
National Technical University of Athens
School of Mechanical Engineering
Fluids Section
Lab. of Thermal Turbomachines
Parallel CFD & Optimization Unit

Deep Neural Networks as Turbulence Model Surrogates in
Aerodynamic Analysis and Optimization

Diploma Thesis

Ioannis Kordos

Advisor: Kyriakos C. Giannakoglou, Professor NTUA

Athens, 2023

ii

Acknowledgments

I would like to take this opportunity to express my sincere gratitude to two indi-
viduals who were instrumental in the completion of my Diploma Thesis. First and
foremost, I am deeply thankful for the guidance provided by Professor Kyriakos C.
Giannakoglou. His expert knowledge, problem-solving skills, and unwavering sup-
port have been invaluable throughout my academic journey. It has been an honor
to work under his supervision and I am grateful for the enriching experience he has
provided.

Secondly, I would like to extend my heartfelt appreciation to Marina Kontou, whose
assistance and insights have been invaluable in the successful completion of my the-
sis. Her expertise in the field of deep neural networks, coupled with her willingness
to share her knowledge and offer constructive feedback, have been essential to my
progress. I am incredibly grateful for her guidance and support and I will always
cherish the knowledge and skills she imparted to me.

iii

iv

National Technical University of Athens
School of Mechanical Engineering
Fluids Section
Lab. of thermal Turbomachines
Parallel CFD & Optimization Unit

Deep Neural Networks as Turbulence Model Surrogates in
Aerodynamic Analysis and Optimization

Diploma Thesis

Ioannis Kordos

Advisor: Kyriakos C. Giannakoglou, Professor NTUA

Athens, 2023

The target of this Diploma Thesis is the use of DNNs as turbulence Model sur-
rogates in aerodynamic analysis and optimization, in order to reduce the overall
computational cost of this process.

DNNs are trained on a dataset with the aim of reproducing the turbulence viscosity
field as accurately as possible. To train the DNN, the geometries are parameterized
through volumetric morphing using NURBS lattices and using the Latin Hypercube
Sampling (LHS) a set of new differentiated geometries is generated. The flow is
computed by the RANS equations coupled with the turbulence model within PUMA
software (PUMA-TM). In addition, particular attention is paid to the specification
of the DNN architecture and the way of training the network.

The optimization cases used are the optimization of the airfoil shape NACA4318
with target to minimize the drag coefficient with constant lift coefficient, and the
turbine blade LS89 with target to minimize the pressure total losses, keeping the
flow exit angle close to its baseline value. The PUMA-TM model for the first case
is the RANS equations coupled with the SA turbulence model, while for the second
case it is the RANS equations coupled with the k-ω turbulence model assisted by
the γ − R̃eθt transition model. The alternative models are the solver of the RANS
equations coupled with the DNN of each case (PUMA-DNN). The MAEA (shape)
optimizations are performed for both models as evaluation software. In addition, for
the second case, the architecture of the DNN and the selection of appropriate inputs
are optimized with a MAEA-based optimization and techniques like early stopping
and dropout are applied during the training process. All optimizations with MAEA
are implemented in the EASY software.

During the shape optimizations where the PUMA-DNN is the evaluation software,
the best solutions of each generation are re-evaluated with the PUMA-TM and if
necessary the DNN is retrained. At the end of the optimization, the results of

MAEA relying on PUMA-DNN and PUMA-TM evaluation software are compared
in terms of their quality and the computational cost of the optimization.

ii

Εθνικό Μετσόβιο Πολυτεχνείο

Σχολή Μηχανολόγων Μηχανικών

Τομέας Ρευστών

Εργαστήριο Θερμικών Στροβιλομηχανών

Μονάδα Παράλληλης Υπολογιστικής Ρευστοδυναμικής

& Βελτιστοποίησης

Τα Βαθιά Νευρωνικά Δίκτυα ως Υποκατάστατα

Μοντέλων Τύρβης στην Αεροδυναμική Ανάλυση και

Βελτιστοποίηση

Διπλωματική εργασία

Ιωάννης Κορδός

Επιβλέπων: Κυριάκος Χ. Γιαννάκογλου, Καθηγητής ΕΜΠ

Αθήνα, 2023

Στόχος της Διπλωματικής αυτής Εργασίας, είναι η χρήση Βαθιών Νευρωνικών Δι-

κτύων (ΒΝΔ), ως υποκατάστατα μοντέλων τύρβης στην αεροδυναμική ανάλυση και

βελτιστοποίηση, με στόχο τη μείωση του συνολικού υπολογιστικού κόστους της δια-

δικασίας αυτής.

Τα ΒΝΔ εκπαιδεύονται σε ένα σύνολο δεδομένων με στόχο να αναπαράγουν όσο το

δυνατόν ακριβέστερα το πεδίο τυρβώδους συνεκτικότητας. Για να εκπαιδευτεί το ΒΝΔ,

η αρχική γεωμετρία παραμετρικοποιείται μέσω ογκομετρικής μορφοποίησης με τεχνι-

κές NURBS και με χρήση της τεχνικής δειγματοληψίας Latin Hyperciube Sampling
(LHS), δημιουργείται ένα σύνολο νέων διαφοροποιημένων γεωμετριών. Οι μοντελο-
ποιήσεις της ροής γίνονται με τον επιλύτη των RANS εξισώσεων και των μοντέλων
τύρβης (ακριβές μοντέλο) στο λογισμικό PUMA. Επιπλέον, ιδιαίτερη σημασία δίνεται
στον προσδιορισμό της βέλτιστης αρχιτεκτονικής του δικτύου καθώς και στον τρόπο

εκπαίδευσης του.

Οι περιπτώσεις βελτιστοποίησης που χρησιμοποιούνται είναι η βελτιστοποίηση του

σχήματος της αεροτομής NACA4318 με στόχο την ελαχιστοποίηση του συντελεστή
αντίστασης και σταθερό συντελεστή άνωσης, και του πτερυγίου συμπιεστή LS89 με
στόχο την ελαχιστοποίηση των απωλειών πίεσης και σταθερή γωνία εξόδου της ρο-

ής. Το ακριβές μοντέλο για την πρώτη περίπτωση, είναι ο επιλύτης των RANS με
το μοντέλο τύρβης Spalart − Allmaras, ενώ για την δεύτερη είναι ο επιλύτης των
RANS με το μοντέλο τύρβης k-ω και μετάβασης γ − R̃eθt. Τα εναλλακτικά μοντέλα,
είναι ο επιλύτης των RANS εξισώσεων με το αντίστοιχο ΒΝΔ της κάθε περίπτωσης.
Οι βελτιστοποιήσεις σχήματος μέσω εξελικτικού αλγορίθμου γίνονται και με τα δύο

μοντέλα ως λογισμικό αξιολόγησης. Επιπλέον, η αρχιτεκτονική του ΒΝΔ και η επι-

λογή των κατάλληλων εισόδων της δεύτερης περίπτωσης βελτιστοποιούνται μέσω ενός

εξελικτικού αλγορίθμου και, εν συνεχεία, εφαρμόζονται οι τεχνικές early stopping και

dropout κατα τη διαδικασία εκπαίδευσης. ΄Ολες οι βελτιστοποιήσεις μέσω εξελικτικού
αλγόριθμου υλοποιούνται στο λογισμικό EASY .

Κατα τη διάρκεια των βελτιστοποιήσεων σχήματος όπου τα εναλλακτικά μοντέλα α-

ποτελούν το λογισμικό αξιολόγησης, οι βέλτιστες λύσεις κάθε γενιάς, επαναξιολογο-

ύνται με το ακριβές μοντέλο και όπου κρίνεται απαραίτητο το ΒΝΔ επανεκπαιδεύεται.

Στο πέρας τον βελτιστοποιήσεων, τα αποτελέσματα των βελτιστοποιήσεων με τα δύο

μοντέλα συγκρίνονται ως προς την ποιότητα τους και τον υπολογιστικό χρόνο της

βελτιστοποίησης.

ii

Nomenclature

NTUA National Technical University of Athens
PCopt Parallel CFD & Optimization unit
AI Artificial Intelligence
ML Machine Learning
ANN Artificial Neural Network
DNN Deep Neural Network
CFD Computational Fluid Dynamics
EA Evolutionary Algorithm
MAEA Metamodel Assisted Evolutionary Algorithm
MAE Mean Absolute Error
MSE Mean Square Error
NURBS Non-Uniform Rational B-Splines
LHS Latin Hypercube Sampling
CD Drag Coefficient
CL Lift Coefficient
H Heat Transfer Coefficient
Pt,losses Total Pressure Losses

iii

iv

Contents

Contents i

1 Artificial Intelligent - AI 1

1.1 Introduction to Artificial Intelligent - AI 1

1.2 Machine Learning . 2

1.3 Deep Learning . 3

1.4 AI in CFD . 3

1.5 Thesis Outline . 5

2 Deep Neural Network - DNN 7

2.1 Introduction . 7

2.2 Artificial Neuron Model . 9

2.3 Training Process . 10

2.3.1 Loss function . 10

2.3.2 Back-Propagation: The derivative calculation 11

2.3.3 Optimization Algorithm . 12

2.4 Components of the Learning Algorithm 13

2.5 Generalization in Neural Networks 16

2.5.1 Reduce Overfitting by Constraining Complexity 17

2.5.2 Regularization Methods for Neural Networks 17

3 Aerodynamic Analysis in Turbulent Flows 21

3.1 RANS equations . 21

3.2 The Spalart-Allmaras (SA) Turbulence Model 22

i

3.3 The k-ω Turbulence Model . 23

3.4 The γ − ˜Reθt Transitional Model . 24

3.5 The GPU-enabled CFD Solver PUMA 27

4 Optimization using Evolutionary Algorithms - EA 29

4.1 Introduction to Evolutionary Algorithms 29

4.2 Basic structure of EAs . 30

4.3 Constituents of an EA . 31

4.4 Metamodel-Assisted Evolutionary Algorithms (MAEA) 34

4.5 The Evolutionary Algorithms SYstem - EASY software 35

5 Replacing Turbulence Model by DNNs in the Optimization of an

Isolated Airfoil 37

5.1 The NACA4318 Airfoil Case . 40

5.2 Parameterization and Training Data Creation 40

5.3 Validation of the DNN configuration 43

5.4 Shape Optimization Studies . 45

5.5 Conclusions . 48

6 Replacing Turbulence and Transition Models by DNNs in a Tur-

bine Blade Shape Optimization 49

6.1 The LS89 turbine case . 50

6.2 CFD Analysis of LS89 blading - Validation 51

6.3 Parameterization and Training Data Creation 54

6.4 Optimization of DNN Architecture and Inputs 56

6.5 Regularization of the Optimal DNN configuration 63

6.6 Shape Optimization Studies . 67

6.7 Conclusions . 73

7 Conclusion 75

7.1 Overview . 75

ii

7.2 Conclusions . 76

7.3 Future Work for Proposals . 77

Bibliography 79

Bibliography 13

iii

iv

Chapter 1

Artificial Intelligent - AI

1.1 Introduction to Artificial Intelligent - AI

There are several definitions for Artificial Intelligence (AI) and one of the most
detailed and complete definition, is made by the online publication Quartz [1]:
”Artificial Intelligence is software or a computer program with a mechanism to learn.
It then uses that knowledge to make a decision in a new situation, as humans do.
The researchers building this software try to write code that can read images, text,
video or audio and learn something from it. Once a machine has learned, that
knowledge can be put to use elsewhere”.

In simple terms, AI refers to a machine’s ability to utilize algorithms that can
learn data patterns and make decisions like humans. These algorithms can process
large amounts of data and make decisions based on statistical models, reducing the
number of errors compared to humans who are prone to cognitive biases [2].

In the late 1990s and early 2000s, researchers in AI faced an obstacle in their quest
to develop machines with intelligence. They realized that a thorough understanding
of intelligence was crucial, but there remained no clear definition of it. This issue
slowed the progress of AI. To overcome this, researchers changed their approach and
focused on creating a system that could grow its intelligence [3], rather than trying
to build intelligence from scratch. This approach established the new subfield of AI
called Machine Learning (ML).

1

1.2 Machine Learning

ML is a subfield of AI that enables a machine to improve its performance on tasks
automatically through experience. The algorithms used in ML examine data, learn
from it, and then make predictions or classifications about new data. This process
allows the machine to continually evolve its understanding and decision-making
skills, without the need for specific programming.

Types of machine learning [4] (see Figure 1.1)

� Supervised
Supervised ML in the context of Computational Fluid Dynamics (CFD) refers
to the process of training a model on a dataset of CFD simulations, so that the
model can learn to predict the output (e.g. pressure, velocity, temperature)
given a set of input parameters (e.g. geometry, boundary conditions, fluid
properties). This type of ML is used in this Diploma Thesis for predicting the
turbulence viscosity field (output) with geometrical and flow data as inputs.

� Unsupervised
Unsupervised ML in the context of CFD refers to the use of ML algorithms
that do not require responses for training. In this context, the algorithms
analyze the fluid dynamics simulations to identify patterns and relationships
in the data, without the need for prior knowledge or the responses. The goal is
to uncover hidden structure and correlations in the fluid flow patterns and to
gain insights into the underlying physical processes that govern fluid dynamics.

� Reinforcement
Reinforcement ML in the context of CFD refers to the use of ML algorithms
that use trial-and-error learning to make decisions about how to control a fluid
system. The goal of reinforcement learning in CFD is to optimize fluid be-
havior by learning from interactions with the fluid environment and making
decisions based on the consequences of previous actions. Reinforcement learn-
ing algorithms typically involve an agent that makes decisions in response to
the state of the fluid system, and a reward signal that provides feedback about
the quality of the decisions.

In the early 2010s, several developments shaped the future of ML. With advancing
technology, more computing power became accessible, allowing for the evaluation
of more complex ML models. Additionally, declining costs for data processing and
storage meant more data became available for ML systems. At the same time,
advancements in our understanding of the human brain paved the way for researchers
to develop new ML algorithms based on this knowledge. These advancements led
to the rise of a new area of ML known as Deep Learning.

2

Figure 1.1: Types of machine learning. From: [5]

1.3 Deep Learning

Deep learning (DL), a subfield of ML, is an area of AI that is rapidly growing. It
is utilized to tackle complex problems that were once deemed impossible to solve
and involves working with vast amounts of data. The key to DL lies in the use of
artificial neural networks, that are trained on large amounts of data to learn patterns
and make decisions or predictions based on that data. Despite its potential for
solving challenging issues, implementing DL requires access to a substantial dataset
and significant computational resources. These requirements make it necessary for
organizations to invest in both hardware and data infrastructure to support their
DL initiatives.

The way that AI, ML, and DL relate to each other, is showing in Venn diagram of
Figure 1.2.

1.4 AI in CFD

Computational Fluid Dynamics (CFD) is a field that combines mathematics, fluid
mechanics, and computer science, using numerical methods to solve the equations
of fluid mechanics to simulate fluid flow and heat/mass transfer. Despite its effec-
tiveness, CFD faces challenges, including increasing complexity of physical models,
difficulty in generating an appropriate mesh for complex geometries, and high post-
processing time for complex flow data. To address these issues, many researchers
are exploring the use of AI algorithms within CFD.

3

Figure 1.2: Artificial Intelligence, Machine Learning, and Deep Learning. From:
[6].

AI algorithms have become increasingly popular for solving problems in the field of
CFD, due to their accuracy and efficiency. There are three main AI-CFD coupling
models : data-driven, physical, and hybrid. The data-driven model, which is used in
this Diploma Thesis, relies on a large database to directly input CFD data into a ML
model to make parameters predictions. This method is fast and has low error but
can make it difficult to understand the underlying physical process. An example of
data-driven model, is a study by Kontou M et al. (2022) [1], where a DNN-based sur-
rogate for turbulence and transition closure of the Reynolds-Averaged Navier-Stokes
(RANS) equations was presented. The DNN hyper-parameters were optimized, and
the model was trained using geometrical and flow data to predict turbulence viscosity
field. Then, the RANS coupled with the DNN and it was used as evaluation soft-
ware in a MAEA-based (shape) optimization, reducing the optimization turnaround
time.

The physical model in AI-CFD coupling utilizes CFD data to enhance the accuracy
of fluid mechanics models. This approach requires fewer data than the data-driven
model, as it takes into account physical mechanisms. In a study by Tracey B. et
al. (2015) [8], a neural network was developed based on supervised learning algo-
rithms to optimize the source term of Spalart-Allmaras (SA) models. The authors
obtained data by running the SA model solver for a variety of flow scenarios, and
then trained the neural network to replace the source term. The resulting model
was integrated into the SA solver, and the coupled solver was able to predict a range

4

of flow situations.

The hybrid model combines both the data-driven and physical models, resulting in
high precision. Although the underlying relationship of data remains challenging
to explain, this approach provides a new means to examine mechanisms. A study
by Maulik et al [9], the authors explored the use of AI algorithms in Large Eddy
Simulation (LES) and the classification of spatio-temporally dynamic turbulence
model. The grid nodes were classified, and for a hybrid closure, the turbulence
model was combined with the predictions of a neural network that used conditional
probability.The results showed that the proposed methods were robust and stable,
and could potentially be used to take advantage of the strengths of different models
for predicting complex flow phenomena.

When it comes to combining CFD with AI models, there are several fundamental
questions that need answers. Can machine learning be successful with CFD data?
Will the algorithm offer stability comparable to a manual model? Will the learned
model accurately predict results for unseen flows? These questions are explored
through this Diploma Thesis.

1.5 Thesis Outline

Following the introduction, the chapters composing this thesis are presented:

� Chapter 2: A gentle introduction is provided to the functioning of Deep
Neural Networks (DNNs). The model of the neuron, the training process
and the fundamental components of neural networks are described. The early
stopping and dropout generalization techniques are presented, as well.

