference study.
In every simulation that was performed, the flow is transonic and is followed by the
formation of a shock wave. The algorithm concentrated the refinement of the given
mesh on the region of the shock.
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Chapter 1

Introduction

Over the past few decades, Computational Fluid Dynamics (CFD) has had a signif-
icant contribution to scientific research and engineering applications. The purpose
of CFD is to compute the flow variables (pressure, velocity, density, e.t.c) by solv-
ing the equations which govern fluid flow. These equations are derived from basic
principles of fluid mechanics, mainly conservation laws. These equations don’t have
general analytical solutions for most practical problems, therefore the use of numeri-
cal methods is necessary. This used to be a problem in the past, but due to the great
increase in power of modern computational systems and advancements made in nu-
merical methods, CFD has seen a great prosperity. CFD was initially used mainly
for aerospace applications, but has since expanded to a broad range of fields such
as the automotive industry, environmental modeling and biomedical engineering.
Because the equations are being solved numerically through discretization schemes,
the use of a mesh is essential.

A mesh is the basis of CFD and meshing is a fundamental process that plays a
significant role in the accuracy and reliability of a simulation’s results. Therefore,
a well-constructed mesh is needed not only to ensure a correct convergence of the
numerical method used, but also to capture all the important flow phenomena that
take place in the physical problem. Thus, an important task in every CFD simulation
is the generation and use of an appropriate mesh. This mesh needs to have a high
enough resolution in areas where important flow phenomena (such as boundary
layers, vortices or shock waves) take place in order to get accurate results. However,
in practice it is often not possible to know beforehand the exact location where these
phenomena appear and therefore high mesh resolution is needed. Solution-based
mesh adaptation is a popular method that aims to solve this problem by enhancing
the resolution and quality of the mesh, specifically in such areas of interest.

Mesh adaptation is a process that is performed regularly, in line with the iterations
of the numerical method used to solve the flow equations. It utilizes the progress of



the solution and predicts which areas of the mesh need an increase or decrease in
resolution. The goal is to enhance the mesh in a way that balances computational
cost and solution accuracy without any knowledge of the final flow field prior to the
simulation, thus eliminating the danger of potential adjustments, in case of a poorly
constructed initial mesh.

1.1 Mesh Types

The purpose of a mesh is to divide the geometry of a problem into discrete elements
in order to apply a numerical method. For CFD applications this translates to
solving the flow equations. There are two main types of meshes:

1. Structured meshes
2. Unstructured meshes

Structured meshes utilize implicit connectivity whose structure allows for easy iden-
tification of their elements and nodes. Structured meshes are made up of quadri-
laterals (in 2D) or hexahedrons (in 3D). Their main advantages include: better
numerical convergence, a high degree of quality and control as well as reduced mem-
ory requirements. The latter is because each element (or node) can be described
by the use of only three (in 3D) indices (i, j, k) and all their connectivity relations
derive from specific, notable, patterns formed by those indices.

A typical example of a structured mesh is shown in figure [1.1
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Figure 1.1: A typical 2D structured mesh around an airfoil.

Unstructured meshes, on the other hand, lack implicit connectivity. Instead they
utilize a more complex topological data structure to represent the relations between
their elements. Therefore the memory requirements for an unstructured mesh are
substantially larger, compared to those for a structured one. Their key advantage,
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however, lies in their high flexibility and adaptability to complex geometries, making
them highly versatile. That is because they are made of irregularly shaped elements,
namely triangles (in 2D space) or tetrahedra (in 3D space).

A mesh that combines structured regions with unstructured ones is referred to as
a hybrid mesh. It is also worth noting that in, three dimensional problems, two
new types of elements are introduced, the pyramid and the prism. Hybrid meshes
combine the advantages of both structured and unstructured meshes and have seen
a great rise in popularity over the past few years.

An example of a typical unstructured and hybrid mesh is shown in figures[I.2]and [1.3]
respectively.

Figure 1.3: A typical 2D hybrid mesh around a compressor stator blade.

One extra piece of information that is worth noting is related to the solving software
each type of mesh utilizes. In a traditional structured mesh solver, the equations are
first transformed, then discretized and solved in a different domain, often referred to
as the ”computational domain” ( [I7]), where specific conditions are met. Meanwhile
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an unstructured mesh solver discretizes and solves the equations directly in the
physical domain. An unstructured mesh solver can also work with a structured
mesh, as long as its topological information is in line with the format it uses, making
unstructured solvers more generalized. On the other hand an exclusively structured
mesh solver is unable to properly utilize an unstructured mesh.

1.2 Mesh Adaptation

Modern engineering problems require large scaled CFD simulations around complex
geometries, leading to the use of dense meshes in order to capture all the impor-
tant aspects of a physical phenomenon. This can create a significant increase in
computational demands. Mesh adaptation provides a solution to that problem by
adjusting the mesh density where deemed necessary. This way, it aims to optimize
and balance computational efficiency with solution accuracy.

Mesh adaptation consists of the refinement and coarsening of a mesh, by adding
new or removing old elements in specific areas of the domain, respectively. This
procedure takes place as the convergence of the numerical method used to solve the
flow equations is progressing and is performed more than a single time. Each adap-
tation procedure is referred to as a "cycle”. The first adaptation cycle begins after
the equations have converged to a point where a first, sufficiently accurate, picture
of the flow field is obtained. Refinement adds new elements to areas where high so-
lution accuracy is needed and the original mesh is unable to produce. Respectively,
coarsening ensures the mesh will not be overloaded with unnecessary elements and
keeps the computational and storage demands within reasonable levels, by remov-
ing excessive elements. Due to it’s nature, mesh refinement is mainly applied to
unstructured meshes. Apart from their use in complex geometries, the key advan-
tage of refining an unstructured mesh, is the ability to make changes to it, only in
the specified regions of interest. On the other hand, on a structured mesh, a small
intervention affects the entire mesh, by adding a large amount of elements across
the entire domain, that needlessly increase the computational load of the simulation.
The areas in which the mesh needs to be modified are identified with the use of a
mathematical approach. In CFD applications, these regions typically correspond to
areas where important physical phenomena appear, such as shock waves, boundary
layers, vortices, stagnation points e.t.c.

Numerous reasons as to why mesh adaptation is becoming increasingly important
can be exposed. The most significant one is that a lot of features of the flow field
are unknown until the problem is solved or at least a first view of it is available.
This means that it might not be possible to know beforehand the part of the do-
main where an important phenomenon, such as a shock wave, will be formed. In
fact, in practice it is often difficult, even for experienced users, to anticipate exactly
what mesh resolution is required in different regions of the domain and therefore
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generate an appropriately fine mesh. Hence, as a more clear view of the flow field
is obtained, the initial mesh might need to undergo through many evaluations and
adjustments, until one that provides the desired accuracy is produced. Mesh adap-
tation reduces the dependence on initial mesh quality and at the same time removes
the tedious task of repeatedly adjusting the mesh, thus minimizing the need for
manual intervention. Using mesh adaptation, the CFD simulation can be initiated
with a relatively coarse mesh in order to obtain a first view of the flow field, and
then, through the adaptation procedure, get a modified mesh that provides more
accurate results without introducing an unreasonable computational demand. How-
ever, starting with a very coarse mesh can be an ineffective strategy, in some cases.
Two main categories of Mesh Refinement methods exist [11]:

1. The Feature-Based Mesh Refinement
2. The Adjoint-Based Mesh Refinement

Feature-based mesh refinement, as the name implies, focuses on identifying where
features of the flow such as shock waves, vortices and stagnation points appear within
the domain in order to enhance the mesh. This method involves a mathematical
function that takes as input one or more flow variables as well as parameters regard-
ing mesh size. By applying this function, the mesh is evaluated and parts of the
domain that require refinement are identified. The selection of flow variables along
with the analytical formula of the function are highly dependent on the nature of
the problem. Different combinations may produce better results for different types
of problems.

Adjoint-based mesh refinement, establishes a mathematical relation between aero-
dynamic forces, flow variables and the local residual. Using adjoint theory, it detects
which regions of the mesh have a greater influence on the local residual error, based
on a target value. The target value is incorporated into an objective function and
an adjoint optimization problem is then formulated and solved.

More information regarding adjoint based mesh refinement methods, can be found
in [9, [T, 20, 13].

One additional point worth mentioning is that adjoint based methods also require
an adjoint equation solver, thus increasing the total computational cost of the sim-
ulation. On the other hand feature-based mesh refinement is based only on simple
evaluation functions and doesn’t add any costly numerical method to the overall
simulation.

The diploma thesis will focus specifically on the h-refinement of unstructured meshes
made of only tetrahedral elements, using feature-based refinement. Further detailed
insight regarding the method used will be presented in the following chapters. Fur-
ther details on adaptation algorithms that consider coarsening, for both 2D and 3D
meshes, can be found in [7, [8, [16].



1.3 Thesis Outline

This diploma thesis focuses on the implementation, programming and evaluation of
a feature-based mesh adaptation algorithm for the h-refinement of 3D unstructured
meshes with only tetrahedral elements. The algorithm is programmed in the C++
programming language and is set to run in line with PUMA [2], the in-house GPU ac-
celerated flow analysis software, developed by the PCOpt/NTUA. The open-source
software Paraview [I] is used for the processing and visualization of the results.

The structure of the thesis is outlined as follows:

e Chapter 2: A thorough presentation of mesh refinement on tetrahedral ele-
ment meshes. The fundamental principles of mesh adaptation on tetrahedra
are outlined. The types of data used in an adaptation algorithm, along with
their storage requirements are discussed. The mathematical expressions for
evaluating a mesh in a feature-based adaptation are introduced. The Mesh
Adaptation algorithm used is described in detail.

e Chapter 3: Application of the mesh refinement algorithm to an inviscid flow
of a compressible fluid inside a channel with a bump. Two variants of the
problem are considered: one where the bump is symmetrical and one with
an asymmetry introduced on its surface in order to induce 3D features to the
flow. The adaptation algorithm is employed in both cases and the results are
presented and compared.

e Chapter 4: Application of the mesh refinement algorithm to an inviscid flow
of a compressible fluid around a sphere. This problem is studied for two
different freestream Mach numbers, based on a similar study on a transient
variant of the problem. The refinement algorithm is employed in both cases
and the results are presented and compered to the reference data of that study.

e Chapter 5: An overview of the present diploma thesis, followed by conclusions
drawn from the studies and suggestions for future work.



Chapter 2

Refinement of Tetrahedral
Element Meshes

2.1 Introduction

As mentioned in the Introduction, this diploma thesis focuses on the refinement
of 3D meshes with only tetrahedral elements, often referred to as ”tetra meshes”.
In this chapter, the basic principles of mesh adaptation on tetrahedral element
meshes will be established. This theory was extracted by expanding on fundamental
principles of 2D triangular mesh refinement, as they are comprehensively described
in [7, 16, 21]. It also incorporates already established theories specific to tetrahedral
element meshes, as outlined in [3, &), [I1].

2.2 Refinement Principles on Tetra Meshes

Mesh Adaptation, in the context of this diploma thesis, involves only the refinement
of the mesh which is executed periodically, after a specified amount of iterations of
the numerical solution scheme used to solve the flow equations. Refinement entails
the subdivision of larger elements into smaller ones in order to increase the mesh
resolution. The elements of the initial mesh are often referred to as F1 elements (a
term borrowed from biology to denote a first generation). The fundamental concept
of mesh refinement, as outlined, for tetra meshes, is illustrated in figure [2.1}
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Figure 2.1: Visual representation of mesh refinement.