� Chapter 3: The mathematical foundation of the RANS equations, Spalart-
Allmaras (SA) and k-ω turbulence models, and γ − R̃eθt transitional model is
presented. The system of equations is numerically solved in PUMA software
which is also discussed.

� Chapter 4: A gentle introduction to Optimization using Evolutionary Al-
gorithms (EA) is given. The Metamodel-Assisted Evolutionary Algorithms
(MAEA) are also introduced. All EA or MAEA based optimizations were
performed using the EASY software, which is also presented.

� Chapter 5: The DNNs are exploited for predicting the turbulence viscosity
field (µt) in order to replace the SA turbulence model without transition in a
MAEA based optimization of NACA4318 airfoil case. All the necessary steps
to create and train the DNN are presented. Two MAEA based optimizations
carried out, one using the RANS coupled with the SA turbulence model within
PUMA, and another using the RANS coupled with the DNN within PUMA,
in order to compare and evaluate the results.

5

� Chapter 6: The DNNs are exploited for predicting the turbulence viscosity
field in order to replace the k-ω turbulence model assisted by the γ − R̃eθt
transitional model in a MAEA based optimization of LS89 turbine blade case.
All the necessary steps to create and train the DNN are presented. Two MAEA
based optimizations carried out, one using the RANS coupled with the k-ω
turbulence and γ − R̃eθt transitional model within PUMA, and another using
the RANS coupled with the DNN within PUMA, in order to compare and
evaluate the results.

6

Chapter 2

Deep Neural Network - DNN

2.1 Introduction

Artificial neural networks (ANNs), also known as ”neural networks,” are nonlinear
mapping systems that were inspired by the difference in computation between the
human brain and conventional digital computers. The brain, a highly complex and
parallel information-processing system, composed of neurons, can perform tasks such
as pattern recognition, perception, and motor control much faster than the fastest
digital computer [10]. The nonlinear and parallel nature of the brain motivated the
development of ANNs.

A brain neuron is comprised of three main parts: a dendritic tree that receives
signals from other neurons, a cell body that processes the signals and produces a
response, and an axon that transmits the response to other neurons. Each neuron’s
response is a non-linear function of its inputs and state and is mainly determined by
the strength of its input connections. A single neuron can receive anywhere from a
few hundreds to tens of thousands of inputs and has multiple branches on its axon.
The concept here is that large systems of simple units connected in the right way
can exhibit complex and interesting behaviors. A simple brain neuron is shown in
Figure 2.1.

An ANN is a model designed to resemble the structure and function of a biological
neuron. It is composed of a large number of simple processing units, known as
neurons, that are interconnected via weighted connections. Each neuron takes input
from multiple other neurons, calculates an output value using the inputs and stored
information, and then passes that output on as input to other neurons.

The simplest structure of an ANN (see Figure 2.2), consists of three layers: input,
hidden, and output. The input layer provides input to every unit in the next layer,

7

the hidden layer, which does not have direct connections to the outside world. The
output layer receives inputs from the hidden layer and produces the final output
of the network. The network has only forward connections, with no sideways or
backward connections. The goal of an ANN is to be trained on input patterns (e.g.
current stock market prices) to generate correct output patterns (e.g. next year’s
stock market prices).

Figure 2.1: A schematic diagram of a ”typical” vertebrate neuron. The electrical
signals flow into the dendrites and out through the axon. Thus, in this diagram, the
information flows from left to right. From: [11]

Figure 2.2: A simple multilayer network. Each unit connects to all units in the
layer above it. There are no sideways connections, or back connections. The ”internal
representation units” are often referred to as the ”hidden units”. From: [11]

8

2.2 Artificial Neuron Model

An artificial neuron is a fundamental building block of a neural network and plays a
crucial role in processing information. A neuron’s structure, is shown in Figure 2.3,
consists of three main components.

� A set of synapses is defined, each with a weight. The input signal xj at synapse
j, connected to neuron k, is multiplied by the weight wkj of the synapse.

� An adder uk that sums the input signals, each multiplied by its corresponding
synaptic strength.

� An activation function ϕ(·) is used to restrict the magnitude of the output
produced by a neuron.

� The bias bk of k neuron.

Figure 2.3: An artificial neuron model. From: [10]

The processing units (neurons), have responses like:

yk = ϕ(υk) (2.1)

where υk = uk + bk, and

uk =
m∑
j=1

wkjxj (2.2)

where x1, x2, ..., xm are the input signals and wk1, wk2, ..., wkm are the respective

9

synaptic weights of neuron k. Here, the unit computes a weighted linear combina-
tion of its inputs and passes this through the nonlinearity ϕ(·) to produce a scalar
output yk. This nonlinearity allows for a greater range of problem-solving capa-
bilities compared to linear systems, as ϕ(·) is a bounded, non-decreasing nonlinear
function. Some basic activation functions are listed in Table 2.1.

Some Activation Functions

Sigmoid ϕ(υk) =
1

1 + e−υk
(2.3)

Hyperbolic Tangent (tanh)
ϕ(υk) =

eυk − e−υk

eυk + e−υk
(2.4)

Rectified Linear Unit (ReLU)
ϕ(υk) = max(υk, 0) =

{
υk, if υk ≥ 0
0, if υk < 0

(2.5)

Table 2.1

By itself, a single processing element is not very powerful. The strength of an
artificial neural network lies in the combination of many simple processing elements,
known as neurons. By varying the connections and connection weights, the network
can be trained to perform complex functions. Research has demonstrated that
a large network with the right structure and weights can accurately mimic any
function within certain constraints [13].

2.3 Training Process

In the previous section, the general idea and structure of neural networks have been
presented. To gain deeper insight, the training process of neural networks, composed
of three key concepts - loss functions, back-propagation, and optimization - requires
further examination.

2.3.1 Loss function

The loss function in neural networks is a crucial component of the training process.
It calculates the discrepancy between the expected or target output and the actual
output generated by the model. The value obtained from the loss function is then

10

used to compute the gradients that adjust the weights in the network, ultimately
helping to improve its accuracy. In this section, we will be exploring two common
types of loss functions, however, it is worth noting that there are numerous other
options available. The choice of loss function depends on the specific requirements of
the problem and can greatly impact the performance of the model. In this Diploma
Thesis the type of loss function was chosen is the Mean Absolute Error (MAE).

Mean Absolute Error (MAE) [14], also called L1 loss and is used for regression
problems. It measures the average magnitude of absolute differences between N pre-
dicted vectors S = {y1, y2, ..., yN} and N actual observations S∗ = {y∗1, y∗2, ..., y∗N}
and the corresponding loss function is defined as:

1

N

N∑
ı=1

||yı − y∗ı ||1 (2.6)

where || · ||1 denotes L1 norm.

MAE is robust to outliers and is useful in situations where the distribution has many
modes and accurate predictions at a specific mode are desired.

Mean Square Error (MSE) [14] . MSE also called L2 loss and it used also for
regrassion problems. MSE denotes a quadratic scoring rule that measures the aver-
age magnitude of N predicted vectors S = {y1, y2, ..., yN} and N actual observations
S∗ = {y∗1, y∗2, ..., y∗N}. The corresponding loss function is shown as:

LMSE(S, S
∗) =

1

N

N∑
ı=1

||yı − y∗ı ||22 (2.7)

where || · ||2 denotes L2 norm.

MSE is sensitive towards outliers and it is used when it’s desirable to penalize
significantly (quadratically) more large errors than small ones.

The total error of the neural network is just the sum of the individual pattern errors
from the training set

L =
∑
p

Lp (2.8)

where p indexes the patterns in the training set and Lp is the corresponding loss
function at p pattern which can be calculated as described before.

2.3.2 Back-Propagation: The derivative calculation

After obtaining the outputs and computing the error, the next step is to calculate
the derivative of the error with respect to the weights, in order to minimize the

11

error using an optimization algorithm. Back Propagation [12] is an algorithm used
in training neural networks that computes these derivatives by iteratively processing
the information in reverse order, starting from the output layer and proceeding to
the input layer.

First, we note that the total error of the neural network is just the sum of the indi-
vidual pattern errors from the training set, so the total derivative is just the sum of
the per-pattern derivatives,

∂L

∂wkj

=
∑
p

∂Lp

∂wkj

(2.9)

where p indexes the patterns of the training set and Lp is the corresponding loss
function at p pattern of the training set.

The derivative can be written as:

∂Lp

∂wkj

=
∑
k

∂Lp

∂υk

∂υk
∂wkj

(2.10)

where υk and wkj explained in section 2.2.

The success of the back-propagation algorithm in finding derivatives is attributed
to its organized and systematic decomposition of steps. It’s important to note that
the next steps of the derivative calculation process will differ based on the type of
loss function used. However, it’s not necessary to analyze the process in great detail
as the objective of this explanation is to provide a general understanding of the
training process, rather than exploring each and every variation of the algorithm.

2.3.3 Optimization Algorithm

The next step after obtaining the gradients is to use optimization algorithms to
minimize the error, as defined by the loss function, by altering the values of the
synaptic weights. These algorithms work in an iterative manner, meaning they
repeat a sequence of steps to find the optimal solution. They initiate with an
initial approximation of the weights, represented by wkj(n = 0), and then iteratively
update this approximation using a specific equation until a convergence is reached.
The equation form is:

wkj(n+ 1) = wkj(n) + ηp(n) (2.11)

The update of the synaptic weights in the training process of a neural network is
based on a search direction vector p(n) and a positive scalar learning rate η, which
determines the step length. The choice of p(n) distinguishes various optimization
algorithms, as does the selection of η.

12

Gradient Descent

The first method for training a Back Propagation network was the gradient algorithm
[12]. This method is based on the principle of taking successive steps in the direction
opposite to the gradient, or a close approximation, of the loss function at the current
point. This direction represents the steepest descent and helps the algorithm to
converge to an optimal solution. The gradient algorithm proceeds as follows: given
the current weight matrix valuesW (n), it takes a step in the direction of the negative
gradient of the loss function at that point, updating the weight matrix to W (n+1).
This process continues until the algorithm converges to a local minimum of the loss
function. The gradient algorithm proceeds as follows:

W (n+ 1) = W (n)− ηn∇wL(W (n)) (2.12)

where ηn is the step size at the n-th iteration and the L(W (n)) is the loss function
at the n-th iteration. The term ∇wL(W (n)) has been already calculated from back-
propagation algorithm.

The gradient method is the first proposed training algorithm, it is simple to imple-
ment, but has the following disadvantages:

� slow convergence

� finds only a local extremum.

The limitations of the gradient algorithm in training Back Propagation networks
have been addressed by its modifications, one of which is the ADAM algorithm,
which was used in this Diploma Thesis. This method, introduced in [15], is known
for its efficiency and low memory requirements in optimizing the model. Unlike tra-
ditional optimization methods, ADAM requires only first-order gradient estimates,
making it highly advantageous. The algorithm personalizes the learning rate for
each parameter in the model by utilizing estimates of the first and second moments
of the gradients. The name ”ADAM” is an acronym for Adaptive Moment Estima-
tion, reflecting its capability to dynamically adapt the learning rate based on the
data.

2.4 Components of the Learning Algorithm

Training a deep learning neural network model using stochastic gradient descent with
backpropagation involves choosing a number of components and hyperparameters,
which are:

� Network Topology

� Loss Function

13

� Weight Initialization

� Batch Size

� Learning Rate

� Epochs

� Data Preparation

Some are more crucial than others and some selections can lead to sensible de-
faults for other elements. Loss function has already been discussed, the rest will be
analyzed.

The capacity of a neural network is an important factor in determining the range of
functions it is capable of representing. This capacity is determined by the number
of nodes in the hidden layer, with a larger number of nodes providing a greater
degree of versatility, but also making the model more difficult to train due to an
increased number of parameters that need to be learned. While it is possible for a
single hidden layer with a sufficient number of nodes to theoretically approximate
any mapping function, this is not a practical solution in real-world applications.
Instead, incorporating multiple layers with fewer nodes each increases the capacity
of the model while simplifying the optimization process.

� Network Topology. The number of nodes (or equivalent) in the hidden
layers and the number of hidden layers in the network.

The search or optimization process in the training of a neural network requires a
starting point to initiate the model updates. The initial model parameters, also
known as weights, define the starting point. It is crucial to choose an appropriate
starting point as the optimization algorithm is sensitive to it due to the non-convex
error surface. To overcome this, small random values are commonly used as the
initial model weights, however, different weight initialization methods can also be
utilized to determine the scale and distribution of these values. The choice of acti-
vation function can also have an impact on the weight initialization method used.

� Weight Initialization. The procedure by which the initial small random
values are assigned to model weights at the beginning of the training process.

The process of updating the model involves using a selection of examples from the
training dataset to compute the loss. For smaller datasets, it may be appropriate to
use all examples in the calculation. However, for problems where the data changes
frequently or is streamed, using a single example may be more appropriate. There
is also a combination approach where a certain number of examples can be selected
to estimate the error gradient. This selection of examples is referred to as the batch
size.

� Batch Size. The number of examples used to estimate the loss gradient
before updating the model parameters.

14

Once the error gradient has been estimated, the next step is to calculate the deriva-
tive of the activation function and use it to update the model parameters. However,
there are several factors that can add statistical noise to both the training dataset
and the estimated error gradient. Additionally, the depth of the model (number of
layers) and the separate updating of model parameters can make it challenging to
determine the optimal amount of change for each parameter to effectively move the
model down the error surface. To address these challenges, only a small portion of
the weight update is performed in each iteration. The size of this update is deter-
mined by a hyperparameter known as the learning rate, which controls the speed of
learning for the model on the training dataset.

� Learning Rate. The amount that each model parameter is updated per
iteration of the learning algorithm.

The training of a neural network involves repeating the process of updating the
model parameters many times until an optimal or satisfactory set is found. The
iteration of the process is determined by the number of passes through the complete
training dataset, after which the training stops. This is known as the number of
training epochs, a hyperparameter that is closely linked to the choice of learning
rate and batch size. In some cases, when utilizing certain regularization methods,
this hyperparameter can be set to a high value and its impact can be minimized.

� Epochs. The number of complete passes through the training dataset before
the training process is terminated.

The significance of the data used in the learning process of the mapping function is
often overlooked. The scale of the target variable plays a crucial role in determining
the choice of activation function for the output layer of the network. Moreover, the
scale of the input variables greatly impacts the scale of the weights in the input and
the initial hidden layers, which in turn affects the stability of the learning process.
The consideration of the scale and structure of the data used for learning is referred
to as data preparation.

� Data Preparation. The schemes used to prepare the data prior to modeling
in order to ensure that it is suitable for the problem and for developing a stable
model.

The process of training deep learning neural networks involves several components
and hyperparameters that must be carefully adjusted to achieve optimal perfor-
mance. Despite the numerous available extensions to the learning algorithm, config-
uring a network for a specific problem remains a challenging task, with no universally
agreed-upon set of rules for optimal network configuration.

15

2.5 Generalization in Neural Networks

The ultimate goal of training a neural network is to produce a final model that can
perform effectively on both the training data, as well as any new data that it will be
applied to for predictions. It is crucial that the model can accurately learn from the
known examples and apply that learning to future examples it has not seen before.
To measure the generalization performance of a model, techniques such as train/test
split or k-fold cross-validation [16] can be utilized. However, striking the balance
between learning and generalizing can be challenging, as too little learning will result
in underfitting, causing poor performance on both the training and new data, while
too much learning will result in overfitting, leading to exceptional performance on
the training data, but poor performance on new data. In both scenarios, the model
has failed to generalize properly. The type of model fit are the followings [17]:

� Underfit Model. A model that fails to sufficiently learn the problem and
performs poorly on a training dataset and does not perform well on new pat-
ters.

� Overfit Model. A model that learns the training dataset too well, performing
well on the training dataset but does not perform well on new patterns.

� Good Fit Model. A model that suitably learns the training dataset and
generalizes well to new patterns.

Figure 2.4: Different types of fitting. From: [18]

When it comes to evaluating the fit of a model, it is important to consider the
bias-variance trade-off. A model that is underfitted has high bias and low variance,
meaning that it cannot effectively learn the problem at hand regardless of the data
it is trained on. On the other hand, an overfitted model has low bias and high
variance, as it has learned the training data too well and its performance can vary
greatly with new, unseen examples or even with small variations in the training
data.

To address underfitting, one can increase the capacity of the model by changing its

16

structure, such as by adding more layers or nodes to existing layers. Overfitting, on
the other hand, is often indicated by monitoring the model’s performance on both
a training dataset and a validation dataset.

2.5.1 Reduce Overfitting by Constraining Complexity

There are two ways to approach an overfit model [17]:

� Reduce overfitting by training the network on more examples.

� Reduce overfitting by changing the complexity of the network.

The advantage of utilizing very deep neural networks is that their performance
increases as the size of the dataset grows. There will come a point, when the model
has been exposed to an almost infinite number of examples, where its performance
will reach a plateau based on the network’s capacity for learning. Overfitting the
training dataset may occur if the network has the ability to do so, which is a result of
having a large capacity. Decreasing the network’s capacity can reduce the likelihood
of overfitting and can be done by either modifying the structure of the network in
terms of the number of nodes and layers or by changing the parameters, specifically
the weights, which contribute to the network’s complexity. Therefore, it’s possible
to reduce the complexity of a neural network to reduce overfitting in one of two
ways [17]:

� Change network complexity by changing the network structure (number of
weights).

� Change network complexity by changing the network parameters (values of
weights).

In the case of neural networks, the complexity can be varied by changing the number
of adaptive parameters in the network. This is called structural stabilization. The
second principal approach to controlling the complexity of a model is through the use
of regularization which involves the addition of a penalty term to the loss function.

In this Diploma Thesis, efforts were made to mitigate overfitting in neural networks
by adjusting their complexity. This was achieved by reducing the number of units
and weights within the network. By doing so, the complexity of the network was
reduced, leading to a decreased likelihood of overfitting.

2.5.2 Regularization Methods for Neural Networks

Below is a list of two common regularization methods that were used in this Diploma
Thesis.

� Dropout: Probabilistically remove inputs during training.

17

� Early Stopping: Monitor model performance on a validation set and stop
training when performance degrades.

Decouple Layers with Dropout

DNNs can be susceptible to overfitting a training dataset with limited examples.
In order to mitigate this problem, multiple models with different configurations can
be combined into ensembles. However, this solution requires a significant computa-
tional expense in terms of training and maintaining multiple models. Alternatively,
dropout is a cost-efficient and effective regularization technique that can be used to
reduce overfitting and improve generalization error in DNNs. In dropout, random
nodes are dropped out during training (Figure 2.5), effectively simulating an ensem-
ble of different network architectures. This regularization method was introduced
by [19] and has been proven to be an effective solution for reducing overfitting in
various types of deep neural networks.

Figure 2.5: Dropout Neural Net Model. Left: A standard neural net with 2 hidden
layers. Right: An example of a thinned net produced by applying dropout to the network
on the left. Crossed units have been dropped. From: [19]

The Dropout technique is a well-established regularization strategy that aims to
prevent overfitting of DNNs by approximating the training process of multiple neural
networks with different architectures. During the training phase, a random number
of node outputs are temporarily ignored, making the current layer appear and behave
as if it has a different number of nodes and connections to the previous layer. This
leads to each layer being updated with a different configuration of nodes during
training, effectively making the process more noisy and forcing nodes to adapt to
changing conditions and assume varying levels of responsibility for inputs. This
leads to a more robust model, as the layers are less likely to co-adapt to correct

18

mistakes made by previous layers.

Model Description [19]

This section outlines the dropout neural network model. The model consists of L
hidden layers and uses the index l, ranging from 1 to L, to identify the hidden layers.
The vector of inputs into layer l is denoted as z(l), while the vector of outputs from
layer l is denoted as y(l) (y(0) = x represents the input). Additionally, the weights
and biases at layer l are represented by W (l) and b(l), respectively. The feed-forward
operation of a standard neural network (as shown in (Figure 2.6a)) can be expressed
as follows (for all values of l ranging from 0 to L-1, and for any given hidden unit
i):

z
(l+1)
i = w

(l+1)
i yl + b

(l+1)
i

y
(l+1)
i = ϕ

(
z
(l+1)
i

)
where ϕ is any activation function. With dropout, the feed-forward operation be-
comes (Figure 2.6b)

r
(l)
j ∼ Bernoulli(p)

ỹ(l) = r(l) ∗ y(l)

z
(l+1)
i = w

(l+1)
i ỹ(l) + b

(l+1)
i

y
(l+1)
i = ϕ(z

(l+1)
i)

The model uses the symbol ∗ to represent element-wise product. For each layer l,
the vector r(l) consists of independent Bernoulli random variables 1, each with a
probability of p of being equal to 1. The vector is sampled and multiplied element-
wise with the outputs of layer l, represented by y(l), to create the thinned outputs
ỹ(l). These thinned outputs are then used as inputs to the following layer. This
process is repeated for every layer. The result is the selection of a sub-network from
the larger network. During the learning process, the derivatives of the loss function
are backpropagated through this sub-network. At the time of testing, the weights
are scaled as W

(l)
test = pW (l), as shown in Figure 2.7.

1Independent Bernoulli random variables are random variables with two possible outcomes:
success (represented by 1) and failure (represented by 0). The probability of success is represented
by the parameter p, and the probability of failure is represented by (1-p). Each Bernoulli random
variable is independent of each other, meaning the outcome of one does not affect the outcome of
another.

19

Figure 2.6: Comparison of the basic operations of a standard and dropout network.
From: [19]

Figure 2.7: Left: A unit at training time that is present with probability p and is
connected to units in the next layer with weights w. Right: At test time, the unit is
always present and the weights are multiplied by p. The output at test time is same
as the expected output at training time. From: [19]

20

Chapter 3

Aerodynamic Analysis in

Turbulent Flows

3.1 RANS equations

Turbulence is characterized by an unsteady flow pattern, with motion that is ir-
regular and unpredictable. This type of flow is prevalent in nature and plays a
crucial role in engineering, as many flows in industrial settings are turbulent. The
turbulence in the flow causes significant variations in key flow properties, such as
velocity, pressure, temperature, and even density. These fluctuations can occur at
frequencies as high as 10 Hz, making it computationally and memory-intensive to
solve the Navier-Stokes equations using traditional methods, which would require
an extremely dense mesh. To address this issue, the Reynolds decomposition is
used to separate the velocity component, u, into its average value and fluctuation
component. Thus the RANS equations are an average from the time-dependent
Navier-Stokes equations. The RANS equations for steady state flows of compress-
ible fluids are written as follows:

RMF
n =

∂f inv
nj

∂xj

−
∂f vis

nj

∂xj

= 0 (3.1)

where n = 1, .., 5 and j = 1, ..3. f inv
j = [ρuj ρuju1 + pδ1j ρuju2 + pδ2j ρuju3 +

pδ3j ρujht]
T are the inviscid fluxes and f vis

j = [0 τ1j τ2j τ3j ukτkj + qj]
T the

viscous/turbulent ones. ρ, p, uj,ht and δjm stand for the fluid’s density, pressure,
velocity components, total enthalpy and the Kronecker symbol, respectively. Based

21

on the Boussinesq assumption, the components of the stress tensor are:

τjm = (µ+ µt)

(
∂uj

∂xm

+
∂um

∂xj

− 2

3
δjm

∂uk

∂xk

)
− 2

3
δjmρk (3.2)

where µ is the bulk and µt the turbulence viscosity (with the last term of Equation 3.2
being used only with the k-ω SST model) and qj is the heat flux. k is turbulent

kinetic energy (TKE), k = 1
2
u

′
ju

′
m, which can be computed by using the k-ω SST

model. The velocity variables and pressure result from the solution of the mean flow
equations, and µt results from the selected turbulent model.

3.2 The Spalart-Allmaras (SA) Turbulence Model

The SA is a one-equation turbulence model [2], that solves a modeled transport
equation for the turbulence field ν̃. The one-equation model for steady state, com-
pressible flow is given by the following equation:

RSA =
∂(ρν̃uR

k)

∂xj

− ρ

Re0σ

{
∂

∂xj

[
(ν + ν̃)

∂ν̃

∂xk

]
+ cb2

∂ν̃

∂xk

∂ν̃

∂xk

}
− ρcb1S̃ν̃ +

ρ

Re0
cw1fw

(
ν̃

∆

)2 (3.3)

where ∆ stands for the distance of each point within the flow domain from the clos-
est wall boundary. The turbulent eddy viscosity is computed from:

µt = ρν̃fυ1 (3.4)

Equation 3.3 is supplemented by the following relations and constants [2]:

χ =
ν̃

ν
fv1 =

χ3

χ3 + c3υ1

fυ2 = 1− χ

1 + χfυ1
fw = g

(
1 + c6w3

g6 + c6w3

)1/6

Ω =

√
ϵjkmϵjqr

∂uA
m

∂xk

∂uA
r

∂xq

S̃ = Ω+
ν̃fυ2

Re0κ2∆2

22

g = r + cw2(r
6 − r) r = min

(
ν̃

Re0S̃κ2∆2
, 10

)
µ̃ = ρν̃ ν =

µ

ρ

� cb1 = 0.1355

� cυ1 = 7.1

� cw1 =
cb1
κ2 + 1+cb2

σ

� σ = 2/3

� κ = 0.41

� cb2 = 0.622

� cw2 = 0.3

� cw3 = 2

� ct3 = 1.2

� ct4 = 0.5

where Ω is the magnitude of the vorticity of the flow.

3.3 The k-ω Turbulence Model

The ”Standard” Menter SST Two-Equation Model [3] (written in conservation form)
for steady state and compressible flows is given by the following:

∂(ρujk)

∂xj

= P −D +
∂

∂xj

(
(µ+ σkµt)

∂k

∂xj

)
(3.5)

∂(ρujω)

∂xj

=
γ

νt
P − βρω2 +

∂

∂xj

(
(µ+ σωµt)

∂ω

∂xj

)
+ 2(1− F1)

ρσω2

ω

∂k

∂xj

∂ω

∂xj

(3.6)

where:

P = τij
∂ui

∂xj

(3.7)

D = β∗ρωk (3.8)

and the turbulent eddy viscosity is computed from:

µt =
ρα1k

max(α1ω,ΩF2)
(3.9)

Each of the constants is a blend of an inner (1) and outer (2) constant, blended via:

ϕ = F1ϕ1 + (1− F1)ϕ2 (3.10)

23

where ϕ1 represents constant 1 and ϕ2 represents constant 2.
Additional functions are given by:

F1 = tanh(arg41) (3.11)

arg1 = min

(
max

(√
k

β∗ω∆
,
500ν

∆2ω

)
,
4ρσω2k

CDkω∆2

)
(3.12)

CDkω = max

(
2ρσω2

1

ω

∂k

∂xj

∂ω

∂xj

, 10−20

)
(3.13)

F2 = tanh(arg22) (3.14)

arg2 = max

(
2

√
k

β∗ω∆
,
500ν

∆2ω

)
(3.15)

The constants are:

� γ1 =
β1

β∗ − σω1k2√
β∗

� σk1 = 0.85

� σω1 = 0.5

� α1 = 0.31

� β1 = 0.075

� γ2 =
β2

β∗ − σω2k2√
β∗

� σk2 = 1.0

� β2 = 0.0828

� σω2 = 0.856

� β∗ = 0.09

� κ = 0.41

3.4 The γ − ˜Reθt Transitional Model

The model is based on two transport equations, one for the intermittency and the
other for a transition onset criterion in terms of the momentum-thickness Reynolds
number [4]. When the flow is transitional, the k-ω SST turbulence model is coupled
with the γ − ˜Reθt transition model.
The transport equation for the intermittency γ reads

Rγ =
∂(ρujγ)

∂xj

− ∂

∂xj

((
µ+

µt

σf

)
∂γ

∂xj

)
− Pγ + Eγ = 0 (3.16)

24

The transition sources are defined as follows:

Pγ = Flengthcα1ρS[γFonset]
0.5(1− ce1γ) (3.17)

where Flength is an empirical correlation that controls the length of the transition re-
gion and Fonset controls the transition onset location. The destruction/relaminarization
source term is defined as follows:

Eγ = cα2ρΩγFturb(ce2γ − 1) (3.18)

Transition onset is controlled by the following functions:

ReV =
ρ∆2S

µ
(3.19)

Fonset1 =
Reυ

2.193 ·Reθc
(3.20)

Fonset2 = min(max(Fonset1, F
4
onset1), 2.0) (3.21)

RT =
ρk

µω
(3.22)

Fonset3 = max

(
1−

(
RT

2.5

)3

, 0

)
(3.23)

Fonset = max(Fonset2 − Fonset3, 0) (3.24)

where Reθc is the critical Reynolds number where the intermittency first starts to
increase in the boundary layer. Based on T3B, T3A, T3A-, and the Schubauer and
Klebanof test cases [23] a correlation for Flength based on Reθt from an empirical
correlation is defined as:

Flength =


[398.189 · 10−1 + (−119.270 · 10−4)R̃eθt + (−132.567 · 10−6R̃e2θt)], R̃eθt < 400

[263.404 + (−123.939 · 10−2)R̃eθt + (−194.548 · 10−5)R̃e2θt + (−101.695 · 10−8)R̃e3θt], 400 ≤ R̃eθt < 596

[0.5− (R̃eθt − 596.0) · 3.0 · 10−4], 596 ≤ R̃eθt < 1200

[0.3188], 1200 ≤ R̃eθt

(3.25)

In some situations, particularly during transition at higher Reynolds numbers, the
R̃eθt scalar tends to decrease significantly in the boundary layer shortly after the
transition. Since Flenght is based on R̃eθt, this can cause a local increase in the
source term for the intermittency equation, leading to a sharp rise in skin friction.
Although the skin friction eventually returns to its fully turbulent value, this effect

25

is not a physically realistic one. To eliminate this effect, Flength can be forced to
always remain equal to its maximum value in the viscous sublayer. The modification
required to achieve this is presented below.

Fsublayer = e−(Rω
0.4

)2 (3.26)

Rω =
ρ∆2ω

500µ
(3.27)

Flength = Flength(1− Fsublayer + 40.0 · Fsublayer) (3.28)

The correlation between Reθc and R̃eθt is defined as follows:

Reθc =


[R̃eθt − (396.035 · 10−2 + (−120.656 · 10−4)R̃eθt + (868.230 · 10−6)R̃e2θt
+(−696.506 · 10−9)R̃e3θt + (174.105 · 10−12)R̃e4θt)], R̃eθt ≤ 1870

[R̃eθt − (593.11 + (R̃eθt − 1870.0) · 0.482)], R̃eθt > 1870

(3.29)

The constants for the intermittency equation are:

ce1 = 1.0, cα1 = 2.0, ce2 = 50, cα2 = 0.06, σf = 1.0

The modification to the intermittency for predicting separation induced transition is:

γsep = min

(
s1max

(
0,

(
Reυ

3.235Reθc

)
− 1

)
Freattach, 2

)
Fθt (3.30)

Freattatch = e−(
RT
20

)4 (3.31)

γeff = max(γ, γsep) (3.32)

s1 = 2 (3.33)

The transport equation for the transition momentum-thickness Reynolds number
R̃eθt reads

RR̃eθt =
∂(ρujR̃eθt)

∂xj

− ∂

∂xj

(
σθt(µ+ µt)

∂R̃eθt
∂xj

)
− Pθt = 0 (3.34)

where the source term is defined as follows:

Pθt = cθt
ρ

t
(Reθt − R̃eθt(1.0− Fθt)) (3.35)

26

t =
500µ

ρU2
(3.36)

where t is a time scale. The Fθt blending function is defined as follows:

Fθt = min

(
max

(
Fwake · e−(∆

δ
)4 , 1.0−

(
γ − 1/ce2
1.0− 1/ce2

)2
)
, 1.0

)
(3.37)

θBL =
R̃eθtµ

ρU
, δBL =

15

2
θBL, δ =

50Ω∆

U
· δBL (3.38)

Reω =
ρω∆2

µ
, Fwake = e−(Reω

1E+5
)2 (3.39)

The model constants for the R̃eθt equation are:
cθt = 0.03 σθt = 2.0

The transition model interacts with the k-ω SST model modifying the production
and destruction terms as follows:

∂

∂xj

(ρujk) = P̃ − D̃ +
∂

∂xj

(
(µ+ σµt)

∂k

∂xj

)
(3.40)

P̃ = γeffP (3.41)

D̃ = min(max(γeff , 0.1), 1.0)D (3.42)

R∆ =
ρ∆

√
k

µ
, F3 = e−(

R∆
120

)8 F1 = max(F1orig, F3) (3.43)

where P and D are the original production and destruction terms for the SST model
and F1orig is the original SST blending function. The production term in the ω is
not modified.

3.5 The GPU-enabled CFD Solver PUMA

In this Diploma Thesis, in order to predict the flow field around an airfoil and blade,
the compressible GPU enabled flow solver PUMA, developed by the PCOpt/NTUA,
is used [24]. PUMA is a software designed for solving Navier-Stokes equations
and turbulence model equations using the finite volume method on unstructured
grids such as tetrahedra, pyramids, prisms, hexahedra, and even structured grids.
Additionally, it includes a suite of shape parameterization tools and computational
grid morphers to support shape optimization studies.

27

The PUMA system leverages the CUDA programming environment and utilizes
shared on-board memory for transferring data between GPUs within the same com-
putational node, as well as the MPI protocol for communication between GPUs on
different nodes. This system is highly efficient, thanks to its use of the Mixed Preci-
sion Arithmetic technique, as described in [24]. This technique involves computing
all quantities in double precision, but storing the left-hand side of the equations in
single precision in order to decrease memory requirements and improve efficiency,
without sacrificing solution accuracy, which only depends on the accuracy of the
residuals being computed.

The implementation of PUMA on GPUs provides a significant speed-up compared
to CPU-implemented software, reducing the turnaround time of a CFD analysis.
Specifically, the implementation on GPUs is approximately several times faster than
the CPUs, comparing one card against one core. The GeForce RTX 2070 GPUs were
used in this study.

28

Chapter 4

Optimization using Evolutionary

Algorithms - EA

4.1 Introduction to Evolutionary Algorithms

An Evolutionary Algorithm (EA) is a popular optimization approach in nonlin-
ear optimization that uses a population-based search heuristic inspired by Charles
Darwin’s theory of natural evolution. In this algorithm, the fittest individuals are
selected from a population based on a defined objective function, similarly to how
natural selection favors the fittest individuals in nature for reproduction. The popu-
lation is initially initialized using either default or random values, and the algorithm
evaluates these individuals to select the fittest members for reproduction using a
user-defined reproduction function. This process is repeated until the desired num-
ber of iterations are completed, after which the best members of the population, as
determined by the objective function, have been found. Although there are vari-
ous types of EAs that differ in their procedures and purposes, they all have some
important similarities in their basic approach.

There are many advantages of evolutionary algorithms over traditional optimization
algorithms. Three most notable [25], are:

� Capability to tackle complex problems, as they do not require any
information about the fitness gradient
EAs can handle a range of optimization types, including problems with station-
ary or non-stationary objective functions, linear or nonlinear objectives, con-
tinuous or discontinuous objectives, and objectives with random noise. This
versatility makes EAs a valuable tool in a wide range of optimization scenarios.

29

� Parallelism
Multiple offspring in a population function as independent agents. This en-
ables the population or any subgroup to explore the search space in multiple
directions simultaneously, making it ideal for parallelization. As a result, var-
ious parameters and even different groups of encoded strings can be simulta-
neously processed. This characteristic of EAs enhances their capabilities as an
optimization tool and makes them well-suited for many applications.