There are several approaches to mesh refinement, each one based on different fun-
damental principles, resulting in distinct methods. For instance, in this diploma
thesis, the primary principle is that no more than three nodes are allowed on the
boundary of an active element (an active element is one that is taking part in the
solution of the flow equations; this term will further be clarified in the following
chapters). This principle, as well as an instance where it is not upheld, is presented

Ai\&\ Aﬁ‘&\

Vi

NOT ALLOWED ALLOWED

Figure 2.2: Comparison between a allowed and a non-allowed tetrahedron subdivi-
sion. The non-allowed subdivision case corresponds to a different type of adaptation
scheme that would also require modifications to the solver software.



Therefore, it is clear that every mesh refinement algorithm must adhere to certain
rules. The set of rules that will be adopted in the present thesis is outlined as
follows:

e Rule 1: Elements of the original F1 mesh are not allowed to merge in order
to formulate new, larger, elements.
This implies that the initial nodes and edges, which where generated using a
mesh generation algorithm cannot be relocated, removed or repurposed into
different combinations in order to form different elements with any mesh gen-
eration technique. This constraint is illustrated in figure [2.3]

’ Adapt ) ’

Part of Initial Mesh NOT ALLOWED

Figure 2.3: Ezample of a violation of Rule 1.

e Rule 2: A tetrahedron is allowed to be subdivided in 4 distinct ways.
The edges of a tetrahedron that are subdivided are determined using mathe-
matical criteria (which will be detailed thoroughly in . Until subdivision
occurs, these edges remain "marked” and these markings define the subdivi-
sion patterns of a tetrahedron. A key rule derived from the refinement of 2D
triangular element meshes [16, 21] and is expanded to 3D, is that a triangle
(a face of a tetrahedron) can have either 1 or all 3 of its edges marked for
refinement. Based on this principle, the first 3 unique configurations can be

extracted. These subdivision cases, identified by their selected code names,
are illustrated in figures 2.6]

— _

Figure 2.4: First allowed subdivision of a tetrahedron into 2 tetrahedra, referred to
as ”Split12”.



”Split14”
_
N

Figure 2.5: Second allowed subdivision of a tetrahedron into 4 tetrahedra, referred to
as "Split1]”.

ANl S

Figure 2.6: Third allowed subdivision of a tetrahedron into 8 tetrahedra, referred to
as ”Split18”.

However, due to the 3D nature of the tetrahedron, there is also a case where
two edges which are not on the same face are marked for refinement. In
such a case, the original tetrahedron must be subdivided using the ”Split12”
subdivision type (shown in figure twice, resulting in the fourth subdivision
form, shown in figure 2.7

Figure 2.7: Fourth allowed subdivision of a tetrahedron into 4 tetrahedra, referred to
as ”Split24”.
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Finally, a non-allowed subdivision of a tetrahedron is presented:

MBS

Figure 2.8: Ezample of a non-allowed tetrahedron subdivision that violates Rule 2.

e Rule 3: A tetrahedron that originates from the subdivision of a previous gen-
eration element into two or four is not allowed to undergo further subdivision.
Instead, the parent tetrahedron must be re-activated and then split, according
the modes showcased in figures - , before it can be subdivided again.
This procedure, applied to various different cases, is illustrated in figure [2.9

_— OR

-
N

Figure 2.9: A visual illustration of Rule 3.
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This restriction is imposed in order to prevent the creation of elements of very
high aspect ratio due to a continuous ”halving” of elements, which can lead
to numerical errors. The generation of these "undesirable” elements is shown
in figure [2.10]

”"Wedge-like” Elements

"Thin” Elements

A

"Thin” & ”Wedge-like” Elements

Figure 2.10: FElements generated from violation of Rule 3.

A detailed analysis of tetrahedral element quality metrics can be found in [10].

e Rule 4: A tetrahedron originating from the subdivision of a previous genera-
tion element into 8 tetrahedra (”Split18”) is allowed to further be subdivided,
without any of the restrictions imposed by Rule 3.
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e Rule 5: Tetrahedra are not allowed to divide endlessly.
This constraint is imposed in order to prevent the creation of very small ele-
ments which can cause convergence issues and unnecessary memory overload.
For that reason, a minimum allowed edge length is defined by the user.

e Rule 6: When a tetrahedron is subdivided, it may also trigger the subdivision
of its neighboring elements, in order to preserve the topology of a typical
unstructured mesh. An example is shown in figure [2.11]

Element 1

gets subdivided

Adaptation

_—

Element 2 is
also subdivided

Figure 2.11: Example of the application of Rule 6.

e Rule 7: In periodic meshes (commonly found in internal aerodynamics prob-
lems, such as the analysis of a compressor stage), any modifications made to
one periodic boundary must be replicated on its corresponding pair. This is
because periodic boundaries, by definition, imply that with appropriate trans-
lation and/ or rotation, the periodic boundaries will eventually coincide. A
simplified example is shown in figure
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Periodic

Element 1 Boundaries

gets subdivigl_e,dt .

Computational

Domain
Element 2 must also be subdivided

in the same way as Element 1

Figure 2.12: Ezxample of the application of Rule 7 on a simplified computational
periodic domain.

2.3 Refinement Data Structure

The selection of an appropriate data structure for a mesh refinement algorithm
is a complex decision. This arises not only due to considerations related to the
implementation of the algorithm itself but also from resource constraints. Therefore,
a very important task prior to the development of the algorithm is the selection of
an efficient data structure capable of both storing and providing easy access to all
the necessary information.

Due to the nature of unstructured meshes, their processing and their refinement,
is inherently complex. An unstructured mesh relies on a complex topological data
structure that contains the various relations between its elements in order to func-
tion properly. With the introduction of adaptation, additional information regarding
each adaptation cycle, as well as new interrelations between elements is also neces-
sary.

In the context of mesh refinement, the elements of the mesh can be classified into
one of the following three categories:

e Active Elements: are the elements of the latest generation and are taken
into account during the current iteration of the numerical scheme used to solve
the flow equations. These can either be elements of the initial mesh (F1 mesh)
or descendants generated in any refinement cycle. These elements may be
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marked for refinement during the current refinement cycle.

e Inactive Elements: are the elements that are not taken into account during
the current iteration of the numerical scheme used to solve the flow equations.
These elements have been replaced by newer ones due to their subdivision
during an adaptation cycle. Their data must remained stored, as they may
become active again in a future refinement cycle, particularly when Rule 3 is
applied.

e Neutralized Elements: are elements that are marked for deletion in order
to ensure compliance with Rule 3. These elements are no longer necessary
and their data must be discarded. However, their identification numbers must
be stored in a dedicated list for future use by newly generated elements. An
example is illustrated in figure [2.13]

Further subdivision !

Figure 2.13: Neutralization of elements 1 and 2 due to parent element refinement.

There are also two important terms that characterize an element in relation to its
adaptation history. The term ancestor (or parent) corresponds to an element that
has been subdivided into smaller elements during the refinement process. These
smaller elements are referred to as descendants (or children) of the original ancestor
element. Therefore, an inactive element is typically an ancestor of two or more
active elements while an active element can either be a descendant or a F1 mesh
element.

The same classifications described above, with identical features, also apply to edges.

In order to formulate a mesh refinement algorithm, two main types of data need to
be stored:

e Topological Data: Contains all the necessary information in order to de-
scribe an unstructured mesh. It stores information such as vertex and element
connectivity, node coordinates and boundary conditions. A topological data
structure is required regardless of whether a mesh refinement scheme is em-
ployed or not, as it is essential for the numerical solution of the flow equations.

For a tetra mesh refinement algorithm, an edge-based topological data struc-
ture is proposed (similar to the one described in [3]). This type of edge data
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structure facilitates efficient refinement and contains the right amount of infor-
mation while also maintaining reasonable memory requirements. This struc-
ture is organized as follows:

Each vertex is associated with a unique identification number (node ID) and
its X, Y and Z coordinates are stored, as well as a flag that indicates whether
it belongs to a boundary of the domain or not, along with its corresponding
boundary condition. Each edge is described by a unique identification number
(edge ID) as well as the two nodes that define it.

Lastly, regarding the elements, each tetrahedron is made up of 4 vertices, 6
edges and 4 faces. In this data structure, each tetrahedron is represented by
its unique identification number (element ID) and its 6 edges, rather than
its 4 vertices. To ensure consistency within this proposed type of element
data structure, an agreement on the local numbering of each element’s nodes,
edges and faces must be adopted. The numbering scheme that was used aligns
with the internal element indexing of the PUMA CFD solver, developed by
the PCOpt Unit of NTUA. The local numbering on a single tetrahedron is
showcased in figure [2.14]

VANRVANRVANRVAN

2 Facel 1 Face 2 1 Faced 2 1 Faced 2

Figure 2.14: Local indexing of a tetrahedron’s vertices, edges and faces.

e Genealogical Data: Contains all the essential information in order to per-
form a mesh adaptation on a given mesh. It contains generational relations
between mesh edges and elements (such as ancestors and descendants). In the
absence of mesh refinement, this information becomes unnecessary and the
solution of the flow equations relies solely on the topological data structure of
the mesh, as previously. For a tetra mesh refinement algorithm, a genealogical
data structure based on mesh edges and elements is proposed. Specifically the
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data structure described in [16], for triangular meshes is expanded for tetra
meshes and is organized as follows:

For each edge, 4 integers are required to fully describe its genealogical in-
formation. The first 2 integers denote the identification numbers of the 2
descendants originating from the current edge. This means that if the edge is
active, these two numbers are equal to zero.

The 3rd integer represents the ID of the ancestor of the edge. If it is equal
to zero then this edge is either a F1 mesh edge or an internal edge generated
during the refinement stage.

The last integer, corresponds to the ID of the mid-node generated on that
edge. The term mid-node refers to a new node generated between an existing
edge’s nodes during its subdivision, at the refinement stage. The prefix ”mid”
is used because it is placed directly at the middle of the edge (unless the edge
belongs to a boundary). If that last integer is equal to zero, then the edge is
active. This four-integer, per edge, genealogical data structure is illustrated
in the form of an array, in figure [2.15]

\ . 4 \
~
Edge Descendants l

Mid-Node ID
IDs Parent Edge 1D

Figure 2.15: Array representation of a single edge’s genealogical data.

For each element, its genealogical information is described using 10 integers.
The first integer represents the number of descendants this elements has. It
can either be equal to 2, 4 or 8, which indicates that the element is inactive. If
it is equal to zero then the element is active, while a negative value indicates
that this is a neutralized element and its data should be discarded. The next
8 integers are used to store the IDs of the descendant elements that originate
from that element. If the element is active, these integers are all equal to zero
(along with the first). The last integer is corresponds to the ID of the parent
element that was subdivided to generate the current element. If this number
is zero, then the element is part of the F1 mesh. This 10-integer, per element,
genealogical data structure is showcased in the form of an array, in figure 2.16]
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Figure 2.16: Array representation of a single element’s genealogical data.

It is important to highlight some modifications applied to the element genealogi-
cal data structure as part of the programmed software. Since only refinement is
allowed, subdivided elements cannot get reactivated due to coarsening (only due
to application of Rule 3, during refinement). Therefore, when an element is subdi-
vided into 8, as dictated in Rule 4, its descendants can never become active again.
Consequently, it can be immediately neutralized and its descendants are handled
as if they were F1 mesh elements (pseudo-F1 mesh elements). This modification
aims to reduce memory requirements of the genealogical data structure. Using this
approach, the number of integers stored per element is reduced from 10 to 6, since
only inactive elements with up to 4 children will need to be stored. This updated
6-integer, per element, genealogical data structure is showcased in the form of an

array, in figure 2.17]

/3 -\
Y
Element Descendants

Number of Parent Element

IDs
Descendants ID

Figure 2.17: Array representation of a single element’s genealogical data when only
refinement is considered.