� The ability to escape local minima
A situation where deterministic optimization methods might not be effective
or even applicable. By searching the search space in multiple directions and
utilizing a population-based approach, EAs are able to escape local minima and
continue to search for a global optimal solution, making them a valuable tool
in complex optimization problems. This characteristic makes EA a valuable
option for many optimization scenarios where other methods might not work
as effectively.

The flexibility of EAs, which allows a large number of parameters and functions to
be selected, can also be seen as one of its disadvantages. When using EAs, it is
necessary to carefully choose parameters such as the objective function formulation,
the population size of parents and offspring, the reproduction function including the
mutation and crossover rate, and the criteria for forming the new population. If
these parameters are not chosen optimally, it can lead to difficulties in convergence
or result in unmeaningful solutions. Hence, the selection of parameters in EAs
requires careful consideration and expertise to ensure optimal performance.

4.2 Basic structure of EAs

The key steps involved in EA include [26]:

1. Select some basic parameters like the size of parents population (Sg,µ) and
the size of offspring population (Sg,λ) and initialize the S0,λ population with
random candidate solutions.

2. Evaluate each candidate of the S0,λ, through an objective function (fitness).

3. Repeat the evolution steps until stopping criterion satisfied:
(a) Renew the set of elite population (Sg,e) with the best candidates of Sg,λ

based on the fitness.
(b) Select candidates from the new elite Sg+1,e to replace candidates at Sg,λ

based on the fitness.
(c) Select the individuals/parents for reproduction (Sg+1,µ).
(d) Recombine pairs and mutate the resulting offspring, creating the new

generation of offspring (Sg+1,λ).
(e) Evaluate the fitness of the Sg+1,λ.

30

4. Report the best solution corresponding the fittest individual.

The flowchart of an EA is depicted in Figure 4.1.

Figure 4.1: Flowchart of an EA.

4.3 Constituents of an EA

In this section we discuss evolutionary algorithms in detail. EAs have a number
of components, procedures or operators that must be specified in order to define a
particular EA. The most important components are [25]:

� Representation (coding of individuals)

� Objective function

� Population

� Parent selection mechanism

� Evolution operators, recombination and mutation

� Survivor selection mechanism (elitism)

� Termination Criterion

Each of these components must be specified in order to define a particular EA.
Furthermore, to obtain a running algorithm the initialisation procedure and a ter-
mination condition must also be defined.

31

Representation (Coding of Individuals)

Representation in EAs refers to the encoding of candidate solutions for a problem
as a set of variables or parameters (genotype). In the context of optimization prob-
lems, these variables are commonly referred to as ”optimization” variables. The
representation of these variables is a key aspect of EAs, as it determines the way in
which candidate solutions are represented within the algorithm and how they can
be manipulated and evolved over generations.

In EAs, the encoding of optimization variables is an important design decision that
can greatly influence the performance and efficiency of the algorithm in finding
optimal solutions. Different encoding methods can be used to represent optimization
variables, such as binary1 and real-valued2.

Objective function

The objective function, also known as the fitness function, is a crucial component
of evolutionary algorithms. The objective function plays a central role in guiding
the search process by evaluating the quality of candidate solutions. In optimization
problems, the objective function is typically defined as a mathematical function that
maps a set of optimization variables (e.g the flow field quantities around an airfoil) to
a scalar value (e.g total pressure losses). The objective of the optimization problem
is to find the values of the optimization variables that maximize or minimize the
objective function.

Population

The population in an evolutionary algorithm is a collection of genotypes that serve
as potential solutions. The population, not the individuals within it, is the unit
that undergoes evolution. Defining a population involves specifying the number
of individuals in it, also known as setting the population size. In most cases, the
population size remains constant throughout the evolutionary search process. The
population acts as a store of possible solutions, and the choice of population size is
an important factor in determining the success of the evolutionary algorithm.

Parent Selection Mechanism

Parent selection or mating selection is a crucial aspect of evolutionary algorithms
that helps to determine the quality of individuals and pick the best ones to become
parents for the next generation. The goal of this selection mechanism is to push
quality improvements in the population by choosing individuals with high quality
to undergo variations to create offspring. Parent selection is usually probabilistic,
meaning that individuals with better quality have a higher chance of being chosen
as parents, but at the same time, low-quality individuals are also given a small
probability to be selected in order to avoid getting stuck in a local optimum. Along

1Binary encoding is one of the most straightforward encoding methods where solutions are
represented as a binary string of 0s and 1s.

2In real-valued encoding, solutions are represented as a sequence of real numbers.

32

with survivor selection, parent selection plays a key role in guiding the direction of
the evolutionary search.

Evolution Operators

The role of evolution operators is to create new individuals from old ones. From the
generate-and-test search perspective, evolution operators perform the ”generate”
step. Evolution operators are divided into two types:

� Mutation
The mutation process involves making small, random changes to a single geno-
type to generate a new offspring. The exact outcome of mutation is determined
by the results of a series of random selections, making it a probabilistic and
unpredictable process. The purpose of mutation is to avoid getting stuck in
local optima, which are regions of the solution space where a candidate solu-
tion is good, but not the best. By randomly introducing small changes into
the population of candidate solutions, mutation can help the algorithm es-
cape from local optima. Mutation helps maintain diversity in the population
of candidate solutions, which is important for the long-term success of the
evolutionary algorithm. If the population becomes too homogeneous, the al-
gorithm may converge to a suboptimal solution and stop making progress. By
randomly introducing diversity through mutation, the algorithm can continue
exploring the solution space and finding better candidate solutions.

� Recombination
The recombination operator in EAs involves combining information from two
parent genotypes to produce one or two offspring genotypes. This process is
also a stochastic operation and the result depends on random choices made
during the merging of information from the two parents. Though it is possible
to use more than two parents in the recombination process, this approach is
not typically seen in biological systems. The aim of recombination is to create
an offspring that incorporates desirable traits from both parents. This allows
for the combination of different, yet beneficial, features in a single individual,
leading to the generation of a more well-rounded solution to the problem being
addressed.

Survivor Selection Mechanism

Survivor selection is a mechanism in EAs that determines which candidate solutions
from the current generation will survive and be included in the next generation.
The goal of survivor selection is to balance the exploration3 and exploitation4 of the
solution space, ensuring that the algorithm continues to search for better solutions
while also maintaining a diverse population of candidate solutions.

3Exploration refers to the strategy of randomly searching the solution space for new candidate
solutions that have not been discovered yet.

4Exploitation refers to the strategy of using the information that has already been obtained to
focus on the best candidate solutions found so far and improve them further.

33

One common mechanism for survivor selection is elitism, which is a strategy that
ensures that the best candidate solution from the current generation is always in-
cluded in the next generation. This helps to ensure that the algorithm does not
move away from the best solution found so far and allows the algorithm to make
progress towards the optimal solution. In elitism, the top N best candidate solutions
from the current generation are selected to be included in the next generation, where
N is a parameter that determines the size of the elite group (Sg+1,e).

Termination Criterion

Termination criteria in EAs specify the conditions under which the algorithm should
stop. There are several termination criteria in EAs. The maximum number of eval-
uations criterion is utilized in this Diploma Thesis, and it states that the algorithm
stops upon completion of the specified number of evaluations. Alternatives com-
monly used options as termination conditions are the following:

� The maximum allowed CPU time elapses.

� For a given period of time, the cost improvement remains under a threshold
value.

� The population diversity drops under a given threshold.

4.4 Metamodel-Assisted Evolutionary Algorithms

(MAEA)

The implementation of a conventional EA can be quite resource-intensive, as it re-
quires numerous calls to the problem-specific evaluation software for each generation.
To mitigate this, a metamodel-assisted EA can be employed to reduce the CPU cost
of the optimization. This approach involves creating low-cost surrogates, also known
as a metamodels, which are trained on the fly on previously evaluated individuals
to pre-evaluate the evolving populations. This significantly reduces the number of
calls required to the evaluation software and enhances the overall performance of
the optimization.

It is worth noting that metamodels can be applied to both single-objective opti-
mization problems (SOO) [27], as well as, multi-objective evolutionary algorithms
(MOEAs) [28]. The ability to use metamodels to pre-evaluate populations allows
for more efficient and effective optimization, regardless of the type of problem be-
ing solved. Since, the metamodel training requires a minimum amount of previous
evaluations, the starting population is evaluated on the problem-specific model.

34

4.5 The Evolutionary Algorithms SYstem - EASY

software

EASY [29], created by the PCOpt/NTUA, is a versatile software tool that is used
to find optimal solutions to problems that can have a single or multiple objectives,
with or without constraints. It combines stochastic, deterministic, or a combination
of optimization methods and has been widely applied in various engineering fields.
EASY provides users with a high degree of control over the optimization process,
and also offers presets for those who are new to the software. The tool supports
the approximation of single and multi-objective functions using Artificial Neural
Networks, which is especially useful when the problem at hand requires a lot of
computational time. Additionally, EASY offers a wide range of options, including
the use of genetic algorithms or evolution strategies, and the ability to incorporate
metamodels, which significantly reduces cost when dealing with computationally
intensive evaluation software.

In a conventional (µ, λ) EA, where µ refers to the number of parents and lambda
refers to the number of offspring, the cost of evaluating each generation is as high
as λ calls to the problem-specific software. However, MAEA begins just like a con-
ventional EA by evaluating the initial randomly generated population using the
problem-specific tool and storing the paired inputs and outputs in a database. In
subsequent generations, the population members are pre-evaluated using either fit-
ness inheritance or local metamodels. The first few generations rely on fitness in-
heritance, and once the database reaches a minimum size specified by the user, local
metamodels are employed instead. These models are trained on-the-fly, separately
for each new individual, based on a few entries properly selected from the database.
The most promising offspring population members in each generation are, then, re-
evaluated using the problem-specific tool. The evolution operators in the MAEA
use both exact and approximate scores to create the next generation [28].

In this Diploma Thesis, EASY was employed for the MAEA optimization of DNN
architecture and inputs and the MAEA aerodynamic optimizations.

35

36

Chapter 5

Replacing Turbulence Model by

DNNs in the Optimization of an

Isolated Airfoil

The following steps summarize the subsections of the chapter, which outline the
process of replacing the SA turbulence model by DNNs in a MAEA-based (shape)
optimization of an isolated airfoil with target to minimize CD, keeping CL close to
its baseline. The idea behind this concept is to examine the potential of a DNN
to replace the SA turbulence model (without transition), predicting the turbulence
viscosity field (µt), in order to reduce the computational cost of the optimization.

� The NACA4318 Case. In this subsection the NACA4318 airfoil profile is
plotted, and the flow conditions imposed to PUMA are presented.

� Parameterization and training data creation. The shape of the NACA4318
airfoil is altered to create a variety of blade shapes that will make up the
training database for the DNN (DBDNN). Afterwards, the DBDNN undergoes
additional processing to improve its performance when used to train the DNN.

� Validation of the DNN configuration. The hyper-parameters of the DNN
were determined through a trial-and-error process. The performance of the
DNN was evaluated by testing it on a group of 10 new airfoil shapes, with the
aim of determining its ability to generalize and make predictions about unseen
data. This step was crucial in ensuring that the DNN has the capacity to not
only accurately model the training data, but also to make accurate predictions
for new and unseen data points.

37

� Shape optimization studies. This subsection describes a shape optimiza-
tion process for the NACA4318 shape using MAEA implemented using EASY.
The optimization is evaluated using two different software, the ”standard”
model in which the RANS equations are coupled with the SA turbulence
model (without transition) within PUMA (PUMA-TM model), and a model
where the RANS equations solver is coupled with the DNN (Figure 5.1) within
PUMA (PUMA-DNN model). A comparison and discussion of the results is
conducted.

Figure 5.1: An iterative solver of the RANS equations using the DNN to predict the
µt field instead of SA turbulence model. Each iteration of the loop corresponds to a
single pseudo-time iteration of the PUMA-DNN model.

The overall procedure in order for the MAEA, using PUMA-DNN as the evaluation
software, to optimize the NACA4318 airfoil shape is shown in Figure 5.2.

38

Figure 5.2: The algorithm of the procedure.

39

5.1 The NACA4318 Airfoil Case

In this Diploma Thesis, the NACA4318 airfoil is studied. The airfoil profile is plotted
in Figure 5.3.

Figure 5.3: NACA4318 shape

The flow conditions, imposed in PUMA, are listed in Table 5.1.

Flow conditions

M∞ 0.19
Angle α∞ [degrees] 2.8
Reynolds number 5.46 ·106

Table 5.1

5.2 Parameterization and Training Data Creation

The training database of the DNN (DBDNN) is constructed by altering the geometry
of the NACA4318 airfoil and computing the flow fields using the PUMA-TM model.
This dataset will serve as the basis for training the DNN to predict turbulence
viscosity.

The airfoil shape is controlled by the 5x3 NURBS lattice of Figure 5.4. The control
points in blue are allowed to move only in the normal-to-the-chord direction within
±10% of their reference values. The 2 control points in red at the leading and
trailing edge are fixed. Thus, there are 13 design variables in total. The same
parameterization is utilized for the MAEA shape optimization of section 5.4.

A Latin Hypercube Sampling (LHS) is used to sample the design space of 13 variables
by generating 60 different geometries. Then, the flow fields are computed by PUMA-
TM, thus forming the DBDNN to be used for training the DNN. The geometry of
60 different airfoil shapes, is shown in Figure 5.5.

A single CFD run takes a bit less than 4 mins on a single NVIDIA GeForce RTX

40

2070. Using a database of 60 different geometries to train the DNN, the total CFD
run takes a bit less than 4 hours on the same GPU.

Figure 5.4: Parameterization of the airfoil shape. Blue control points are allowed to
move in the normal-to-chord direction only, while red points are kept fixed.

Figure 5.5: The geometries of the 60 airfoils in DBDNN colored in black and the
baseline geometry colored in yellow. It shows the area in which the new airfoil shapes
can be created.

41

The geometrical and flow data computed for each and every grid node and stored
in the DBDNN , are listed in Table 5.2.

• Coordinates xk =(x,y) Input
• Density ρ Input
• Pressure P Input
• Velocity vector uk = (u, v) Input
• Turbulent viscosity µt Output

Table 5.2: The data that are inputs and outputs of the DNN. The DNN predicts only
the turbulence viscosity.

DNNs are trained to learn the relationships between input variables and output
variable (the µt). However, because the input variables have different scales, this
can pose a challenge for the network. This is because the parameters associated
with each input will exist on different scales, leading to vanishing error gradients1

or exploding error gradients2 in the back-propagation algorithm, which can hinder
the performance of the network.

To address this issue, normalizing the data is recommended. One way of normal-
ization is a rescaling of the data so that all values be within 0 and 1. This have the
following benefits:

� It can help to improve the performance of activation functions, such as the
sigmoid or tanh, by preventing saturation and improving the convergence of
the network [30].

� It can simplify the learning process for the network by removing the need to
adjust the parameters of the activation function to handle different ranges of
inputs [31].

The data are rescaled by the following equation:

xj =
Xj −min(Qi)

max(Qi)−min(Qi)
(5.1)

where Qi represents an array with all the values of i-th geometrical or flow quantity
in the DBDNN , max(Qi) and min(Qi) are the maximum and minimum values of

1The vanishing gradients problem occurs when the gradients of the loss function with respect
to the parameters of the network become too small during the training process. This makes it
difficult for the parameters to update effectively, leading to slow convergence and a suboptimal
solution.

2Exploding gradients problem occurs when the gradients of the loss function with respect to
the parameters of the network become too large during the training process. This can cause the
parameters to update in an uncontrolled manner, leading to numeric instability and, ultimately,
to the failure of the training process.

42

i-th quantity in the whole DBDNN , Xj represents each value of Qi and xj is the
normalized value of Xj that belongs in the interval [0,1].

Because the Rectified Linear Unit (ReLU) activation function is used in the DNNs
training, rescaling the data to the interval [0,1] instead of [-1,1] is considered the best
option for training a DNN. This is because the derivative of ReLU with respect to
its input is 1 for positive values and 0 for negative values. Therefore, if the input to
a ReLU neuron is negative, its gradient with respect to the weights and biases will
be zero, and the neuron will stop learning. This can result in a significant portion of
the data being disregarded and not utilized to train the DNN. By normalizing the
data to the interval [0,1], the DNN is able to better utilize all the available data,
improving the training process and ultimately leading to more accurate predictions.

5.3 Validation of the DNN configuration

The development and training of DNNs is carried out in the TensorFlow framework
using Python. Table 5.3 summarizes the DNN configuration utilized for this case.
The loss during DNN training is shown in Figure 5.6, where it can be seen that,
after the 600 epochs, it is unlikely for the losses to decrease any further thus, the
training procedure stopped. It is apparent that the validation loss and training loss
are nearly identical.

Table 5.3

Optimal DNN configuration obtained from a trial-and-error approach.

Layers Neurons/Layer Input data Act.Functions

5 64, 128, 256, 2048, 512 (xk, ρ, p, uk,) ReLu/tanh

As the goal of PUMA-DNN in a shape-optimization procedure is to minimize CD, it
is more important and practical to assess the generalization performance and errors
based on the computed CD, rather than just the predicted turbulence viscosity.
Thus, all the errors are computed with respect to the CD values. The generalization
capability of the PUMA-DNN was assessed by generating 10 additional airfoil shapes
using the same process used to create the DBDNN . The CD values computed by both
PUMA-TM and PUMA-DNN for these new shapes are shown in Figure 5.7. The
predictions made by the PUMA-DNN show a consistent tendency to overestimate
CD.

43

Figure 5.6: Training and Validation loss during the training of the DNN. There is
no indication of overfitting, since the training and validation loss are converging to
similar values. The training loss cannot decrease any further and training procedure
stops at 600 epochs.