This, for example, in a programming language such as C++ where an integer occu-
pies 4 bytes of memory, the total memory requirement for each element is reduced
from 4 bytes x 10 integers (40 bytes) to 4 bytes x 6 integers (24 bytes), resulting in
a 40% decrease in memory usage per element.

However, if de-refinement is also considered, this approach is no longer feasible
due to the nature of the algorithm itself, unless an alternative data structure is
introduced. A slightly different approach on this is discussed in [8], which could
serve as a foundation for further future development.
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2.4 Refinement Criteria

The main objective of a mesh refinement method is to obtain the most accurate
approximation of the exact numerical solution of the flow equations (or any system of
partial differential equations, within the broader scope of computational mechanics)
while minimizing the number of mesh elements. To ensure a successful refinement,
it is crucial to accurately and consistently identify the areas here the mesh needs
to be refined. Such areas are identified using edge-based criteria, which, in finite
volume schemes, typically assume a vertex-centered approach. There are two basic
discretization schemes in finite volume methods; the cell-centered and the vertex-
centered. In a cell-centered approach, the finite volumes coincide with the mesh
elements, while in a vertex centered approach the finite volumes are formed around
each node of the mesh. In both approaches the flow variables are computed at the
center of their respective finite volumes. It is worth noting, however, that with
appropriate modifications, the same principles can be applied to a cell-centered
finite volume scheme, as described in [12]. These criteria are based on features of
the flow (such as pressure, velocity etc.) and are applied to every active edge of the
mesh in order to determine whether it requires refinement or not. To ensure that
the refinement algorithm accurately marks the mesh edges that need to be refined,
three key parameters must be considered:

1. The selection of a flow feature, which is referred to as a ”Sensor”, capable
of providing sufficient information regarding the areas of the domain where
significant physical phenomena occur. For instance, in a shock wave dominated
problem, the Mach number could serve as a sensor, indicating regions where
shock waves form.

2. The use of an appropriate analytical expression, which is referred to as an
"Decision Function”. This function takes the preselected sensor as input and is
applied to every active edge of the mesh. Its purpose is to provide a numerical
value that indicates the sensitivity of each edge. It typically relies on the rate
of change of the sensor along each edge, therefore a common approach is to
base it on the gradient of the sensor or some form of differential operator.

3. The selection of an appropriate threshold for the indexes provided by the
decision function. This threshold, also referred to as ” Cutoff Value”, is used
to determine whether an edge should be marked for refinement or not. The
Cutoff Value must be carefully chosen in order to avoid repeatedly marking
the same edges (constantly forcing them to activate and re-activate), which
could lead to performance issues and inaccuracies.

Decision functions and Cutoff Values will be further discussed in section 2.5

It is worth noting that multiple sensors and decision functions can be employed
simultaneously. This approach is typically used in order to detect different flow
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phenomena occurring in different regions of the computational domain.

2.5 Decision functions & Cutoff Values

As previously mentioned, selecting the appropriate sensor and decision function is
crucial for the success of the refinement process. This chapter will examine the
various types of decision functions, highlighting their advantages and limitations.
Additionally, methods for determining their threshold value for refinement will be
discussed. In this context, sensors are denoted by the letter ®, while decision func-
tions are represented by the letter f.

A decision function is an analytical expression that takes the selected sensor as input
and is applied to every active edge of the mesh. It provides a numerical index that is
used to determine whether an edge should be subdivided or not. Decision functions
are primarily categorized based on whether they use the magnitude of the sensor’s
change along the edge, or its relative change with respect to the edge length, similar
to a derivative. However, other types of decision functions, focusing on the quality
metrics of tetrahedra or the estimated residual error of the flow equations, are also
discussed in the literature, such as in [8]. To illustrate the concept of decision
functions, a 1D case will be presented, as shown in figure [2.18|

)

by

1 O9
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Figure 2.18: Ezample of a 1D adaptation problem on an edge with nodes 1 and 2.

The simplest decision function expression, that is based on the change of the sensor
along the edge, is:

f=1P1— P (2.1)

Alternatively, a simple expression that uses sensor’s rate of change, relative to the
edge length, is:

dd

_|d® b, — O,
| dx

! Az

(2.2)

~Y ‘
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Other similar expressions can be found in the literature [14. [16], such as the following:

f=1+ 2—? (2.3)

F=1/1+ 2—? (2.4)
2

F=1o5 (2.5)

Each of the previously presented decision functions (Equations , yields dif-
ferent results and is suited for various types of problems. In some cases, a simpler
decision function, such as the one in Equation 2.1, may produce a better refined
mesh than one that might seem more mathematically sophisticated, like the ones in
Equation [2.3]or If the selected sensor quantity has a linear distribution along an
edge, a derivative-based decision function will produce the same values, regardless of
the number of times the edge has been subdivided. However, if the sensor does not
follow a linear distribution, a decision function based on its gradient will produce
varying values as the edge is subdivided. This could result in continuous subdivi-
sion of the edge, or the suspension after the first one. An example of a continuous
subdivision is shown in figure [2.19|

Drerivative increases as the edge is subdivided

A

2N

P,

e ,

New Nodes
Figure 2.19: FEzample of a non-linear sensor distribution along the edge 1-2, using

a gradient-based decision function.

However, the behaviors described may be desirable, depending on the specific prob-
lem. It also possible for a decision function to be a combination of various decision
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functions, like the ones previously shown in Equations 2.5 for example:

d*®

da?

dd
r=|G]+ (2:6)

Equation [2.6] is a combination of equations and [2.5] with 8 being a constant
predefined by the user. It is important to note that, in practice, it is common to
normalize decision functions. For example:

d; — Dy

2 2.7
3,7, (2.7)

-

Normalizing helps to detect phenomena where the changes in the sensor are very
minor and at the same time, a higher mesh resolution is required. It also provides a
common scale for determining the threshold values, which will be discussed further
in the following section regarding these cutoff values. However, when normalizing
in this manner, it is possible for the denominator of an expression to become zero.
In such cases, a small quantity, denoted as ¢, is added to prevent division by zero.

o |y — Dy

_ T2 2.8
|y + o] + € (28)

If multiple sensors are employed, a suggested decision function proposed in [11], is
the following:

f=Vq=(q1 — ¢@)(d2)" (2.9)

where subscripts 1 and 2 refer to the edge nodes, dy5 is the edge length and the
index p is the distance influence factor. ¢ is the weighted and normalized sum of
the various Sensors used. In a generalized notation, for node i, q is defined as:

Nsens

Qizzwj'

j=1

Y

, (2.10)
(bJREF

where index ¢ denotes the number of the edge node, the subscript j denotes the
Sensor, w; is the weight of the sensor j. In case only one sensor is selected, its
weight is set to 1 and all the others are equal to zero. Nie,s is the number of
sensors used, @}, is a reference value, used to normalize the sensor j. It can be
a characteristic value of the flow field. For example, in the analysis of a wing, if
sensor j represents the velocity, the reference value would be equal to the far-field
velocity, V.
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Lastly, in certain problems, the user may want to promote the splitting of longer
or shorter edges. In such cases, a weight function, g(l), is employed. This function
takes the edge length, [, as input and is multiplied with the decision function. The
new, weighted, value of the decision function, f*, is then given by:

f =190 (2.11)

After the appropriate sensor and decision function are selected, the next step is
to define the corresponding threshold, commonly referred to as cutoff value. The
refinement cutoff value is denoted as f;. Edges where the decision function exceeds
f1 are marked for refinement. It can easily be extracted that a small value of f; will
result in a large number of edges being marked for refinement, potentially leading
to an excessive number of elements, causing memory overload. A common approach
for determining the refinement threshold is to base it on statistical quantities of the
decision function. For example:

flza'fmean+ﬁ'fdev (212)

where f,,can is the mean value of the decision function on all the active edges it was
calculated, fgs, is the standard deviation. « and [ are multiplication factors that
range between 0 to 1 and 0 to 3, respectively.

2.6 Refinement Algorithm

The refinement process begins by scanning each and every active edge of the mesh
and calculating the value of the decision function on it. Based on this value, the edge
is flagged with an index that indicates whether it should be refined or coarsened.
This classification of the edges relies on the two cutoff values discussed in section [2.5
During this marking phase, Rule 5 is applied to prevent subdivision into excessively
small elements. Edges shorter than a specified threshold are not allowed to be
marked for refinement. This threshold is generally defined as a percentage of the
minimum edge length of the initial F1 mesh, typically ranging between 10% and
20%.

After the marking of the edges is complete, the refinement process is initiated. The
refinement algorithm employed in this work consists of the following four steps:

e Step 1: Upon completing the initial marking of edges, certain elements of
the mesh may form patterns of marked edges that do not comply with one of
the four subdivision cases of a tetrahedron, as established by Rule 2. In such
cases, additional edges must be marked, in order to form the allowed patterns.
For instance, if only two edges of an element are marked for refinement, two
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possible cases arise: If they are not on the same face, this leads to the ”Split24”
subdivision (as shown in figure . If they are on the same face, the third
unmarked edge on that face must also get marked to lead to the ”Split14”
subdivision (shown in figure . This distinction is illustrated in figure .

Figure 2.20: Ezample of Step 1 of the refinement algorithm for a tetrahedron with 2
marked edges.

Similarly, if three edges of a tetrahedron are marked, a check of whether they
belong on the same face or not must be performed. If they are on the same
face, no additional edges are marked (as it already complies with the ”Split14”
subdivision). If they are not, then all the edges of the element must be marked
in order to comply with the ”Split18” subdivision. This is demonstrated in

figure [2.21]

Figure 2.21: Example of Step 1 of the refinement algorithm for a tetrahedron with 3
marked edges.
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Lastly, if four or five edges of an element are marked, all the remaining, un-
marked, edges must also be marked, in order to lead to the ”Split18” subdivi-
sion, as shown in figure [2.22]

Figure 2.22: Ezample of Step 1 of the refinement algorithm for tetrahedra with 4 or
5 marked edges.

e Step 2: According to Rule 3, the offspring elements of a tetrahedron that has
been subdivided into two or four (as a result of one of the ”Split12”, ”Split14”
or "Split24” subdivisions) are not allowed to be further subdivided. If such
an element is detected with at least one marked edge, its parent element is
reactivated and, then, its edges are marked according to the allowed patterns,
as described in Step 1. This process is carried out in three stages:

i) First, the offspring elements are neutralized (as described in section [2.3))
and their IDs are added to a list for future use by new elements. However,
their mid-nodes are not deleted, as they are required in order to form the new
elements.
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Step 2(i)
_—
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ks
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Figure 2.23: Exzample of Step 2(i) of the refinement algorithm: Neutralization of
descendant elements and re-activation of the parent element.

ii) Next, all unnecessary edges are removed. These are the edges that split
the faces of the parent element into two or four. The latter type is always
preserved, figure while the former are deleted.

Figure 2.24: Ezample of Step 2(i) of the refinement algorithm: Deletion of unnec-
essary edges.
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However, if an element that was previously subdivided according to ”Split12”
is reactivated, some of these types of edges may still be needed to form the new
elements. This occurs when the parent element is heading towards a ”Split14”
of ”Split24” subdivision. In such cases, one or both of these edges remain
intact and are not deleted, as shown in figure [2.25

Figure 2.25: Ezample of of Step 2(ii) of the refinement algorithm where some edges
are not deleted.

iii) Lastly, the inactive edges of the parent element are marked. Additional
edges may be marked using the method described in Step 1 to ensure that one
of the four allowed subdivision patterns of a tetrahedron is formed.

Extra
Markings

Extra
Markings

Figure 2.26: Example of Step 2(iii) of the refinement algorithm: Extra markings of
element edges in order to form one of the four allowed subdivision patterns.
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It is clear that Steps 1 and 2 of the refinement algorithm alter the state of
marked edges within the mesh. Therefore, these two steps must be executed
iteratively within a nested loop until no additional edges get marked to ensure
that only the allowed subdivision patterns exist. This is done because, as
made clear in Step 1, a marked edge can trigger the marking of other edges
not marked during the initial marking stage, using the decision function. This
nested loop logic is described in the flow chart of figure

Step 1 ¥—

Step 2
Are additional
YES
edges marked during
Step 1 or 27
NO
Step 3

Figure 2.27: Flow chart of the continuous repetitions of Steps 1 & 2 of the refinement
algorithm.

e Step 3: After marking for refinement of the mesh edges is complete, the
marked edges are subdivided. Each marked edge is split into two and a new
node is generated, as shown in figure [2.28]

Step 3

O O
Marked Edge N _

O

Deactivated Edge

Figure 2.28: FExample of Step 3 of the refinement algorithm: Subdivision of marked
edges & generation of new nodes.

The new node is positioned at the midpoint of the edge, unless it belongs to a
boundary of the domain. In this case its coordinates are determined through
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interpolation in order to preserve the original domain geometry and maintain
consistency with the exact solution of the specific problem. For instance, in
the case of a wing, if a new node is added along the surface, its placement
must comply with its corresponding geometry‘[I3]. If this is not ensured, it
will distort the original geometry of the wing, potentially compromising the
accuracy of the computed aerodynamic results, including lift and drag. An
example, on a 2D problem, is showcased in figure [2.29

Updated Mid-Node Placement

that follows boundary’s geometry

Boundary that
follows a specific
Initial geometry
Mid-Node

Placement

Figure 2.29: Correction of a boundary node’s coordinates in order to comply with
the boundary’s real geometry.

After this is complete, the flow variables are computed on the new nodes
via numerical interpolation in order to be used when the solution of the flow
equations will progress after the refinement is complete. An example of a
simple, linear, interpolation in a 1D problem is illustrated in figure [2.30}

O — ) /,x"q)2
—2 - -

Figure 2.30: Linear interpolation of the flow quantity "®” at a newly generated
mid-node of an edge.

e Step 4: The final step of the refinement process is the creation of the new
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elements to replace their ancestors. Their topological and genealogical infor-
mation is determined and, at the same time, their parent elements are deacti-
vated and their genealogical data is updated. This element generation process
is illustrated in figure [2.31}

T

AN

Figure 2.31: FExample of Step 4 of the refinement algorithm: Generation of new
elements.

At this stage, the solution of the flow equations resumes with the new, adapted mesh.
The solution restarts using the same flow field the adaptation was initiated with,
including the interpolated flow variables at the newly generated nodes, as described
in Step 3. Once the solver iterations reach a predefined limit, a new refinement cycle
begins.
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Chapter 3

Mesh Refinement in a Channel

with a Bump

Having presented the theoretical background of the programmed mesh refinement
algorithm, a series of tests must follow for its assessment. The primary objective of
this chapter is to evaluate the effectiveness of the algorithm while ensuring that the
refined meshes capture all critical flow features, without introducing an unnecessary
computational overload. The CFD simulations are all conducted using PUMA [2].
The results obtained from these studies will serve as verification of the algorithm’s
performance in simple problems, offering a valuable insight into its strengths as well
as identifying potential weaknesses or limitations.

This chapter focuses on the application of the developed mesh refinement algorithm
to a flow inside a straight channel with a small bump on one of its walls. As the
high-speed flow reaches the bump, a shock wave is expected to form. A shock wave
is an important flow feature and requires a high mesh resolution in that area. How-
ever, predetermining ts precise location is difficult, making this case ideal for the
application of mesh refinement. Since the flow is transonic, the Mach number is
selected as the sensor, for all cases. This problem is based on a common benchmark
case that has been used widely, mainly in 2D applications, to study inviscid com-
pressible flows [6]. In this context, two variants of this problem will be examined:
one with a symmetrical bump and one with an asymmetrical.
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3.1 Case A: Channel with a symmetrical bump

3.1.1 Case Description

The first variant of the case involves a symmetrical bump inside the channel. The
geometry of the channel is depicted in figure [3.1} The bump’s curvature is given by
an analytical polynomial expression in order to allow refinement by fully respecting
the original shape.

Figure 3.1: Geometry of the channel with a bump.

The problem involves an inviscid flow of a compressible fluid with an inlet Mach
number of 0.8. The boundary conditions for the simulation (which are also noted in
figure are set as follows:

e Inlet Condition
At the inlet, fixed values for the total pressure, P;, total temperature, T;, and
flow angle are prescribed as boundary conditions. These parameters are all
uniformly distributed along the inlet boundary.

e Outlet Condition
At the outlet, a fixed value for the static pressure, P, is specified, which is also
uniformly distributed along the outlet boundary.

e Wall Condition
Since the flow is inviscid, the walls are modeled as slip walls, where the normal
velocity component is equal to zero.

e Symmetry Condition
A symmetry boundary condition is imposed at lateral sides of the channel.
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The initial mesh generated for this case consists of 14324 nodes and 68830 tetrahedra
and is illustrated in figure

Al
NP
andand b,
SRnRne
?\\%‘\\“ﬂ

i
Tav,
i
L

Figure 3.2: Channel Case A: Initial mesh of the channel.

3.1.2 Results

For this simulation, the maximum number of solver iterations is set to 5000, with
4 refinement cycles in total. Each refinement cycle is performed after every 1000
iterations of the solver. The evaluation function used is given by equation it is
not normalized and no weight functions are employed.

Figure 3.3: Channel Case A: Mach number field computed on the initial mesh, after
the first 1000 iterations of the solver. A shock wave formation can be spotted near the
end of the bump, however due to poor initial mesh resolution, the shock wave appears
artificially thick and is not captured with proper accuracy.
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Figure 3.4: Channel Case A: View of the initial mesh of the channel near the bump,
on a cross-section along the symmetry plane.
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Figure 3.5: Channel Case A: View of the mesh of the channel near the bump, on a
cross-section along the symmetry plane, after the 1st refinement cycle.
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Figure 3.6: Channel Case A: View of the mesh of the channel near the bump, on a
cross-section along the symmetry plane, after the 2nd refinement cycle.
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Figure 3.7: Channel Case A: View of the mesh of the channel near the bump, on a
cross-section along the symmetry plane, after the 3rd refinement cycle.

W

Figure 3.8: Channel Case A: View of the mesh of the channel near the bump, on a
cross-section along the symmetry plane, after the 4th refinement cycle.

Figures [3.4+ illustrate the progression of the mesh refinement over the course of
the entire simulation. With each refinement cycle, the mesh becomes increasingly
more dense in the region where the shock wave is formed. Additionally, a smaller,
but noticeable refinement occurs, at the first refinement cycle, near the start and
end of the bump where the flow velocity is decreases.

The final mesh, after the fourth refinement cycle, demonstrates a significant con-
centration of elements at the shock wave’s position. Notably, this final cycle also
generated the highest number of elements, all concentrated at the shock wave’s plane,
where higher accuracy and resolution are required, with no additional refinement
observed elsewhere in the domain.
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Figure 3.9: Channel Case A: Mach number field near the bump, on a cross-section
along the symmetry plane, computed using the mesh from the 1st refinement cycle.

Figure 3.10: Channel Case A: Mach number field near the bump, on a cross-section
along the symmetry plane, computed using the mesh from the 2nd refinement cycle.

Figure 3.11: Channel Case A: Mach number field near the bump, on a cross-section
along the symmetry plane, prior to the 4th refinement cycle (computed using the mesh
from the 3rd refinement cycle).
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Figure 3.12: Channel Case A: Mach number field near the bump, on a cross-section
along the symmetry plane, after the Jth and final refinement cycle.

Figures illustrate the progression of the Mach Number field across the
refinement cycles. Initially, as shown in figure the shock wave appears unre-
alistically thick with very low resolution, as a result of poor mesh quality. As the
mesh refinement cycles progress, the high Mach Number gradients in the shock wave
region lead to the increasing refinement of that area. Consequently, a noticeable re-
duction in the shock’s thickness is observed from one refinement cycle to the next.
By the final refinement cycle, the shock wave’s thickness is significantly reduced,
approaching a straight line.
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Figure 3.13: Channel Case A: Distribution of the pressure coefficient, Cp, across
the length of the bump. The precise location of the shock wave can be identified by the
sudden increase of Cp. As the mesh is refined, the Cp curve at this point becomes
steeper, almost vertical, effectively capturing the shock’s large gradient.
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Figure 3.14: Channel Case A: Convergence of the residual of the continuity equation,
in logarithmic scale, across the entire simulation.

Figure shows the convergence of the residuals of the continuity equation, in
logarithmic scale, across the entire simulation. When the flow equations continue
to solve after a refinement cycle, a sudden increase in the residuals in observed.
While an refined mesh simulation always begins on the same field the previous mesh
stopped, the increased mesh resolution and accuracy of the computed results lead
to this increase in the residuals. Lastly, the rate of residual convergence seems to
decrease with each refinement cycle, as higher resolution and more accurate results
require more iterations for convergence.

The number of nodes and tetrahedra of each one of the meshes shown in figures [3.4]

[3.8] is presented in table [3.1]

Mesh Number of nodes | Number of tetrahedra
Initial Mesh 14324 68830
After the 1st Refinement 18604 91505
After the 2nd Refinement 26743 136873
After the 3rd Refinement 49972 269923
Final Mesh 122465 687557

Table 3.1: Channel Case A: Number of nodes and tetrahedra of each mesh of the

simulation.
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3.2 Case B: Channel with an asymmetrical bump

3.2.1 Case Description

The second variant of the case involves a asymmetrical bump inside the channel.
While the geometry of the channel remains the same as in Case A, the surface of
the bump is modified with the addition of a very small peak. This modification in
added in order to introduce a 3D aspect to the flow, as the symmetry of Case A,
effectively, resembled a 2D problem, with uniform characteristics along each cross-
section. The purpose of Case B is to test the refinement algorithm on a genuine 3D
flow field, with variants along all axes. The peak is positioned at the highest point
of the bump, slightly offset from its center, as shown in figure [3.15 Both the bump
and the peak are described using analytical equations. Thus, the refinement at the
walls is performed by respecting its shape.

Figure 3.15: Channel Case B: View of the modified bump.

The flow conditions are the same as in Case A, specifically an inviscid flow of a com-
pressible fluid with an inlet Mach number of 0.8. Similarly, the boundary conditions
remain the same as in Case A, as illustrated in figure 3.1

The initial mesh generated for this case consists of 52783 nodes and 289590 tetrahe-
dra. This increased number of nodes and elements on the initial mesh, compared to
Case A, intends to accurately capture the modified geometry of the bump, as well
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as the 3D characteristics of the flow. To achieve this, a finer discretization is applied

across the y-direction, as shown in figure [3.16
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each one performed after every 1000 iterations of

I

Channel Case B: Initial mesh of the channel.

.16

3

igure

F
the solver, similar to Case A. The same evaluation function as Case A is also used,

given by equation
the symmetry plane (as in Case A), and one along a cross-section that includes the

results are presented across two different cross-sections of the channel: one along
modified bump with the added peak.