Figure 5.7: The computed CD values of the 10 new airfoils by PUMA-TM and
PUMA-DNN. The PUMA-DNN predictions exhibit a nearly consistent overestimation
of CDs, with the exception of the 6th geometry, which though has the worst CD value.
Despite differences in the predicted CD values, the relative gain or loss between any two
of these geometries is correctly predicted by PUMA-DNN; a small exception regarding
the 10th solution is practically of no importance.

44

The percentile errors of computed CDs by PUMA-DNN are calculated as:

error [%] =
CDj

PUMA−TM − CDj
PUMA−DNN

CDj
PUMA−TM

· 100 (5.2)

where j represents the index of the 10 new airfoil shapes and takes on values of
[1,2,..,9,10]. The errors of PUMA-DNN are shown in Figure 5.8, where it can be
seen that the average error is 6.3%, with a minimal variation in error values.

Figure 5.8: The errors of PUMA-DNN; the average error is 6.3 % with a minimal
variation in error values.

5.4 Shape Optimization Studies

In the shape optimization process using MAEA-based optimization in EASY, two
different evaluation software namely, the standard PUMA-TM and PUMA-DNN
were used. The MAEA optimization was configured to have µ = 10 parents and
λ = 30 offspring. The target is to minimize the CD while ensuring that the Lift
Coefficient (CL) remains close to its baseline value. The CD and CL of the baseline
(evaluated by PUMA-TM) are: CDbaseline = 0.03196 and CLbaseline = 1.51.

PUMA-TM as evaluation software

To assess the independence from the randomly generated number seed (RNG seed)
of MAEA, the optimization process was repeated three times for three different

45

RNG seeds (RNG1, RNG2, and RNG3). The convergence history of the MAEA-
based optimization using PUMA-TM is shown in Figure 5.9, where it can be seen
that the choice of RNG seed has an impact on the optimization outcome, given
that it was decided to terminate the optimization run quite early in order to save
computational cost. Therefore, to compare with the PUMA-DNN model, the results
of these three optimizations are averaged. One cost unit (or time unit) is defined
as the cost (time) of one evaluation using the PUMA-TM (i.e a pure CFD evalua-
tion). The termination criterion using PUMA-TMmodel, was set to 350 evaluations.

PUMA-DNN as evaluation software

The second evaluation software used in the MAEA (shape) optimization was the
PUMA-DNN, which has lower cost per evaluation, with one evaluation costing 0.8
cost units as opposed to one cost unit for the PUMA-TM. The objective function
and constraints remained unchanged. The DNN didn’t require retraining, and the
optimization process was terminated after 440 evaluations, which roughly correspond
to 350 cost units. The results of the optimization procedure are summarizes in
Table 5.4, where the results of PUMA-TM are averaged.

Table 5.4

Results of the Optimization procedure

Evaluation software Best solution

(CD/CL)

Re-evaluated

(CD/CL)

Percentage % of

CD reduction

PUMA-TM (averaged) 0.0309/1.506 - -3.46%

PUMA-DNN 0.03288/1.506 0.0307/1.508 -3.91%

The convergence histories of the MAEA relying on PUMA-DNN and PUMA-TM
using three different RNG seed are shown in Figure 5.10, where it can be noticed
that the PUMA-DNN evaluation software results in faster convergence compared
to optimizations using PUMA-TM with RNG2 and RNG3, however, convergence is
similar when using RNG3.

46

Figure 5.9: The convergence history of the MAEA-based optimization relying on the
PUMA-TM.

Figure 5.10: The convergence histories of the MAEA-based optimization relying
on the PUMA-DNN and PUMA-TM, using three different RNG seed. The PUMA-
DNN evaluation software results in faster convergence compared to optimizations us-
ing PUMA-TM with RNG2 and RNG3 , however, convergence is similar when using
RNG3.

The shapes of the best solutions obtained from the MAEA optimization relying on
both the PUMA-TM and PUMA-DNN are shown in Figure 5.11.

47

Figure 5.11: The best results of PUMA-TM using RNG1 (green), RNG2 (red), and
RNG3 (violet), the best result of PUMA-DNN (blue) and the baseline (black) are
displayed. It is evident that the shapes of PUMA-TM (RNG1) and PUMA-DNN are
the most alike. The y-axis is scaled by 2 to enhance the visibility of the variations in
shape.

Figure 5.12: Baseline’s Mach number iso-areas (left), best’s solution obtained by
PUMA-TM (RNG1) (center) and best’s solution obtained by PUMA-DNN (right) mod-
els, evaluated by PUMA-TM.

5.5 Conclusions

The presented studies show that the DNN can help in the shape optimization process
using an EA. The results from using the PUMA-DNN model in shape optimization
studies are encouraging, even though the cost of the PUMA-TM run is quite small (it
is a 2D case with SA turbulence model). Although there is only a slight improvement
in the overall time of the optimization considering the averaging performance of
PUMA-TM using the different RNGs, this serves as an initial strong indication that
the gain can be even greater in cases where evaluations are more costly, such as in
unsteady or 3D cases.

48

Chapter 6

Replacing Turbulence and

Transition Models by DNNs in a

Turbine Blade Shape Optimization

The following steps summarize the subsections of the chapter, which outline the
process of replacing the turbulence and transition model by DNNs in a shape opti-
mization with target to minimize the total pressure losses (Pt,losses) while ensuring
that the exit angle remains close to its baseline value.

� The LS89 case. The LS89 case is described, defining the convective heat
transfer coefficient and the flow conditions that are imposed in PUMA.

� CFD analysis of LS89 blade - Validation. The configurations of PUMA
are optimized with the aim to meet the experimental data of the heat trans-
fer coefficient, thereby highlighting the crucial role played by the γ − ˜Reθt
transitional model.

� Parametrization and training data creation. The LS89 turbine blade
airfoil shape is parameterized to generate a diverse set of blade shapes that
will constitute DBDNN . The DBDNN is then subjected to post-processing to
enhance its effectiveness during the DNN training process.

� Optimization of DNN architecture and Inputs. This subsection outlines
the optimization of the DNN’s hyper-parameters and inputs using a Single Ob-
jective MAEA based optimization in EASY. However, since the optimization
procedure does not assess the generalization ability of the DNNs, a separate
evaluation is performed to identify the best DNN configuration from the set

49

provided by the optimization that has both low losses and good generalization
capabilities.

� Regularization of the optimal DNN configuration. In this subsection,
the use of regularization techniques such as dropout and early stopping is
applied to further reduce the losses of the selected DNN, while simultaneously
improving its generalization performance and numerical stability when coupled
with the RANS solver within PUMA.

� Shape optimization studies. This subsection describes a shape optimiza-
tion process for the LS89 blade airfoil using the MAEA based optimization
in EASY. The optimization is assessed using two different software, a stan-
dard model where the RANS equations’ solver is coupled with the turbulence
and transition model withing PUMA (PUMA-TM), and a PUMA-DNN model
where the RANS solver is coupled with the DNN within PUMA. Also a com-
parison and discussion of the results is conducted.

6.1 The LS89 turbine case

The LS89 turbine nozzle guide vane is studied [32]. The blade profile is plotted in
Figure 6.1.

Figure 6.1: LS89 turbine airfoil

50

One of the measured quantities of the test number MUR132 at VKI’s investigation
[32], that is compared, in section 6.2, with the numerical results of LS89 flow field
computed by PUMA, for validation, is the distribution of the convective heat transfer
coefficient H, which is defined as the ratio of the measured wall heat flux and the
difference between the total free stream and the local wall temperatures:

H =
q̇w

Tt,∞ − Tw

(6.1)

The units of H are (W/m2/K). The flow conditions for test number MUR132,
imposed in PUMA, are listed in Table 6.1.

Free stream conditions for MUR132

Inlet Conditions Outlet Conditions

Total Temperature [K] 408.50
Total pressure [bar] 1.757
Pressure [bar] 1.289
Flow angle [degrees] 0

Table 6.1

6.2 CFD Analysis of LS89 blading - Validation

In order to optimize the shape of the LS89 blade airfoil, it’s good to find the optimal
configuration of PUMA that meets the experimental data of the heat transfer coeffi-
cient with a constant wall temperature of 299.75 K, and inlet and outlet conditions
as listed in Table 6.1.

The heat transfer coefficient is greatly affected by the location of transition over the
suction side. Thus, the LS89 case is studied with the k − ω SST turbulence model
assisted by the γ − R̃eθt transition model. The importance of the latter can be
seen in Figure 6.2 that compares the heat transfer coefficient over the pressure and
suction sides of the blade airfoil, with and without the transition model, computed
by PUMA.

To achieve the minimum error of the computed heat transfer coefficient by PUMA,
a variety of spatial derivative computation techniques and discretization schemes
have been tested. The comparison of the heat transfer coefficient computed using
two different spatial derivative computation techniques (P1 elements1 [33], Weighted

1P1 elements, also known as linear finite elements, are a type of discretization technique com-
monly used in CFD simulations. They are defined by linear interpolation functions and are used

51

Least Squares2 [34]), is shown in Figure 6.3, where it can be noticed that P1 elements
meet slightly better the experimental data.

The comparison of the computed heat transfer coefficient using three different dis-
cretization schemes (Roe [35], JST scalar, and JST matrix [36]), is shown in Fig-
ure 6.4, where it can be noticed that the Roe scheme gives the best prediction. Thus,
the use of P1 elements and Roe discretization scheme with the k−ω SST turbulence
model assisted by the γ−R̃eθt transition model, is the optimal PUMA configuration
that reproduces the experimental distribution of the heat transfer coefficient.

Figure 6.2: Comparison of the heat transfer coefficient computed using PUMA with
and without the γ − R̃eθt transition model with experimental data. Important differ-
ences can be seen when the transition model is omitted.

to represent the solution field (e.g., velocity, pressure, temperature) in a CFD simulation. P1
elements are used to discretize the governing equations (such as the Navier-Stokes equations) into
a system of algebraic equations that can be solved numerically.

2Weighted Least Squares (WLS) is a statistical estimation method that is used to minimize the
sum of the squared residuals between the observed data and the predicted values by the model. In
the context of CFD, WLS can be used as a spatial derivative computation technique to estimate
derivatives of flow fields.

52

Figure 6.3: Comparison of the heat transfer coefficient computed using PUMA with
two different spatial derivatives’ computation techniques: WLSq and P1 elements.

Figure 6.4: Comparison of the heat transfer coefficient computed using PUMA with
three different discretization schemes: Roe, JST matrix and JST scalar.

53

6.3 Parameterization and Training Data Creation

The goal is to replace the turbulence and transition model with a DNN that predicts
the turbulence viscosity. This goal can be achieved by first creating a training
dataset. This dataset can be generated by varying the geometry of the LS89 blade
and computing the flow fields with the RANS, which are coupled with the turbulence
and transition model. Having this dataset would serve as the foundation for training
the DNN to accurately predict the turbulence viscosity.

The turbine blade airfoil shape of LS89 is controlled by the 8x5 NURBS lattice of
Figure 6.5. The control points on blue circles are allowed to move in the chordwise
and the normal-to-the-chord directions within ±10% of their reference values. The
10 control points in red circles along the left and right are fixed. Thus, there are 60
design variables in total. The same parameterization was selected for the MAEA
optimization of section 6.6.

The Latin Hypercube Sampling (LHS), which generates 150 near-random samples, is
used to sample the design space of 60 variables in order to generate a set of different
geometries. Then, the flow fields are computed by PUMA using the k − ω SST
turbulence model assisted by the γ− R̃eθt (to be referred as the PUMA-TM model),
creating the database used for training the DNN (DBDNN). The geometries of the
150 blades is shown in Figure 6.6.

A single CFD run takes ∼ 10 mins, on a single NVIDIA GeForce RTX 2070. Using a
database of 150 different geometries to train the DNN, the total CFD run to collect
150 evaluated samples takes less than 26 hours.

The geometrical and flow data were computed for each and every grid node and
stored in the DBDNN , are listed in Table 6.2.

• Coordinates (x,y) Input
• Density ρ Input
• Pressure P Input

• Velocity vector U⃗ = (u, v) Input
• Vorticity Input
• Strain Rate Input
• Wall Distance Input
• Turbulent viscosity µt Output

Table 6.2: Inputs and outputs in the training process of the DNN. The DNN predicts
only the turbulence viscosity, thus it is the only output.

The obtained data are rescaled by Equation 5.1, from the original range so that
all values are within the range of 0 and 1, similar to the NACA4318 case (see
section 5.2).

54

Figure 6.5: Parameterization of the LS89 turbine blade airfoil. The control points
marked with blue circles are allowed to move in the chordwise and the normal-to-the-
chord directions within ±10% of their reference values. The 10 control points in red
circles along the left and right are fixed.

Figure 6.6: The geometries of the 150 blades in DBDNN colored with black and the
baseline geometry colored with yellow. It broadly shows the area in which the new
blade shapes can move.

The target of the MAEA optimization of the turbine blade airfoil at section 6.6 is
to minimize the total pressure losses (Pt,losses). In the DBDNN , shapes with lower
Pt,losses than the baseline, already exist. Thus, it is essential to know the minimum
Pt,losses in the DBDNN in order to compare it with the minimum Pt,losses obtained

55

by the MAEA optimization relying on the PUMA-DNN model. The total pressure
losses of the different geometries in DBDNN are shown in Figure 6.7, where it can
be seen that the minimum value recorded is 1378 Pa while the value of the baseline
is 1469 Pa.

Figure 6.7: Total pressure losses of each patterns of the DBDNN .

6.4 Optimization of DNN Architecture and In-

puts

The optimization of DNN hyper-parameters and inputs is still an active area of
research in the field of ML. Currently, the most common method for optimizing a
DNN is through experience and trial-and-error. Another approach is to use genetic
algorithms, which are automatic and require less human intervention in finding the
optimal solution. In this case, the optimization of DNN requires a targeted opti-
mization approach due to the complexity of the PDEs being replaced. To minimize
the prediction error of the DNN, the optimal DNN configuration is achieved through
a MAEA by using EASY. The target is to minimize the prediction error of the DNN
by optimizing the following design variables:

� The pool of possible quantities (Table 6.2).

� The number of hidden layers.

� The number of neuron units at each hidden layer.

� Activation functions for hidden and output layers.

56

For the number of hidden layers, the lower and upper bounds are set to 3 and 10
layers respectively. For each layer (hidden or output), the number of neurons is
defined in powers of 2 with the lower and upper bounds to be set at 25 and 212 units
respectively. The ReLu, tanh, and sigmoid activation functions can be selected
for each layer. During the optimization procedure, the DNN used the 20% of the
DBDNN data for validation, and the dataset was randomly shuffled to avoid any
overfitting in training by passing samples in different orders making the model more
robust. Also, the ADAM optimizer was used.

The overfitting problem

A way to asses the generalization ability of a DNN during the training is by using
a validation set. The validation set is a portion of the training data that is held
out and not used during the training process. Instead, the model’s performance on
the validation set is used to monitor the model’s progress during training and to
avoid overfitting. The validation loss is the loss computed on the validation set. It
represents the difference between the predicted outputs and the true outputs for the
validation set. During training, the validation loss is used to monitor the model’s
performance on the validation set and to determine if the model is overfitting or
underfitting. If the validation loss is increasing, the model is overfitting.

Upon evaluating 44 different DNNs, the MAEA was stopped due to the observation
that the best performing DNNs were starting to overfit the training data when
tested on new unseen geometrie. This occurred despite no indications of overfitting
being detected through monitoring the model’s performance (validation loss) on the
validation set during training. The reliability of validation loss as an indicator of
overfitting in DNNs that are coupled with PDEs can depend on various factors and
the specifics of the problem at hand. Some studies have reported that validation
loss can provide useful information on overfitting in these types of problems, while
others have found that it may not accurately reflect the generalization ability of
the model. For example, a study by Raissi et al. [37], used a physics-informed
neural network to model PDEs and found that the validation loss did not necessarily
provide reliable information on overfitting. In conclusion, while validation loss can
be a useful indicator of overfitting in some cases where a DNN prediction is coupled
with PDEs, the reliability of this indicator may depend on various factors and the
specifics of the problem. In this case, the validation loss fails to accurately reflect
overfitting, therefore, it becomes difficult to gauge the generalization performance
during the optimization process, and the only way to assess it is by testing the
PUMA-DNN model on new geometries not seen during training.

It was crucial to test the optimal DNN configurations on new geometries to deter-
mine which DNN had the lowest losses and generalized well simultaneously. This
step was necessary to ensure that the DNN selected would not only perform well
on the training data but also on unseen data, making it a more robust and reli-
able model for predicting turbulence viscosity and therefore for computing the total
pressure losses in order to minimize them in the shape-optimization procedure of

57

section 6.6.

As the goal of using a DNN coupled with RANS in a shape-optimization procedure
is to minimize total pressure losses, it is more important and practical to assess
the generalization performance and errors based on the computed total pressure
losses, rather than just the predicted turbulence viscosity. Thus, all the errors are
calculated with respect to the computed total pressure losses. Testing the DNNs on
new geometries, it was possible to make an informed decision on which DNN was
best suited for the task, and could generalize well to new and unseen data.

Selection of DNNs to be tested

Because the best-so-far DNN configuration, which has 10 layers, was overfitting,
testing a smaller one was a good practice. Overfitting occurs when a DNN model
is too complex and performs well on the training data but poorly on the test data.
By reducing the size of the DNN, for example, by decreasing the number of layers
or reducing the number of neurons in each layer, it may be possible to reduce
overfitting. A study by Liu et al. [38], found that reducing the number of layers
in a DNN can lead to improved generalization performance and prevent overfitting.
The authors showed that smaller DNN models with only a few hidden layers could
achieve similar or even better performance compared to larger DNN models.

As a result, two DNN configurations were selected from the optimization process
based on two criteria. The first and most important criterion was to have fewer
hidden layers than the best-performing DNN so far. The second criterion was to
have the best performance compared to other DNNs with the same number of hidden
layers. These two criteria led to the chosen DNN configurations that are summarized
in Table 6.3. These are marked with the letters A, B, and the best-so-far DNN with
the letter C (referred to as DNNA, DNNB, and DNNC).