For this simulation, the maximum number of the flow solver iterations is set to 5000,
To verify, and showcase, the 3D features of the flow field and the refinement, the

with 4 refinement cycles in total

3.2.2 Results
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Figure 3.17: Channel Case B: Mach number field computed on the initial mesh,
on a cross-section across the symmetry plane (upper) and one that includes the peak
(lower), after the first 1000 iterations of the solver. A shock wave can be spotted near

the end of the bump. The two Mach number fields differ due to the influence of the
peak on the bump.
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on a cross-section along the symmetry plane (upper) and one that includes the peak

Figure 3.18: Channel Case B: View of the initial mesh of the channel near the bump,
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cross-section along the symmetry plane (upper) and one that includes the peak (lower),

Figure 3.19: Channel Case B: View of the mesh of the channel near the bump, on a
after the 1st refinement cycle.
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Channel Case B: View of the mesh of the channel near the bump, on a

cross-section along the symmetry plane (upper) and one that includes the peak (lower),

after the 2nd refinement cycle.

Figure 3.20:
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Channel Case B: View of the mesh of the channel near the bump, on a

cross-section along the symmetry plane (upper) and one that includes the peak (lower),

after the 3rd refinement cycle.

Figure 3.21:






mesh refinement.

The final mesh, after the fourth refinement cycle, exhibits the largest concentration
of elements at the shock wave’s position, as well as the downstream of the peak.
The increased number of nodes and tetrahedra of the final mesh, compared to the
final mesh of Case A, is attributed to the higher element count in the initial mesh,
which was constructed in order to effectively capture the 3D features of the flow, as
previously noted.

Figure 3.23: Channel Case B: Mach number field near the bump, on a cross-section
across the symmetry plane (upper) and one that includes the peak (lower), prior to
the 2nd refinement cycle (computed using the mesh from the 1st refinement cycle).
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Figure 3.24: Channel Case B: Mach number field near the bump, on a cross-section
across the symmetry plane (upper) and one that includes the peak (lower), prior to
the 3rd refinement cycle (computed using the mesh from the 2nd refinement cycle).
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Figure 3.25: Channel Case B: Mach number field near the bump, on a cross-section
across the symmetry plane (upper) and one that includes the peak (lower), prior to
the 4th refinement cycle (computed using the mesh from the 3rd refinement cycle).
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Figure 3.26: Channel Case B: Mach number field near the bump, on a cross-section
across the symmetry plane (upper) and one that includes the peak (lower), after the
4th and final refinement cycle.

Figures illustrate the progression of the Mach number field across the
refinement cycles in two different cross-sections: one along the symmetry plane and
one through the center of the added peak. Initially, as shown in figure [3.17] a shock
wave appears unrealistically thick with very low resolution, due to the poor initial
mesh quality. Additionally near the peak, a localized disturbance in the flow field
is observed, due to its presence.

Similar to Case A, the high Mach number gradients lead to the refinement of these
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areas of the domain. By the end of the refinement, the shock wave’s thickness
is significantly reduced, in both cross-sections, while the flow field downstream of
the peak is smoother and more accurately resolved, demonstrating the refinement
algorithm’s effectiveness in handling all aspects of a 3D flow.
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Figure 3.27: Channel Case B: Distribution of the pressure coefficient, Cp, across
the length of the bump on a cross-section along the symmetry plane (upper) and one
that includes the peak (lower).

In both graphs shown in figure the location of the shock wave can be identified
by the sudden increase of C'p. Additionally, the influence of the added peak, at
the center of the bump, can be observed with a large decrease in Cp. As the mesh
is refined and the resolution increases, the the Cp curve in those areas becomes
increasingly steeper, almost horizontal, effectively capturing the large gradients.
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Figure 3.28: Channel Case B: Convergence of the residual of the continuity equation,

in logarithmic scale, across the entire simulation.

The residuals of the continuity equation, shown in figure follow a trend similar
with those in Case A (figure . However, a slight increase in their magnitude
can be observed, across all refinement cycles, compared to Case A. This can be
attributed to the more complex geometry and resulting flow field introduced by the
asymmetric addition of the small peak at the top of the bump.

Lastly, the number of nodes and tetrahedra of each one of the meshes shown in

figures is presented in table [3.2]

Mesh Number of nodes | Number of tetrahedra
Initial Mesh 52783 289590
After the 1st Refinement 68526 378391
After the 2nd Refinement 101872 570021
After the 3rd Refinement 160504 905766
Final Mesh 273922 1554873

Table 3.2: Channel Case B: Number of nodes and tetrahedra of each mesh of the

simulation.

52



Chapter 4

Mesh Refinement in a Flow

Around a Sphere

This chapter focuses on the application of the mesh refinement algorithm to an ex-
ternal aerodynamic problem, specifically the flow around a sphere. The problem
setup is based on and compared to a previous study on compressible, inviscid tran-
sient flows around spheres at different Mach numbers [5]. All CFD simulations are
conducted using PUMA [2] and the results presented in this chapter are compared
with [5].

Two variants of the problem will be examined: one with a freestream Mach number
of 0.8 and one with a freestream Mach number of 0.95. The flow around a sphere
is inherently a transient problem, however the steady-state mean flow equations
will be solved for both cases in order to provide a simplified yet insightful analysis
regarding mesh refinement. It is also important to highlight that the reference
study [0] investigates a transient flow and consequently, the results obtained from
this chapter will be compared with the corresponding mean values computed over
the time span of the transient simulation conducted in that study, in order to ensure
consistency. As showcased in that study, the flow is transonic, therefore the Mach
number is selcted as the sensor for the refinement. In both cases, the sphere has
a radius of 1m and its surface is described using an analytical equation in order to
allow refinement by fully respecting the original shape. All the simulations begin
with a coarse initial mesh that consists of 3973 nodes and 21129 tetrahedra and is
illustrated in figure [4.1}
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Figure 4.1: Geometry of the initial mesh of the sphere case.

4.1 Case A: Freestream Mach 0.8

4.1.1 Case Description

The first case considers a freestream Mach number of 0.8, with an inviscid flow of a
compressible fluid. The boundary conditions, are set as noted in figure 4.1}

4.1.2 Results

For this simulation, the maximum number of solver iterations is set to 6000, with
3 refinement cycles in total. Each refinement cycle is performed after every 1500
iterations of the solver.

Figure 4.2: Sphere Case A: Mach number field computed on the initial mesh near
the sphere, presented in a quarter cross-section, after the first 1500 solver iterations.
The poor initial mesh resolution causes the shock wave to be unrealistically thick.
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Figure 4.3: Sphere Case A: View of the initial mesh of the channel near the sphere,
presented in a quarter cross-section.

Figure 4.4: Sphere Case A: View of the mesh near the sphere, presented in a quarter
cross-section, after the 1st refinement cycle. The mesh consists of 10727 nodes and
58125 tetrahedra.
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Figure 4.5: Sphere Case A: View of the mesh near the sphere, presented in a quarter
cross-section, after the 2nd refinement cycle.

Figure 4.6: Sphere Case A: View of the mesh near the sphere, presented in a quarter
cross-section, after the 3rd refinement cycle.
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Figure 4.7: Sphere Case A: Mach number field near the sphere, presented in a quarter
cross-section, prior to the 2nd refinement cycle (computed using the mesh from the
1st refinement cycle).

Figure 4.8: Sphere Case A: Mach number field near the sphere, presented in a quarter
cross-section, prior to the 3rd refinement cycle (computed using the mesh from the 2nd
refinement cycle).
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Figure 4.9: Sphere Case A: Mach number field near the sphere, presented in a quarter
cross-section, prior to the Jth refinement cycle (computed using the mesh from the 3rd
refinement cycle).

Figures illustrate the progression of the mesh refinement throughout the
entire simulation. With each refinement cycle, the mesh becomes progressively finer
in the region where the shock wave is formed, both on the surface of the sphere
as well as in the surrounding field. Additionally, refinement is also observed in the
region of the sphere’s wake, where the flow velocity decreases and the transient
phenomena appear (in a transient simulation). Initially, the first refinement cycle
refines the mesh more uniformly over the surface of the sphere. It is only after the
2nd cycle that the refinement becomes more concentrated on the area of the shock
wave. The final mesh demonstrates a substantial concentration of elements at the
shock wave’s position as well as at the downstream of the sphere.

The effect of the refinement in those regions can be seen in the evolution of the Mach
number fields shown in figures [4.9] As the mesh is refined, the shock wave’s
thickness is reduced and its resolution is increased. By the final refinement cycle,
the shock wave’s thickness is significantly reduced, approaching a straight line.

Comparing the final Mach number field (figure [4.9) with the one in [5], several
similarities can be observed, however, the length of the shock wave is not identical.
The primary reason for this occurs is because the flow field presented in this study
represents a steady-state mean flow, whereas the reference study considers a fully
transient flow. As a result, the shock wave’s location may vary over time in the
transient case, whereas in this study, it is depicted in an averaged time-independent
setup.
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Figure 4.10: Sphere Case A: Convergence of the residual of the continuity equation,
in logarithmic scale, across the entire simulation. After the 2nd refinement cycle, the
residuals exhibit significant oscillations.

Figure shows the convergence of the residuals of the continuity equation through-
out the simulation. Since the inviscid flow around a sphere is inherently a transient
problem, a more dissipative discretization scheme is employed in order to promote
convergence on the initial coarse meshes. While the initial meshes exhibit a good
convergence, as the mesh resolution increases, the flow unsteadiness becomes more
apparent. As a result of that, the rate of residual reduction stagnates, and an
oscillatory behavior can be observed (starting from the 2nd refined mesh).
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Figure 4.11: Sphere Case A: Convergence of the drag coefficient, Cp, across the
entire simulation.
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The convergence of the drag coefficient, Cp, of the sphere is presented in figure [£.11]
Similar to the residuals (figure , it exhibits an oscillatory behavior. On the
initial mesh, the low mesh resolution makes the flow field appear as a steady mean
flow, leading to the drag coefficient seemingly converging to a fixed value. As the
mesh resolution increases and the unsteadiness of the flow is revealed, oscillations
also appear to Cp. The mean value around which Cp oscillates is approximately
0.57, which is close the time-averaged value of 0.575, calculated using the data in
the reference study [5].

Table 4.1l shows the number of nodes and tetrahedra of each one of the meshes shown

in figures

Mesh Number of nodes | Number of tetrahedra
Initial Mesh 3973 21129
After the 1st Refinement 10727 58125
After the 2nd Refinement 25414 140551
Final Mesh 70567 398723

Table 4.1: Sphere Case A: Number of nodes and tetrahedra of each mesh of the
simulation.

4.2 Case B: Freestream Mach 0.95

4.2.1 Case Description

The second variant of the case considers a freestream Mach number of 0.95, with
an inviscid flow of a compressible fluid, similar to the one in [5]. The boundary
conditions are set as described in Case A.

4.2.2 Results

For this simulation, the maximum number of solver iterations is also set to 6000,
with three refinement cycles in total. Each refinement cycle is performed after every
1500 iterations of the solver. Similar to Case A, the problem is expected to exhibit
a transient behavior as the mesh resolution increases. Therefore, a discretization
scheme with increased dissipation is employed to ensure convergence on the initial
coarse meshes.
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Figure 4.12: Sphere Case B: Mach Number field computed on the initial mesh near
the sphere, presented in a quarter cross-section, after the first 1500 solver iterations. A

shock wave, with increased thickness due to low initial mesh resolution can be observed
on the surface of the sphere.

Figure 4.13: Sphere Case B: View of the initial mesh of the channel near the sphere,
presented in a quarter cross-section.
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Figure 4.14: Sphere Case B: View of the mesh near the sphere, presented in a quarter

cross-section, after the 1st refinement cycle.

Figure 4.15: Sphere Case B: View of the mesh near the sphere, presented in a quarter

cross-section, after the 2nd refinement cycle.
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Figure 4.16: Sphere Case B: View of the mesh near the sphere, presented in a quarter
cross-section, after the 3rd refinement cycle. The mesh consists of 63276 nodes and
35893/ tetrahedra.

Figure 4.17: Sphere Case B: Mach number field near the sphere, presented in a
quarter cross-section, prior to the 2nd refinement cycle (computed using the mesh
from the 1st refinement cycle).
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Figure 4.18: Sphere Case B: Mach number field near the sphere, presented in a
quarter cross-section, prior to the 3rd refinement cycle (computed using the mesh
from the 2nd refinement cycle).

Figure 4.19: Sphere Case B: Mach Number field near the sphere, presented in a
quarter cross-section, prior to the jth refinement cycle (computed using the mesh
from the 3rd refinement cycle).

Figures show the progression of the mesh refinement throughout the entire
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simulation. With each refinement cycle, the mesh becomes progressively denser in
the region on the surface of the sphere, where the shock wave is formed, as well
as in the region of the sphere’s wake. The final mesh, demonstrates a substantial
concentration of elements at the shock wave’s position as well as at the downstream
of the sphere.

The effect of the refinement in those regions is evident in the evolution of the Mach
number fields (figures [1.19). As the mesh is refined in those regions, the shock
wave’s thickness is reduced and its resolution is increased. However, comparing
the fields produced using the mesh from the second and third refinement cycle
(figures and , respectively), the shock wave can be observed slightly offset
in the area of the sphere. This results from the flow unsteadiness becoming more
apparent as the mesh resolution is increased. However, even in this context, the
mesh refinement is still able to capture a thinner, higher resolution shock wave than
the initial mesh.

— Initial Mesh

After 1st Refinement
— After 2nd Refinement
— Final Mesh

Continuity Eq. Residual (Log Scale)

T T T T T
0 1000 2000 3000 4000 5000 6000
Solver Iterations

Figure 4.20: Sphere Case B: Convergence of the residual of the continuity equation,
in logarithmic scale, across the entire simulation.

The convergence of the residuals of the continuity equation, shown in figure {4.20],
follows a similar trend with the ones of Case A (figure 4.10|). After the second
refinement cycle, the flow unsteadiness makes the residuals oscillate.
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Figure 4.21: Sphere Case B: Convergence of the drag coefficient (Cp) across the

entire simulation.

Consequently, the drag coefficient, Cp (figure follows a similar trend. The
first two meshes appear to converge to a value and only after the third refinement
cycle its value starts oscillating. The mean value around which Cp oscillates is
approximately 0.9, which is close the time-averaged value of 0.945, calculated using
the data in the reference study [5].

Table [4.2] contains the number of nodes and tetrahedra of each one of the meshes

shown in figures 4.16|

Mesh Number of nodes | Number of tetrahedra
Initial Mesh 3973 21129
After the 1st Refinement 9054 49139
After the 2nd Refinement 23232 129814
Final Mesh 63276 358934

Table 4.2: Sphere Case B: Number of nodes and tetrahedra of each mesh of the

simulation.
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Chapter 5

Conclusions and

Recommendations for Future

Work

5.1 Summary

The aim of this diploma thesis was to implement and showcase a feature-based
h-refinement algorithm on tetra meshes, and then apply it to different problems.
The theoretical foundations of refinement on tetrahedral meshes were thoroughly
detailed, covering all aspects of the method. A C++ program with its own ded-
icated data structure, was developed, following all the principles of the algorithm
described. This program is set to run alongside PUMA [2]. The algorithm’s per-
formance and effectiveness was then tested on multiple problems. The first case
involved an inviscid flow of a compressible fluid inside a channel with a bump, with
two variants being explored: one featuring a symmetrical bump and one with an
asymmetrical configuration, featuring a peak on the surface of the bump. The sec-
ond case was added to test the algorithm’s effect on a truly 3D flow field. The next
set of cases involved analyzing the flow around a sphere, at two different freestream
Mach numbers. Despite the inherently unsteadiness of the flow, the studies were
conducted using a mean-flow equation solver. The goal was to demonstrate the
impact of the mesh refinement algorithm on the resulting flow field, as well as its
ability to capture the flow unsteadiness, starting with a very coarse initial mesh. In
all applications, the quality of the refined meshes is evaluated based on the resulting
flow fields, as well as results from similar case studies.
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5.2 Conclusions

After completing the development of the software during the course of this thesis,
along with all the studies that were conducted, the following conclusions can be
made:

Feature-based mesh refinement is an efficient method that does not add any
computational load to the overall CFD simulation. In fact it optimizes the
mesh as the simulation is progressing, providing a quick and efficient method
of constructing an ideal mesh for the problem, reducing the dependency on
the initial mesh quality.

The refinement of a mesh significantly improves the resolution of critical flow
features. In this diploma thesis, mainly shock wave dominated problems were
studied. In these problems, as the mesh is refined, the discontinuities become
sharper and are captured more accurately. At the same time, the number of
elements in the mesh increases, only in those regions, thus not unnecessarily
overloading the simulation.

The quality of the initial mesh does not significantly impact the progression
of the refinement process. Even when starting with a very coarse mesh, such
as the one in Chapter 4, the refinement is still able to locate the critical areas
and increase their resolution, provided that the correct sensor is selected.

When starting from a very coarse initial mesh, multiple refinement cycles are
necessary to accurately capture the flow phenomena. As observed in all the
cases presented in this thesis, the first refinement cycle generally results in a
broad refinement near key flow areas, improving the overall resolution. It is
only after the second cycle, when the mesh already has a higher resolution near
those regions that the refinement becomes more localized, effectively concen-
trating the new elements at the precise location of the physical phenomenon.

In transient problems, such as the one studied in Chapter 4, mesh refinement,
if not employed during the entire transient simulation, could serve as a useful
tool for the preliminary study of a problem. In the sphere cases, the final
refined mesh could be used as a stating mesh in order to initiate the transient
simulation, or give a view of areas were the mesh needs to be more dense.

5.3 Future Work Proposals

The methods and tools developed as part of this diploma thesis offer significant
potential for further development. Some recommendations for future work are:

Expansion on the developed software to improve the interpolation of boundary
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nodes. The inclusion of a generalized numerical interpolation method (such as
splines) in order to enable the handling of arbitrary geometries, beyond those
defined by analytical expressions.

Extending the mesh refinement principles to hybrid meshes. This work can
focus on the investigation of the various subdivision cases for hexahedrons
as well as the development of a software capable of performing h-refinement
efficiently, based on these principles. The theory and software have already
been developed by the PCOpt Unit for 2D meshes. However the 3D context
presents additional challenges such as the introduction of extra element types
(prisms and pyramids) and thus a great increase in distinct subdivision cases
that must be addressed, as discussed in [3].

The inclusion of coarsening in the refinement algorithm. This can also be
integrated with the previous recommendation regarding hybrid meshes in order
to develop a generalized, all-purpose mesh refinement software, capable of
handling any initial mesh whether it is structured, unstructured or hybrid
(provided the solver is designed for unstructured).

Employing parallelization strategies for mesh refinement. Given that modern
CED heavily relies on these techniques, mesh refinement could also benefit
from them, especially in large scaled projects. Future work could focus on
evaluating its computational advantages, followed by the development of such
a software designed to run in parallel architectures.
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Eiocaywym

T Teheutaieg dexaetieg 1 Troloyiotnr|) Peuotoduvauin (TPA) EYEL YVOploEL oTuo-
VT oVATTUET TOC0 OE EPELVNTIXG ETUTEDO GCO XAl GE BLOUNYAVIXES EQUPUOYES NOYW
e parydaiog teyvohoyixrc avdmtuéne. Eva mAéyua aroteiel tn Bdon tng TPA xou
emnpedlet Ty axp{Bela xou adtomiotio Twv anoteAeopdtwy. Enouyévee elvon amapaitn-
TN 1N XUTAOHEVT| EVOC TAEYUATOS XoVOU VoL TORAYEL Uiot 6wo T Abon e€acpahiCovtog
TOUTOYEOVA X1} GUYXALOT TwV eEIOWOEWY porig. LTNY Tedln wo 1600, elval oEXETd
0LOX0AO Vo dNUtoLEYNUEL Eval TAEYUX UE TN 0Wo TH TuxvoTNTo ot axp{Beta. Mio Ao
TOU TROTEIVETAL OE AUTO TO TEOBANUA EIVAL 1) TEOCUPUOYT| TAEYUOTOS 0TNY UTO eEENEN
Moo, HEow Bladixaolaug EUTAOUTIONOU.

Trdpyouv 800 Bacixéc xatnyoplec TAEYUSTWY, ToL BOUNUEVOL XU ToL UN-OoUNUEVA TAEY-
poto. To Sounuéva mAéyuota yopuxtnellovton amd o amAs ToToAoYIXr Souy| Ve T
Un Sopnuéva yenoLonotoly po tepimhoxy Tomoloyixy| douy| yia vo teptypopoly. Tao
dounuéva TAéyuata amoterovvTon and tetpdmieupa (oe 2A) 1 e&dedpa (oe 3A), evid
o Un-Sounuéva and telywvo (o 2A) xou tetpdedpa (oe 3A). Xe mepintwon mou éva
TAEYUO efval DOUNUEVO OE ULd TIEQLOY T X0 TAUTOY POV UN-DOUNUEVO GE XYTOLL GAAT),
TOTE TEOXELTOL YLl EVOL UBEIOXO TAEYHOL.

Trdpyouv dVo Pucixéc xatrnyopleg TEOCUPUOYYC TASYHATWY: 1) TEOCUEUOYY) BACLoNEVN
oe yapoxtnetoixd tng pofic (Feature-based Mesh Adaptation) xou oautr tou Baoileton
oe ouluyelc pedd6douc (Adjoint-based Mesh Adaptation). H mpwtn xatnyopia yenot-
HoTOLEl Lot PUOLXT| TOCOTNTA TNG PONG O GUVOUNCUS UE Ui LOrITUATIX CUVEETNOT Yid
var aCLOAOYHOEL TTOLEG TIEPLOYES TOU TAEYUATOC Y eELAOVTOL TPOTOTOINGT EVE 1) DEUTERN
Baoileton on BlatiTWoTN xan ETALGT EVOS TEOBANUATOC BEATIOTOTOINONS UE Y PHOT) TOV
ouvluywyv eClowoeny. H npocapuoyr) mhéypatog otny und eZéhln hoor nepthopfdver
TOV EUTAOUTIONO xal TOV ameUTAoLTIoNS. O eumhouTiouds cuvioTotal 6TV TEOCUHXY
VEWV OTOLYEWY EVK O AMEUTAOUTIOUOC OTNY APOLPEDT) TUAULOTEPWY. XTOYOC ElvaL 1|
onuioupYla EVOg TAEYHATOS UE XUTIAANAT TUXVOTNTA WOVO GE TERLOYES LPNAOD EVOLO-
pépovtoc. O eumhouTionos e@upUdleton xUplg o€ PnN-dounuéva TAEYHaTa AOYw TNG
duvaTOTNTAG ToTXTG ENEUBAOTC HOVO GTIC TEPLOYES UPNAOY EVOLAPEPOVTOC.

H Simhopotind epyoacio EMXEVTROVETUL OTN BLUTUTWOT XU TOV TEOYQOUUATIONS EVOC
alyopitduou yia Tov h-gumhoutiond TAeYHdTOY TETEAUEdPIXWY GTotyelwy. O ahyodpeLd-
HOG aUTOS YRAPTNXE OTNV YAWooo TpoypauuaTionol C++ xan oyedldotnxe Yo Vo
ouvepydleton e€wTtepind Ye tov emAlTn poric PUMA ¢ MIITPA&B tou EMIL T'ia
TNV OTITIXOTIOINOT) TWYV ATOTEAEGUATWY Y PNOULOTOLAUNXE TO AOYLOULXO AVOLY TOU XOLXAL
ParaView. H epyaocio dev e&etdlel dwdixaoie aneunioutiopoo.