Table 6.3

Optimal DNN configurations to be tested.

Optimal

DNN

Layers Neurons/Layer Input data Act.Functions

DNNA 3 256, 2048, 2048 (x, ρ, p, d, uk,Ω, S) ReLu/tanh

DNNB 3 128, 64, 2048 (y, ρ, p, d, uk, S) ReLu/tanh

DNNC 10 256,2048,4096,1024,32,64,4096,256,256,1024 (xk, ρ, p, d, uk,Ω, S) ReLu/tanh

The best performing DNN of each generation in the MAEA is shown in Figure 6.8,
where it can be seen that DNNA, DNNB, and DNNC are the best performing DNNs
for the first, second, and fourth generation respectively.

58

Figure 6.8: The best DNN of each generation.

In the following testing results, the DNNC results are included in order to demon-
strate its overfitting and allow for comparison with the DNNA and DNNB configura-
tions. The DNNs have been trained for a certain number of epochs, and it has been
observed that the loss function has stopped improving significantly after reaching
a certain level. This is known as a plateau in the loss function, where the rate of
improvement in the loss function slows down and eventually stops.

As a result, it has been decided to stop the training process at 600 epochs, as further
iterations are unlikely to result in any significant improvement in the performance
of the DNNs. This approach is commonly used to prevent overfitting, where the
model becomes too specialized to the training data and fails to generalize well to
new data.

Testing DNNC

The loss during the training of DNNC model is shown in Figure 6.9. The plot shows
that the validation loss is consistently higher than the training loss, with no obvious
indications of overfitting. However, when the DNNC model was tested on 10 new
blade geometries within PUMA (to be referred as PUMA-DNNC), it was discovered
that the model was overfitting the data and did not generalize well. Despite this, the
DNNC model was found to provide similar numerical stability as the PUMA-TM.
These results indicate that while the DNNC model performed well on the training
data, it did not generalize well to new and unseen data, making it a less robust
model for predicting turbulence viscosity.

59

Testing DNNB

As previously observed, the validation loss consistently remained larger than the
training loss with no signs of overfitting (Figure 6.10). However, when the PUMA-
DNNB model was tested on new blade geometries, overfitting was revealed. Addi-
tionally, the numerical solution was found to converge with difficulty, as 6 out of the
10 new geometries flows diverged. This indicates that while the DNNB model per-
formed well on the training data, it did not generalize well to new and unseen data,
resulting in overfitting and a lack of robustness in the numerical solution. These
results highlight the importance of evaluating the performance of the DNNs model
on new geometries to ensure it generalizes well and produces accurate predictions.

Testing DNNA

The testing of the PUMA-DNNA showed a significant increase in prediction accuracy
compared to previous DNN models. The implementation of dropout effectively
addressed the divergent behavior of the numerical solution in two out of ten test
geometries (see section 6.5). This not only improved the numerical stability, but
also led to enhanced generalization capabilities for the model. As a result, DNNA

is considered the best configuration for the DNN. The loss during the training of
DNNA model is shown in Figure 6.11.

The need of testing the best solutions generated by the MAEA based optimization,
is due to the limitation of validation loss as an indicator of overfitting. This does
not mean that the optimization process was unnecessary or inefficient, as it provides
a collection of high-performing DNN configurations, obtained faster compared to a
trial and error method. These DNNs can be selected for testing and evaluation in
order to find the optimal DNN configuration that can generalize well simultaneously.

The results of the comparison of the absolute percentage errors of the computed
total pressure losses by the PUMA-DNNA, PUMA-DNNB, and PUMA-DNNC , are
presented in figure Figure 6.12. Some of the error bars for PUMA-DNNB and
PUMA-DNNA are missing due to the numerical instability in the solution. However,
after evaluating all three configurations, it is concluded that the DNNA configuration
provides the best results, with the smallest average error and generalizing better than
the other two DNNs. Additionally, PUMA-DNNA is twice as fast as PUMA-TM.
The error is calculated as:

errorij(%) =

∣∣∣∣∣P PUMA−TM
tlosses − P

PUMA−DNNj

tlosses

P PUMA−TM
tlosses

∣∣∣∣∣
i

∗ 100 (6.2)

where P PUMA−TM
tlosses are the computed total pressure losses by PUMA-TM at ith test-

ing geometry, P
PUMA−DNNj

tlosses are the computed total pressure losses at ith testing
geometry by PUMA-DNNj with j=A,B,C.

60

Figure 6.9: The training and validation loss during the training of DNNC . It ob-
served that the DNNC trained for 600 epochs, overfits the training data, when tested on
new unseen geometries. As a result, even though the training loss could potentially be
reduced further, stopping the training at 600 epochs was recommended not to damage
generalization.

Figure 6.10: The training and validation loss during the training of DNNB. The
validation loss is consistently higher than the training loss, with no obvious indications
of overfitting.

61

Figure 6.11: The training and validation loss during the training of DNNA. The
validation loss is consistently higher than the training loss, with no obvious indications
of overfitting.

Figure 6.12: The absolute percentage errors of PUMA-DNNA, PUMA-DNNB and
PUMA-DNNC on new blade geometries. It can be seen that the PUMA-DNNA have
the smallest average error and generalizes better than the other two DNNs. The prob-
lem of PUMA-DNNA with the numerical instability in the solution, since 2 out of
10 geometries flow diverged, was addressed effectively through the implementation of
dropout. The optimal DNN configuration is the DNNA.

62

The Mach number iso-areas computed for the baseline geometry by the PUMA-TM
and PUMA-DNNA models and the relative error between the two fields are shown
in ??.

6.5 Regularization of the Optimal DNN configu-

ration

Many techniques have been developed to combat overfitting in DNNs, including
early stopping, weight penalties (L1 and L2 regularization), soft weight sharing,
and dropout.

In this Diploma Thesis, it was found that using dropout in the optimal DNN con-
figuration (DNNA), improves the PUMA-DNN predictions, reduces overfitting and
boosts the numerical stability of PDEs (see Figure 6.14). Different implementations
on the hidden layers tested with three possible probabilities for each unit to retrain
(0.1, 0.2, 0.4) and found that dropping out the units of the last two hidden layers
with probability of 0.2, is the optimal. The errors of PUMA-DNN predictions on
new blade geometries, with and without dropout, are shown in Figure 6.15; dropout
reduces the average error by 1.13% while resolving the divergence issue when cou-
pling RANS with the DNN.

Further overfitting reduction can be achieved by stopping the training process at the
point where the validation loss stops improving (early stopping). This was found to
occur at about 400 epochs, as can be seen in Figure 6.16. The PUMA-DNN errors
on new blade geometries, with the DNN trained for 400 and 600 epochs are shown
in Figure 6.17, where it can be seen that there is a reduction in the average error
by 0.59% while the DNN trained for 400 instead of 600 epochs.

While dropout improves PUMA-DNN stability, some geometries may still show os-
cillatory behavior on flow-field quantities during the numerical solution of PUMA-
DNN. In this Diploma Thesis, it was found that calculating the error with respect
to the average value of the computed total pressure losses over the final X iterations
(1000 iterations found to be optimal) of the PUMA-DNN, instead of just the final
value, reduced the error by an additional 0.3% and improved the generalization per-
formance of the PUMA-DNN as the errors were closer to the average value. The
effect of averaging is shown in Figure 6.18.

Finally, the DNNA errors without using any of the aforementioned techniques (Initial
DNNA) and the DNNA errors using them (Final DNNA), are shown in Figure 6.19,
where it can be seen that it was achieved a reduction in total error by 2.02%,
addressing at the same time the divergence problem.

63

Figure 6.14: Total pressure loss per Iteration (5 · 103 iterations in total) computed
by PUMA-DNN with and without dropout. It’s obvious that dropout boosts numerical
stability.

Figure 6.15: The errors of PUMA-DNN predictions on new blade geometries, with
and without dropout. It can be seen that dropout reduces the average error by 1.13%
while resolving the divergence issue when coupling RANS with the DNN at geometry
IDs: 1, 3 and 4.

64

Figure 6.16: The training and validation loss during the training process of optimal
DNN configuration using Dropout.

Figure 6.17: The errors of PUMA-DNN predictions on the new blade geometries,
having trained the DNN for 400 and 600 epochs. It can be seen that there is a reduction
in the average error by 0.59% while the DNN trained for 400 instead of 600 epochs.

65

Figure 6.18: The errors of PUMA-DNN using dropout with and without averaging
the final 103 total pressure loss values. It can be seen that averaging the computed
total pressure losses over the final 1000 iterations of PUMA-DNN, decreases the error
by 0.3%.

Figure 6.19: The initial DNNA errors and the final DNNA errors using dropout,
early stopping and averaging the total pressure losses over the final 1000 iterations
of PUMA-DNN. It can be seen that it was achieved an error decrement by 2.02%,
addressing at the same time the divergence problem.

66

6.6 Shape Optimization Studies

In the shape optimization process using MAEA-based optimization in EASY, two
different evaluation software were compared, the standard PUMA-TM and PUMA-
DNN (using the final DNNA model from section 6.5). The MAEA optimization
configured with µ = 10 parents and λ = 18 offspring.

PUMA-TM as evaluation software

When the PUMA-TM was used as the evaluation software, the RANS equations
were solved with turbulence and transition models (PUMA-TM). However, during
the computation of flow fields in some of the newly generated geometries, an oscil-
latory behavior in the total pressure losses was observed (see Figure 6.20) without
reaching convergence. To overcome this and avoid the possibility of choosing some
of them as the best ones in the optimization process because the numerical solution
ended in a valley, the best practice is to average the total pressure losses over the
last iterations of the numerical solution and use their mean as the objective func-
tion in the optimization process. The objective was to minimize the total pressure
losses while ensuring that the exit angle remains close to its baseline value. Af-
ter implementing this technique, the geometries that exhibited oscillatory behavior
were deemed suboptimal, and this phenomenon ceased after a certain number of
evaluations.

To guarantee independence from the randomly generated number seed (RNG seed)
of MAEA, the optimization process was repeated three times for different RNG
seeds. The convergence history of the MAEA-based optimization using PUMA-TM
is shown in Figure 6.21, where it can be seen that both optimizations resulted in
very similar outcomes, practically converging after 150 evaluations. One cost unit
is defined as the cost of one evaluation using the PUMA-TM. A single evaluation
takes ∼ 10 mins, on a single NVIDIA GeForce RTX 2070.

67

Figure 6.20: The total pressure losses do not converge but they present a oscillatory
behavior during the numerical solution of PUMA-TM. Because steady flows are studied
and this unsteadiness is not accepted, the best practice is to average the losses over
the last 2 · 103 iterations and consider this value as the convergent one.

Figure 6.21: The convergence history of the MAEA-based optimization relying on
the PUMA-TM. It can be noticed that the optimizations led to very similar results.

68

PUMA-DNN as evaluation software

The second evaluation software used in the shape optimization process was the
PUMA-DNN, which is the DNNA predicting turbulence viscosity coupled with RANS.
It was selected due to its faster speed, with one evaluation costing 0.5 cost units as
opposed to one cost unit for the PUMA-TM. The objective function and constraints
remained unchanged.

The re-evaluation of the two best-so-far solutions after 50 evaluations of the op-
timization procedure showed that the error in the computed total pressure losses
was nearly double the average error. The two best solutions were then replaced the
”worst” ones in the DNN database (DBDNN) and the DNN was retrained, which was
found to be more effective than simply enriching the DBDNN . The cost of retraining
was deemed negligible in comparison to the initial training cost.

The optimization process then continued for 200 more evaluations using the re-
trained DNN. At the end, the optimization algorithm could not further improve the
best solutions and re-evaluation showed that the errors were equal to or less than
2.1%, which was equal to the average error of PUMA-DNN (see section 6.5). As a
result, the DNN was deemed acceptable and there was no need for further retraining.

Although further improvement of the average error could have been achieved by
replacing the worst solutions in the DBDNN with the better new ones from the op-
timization, this would have resulted in the DNN losing its generalization capability.
Thus, although the DNN would have better accuracy in solutions near to the best
ones, however, the solutions far from the best would be evaluated with significant
errors, overestimating or underestimating the total pressure losses, causing the op-
timization procedure to consider the significantly underestimated solutions as the
best ones. Therefore, the DNN was not retrained and the optimization process was
stopped as it could not improve the best solution any further. The results of the
optimization procedure are summarized in Table 6.4.

Table 6.4

Results of the Optimization procedure

Evaluation software Best solution Re-evaluated percentage %

PUMA-TM (averaged) 1302 - -11.3%
PUMA-DNN 1296 1318 -10.3%

The convergence history of the MAEA-based optimization relying on the PUMA-
DNN model, is shown in Figure 6.22 and the convergence histories of the MAEA-
based optimization relying on the PUMA-DNN and PUMA-TM using three different
RNGs seeds, is shown in Figure 6.23.

69

Figure 6.22: The convergence history of the MAEA-based optimization relying on
the PUMA-DNN model.

Figure 6.23: The convergence histories of the MAEA-based optimization relying on
the PUMA-DNN (without re-evaluation) and PUMA-TM using three different RNG
seeds. The re-evaluated geometries by PUMA-TM are colored in yellow. The PUMA-
DNN evaluation software leads to a faster converges but due to its predicted error,
the best solution is worser than the final best solution using PUMA-TM as evaluation
software.

The baseline shape and the shapes of the best solutions of the MAEA-based op-
timization relying on the PUMA-TM and PUMA-DNN, are shown in Figure 6.24,

70

where the x-axis is scaled at twice the size of the y-axis to enhance the visibility of
the variations in the shapes.

Figure 6.24: The blade airfoil shape of the baseline (black), the shape of the best
solution using PUMA-TM (red) and the shape of the best solution using PUMA-DNN
(blue). The x-axis is scaled at twice the size of the y-axis to enhance the visibility of
the variations in the shapes.

The heat transfer coefficient H of the best solution of the MAEA-based optimiza-
tion relying on the PUMA-DNN, computed by PUMA-DNN and re evaluated by
PUMA-TM is shown in Figure 6.25, where it can be seen that the results are almost
identical.

Figure 6.25: Heat transfer coefficient of the best solution of the MAEA relying on
the PUMA-DNN, computed by PUMA-DNN (black) and re-evaluated by PUMA-TM
(red). It can be seen that the results are almost identical.

71

The results of the heat transfer coefficient H computed by PUMA-TM shown in Fig-
ure 6.26 for both the baseline and the optimal solutions obtained using PUMA-TM
and PUMA-DNN as evaluation software in the shape optimization procedure. The
variations in the results stem from the dissimilarities in blade shapes.

Figure 6.26: Distributions of the heat transfer coefficient H computed by PUMA-TM
for both the baseline and the optimal solutions obtained using PUMA-TM and PUMA-
DNN as evaluation software. The variations in the results stem from the dissimilarities
in blade shape.

Also the Mach number iso-areas computed by PUMA-TM for the baseline and the
best solutions of the shape optimization using PUMA-TM and PUMA-DNN are
shown in Figure 6.27.

72

Figure 6.27: Mach number iso-areas computed by PUMA-TM for the baseline (left),
for the best blade geometry presented by the shape optimization procedure using PUMA-
TM (center) and using PUMA-DNN (right).

6.7 Conclusions

The optimization process utilizes the PUMA-DNN evaluation software, which al-
lows for optimization convergence to occur nearly twice as fast as the PUMA-TM.
However, the best solution achieved using PUMA-DNN resulted in a 10.3% decrease
in total pressure losses compared to an 11.3% decrease using the PUMA-TM. The
model could not be retrained to improve accuracy, as its predictive errors for the
best-so-far solutions were equal to or smaller than its average error. This suggests
that the model’s predictions are still likely to be underestimated (like the best-so-
far solutions that the PUMA-DNN found) or overestimated (the true best-so-far
solutions when re-evaluated by PUMA-TM) with an average error of 2.1%.

In conclusion, it is proven that the DNN can effectively replace the k-ω turbulence
and γ−R̃eθt transitional models (a total of 4 PDEs) and help the shape optimization
process using EA. PUMA-DNN has a cost per evaluation that is about half that of
PUMA-TM cost per evaluation, resulting in a faster convergence. The best-so-far
solution of PUMA-DNN was trapped into a region due to its average error which
was nearly 5 times less than the reduction in the objective function. This suggests
that using PUMA-DNN can be even more beneficial, when the ratio of the maximum
objective function decrement and the average error of the DNN is higher, and also
when the evaluations are even more costly.

73

74

Chapter 7

Conclusion

7.1 Overview

In this Diploma Thesis, two cases were studied, specifically the NACA4318 air-
foil and LS89 turbine blade cases, and employed DNNs to predict the turbulence
viscosity field. To generate the training dataset, the baseline geometries were pa-
rameterized using NURBS lattices, and a set of 60 and 150 geometries was created
for the first and second case, respectively, using Latin Hypercube Sampling (LHS).
For the first case, the flows were simulated, using the RANS equation solver coupled
with the SA turbulence model and for the second, using the RANS equations solver
coupled with the k-ω turbulence model assisted by γ − R̃eθt transition model.

For the LS89 case, the DNN configurations and inputs were optimized in a MAEA
optimization in EASY. Subsequently, the best DNN configuration was tested on 10
new geometries, which revealed overfitting to the training data. As a result, two
alternative DNNs from earlier generations that have smaller number of hidden layers,
were selected and tested, eventually leading to the identification of the optimal DNN
configuration that exhibited good generalization and low loss simultaneously. For
the training of the optimal DNN configuration, the early stopping and dropout
generalization techniques were utilized. The findings demonstrat two key points:
firstly, that the DNN’s ability to generalize cannot be discerned from the training
process, even when using a validation set; and secondly, that dropout in particular
can enhance its generalization ability.

The MAEA (shape) optimization of the two cases was presented. The first, was the
optimization of the NACA4318 case, with target to minimize the CD, keeping CL
close to its baseline value. The second, was the optimization of the LS89 case, with
target to minimize the total pressure losses while ensuring that the exit angle remains

75

close to its baseline value. For each case, two types of MAEA optimizations were
performed. For NACA4318 airfoil case, the first type used the RANS equations cou-
pled with SA turbulence model as evaluation software (the standard model), when
the second used the RANS equations coupled with the DNN instead (PUMA-DNN).
The comparison of the two types, showed that the use of the DNN as turbulence
model surrogate in the MAEA (shape) optimization, managed to achieve the same
quality results as the standard model with a slight improvement in computational
cost. For LS89 turbine blade case, the first type used the RANS equations coupled
with the k-ω turbulence and γ − R̃eθt transition model as evaluation software (the
standard model), when the second used the RANS equations coupled with the DNN
instead (PUMA-DNN). The results revealed that the PUMA-DNN led to a faster
convergence than the standard model with similar best solution quality. Thus, in
both cases, the DNN can successfully replace the turbulence/transition model(s)
and assist the MAEA shape optimization.

7.2 Conclusions

By completing the studies in this diploma thesis, the following conclusions are drawn:

� The DNNs, used to predict the turbulence viscosity field (by replacing the
turbulence/transition model(s) in CFD runs), are capable of making useful
predictions.

� Generalization techniques like dropout and early dropping can increase effec-
tively the generalization ability of the DNN improving the accuracy of the
predictions while testing on new unseen geometries. Also, dropout can indi-
rectly improve the numerical stability of the RANS equations coupled with
the DNN, making the predictions less sensitive to small perturbations in the
input data.

� For both cases, the MAEA optimization relying on PUMA-DNN, managed to
reach a solution of similar quality with the standard model. At the NACA4318
case, using the PUMA-DNN there was a slight improvement in the overall time
of the optimization, as opposed to the LS89 case where the computational
cost of the optimization reduced nearly by half. Thus, the benefit of using
the PUMA-DNN model in optimization is higher when the application and
the turbulent/transition model(s) being replaced are more computationally
expensive.

76

7.3 Future Work for Proposals

Based on the implementation of the DNNs in CFD, the following future works are
proposed:

� DNNs can be employed as turbulence and transition models surrogates in
computationally expensive cases, such as 3D flows, resulting in greater time
savings during the optimization process.

� By utilizing Fourier feature mapping, it is possible to improve the ability of
DNNs to learn the high frequency functions present in turbulence flows. As a
result, DNNs can be used to simulate more computationally expensive cases
or reduce the required size of the training database.

� DNNs can be trained to learn from the data generated by Large-Eddy Simula-
tion (LES) and reproduce their results. By utilizing the high-fidelity data from
LES simulations, the DNNs can learn to predict the behavior of the fluid flow
with greater accuracy and efficiency compared to using low-fidelity models.

77

78

Bibliography

[1] Gershgorn, D.: The Quartz guide to artificial intelligence: What is it, why is it
important, and should we be afraid? Quartz, September 2017. https://qz.com/

[2] Kahneman D., Sibony O., and Sustein C.R.: Noise: A flaw in human judgment.
Little, Brown Spark, New Work Boston London, May 2021, ISBN 978-0-316-
45138-3

[3] Michalski R.S., Carbonell J.G., Mitchell T.M.: Machine learning: An Artificial
Intelligence Approach. Springer-Verlag, Berling Heidelberg, 1984, ISBN 978-3-
662-12407-9

[4] Russell S.J., Norvig P.: Artificial Intelligence: A Modern Approach. Prentice
Hall, Englewood Clidds, New Jersey, page:546, 1995, ISBN 0-13-103805-2

[5] Ryan J.: Machine Learning: In plain English, DZone, July 2018,
https://dzone.com/

[6] Rouhiainen L.: Artificial intelligence: 101 things you must know today about
our future, CreateSpace Independent Publishing Platform, January 2018, ISBN
978-1982048808

[7] Kontou M., Asouti V, Giannakoglou K.: DNN surrogates for turbulence closure
in CFD-based shape optimization. Applied Soft Computing, 134:1-11, January
2023, https://doi.org/10.1016/j.asoc.2023.110013

[8] Tracey, D.B., Duraisamy, K., Alonso, A. J.: Machine learning strategy to assist
turbulence model development., 53rd AIAA Aerospace Sciences Meeting, January
2015. doi:10.2514/6.2015-1287, 10.2514/6.2015-1287

[9] Maulik R., San O., Jacob D.J, Crick C.: Sub-grid scale model classification and
blending through deep learning, Journal of Fluid Mechanics, 870:784-812, May
2019. doi:10.1017/jfm.2019.254, 10.1017/jfm.2019.254

[10] Haykin S.: Neural Networks and Learning Machines, Prentice Hall/Pearson,
New York, 2009, ISBN 978-0131471399.

[11] Crick F.: The Astonishing Hypothesis: The Scientific Search for the Soul,
Charles Scribner’s Sons, New York, 1995, ISBN 0-684-19431-7

79

https://qz.com/1046350/the-quartz-guide-to-artificial-intelligence-what-is-it-why-is-it-important-and-should-we-be-afraid
https://dzone.com/articles/machine-learning-in-plain-english
https://doi.org/10.1016/j.asoc.2023.110013

[12] Rumelhart D.E., Hinton G.E, Williams R.J.: Learning representa-
tions by back-propagating errors, Nature, 323(6088):533-536, October 1986.
doi:10.1038/323533a0, 10.1038/323533a0.

[13] Elbrachter, D., Perekrestenko, D., Grohs P., and Bolcskei H.: Deep
Neural Network Approximation Theory. IEEE Transactions on Infor-
mation Theory, 67(5):2581-2623, May 2021. doi:10.1109/tit.2021.3062161,
10.1109/tit.2021.3062161.

[14] Qi, J., Du, J., Siniscalchi, S.M., Ma, X., Lee, C.: On Mean Absolute Error for
Deep Neural Network Based Vector-to-Vector Regression, IEEE Signal Process-
ing Letters, 1-1, 2020. doi:10.1109/lsp.2020.3016837, 10.1109/lsp.2020.3016837.

[15] Kingma, D. P. and Ba, J.: Adam: A method for stochastic optimization., In
Bengio, Yoshua and LeCun, Yann (editors): 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015. http://arxiv.org/abs/1412.6980

[16] Vapnik, S.M. Deep Neural Networks for Modeling Nonlinear Systems: A Review
of Cross-Validation Strategies, 2017

[17] Brownlee, J. Better Deep Learning: Train Faster, Reduce Overfitting, and Make
Better Predictions, Machine Learning Mastery, December 2018.

[18] Mohamed, D. What is Overffitting and Underfitting? Medium, November 11,
2020. https://medium.com/

[19] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Journal
of Machine Learning Research 15:1929-1958, 2014.

[20] Spalart, P., Allmaras, S.: A One-Equation Turbulence Model for Aero-
dynamic Flows, 30th Aerospace Sciences Meeting and Exhibit, 1992.
https://doi.org/10.2514/6.1992-439, 10.2514/6.1992-439.

[21] Menter, F.R.: Two-Equation Eddy-Viscosity Turbulence Models for Engineer-
ing Applications, AIAA Journal, 32(8):1598-1605, 1994. doi:10.2514/3.12149,
10.2514/3.12149.

[22] Langtry, R.B., and Menter, F.R.: Correlation-based transition modeling for
unstructured parallelized computational fluid dynamics codes, AIAA Journal,
47(12), 2894-2906. doi:10.2514/1.42362, 10.2514/1.42362.

[23] Schubauer, G. B., and Klebanoff, P. S., Contribution on the Mechanics of
Boundary Layer Transition, January 1956. id: 19930092285.

[24] Asouti V., Trompoukis X., Kampolis I., Giannakoglou K. (2011) Unsteady
CFD computations using vertex-centered finite volumes for unstructured grids on
graphics processing units, International Journal for Numerical Methods in Fluids,
67(2):232-246, 2011. . https://doi.org/10.1002/fld.2352, 10.1002/fld.2352.

80

http://arxiv.org/abs/1412.6980
https://dyfan-mo.medium.com/what-is-overffitting-and-underfitting-c52b7fe2496b
https://doi.org/10.1002/fld.2352

[25] Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing, Springer
Berlin, Heidelberg, 2015, ISBN: 978-3-662-44873-1. https://doi.org/10.1007/
978-3-662-44874-8

[26] Giannakoglou, K: Optimization Methods in Aerodynamics, NTUA, Athens,
2006. http://velos0.ltt.mech.ntua.gr

[27] Giannakoglou, K.: Designing turbomachinery blades using evolutionary meth-
ods, ASME Paper 99-GT-181 1999.

[28] Karakasis, K.M., Giannakoglou, K.: Metamodel-Assisted Mutli-Objective Evo-
lutionary Optimization, 2005.

[29] Agoston E. Eiben, J.E Smith (2008), EASY. http://velos0.ltt.mech.ntua.
gr/EASY/

[30] Ching, J., Gulcehre, C., Cho, K., and Bengio, Y.: Empirical Evaluation of
Gated Recurrent Neural Networks on Sequence Modeling, arXiv, December 2014,
https://doi.org/10.48550/arXiv.1412.3555

[31] Goodfellow, I., Bengio, Y., and Courville, A.: Deep Learning, MIT press, 2016.
http://www.deeplearningbook.org

[32] Arts, T., Rouvroit De Lambert, M., Rutherford, W.A.: AERO-Thermal inves-
tigation of a highly loaded transonic linear turbine guide vane cascade: A test
case for inviscid and viscous flow computations, Von Karman Institude for fluid
dynamics, Technical Note 174, September 1990.

[33] Pironneau, O.: Finite Elements for Fluid, Willey, 1st edition, January 1990,
ISBN 978-0471922551.

[34] Bochev P.B, Gunzburger, M.D.: Analysis of least squares finite element meth-
ods for the Stokes equations, Mathematics of Computation, 63(208):479-479.
doi:10.1090/s0025-5718-1994-1257573-4, 10.1090/s0025-5718-1994-1257573-4.

[35] Roe, L.P.: Approximate Riemann Solvers, Parameter Vectors, and
Difference Schemes, Journal of Computational Physics, 135(2):250-258.
doi:10.1006/jcph.1997.5705, 10.1006/jcph.1997.5705.

[36] Jameson, A.: Origins and Further Development of the Jameson–Schmidt–Turkel
Scheme, AIAA Journal, 55(5):1487–1510, 2017. doi:10.2514/1.j055493,
10.2514/1.j055493.

[37] Raissi, M., Perdikaris, P., and Karniadakis, G.E.: Physics-Informed Neural Net-
works: A Deep Learning Framework for Solving Forward and Inverse Problems
Involving Nonlinear Partial Differential Equations, Journal of Computational
Physics, 378:686-707, 2019. https://doi.org/10.1016/j.jcp.2018.10.045

81

https://doi.org/10.1007/978-3-662-44874-8
https://doi.org/10.1007/978-3-662-44874-8
http://velos0.ltt.mech.ntua.gr/kgianna/optim/distr/Book-Optim-Giannakoglou.pdf
http://velos0.ltt.mech.ntua.gr/EASY/
http://velos0.ltt.mech.ntua.gr/EASY/
https://doi.org/10.48550/arXiv.1412.3555
http://www.deeplearningbook.org
https://doi.org/10.1016/j.jcp.2018.10.045

[38] Zhang, C., Patras, P., and Haddadi, H.: Deep learning in mobile and wireless
networking: A survey, IEEE Communications Surveys and Tutorials, 43(3):2224-
2287, 2019. doi:10.1109/COMST.2019.2904897.

82

Εθνικό Μετσόβιο Πολυτεχνείο

Σχολή Μηχανολόγων Μηχανικών

Τομέας Ρευστών

Εργαστήριο Θερμικών Στροβιλομηχανών

Μονάδα Παράλληλης Υπολογιστικής Ρευστοδυναμικής

& Βελτιστοποίησης

Τα Βαθιά Νευρωνικά Δίκτυα ως Υποκατάστατα

Μοντέλων Τύρβης στην Αεροδυναμική Ανάλυση και

Βελτιστοποίηση

Διπλωματική εργασία - Εκτενής Περίληψη στην Ελληνική

Ιωάννης Κορδός

Επιβλέπων: Κυριάκος Χ. Γιαννάκογλου, Καθηγητής ΕΜΠ

Αθήνα, 2023

Εισαγωγή

Στόχος της Διπλωματικής αυτής Εργασίας, είναι η χρήση Βαθιών Νευρωνικών Δι-

κτύων (ΒΝΔ), ως υποκατάστατα μοντέλων τύρβης στην αεροδυναμική ανάλυση και

βελτιστοποίηση, με στόχο τη μείωση του συνολικού υπολογιστικού κόστους της δια-

δικασίας αυτής. Τα ΒΝΔ εκπαιδεύονται σε ένα σύνολο δεδομένων με στόχο να ανα-

παράγουν όσο το δυνατόν ακριβέστερα το πεδίο της τυρβώδους συνεκτικότητας.

Οι περιπτώσεις βελτιστοποίησης που χρησιμοποιούνται είναι η βελτιστοποίηση του

σχήματος της μεμονωμένης αεροτομής NACA4318 με στόχο την ελαχιστοποίηση του
συντελεστή αντίστασης και σταθερό συντελεστή άνωσης, και του πτερυγίου συμπιε-

στή LS89 με στόχο την ελαχιστοποίηση των απωλειών ολικής πίεσης και σταθερή
γωνία εξόδου της ροής. Το ακριβές μοντέλο για την πρώτη περίπτωση, είναι ο επι-

λύτης των RANS με το μοντέλο τύρβης Spalart − Allmaras, ενώ για τη δεύτερη
είναι ο επιλύτης των RANS με το μοντέλο τύρβης k-ω και μετάβασης γ − R̃eθt. Τα
εναλλακτικά μοντέλα είναι ο επιλύτης των RANS εξισώσεων με το αντίστοιχο ΒΝΔ
της κάθε περίπτωσης.

Τεχνητή Νοημοσύνη και Βαθιά Νευρωνικά Δίκτυα

Η τεχνητή νοημοσύνη είναι ένας ραγδαία αναπτυσσόμενος κλάδος της επιστήμης των

υπολογιστών και έχει επηρεάσει και αναδιαμορφώσει πολλές πτυχές της βιομηχανίας

και της κοινωνίας. Η ΤΝ περιλαμβάνει την ανάπτυξη αλγορίθμων ικανών να ανιχνεύουν

μοτίβα σε ένα σύνολο δεδομένων και να λαμβάνουν, εν συνεχεία, αποφάσεις με βάση

νέα δεδομένα.

Η πρώτη υποκατηγορία του πεδίου της ΤΝ είναι η Μηχανική Μάθηση (ΜΜ). Τα μο-

ντέλα ΜΜ εξετάζουν δεδομένα, μαθαίνουν από αυτά βασιζόμενα σε στατιστικά μοντέλα

και, εν συνεχεία, κάνουν προβλέψεις/ταξινομήσεις σχετικά με νέα δεδομένα. Το ση-

μαντικό τους χαρακτηριστικό είναι πως η διαδικασία μάθησης είναι αυτόματη χωρίς να

χρειάζεται εξατομικευμένος προγραμματισμός στο εκάστοτε πρόβλημα.

Τα Βαθιά Νευρωνικά Δίκτυα (ΒΝΔ ή DNN) αποτελούν υποκατηγορία της ΜΜ και
είναι εμπνευσμένα από την λειτουργία των εγκεφαλικών νευρικών κυττάρων. ΄Ετσι,

τα ΝΔ αποτελούνται από διασυνδεδεμένα δίκτυα τεχνητών νευρώνων τα οποία έχουν

είσοδο και έξοδο. Η πληροφορία ρέει από την είσοδο στην έξοδο και επηρεάζεται

σύμφωνα με την αρχιτεκτονική και τα βάρη των συνάψεων. Η αρχιτεκτονική ενός ΒΝΔ

ορίζεται από το πλήθος των επιπέδων και το πλήθος των νευρώνων σε κάθε επίπεδο. Η

εκπαίδευσή τους σε ένα σύνολο εισόδων έγκειται στον προσδιορισμό των κατάλληλων

συναπτικών βαρών (σύμφωνα με έναν αλγόριθμο μάθησης) που ελαχιστοποιούν το

σφάλματα μεταξύ της εξόδου τους και της γνωστής απόκρισης. Το τελικό σύνολο

τιμών των βαρών αποτελεί τη μνήμη του ΒΝΔ η οποία του επιτρέπει να κάνει προβλέψεις

σε νέα δεδομένα.

Τα ΒΝΔ έχουν χρησιμοποιηθεί ευρέως και στον τομέα της Υπολογιστικής Ρευστοδυ-

ναμικής (ΥΡΔ) καθώς έχουν την ικανότητα να μαθαίνουν πολύπλοκες μη-γραμμικές

σχέσεις μεταξύ των εισόδων και των εξόδων. Ενδεικτικά, λόγω του μικρού υπολο-

2

γιστικού κόστους έχουν χρησιμοποιηθεί και ως υποκατάστατα λογισμικών ΥΡΔ σε

διαδικασίες βελτιστοποίησης [1].