Euriovticwdg ITheyudtwy Tetpasdpixwv
> touyelowyv



270 TOPOV XEPIANO BLATUTOVOVTOL Ol BacIXEC 0Py EC TIOU ApOEOLY TNV TEOCUPUOYN
TAEYHATWY TETPUEDPIXWY OTOLYElWY.

O eunhouTiouoc TAEYUATOY AoBAveL Yo ool GUYXEXEHIEVO TAHDOC ETUVOATTIXGDY
Brudrov tou emAlTn g porfc. To otouyela Tou dpywol TAEyuatog Yo avagepovTo
o¢ F1. Kdde ahyopriuog mpoocopuoyc UTOAOYIo TIXWY TAEYHATWY UTUXOVEL OE GUYXE-
xpUévoug xavoves. Ol xavoveg mou uodetodvial 0TV TaPoLoa BITAWUATIX EQY ATl
elvon oL e€ric:

o Kavovag 1: Acev emitpéneton 1) "cuyxOANoT oTolyeiev Tou apyno) TAEYUUTOS
F1 mpog oynuationd VEwY, UEYOAUTEQWY.

o Kavévag 2: 'Eva 1eTpdedpo MTEENETAL Vo OLUOTAC TEL UE TEGOEQLC UOVO TPOTOUC
ot onofol TapovcldlovTon GTa oY AT poll Ue TIC XWwOIXEC TOUG Ovouaoieg.

—_— I

YyAuo 1: Ilpdtn emzpenduervn popen didonaons €vos tetpaédpov oe 2 tetpdedpa, e

ovopaoia ”Split12”.
" Split14” - |
_— f—
‘ ‘

YyxAuo 2: Aeltepn emmpenduern popgn didomaons €vos tetpaédpov o€ 4 tetpdedpa,
je ovouaoia "Split14”.

Yyxnue 3: Tpitn empenouevn popen didonaong €vos tetpaédpov o€ 8 tetpdedpa, e
ovouaoia "Split18”.




A=l

Yy 4: Téraptn emzpendpern popgn didomaons evis tetpaédpov o€ 4 tetpdedpa,
pe ovouaoia ”Split24”.

o Kavovag 3: 'Eva tetpdedpo mou €yet npoéhdet and 1 SldoTaoy TETPUEDPOU
TEONYOUUEVNG YEVLAG OE 0U0 N} TECOEQRN OEV ETUTPETETOL VO DLUCTIACTEL TEQAUTEQRW.
Ipénel va tponyniel emavevepyonolnom Tou untexol xaL Vo TEPA Var axOAOUUT|OEL
1 6idonacr) tou. H Swducacion auth, yiot apxeTéc TEQITTMOELS, TapoVadleTal GTO

oy o [5}

&) e

ExApa 5: Yynuatkn aneicovion tov Kavéva 3.

O Aoyog v tov onofo emiBdhheTton auth 1 Sadixacia ebvar 1 amoguyY| dnuLove-
yioag ototyelwy pe vdPMAd Adyo emurxoug, To omola EVOEYETAL Vo TPOXAAEGOLY
aprdunTixd oedidoTo oTny enthuoT).

o Kavovag 4: 'Eva tetpdedpo nou €yel mpoéhlel and T OLdoTaoTr ToU UnTeixol
Tou oe 8 tetpdedpa (7Splitl8”) emtpénetan vor EavadloaonaoTel ywplc xovévoy
TEPLOPLOUO.



o Kavovag 5: To tetpdedpa dev emiteéneton Vo dtaonwval € dnelpo. Me autov
TOV TEOTO amOELYETAL 1) dNUtovpyla TOAD Uixpdy oTotyelwy Tor onola umopet
Vo TEoXahEGOLY TEOBAUNTA GUYXAONG Xt ovafTior adENoY TNG AMATOVUEVNC

HVAUNG.

o Kavovag 6: 'Otav évo teTpdedpo dlaomdtar, eVOEYETAUL Vol TUPACUPEL XOL OpL-
OUEVYL amtd TaL YELTOVIXE TOU TPOXEWEVOUL Vo dtatneniel 1 guotoyvwuio Tou TumL-
%0V UN-OOUNUEVOL TAEYHOTOC.

o Kavovag 7: Xto nepiodind mhéyupato, xdde tpomomoinoy mdvey 6To TepLodl-
%0 0plO TEETEL VoL GLVOBEVETAL ATd AVTIGTOLYT TEOTOTOLNCT OTNV TEQLOY T} IOV
aVTIOTOLYEL OE T PUECW TNG TEPLOBIXOTNTOS.

Avayelpion Asdopévwy xatd tny Ilpocappoyy

Adyw g @OoNg TV UN-00UNUEVKDY TAEYUATWY 1) SLoyelplor| Toug xo axdUa TEPLo-
06TEPO 1) TEOCUPUOYT Toug efvan pia tepimAoxn depyaoia. Enopévwe n emhoyn pog
Bdone dedopévwy Tou Vo TapEYEL OAEC TIC amapalTnTeG TANPOPOpleg ywelc Vo cuvo-
ocveToL amd UTEPBOAXT X0 doXOTN YENOT UVAUNG ATOTEAEL Lol ONUAVTLXY ATOQIOT).
Y10 mhaloto evog ahyopiduou mpocopuoyic TAEYUdT®Y, To oTotyeio Tou (TETEdEdpa
xou axpéc) droywpeilovtan oe Tpelc xotnyopies:

o Evepyd: civar to otoyela tedeutalag yewidg ta omolor efvan umodriguar yior €-
UTAOUTIOUO.

o Avevepyd: elvor To oToLyEld TEONYOVUUEVNG YEVIAC TIOU €YOLV avTixatao Tardel
amb VEOTERA AOYW TNE BLAGTAGHE TOUG GE XAmolov xUxho mpocapUoync. Ot TAn-
P0POopiEg TOUC WG TOCO TAUPAUEVOUY ATOUNXEVPEVES OE TEQITTWOT ToL Lavarytvouy
evepyd Aoyw tou Kavéva 3.

e E€oudetepwpeva: clvor 1o otolyelor mou €youv UopxoploTel yior dlaypopt
Aoy epappoyhc Tou Kavova 3. Ou mhnpogopiec Toug de ypetdlovton TAEovV %ot
Loy pdpovToL.

ITpoxetuévou va avamtuydel Evag alyopriuog EUTAOUTIOUOV UTOAOYLO TIXWDY TAEYUITWY,
eXTOC amd TIC TOTOAOYIXES TANPOQORieS o YeetdlovTon Yo TNV ETtAucT TNg POTHC, El-
odyeTon €vag VEog TOTOG TANROPOELOY, oL YEVEUAOYIXES TANpopopiec. O yevealoyixég
TANpopoplec TEPLAUBAVOLY OAES TIC APl TNTESC TANPOYORIES Yior TNV TpayUaTOTOMG
NG TEOGUPUOYY|C, OTIWS CUCYETIOELS OTOLYEIWY ATt TOV EVAY XUXAO EUTAOUTIONOU GTOV
EMOUEVO.

Ytov alyoprduo eumioutiopod Tou avantOyUnXe, TEOTEVETHL 1 AoV XEVCT] TWY AT
COPOQLMY AVTOV TEAVL O XAVE axUr) X0t TETPAEDPO TOU TAEYMATOC. MUYXEXQUIEVA,
utodeteiton 1 yerion 4 axcpaieyv avd oun xon 6 oxcpaioyv avd tetededpo. To dedouéva
ouTd, poll PE TIC TANPOPORIEC TOU AVTITEOCKWTEVOLY, TERLYEAPOVTUL OE LoPPY| Ttivoxa

ot oY Aot @



A\ S
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IDs Anoyévev l

Ancov ID MecoxéuPou

ID Mnteixhc Axuric

Yynua 6: Ieveadoyird dedopéva piag akpung Tov MAEYUAToS O€ LopPr) TivaKa.

/o \

) IDs Anoyévov ,
ITA9oc Tetpuédoev ID MntpixoU
Amoyovewv Tetpagdpou

YyApo 7: Ieveadoyixd dedopéva evis tetpdedpov oe uopen mivaka..

Keutreia EunAouvtiopod

H emhoy?| Twv TEQLoy®Y TOU TAEYHATOS TOU TEETEL VUL TROTIOTOLNVOUY GE ULd TROGUQUO-
YY) yiveTon pe xpitripta tou egopudlovion Téve o axués. Emouévag, 6oa avagpépovto
TOEOXATL AVTIGTOLYOVY OE XEVIPOXOUSIXY| BIATUTWON TV €EIGHOEWY PONC antd TO Ao-
yiouwo emtivone. Hpoxewévou va elvon emituynuevr 1 dtadixacio eumtAouTIoNo) TEETEL
va Angdoiv unédm Teels Bacixée mapducTeot:

1. H xatdhhnkn emhoy guowxhc nocdtntag (1 omola ovoudletoar Alodnthplo) mou
Yo umopel var mapéyel enopxelc eVOEllelc oyeTIXd YE TIC TEQLOYESC TOU TED{OU OTIC
orolec etvan emiuuntn wiot o axeBrc exdva.

2. H yperion wog xatdAAning avahutixfic cuvdpetnong (n omola ovoudleton Xuvdp-
on Kelong) n ontola yenoiponowdvtog 1o emheypévo oncdntipto Yo etvon txovh
vor apéyeL Wior aprdunTer Evoeiln tng evanoinotag xdle oxuric Tou TAEyUoTOC.

3. O xodoptopdg xatdAANAGY 0plwy YL TIC TWES TOU TOREYEL 1) CLVAETNOY XeloNg.
O Twéc autéc ovoudlovTon XaTM@ALAL Xal YENOHIOTOUVTOL Yia Vo xodopioouy
TOLEC aEC Vol UAEXOOIGTOUY YIol EUTAOUTIONO.

Yuvoptroeic Kplong xow Katdgiia Euniouvticpnot

Trdpyouy TOAMOVY €WV GUVAPTACELS Xploewy ot onoleg cuvidwe PaciCovtar ot ue-
Toforr) Tou cuoUNTARIOL XaTd UNxog wlag ounc. Evoetnd mopovoidlovtoar 600 ex-
ppdoeic péow v edlowoewy [I| &
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omou f etvan 1 cuvdptnom xplocwe xar P 1 emieyeloo tocdHTNTA cwoUNTHELO.

210 TAAPES XEUEVO TNG BIMAOUATIXAC EpYAsiag GTNV oy YAt YAOCCH Tapouctdlovian
TEPLOOOTEPES EXPEUOELC GUVIRTACEWY Xpioews pall Ue TopUAAAYES TOUS, GUVOBEVOUE-
veg and emelynon TwV EPUpUOY®Y Touc. Egdcov emieyel 1 xatdhhnhin nocoTnTa
acUnThelo, axoroudel o xodoplolde TwV XUTWEAMMY. Axuéc 6mou N Twr TS cuvdp-
Nong xploewg elvon PEYAADTERT OO TO XAUTOPAL EUTAOUTIOUOU, UUEXEOOVTOL YL €-
umhoutiopd. O tiwég Toug ouvidwe Bacilovton oe otatioTind Yeyédn Tng ouvdpTnong
xploewe. H éxgpoon mou mpotelveton yior Tov xadoploud Tou XaTtw@Alol eUnAouTIoUO0
neprypdpetan and v e€iowaon [3]

flza'fmean+ﬁ'fdev (3)

Alyoprdpog Epniouvticuo)

H Saducacio Tou epmhouTionol Eextvd Ue T 0dpwoT OAWY TWV AXUOY TOU TAEYHATOS
XL TO UUEXYELOUG TOUG UE EVaY XATIAANAO OeixTn 0 oTolog UTOBEIXVOEL TTOLEG OXUES
TEETEL VoL BLGTOOTOUY Xou ToleG Oyl Apol ohoxhnpwiel auTd TO dpyixd PUEXSELOUA,
Eexavd 1) Bradacior Tou eumhouTiooy 1) omolo TepthaBdver To e€Vg BridarTar

e Bripa 1: Aol éyel ohoxhnpwiel To apyixd HoEXAPLOUN TWY OXUWY TOU TAEY-
HOTOG YLl EUTAOUTIOUO, EVOEYETAL VAL EYOUY CYNUUTIOTEL LOT{Bol UUPXAQLOUEVKY
AV TV O TETPAESPa oL Vo U cUUBadiCouy Ue Wior amd TIG EMITRENOUEVES
Hop@éc dudomaong, onwe autée opllovtan amd tov Kavova 2. Etol axoloudel
EVol ETUTAEOV HOPXBOIOUA TWY oMY XGVE TETPAESPOU WOTE VoL TEOXVPEL ULaL o
TO TIC EMTEENOUEVES Mop@éc. Evdeixtixd, mopouctdlovtar dVo and Tic mavég
TEQLTTWOOELS GTO Oy U .

YyAre 8: Ilapdderypa tov Brijpatos 1 tov akyoptdpov eumAovtiojon.



‘Olec oL MEQINTWOELS ETUNAEOY UUEXUQIOUATOVY YLl EUTAOUTIONSO ovohDOVTOL OTO
TATpeg xeluevo.

o Brjua 2: Ye mepintwon xotd v onola €va TeTEdEdpo Tou €xel mpoxdeL o-
T6 didonaon turtou "Splitl2”, "Split14” A "Split24” evtomotel ue onueiwpévn
xdmotor oxy) TOU Yiol EUTAOUTIONS, TOTE, cUUQwva Ue Tov Koavovo 3, oxohou-
Vel eMaUVEVERYOTOINGT TOU UNTEIXOU TOU X0l UUEXIQIOUO TWV TASUPGY Tou Bdom
TWY ETUTPETOUEVLY popgev ddonacng. H avohutiny dwdixacio Tou Bruatog 2
TeplypdpeTar oTo Thpeg xetuevo. Eivar govepd ot ta Bruata 1 xou 2 Tpononolo-
OV TNV Eéva Tou TAEYUATOS OGOV apopd TIC Uapxaplouévee TAsupés. [ Tov
AOYO auTO, amontelton o emavaknmTixy) uédodog mou amoteheiton omd TH CUVE-
YY) EXTEAEDT) TV BNUdTRY auToY Uéyel Tou onuciou omou dev eugaviCovton véa
HOEXUEIOUOTA OXUY.

e Bripa 3: Aol €yel ohoxhnpwiel To HoEXAELOUN TWV OXUWY TOU TAEYUATOS Yid
eunAouTioud, mpayuoatomoleiton 1 didomacr) Toug. Kdle popxaplouévn our| dlo-
ondton og 600 xou dnuovpyeiton £vag véog xoufoc. O veéog xéufog tonovetelton
OTO YEWUETPXO UECO TNG OXUNG, EXTOS EQV aVAXEL OE Xdmoto optaxd onucio Tou
ywelou. Xe authy TNV nepintwor, oL cuvTETaypéveS Tou xadopilovTon ue axpiBn
ToEEUBOAY| TEoXEWEVOL Vo BlaTnenUel 1 TeaypaTX YEOUETEN TOU Ywelou TNe
pofic. XN ouvéyela, utoloyllovto ol ueToBANTéG Tou TEdioL PoTC 0TOUG VEOUG
xOUPoug pEow aptiunTxhc TapeBorNS.

o Bripa 4: To tehixd Bripa tne dadixactiog eumhoutiogol eivan 1 Srutoupyio Twv
VEOV TETPAEDP®Y TOU Vol AVTIXATUOTACOLY Tol untewd, poli e Tov xooploud
XU TNV EVIUERWOT] OAY TOV TOTOAOYIXMY XAl YEVEAAOYIXMY TOUG TANROPORLOV.

Axolouiel 1 cuvéylon tne enthuong TV eElOWoEWY POHC UE TO VEO, EUTAOUTIONEVO,
mAéyuo. H enlhvon ocuveyiletan and 1o onueio 6mou Slaxdmnxe yiol TNV Tporyatonoinom
NG TPOCUPUOYTC, TepthaudvovTag xan o peYE€dn Tou mediou mou xadopioTnxay YEcw
TopepBolric oToug véoug xopfouc. ‘Otav oloxhnewiel 1o mpoxadoplouévo mArdog
EMAVOANTTIXOVY BNUdTwy, Eextvd 0 ETOUEVOS XUXAOS TEOCUPUOYTC.

Eunioutioudg o Por oe Kavdil pue Eundodio

Ye quTO TO XEPAAo, 0 AYOELIIOC TEOCUPUOYHC TToL avamTUYUnxe cpapuoletal Ge
€val TEOPBANUA ECWTEPXAC PONG EVTOC EVOC Xavohlol Ue éva eunodto.  Eetdlovton
0V0 mapdhhayéc Tou TEOBAAUATOC, Uiot OTIOU TO EUTOBLO EIVOL CUUUETELXO XAl Lol OTIOU
ELOGYETOL Lol XOPUPT| OTNY ETLPAVELS TOU, UE GXOTO 1) poY| Vo el var ebvan, otny
oucia, 2A. H yewuetpla Tou ywelou, cUVOBELOUEVT amd TIC Optaxés GUVITKES, TOPOU-
odletan oto oyfua[9) H pory nou eZetdleton agopd cuumestéd peuctd xon Yewpeiton
un-ouvextixr ue aprdud Mach 0.8 oty eicodo. Xt cuyxexpuévn UeAET, xal OTIC
0Vo mopodhayEC TG, o YEyioTog apuiude enoavarbewy Tou emAOTN Tng porc ThieTon
fooc ye 5000 xou ouvohixd mparyuaTomoloUVTAUL 4 XUXAoL TEOGUPUOYTS, Evac avd 1000
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emavohnTTd BridorTa.

2 14 9. F / A / /5 5 Z. 4 V4
XA 9: 'ewuperpia tov kavaAiol pe to €UTO010, TUVOOCUOUEVT) ATO TIS 0P1AKES OUV-

Onkeg.

Evoewctind ota oyfuare [L0} [LI] nopouvoidletar 1o opyind xon tehixd mhéypa poli pe to
avtioToyo medio Tou aprduod Mach, yio Ty TN TEPINTWOY GUUPETEIXOY EUTOBIOU

ExAue 10: Iepintwon Kavahiod A: Apxiké mAéypa kovtd oto eunédwo (apotepd) ka
nedio tov apripo Mach (be&id). To mAéyua amoteetrar ané 14324 kdéufovs ka1 68830
TeTpdedpa.

X
oy
A

YxAuo 11: Iepintwon Kavakiov A: Tehiké tAéyua kovtd oto eunddo (apiotepd) kar
medio Ttov apiduol Mach (dekid). To tAéyua anotedeftar and 122465 kopfous ka1 687557
TeTpdedpa.



EunAouvtiopndg o Por| ylpw and Xgalpa

Auté t0 xe@dhono agopd éva meoBAnua e€wTepng poNg YUpw amd wa opaipo. Ele-
télovton 6Vo mopdhharyéc Tou mpofhfuatog, ue aprud Mach tng e’ dnepo porc oo pe
0.85 xou 0.95. Ou perétec autée Pacilovton o avtioTolyn mpobndpyouvoa yerétn [5].
H pot| Yewpelton cuUTIESTY|, UN-OUVEXTIXT. TN CUYXEXEWEVY UERETY), XU OTIC B0
TOEUANAYES TNG, O UEYLoTOS aptiuog enavahfbewy Tou emhitn g poric Tideton (oog
ue 6000 xon cuvohxd TpoyuaToToOVIAUL 3 XUXAOL TEOCUPUOYYS, Evag avd 1500 emo-
VoANmTIXd Briuoro.

Evdewtind ot oyfuota TopouctdleTon To opytkd xou TEAxS TAéyuo poll Ue
Toe avtioTotya medla Tou aprduold Mach, yio tn dedtepn nepintwon ye aprdud Mach e’
dmelpo poric oo pe 0.95.

Yxhue 12: Iepintwon Xpaipas B: Apyiké mAéyua kovtd otny ogaipa (apiotepd) ka
nedio tou apiipod Mach (6e&id) vnodoyiouévo e xprion tov mAéyuatos avtol. To mAéyua
arnotelettar ané 3973 koppovs ka1 21129 tetpdedpa.

IxAue 13: Hepintwon Xeaipas B: Tehiké mAéyua xovtd otny opaipa (apiotepd) kar
redio Tov ap1ipod Mach (6e&id) vrodloyiouévo e xprion tov mAéyuatog avtol. To tAéyua
arotelettar ané 63276 kopfous kar 358934 tetpdedpa.

Téloc, otov mivaxa Tapovoldlovtol oL TWES Tou cuvTEAEsTY| avtiotaong Cp, ot
oUYXELON UE TIC AVTIOTOLYES TYES TNG UEAETNG AVOPORAS [5].



Apriuoc Mach | Arnoteréopara pe Hpooopuoyt| | Merétn Avagopdc
0.8 0.57 0.575
0.95 0.9 0.945

ITivaxag 5.1: XUykpion péowr xpovikd tiudny touv ovvtedeotn avtiotaons, Cp wng
MEAETNS avapopdS Kal Twy TPOTOMOIDTEWY TOU TPAYUATOToINUNKay e €EUTAOUTIONO.

Avaxegalalwor xou Ilpotdoeig yiao MeAhovtixny

MeAétn

O oxomndg g dimhwuaTixrg epyactiog Ao 1 SLaTiTKOT TV aEy @Y Tou h-gunioutiopod
TAEYUSTOV TETPUEDPIXWOY OTOLYEWY, 1) AVATTUEY AOYLOMXOU Yiol TNV EQUOUOYT TOUG
xou 1 doxauy) Tou G BLdpopar TEoBAAUTA PoTic. Apyixd TapouctdcTxe 1 Yewpla Tou
EUTAOUTIOUOU TETPAEDPWY, 0xOAOLVOUUEVY amtd TEpLYpupT| EVOS ahyoplduou Tou epap-
uoleL TIC apyEc aUTEC, Yo Tov omolo avamTOyUNXE avTioTor o AoYIoUxd. YT CUVEYEL,
TO MOYLOUIXO EQUPUOCTIXE GE BUO TEOBAAUATA POTC, TO XoEVHL UE BUO UTOTEQLTTMOOELG
UE o%omo6 TNV a&loAOYNoT TN amoTEAECUUTIXGTNTAC Tou. To anoteréoyarta emBeBot-
VoLV OTL O EUTAOUTIOUOC TAEYHATWY amoTehel €vay a&loToTO TEOTO Brtoupyiog U-
nA¥c ToLdTNTAC TAEYUSTOY, TROCUPUOCUEVWY OTIC anaithoelg xdie mpofAnfuatoc. To
AoYIoUIX6 oL avamTUYINXE amEdWoe aIOTIC TOL ATOTEAECUATO YOl OLETEL ONUAVTIXES
TEOOTTIXES Y1 BEATUOOELS XUl TEQUUTEQL) EMEXTACT).
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