Αεροδυναμική Ανάλυση σε Τυρβώδες Ροές

Οι μόνιμες και συμπιεστές ροές μοντελοποιούνται με τις RANS εξισώσεις οι οποίες
γράφονται:

RMF
n =

∂f inv
nj

∂xj

−
∂f vis

nj

∂xj

= 0 (7.1)

όπου n = 1, .., 5 και j = 1, ..3. f inv
j = [ρuj ρuju1 + pδ1j ρuju2 + pδ2j ρuju3 +

pδ3j ρujht]
T
είναι οι ατριβείς ροές, f vis

j = [0 τ1j τ2j τ3j ukτkj + qj]
T
είναι οι

συνεκτικές-τυρβώδες ροές. ρ, p, uj,ht και δjm είναι η πυκνότητα του ρευστού, η
πίεση, οι συνιστώσες της ταχύτητας, η ολική ενθαλπία και το σύμβολο του Kronecker,
αντίστοιχα. Βασιζόμενοι στην υπόθεση του Boussinesq, οι συνιστώσες του τανυστή
τάσης είναι:

τjm = (µ+ µt)

(
∂uj

∂xm

+
∂um

∂xj

− 2

3
δjm

∂uk

∂xk

)
− 2

3
δjmρk (7.2)

όπου µ είναι η συνεκτικότητα του ρευστού και µt η τυρβώδης συνεκτικότητα (ο τελευ-

ταίος όρος της εξίσωσης 7.2 χρησιμοποιείται μόνο στο k-ω SST μοντέλο) και qj είναι

η ροή θερμότητας. k είναι η τυρβώδης κινητική ενέργεια (ΤΚΕ), k = 1
2
u

′
ju

′
m, η οποία

μπορεί να υπολογιστεί με το k-ω SST μοντέλο τύρβης. Οι συνιστώσες της ταχύτητας
και πίεσης, υπολογίζονται απο τις εξισώσεις μέσης ροής ενώ το πεδίο τυρβώδους συ-

νεκτικότητας υπολογίζεται απο το μοντέλο τύρβης που επιλέγεται.

Το Spalart− Allmaras (SA) Μοντέλο Τύρβης

Το μοντέλο τύρβης SA λύνει μία διαφορική εξίσωση για τον υπολογισμό του πεδίου ν̃.
Η εξίσωση αυτή για μόνιμη και συμπιεστή ροή είναι:

RSA =
∂(ρν̃uR

k)

∂xj

− ρ

Re0σ

{
∂

∂xj

[
(ν + ν̃)

∂ν̃

∂xk

]
+ cb2

∂ν̃

∂xk

∂ν̃

∂xk

}
− ρcb1S̃ν̃ +

ρ

Re0
cw1fw

(
ν̃

∆

)2 (7.3)

όπου το Δ είναι η απόσταση κάθε κόμβου του πλέγματος απο τον πλησιέστερο σύνορο.

Η επιθυμητή ποσότητα µt μπορεί να υπολογιστεί απο την εξίσωση:

µt = ρν̃fυ1 (7.4)

3

Οι συμπληρωματικές εξισώσεις της 7.3, μπορούν να βρεθούν στο [2].

Το k-ω Μοντέλο Τύρβης

Το μοντέλο τύρβης k-ω λύνει δύο διαφορικές εξισώσεις για τα μεγέθη k και ω, οι
οποίες είναι οι εξής:

∂(ρujk)

∂xj

= P −D +
∂

∂xj

(
(µ+ σkµt)

∂k

∂xj

)
(7.5)

∂(ρujω)

∂xj

=
γ

νt
P − βρω2 +

∂

∂xj

(
(µ+ σωµt)

∂ω

∂xj

)
+ 2(1− F1)

ρσω2

ω

∂k

∂xj

∂ω

∂xj

(7.6)

Η επιθυμητή ποσότητα µt μπορεί να υπολογιστεί από τη σχέση:

µt =
ρα1k

max(α1ω,ΩF2)
(7.7)

Οι συμπλρωματικές εξισώσεις και σταθερές των εξισώσεων 7.5 και 7.6, μπορούν να

βρεθούν στο [3].

Το γ − R̃eθt Μοντέλο Μετάβασης

Το μοντέλο αυτό βασίζεται σε δύο διαφορικές εξισώσεις για τα μεγέθη γ και R̃eθt, οι
οποίες είναι:

Rγ =
∂(ρujγ)

∂xj

− ∂

∂xj

((
µ+

µt

σf

)
∂γ

∂xj

)
− Pγ + Eγ = 0 (7.8)

RR̃eθt =
∂(ρujR̃eθt)

∂xj

− ∂

∂xj

(
σθt(µ+ µt)

∂R̃eθt
∂xj

)
− Pθt = 0 (7.9)

΄Ολες οι συμπληρωματικές εξισώσεις και σταθερές μπορούν να βρεθούν στο [4]. Εν

τέλει, σκοπός είναι να υπολογιστεί η ποσότητα γeff με την οποία το μοντέλο μετάβασης
αλληλεπιδρά με το μοντέλο τύρβης k-ω ως εξής:

∂

∂xj

(ρujk) = P̃ − D̃ +
∂

∂xj

(
(µ+ σµt)

∂k

∂xj

)
(7.10)

P̃ = γeffP (7.11)

D̃ = min(max(γeff , 0.1), 1.0)D (7.12)

όπου τα P και D είναι αρχικοί όροι παραγωγής και καταστροφής του k-ω SST μο-
ντέλου.

4

Εξελικτικοί Αλγόριθμοι

Οι εξελικτικοί αλγόριθμοι (ΕΑ) είναι βασισμένοι στη θεωρία του Δαρβίνου περί της φυ-

σικής εξέλιξης. ΄Ενας ΕΑ διαχειρίζεται πληθυσμούς λύσεων (γονείς) οι οποίες συνδυ-

άζονται/αναπαράγονται δίνοντας νέες λύσεις (απογόνους) από γενιά σε γενιά σύμφωνα

με μηχανισμούς εμπνευσμένους από τη φύση. Ο σκοπός των μηχανισμών αυτών είναι

τα καλά χαρακτηριστικά των γονέων να περάσουν και να ενισχυθούν στους απογόνους

τους. Τα ῾῾καλά᾿᾿ χαρακτηριστικά ενός ατόμου, προσδιορίζονται μέσω μιας συνάρτηση-

στόχου, η οποία ανάλογα το πρόβλημα, αφορά στην ελαχιστοποίησή ή μεγιστοποίησή

της. Τα άτομα που ελαχιστοποιούν/μεγιστοποιούν την συνάρτηση-στόχος είναι αυτά

που θεωρούνται και τα ῾῾καλύτερα᾿᾿ από τα υπόλοιπα άτομα.

Τα βασικά πλεονεκτήματα ενός ΕΑ, είναι το μη-μαθηματικό υπόβαθρό τους, η ικα-

νότητα να προσαρμόζονται σε διαφορετικά προβλήματα αρκεί να υπάρχει το κατάλληλο

λογισμικό αξιολόγησης, η δυνατότητα να αξιολογούνται τα άτομα παράλληλα και η δυ-

νατότητά τους να μην εγκλωβίζονται σε τοπικά ακρότατα λόγω του στοχαστικού τους

χαρακτήρα και των μηχανισμών αναπαραγωγής, οι οποίοι ενισχύουν την τυχαιότητα.

Χρήση ΒΝΔ ως Υποκατάστατου του Μοντέλου Τύρβης SA στην Α-
εροδυναμική Ανάλυση και Βελτιστοποίηση της Μεμονωμένης Αερο-

τομής NACA4318

Το ΒΝΔ εκπαιδεύεται με σκοπό να αναπαράγει με όσο το δυνατόν μεγαλύτερη ακρίβεια

το πεδίο µt. Αφού επιτευχθεί αυτό, το ΒΝΔ υποκαθιστά το μοντέλο τύρβης (SA)
στη βελτιστοποίηση σχήματος της αεροτομής με ΜΑΕΑ με στόχο την ελαχιστοποίηση

του συντελεστή οπισθέλκουσας CD και διατήρηση του συντελεστή άνωσης CL στην
αρχική του τιμή.

Για την εκπαίδευση του ΒΝΔ η γεωμετρία της αεροτομής παραμετρικοποιείται με την

χρήση ενός κουτιού NURBs αποτελούμενο από 5Χ3 σημεία ελέγχου όπως φαίνεται
στο Σχήμα.7.1. Τα σημεία ελέγχου με μπλε χρώμα, επιτρέπεται να μετακινηθούν μόνο

κατά την κάθετη κατεύθυνση, ενώ τα σημεία ελέγχου με κόκκινο κρατούνται σταθερά.

Επομένως, υπάρχουν 13 μεταβλητές σχεδιασμού.

Σχήμα 7.1: Παραμετρικοποίηση με κουτί 5Χ3 NURBS.

5

Για τη δημιουργία των δεδομένων εκπαίδευσης (ΔΕ) του ΒΝΔ, δημιουργούνται 60

δείγματα με την τεχνική Latin Hypercube Sampling (LHS), η οποία κάνει σχεδόν
τυχαία δειγματοληψία του χώρου σχεδιασμού των 13 μεταβλητών. Εν συνεχεία, η

ροή γύρω από κάθε γεωμετρία μοντελοποιείται με τον επιλύτη των RANS εξισώσεων
και του μοντέλου τύρβης SA (ακριβές μοντέλο ή PUMA − TM). Η μοντελοποίηση
της ροής των 60 γεωμετριών παίρνει περίπου 4 ώρες στην κάρτα γραφικών NV IDIA
GeForce RTX 2070.

Οι ποσότητες στο σύνολο των ΔΕ, κανονικοποιούνται στο διάστημα [0,1] από τη σχέση:

xi =
Xj −min(Qi)

max(Qi)−min(Qi)
(7.13)

όπου το Qi είναι ένας πίνακας που περιέχει τις τιμές της μεταβλητής i σε όλες τις
γεωμετρίες των ΔΕ. max(Qi) και min(Qi) είναι η μέγιστη και ελάχιστη τιμή της
μεταβλητής i όλων των ΔΕ. Το Xj είναι η j τιμή του πίνακα Qi και το xj είναι η

κανονικοποιημένη τιμή του Xj, η οποία ανήκει στο διάστημα [0,1].

Η ανάπτυξη και εκπαίδευση του ΒΝΔ έγινε στο TensorF low με χρήση της γλώσσας
προγραμματισμού Python. Η επιλεγμένη διαμόρφωση του ΒΝΔ φαίνεται στον πίνακα
7.1

Πίνακας 7.1

Επίπεδα Νευρώνες/Επίπεδο ΔΕ εισόδου Συνάρτηση

ενεργοποίη-

σης

5 64, 128, 256, 2048, 512 (xk, ρ, p, uk,) ReLu/tanh

Προκειμένου να εκτιμηθεί το σφάλμα και η ικανότητα γενίκευσης, το ΒΝΔ και οι

RANS εξισώσεις (εναλλακτικό μοντέλο ή PUMA − DNN) επιλύονται για την μο-
ντελοποίηση της ροής σε 10 νέες γεωμετρίες και το σφάλμα των προβλέψεων εκτιμάται

ως προς τις υπολογιζόμενες τιμές του CD και όχι του πεδίου µt. Αυτό γίνεται για

πρακτικτούς λόγους, αφού η βελτιστοποίηση σχήματος αφορά στην ελαχιστοποίηση

του CD. Η σχέση για τον υπολογισμό του σφάλματος είναι:

error [%] =
CDj

PUMA−TM − CDj
PUMA−DNN

CDj
PUMA−TM

· 100 (7.14)

όπου j είναι ο δείκτης των 10 νέων γεωμετριών και παίρνει τιμές [1,2,..,9,10].

Στο Σχ. 7.2, φαίνονται τα αποτελέσματα των προβλέψεων του ΒΝΔ στις νέες γεωμε-

τρίες.

Αφού το ΒΝΔ έχει εκπαιδευτεί, πραγματοποιείται βελτιστοποίηση σχήματος της αερο-

6

Σχήμα 7.2: Ποσοστιαία σφάλματα σε κάθε νέα γεωμετρία (αριστερά) και οι τιμές των

CD (δεξιά) υπολογισμένες απο το ακριβές μοντέλο (PUMA− TM) και το εναλλακτικό
μοντέλο (PUMA−DNN). Το μέσο σφάλμα είναι 6.3%

τομής με MAEA, με χρήση δύο λογισμικών αξιολόγησης. Το πρώτο είναι ο επιλύτης
των RANS εξισώσεων με το μοντέλο τύρβης SA (ακριβές μοντέλο) και το δεύτερο
είναι ο επιλύτης των RANS εξισώσεων με το μοντέλο του ΒΝΔ (εναλλακτικό μο-
ντέλο). Στόχος της βελτιστοποίησης είναι η ελαχιστοποίηση του CD, διατηρώντας το
CL κοντά στην αρχική του τιμή.

Η βελτιστοποίηση σχήματος με ΜΑΕΑ με το ακριβές λογισμικό αξιολόγησης πραγ-

ματοποιείται για τρείς διαφορετικές αρχικοποιήσεις της γεννήτριας τυχαίων αριθμών

(RNG seed). Το κριτήριο τερματισμού κάθε βελτιστοποίησης τίθεται στις 350 αξιο-
λογήσεις. Μιά μονάδα κόστους ισοδυναμεί με μία αξιολόγηση του ακριβούς μοντέλου.

Το εναλλακτικό μοντέλο είναι πιο γρήγορο απο το ακριβές με μία αξιολόγηση να ισοδυ-

ναμεί με 0.8 φορές τη μονάδα κόστους. ΄Ετσι, πραγματοποιούνται 440 αξιολογήσεις, οι

οποίες ισοδυναμούν περίπου με 350 μονάδες κόστους (ή 350 αξιολογήσεις με το ακριβές

μοντέλο). Το ΒΝΔ δεν χρειάστηκε επανεκπαίδευση καθόλη τη βελτιστοποίηση.

Τα αποτελέσματα όλων των βελτιστοποιήσεων αναγράφονται στον Πίνακα. 7.2, όπου

για το ακριβές μοντέλο, αναγράφεται ο μέσος όρος των αποτελεσμάτων απο τη χρήση

των τριών διαφορετικών RNG.

Πίνακας 7.2

Τα αποτελέσματα της βελτιστοποίησης

Λογισμικό αξιολόγησης Βέλτιστη λύση

(CD/CL)
Επαναξιολόγηση

(CD/CL)
Ποσοστιαία με-

ίωση του CD

Ακριβές μοντέλο (μέσος όρος) 0.0309/1.506 - -3.46%
Εναλλακτικό μοντέλο 0.03288/1.506 0.0307/1.508 -3.91%

Στο Σχ. 7.3 φαίνονται οι πορείες σύγκλισης των βελτιστοποιήσεων.

7

Σχήμα 7.3: Η πορεία σύγκλισης της βελτιστοποίησης με MAEA βασιζόμενη στα
PUMA − DNN και PUMA − TM . Το PUMA − DNN λογισμικό αξιολόγησης

επιταχύνει την βελτιστοποίηση συγκριτικά με το PUMA−TM με επιλεγμένες τις RNG2

και RNG3, ενώ παρουσιάζει σχεδόν όμοια πορεία σύγκλισης όταν επιλέγεται η RNG3.

Συμπεράσματα

Τα αποτελέσματα από τη χρήση του μοντέλου PUMA − DNN σε μελέτες βελτι-
στοποίησης σχήματος είναι ενθαρρυντικά, παρόλο που το κόστος της εκτέλεσης του

PUMA− TM είναι ελάχιστο σε αυτήν την περίπτωση. Παρόλο που υπάρχει μόνο μια
μικρή βελτίωση στο συνολικό χρόνο της βελτιστοποίησης λαμβάνοντας υπόψη τη μέση

απόδοση του PUMA − TM με τη χρήση των διαφορετικών RNG, αυτό χρησιμεύει
ως μια πρώτη ένδειξη ότι το κέρδος μπορεί να είναι ακόμη μεγαλύτερο σε περιπτώσεις

όπου οι αξιολογήσεις είναι πιο δαπανηρές.

Χρήση ΒΝΔ ως Υποκατάστατο του Μοντέλου Τύρβης k-ω και Με-
τάβασης γ − R̃eθt στην Αεροδυναμική Ανάλυση και Βελτιστοποίηση
του Σχήματος Πτερύγωσης Αξονικού Στροβίλου LS89

Η γεωμετρία της αεροτομής του στροβίλου παραμετρικοποιείται με τη χρήση ενός κου-

τιού μορφοποίησης NURBS αποτελούμενο από 8Χ5 σημεία ελέγχου όπως φαίνεται
στο Σχήμα.7.4. Τα σημεία ελέγχου με μπλε χρώμα, επιτρέπεται να κινούνται κατά τη

χορδή και κάθετα αυτής εντός 10% των τιμών αναφοράς τους. Τα σημεία ελέγχου με
κόκκινο χρώμα, κρατούνται σταθερά. Συνεπώς, υπάρχουν 60 μεταβλητές σχεδιασμού.

Τα 150 δείγματα των ΔΕ παράγονται με την τεχνική LHS και η ροή μοντελοποιε-
ίται με τον επιλύτη των RANS εξισώσεων με το μοντέλο τύβης k-ω και μετάβασης

8

γ − R̃eθt (ακριβές μοντέλο ή PUMA − TM). Η μοντελοποίηση της ροής των 150
γεωμετριών χρειάζεται περίπου 26 ώρες στην NV IDIA GeForce RTX 2070. Τα ΔΕ
κανονικοποιούνται σύμφωνα με την εξίσωση 7.13.

Σχήμα 7.4: Τα σημεία ελέγχου της γεωμετρίας του LS89.

Επειδή το ΒΝΔ καλείται να υποκαταστήσει ένα σύνολο τεσσάρων διαφορικών εξι-

σώσεων (μοντέλα τύρβης και μετάβασης) κάνοντας την εύρεση του κατάλληλου δι-

κτύου δύσκολη, μία καλή πρακτική είναι η βελτιστοποίηση των υπερ-παραμέτρων και

των εισόδων του με MAEA που υλοποιείται στο λογισμικό EASY . Ο στόχος της
βελτιστοποίησης είναι η μείωση του σφάλματος του ΒΝΔ εκπαιδευόμενου στο σύνολο

των ΔΕ. Ωστόσο, το προκύπτον βέλτιστο δίκτυο παρουσιάζει υπερπροσαρμογή στα ΔΕ

(overfitting). Η μείωση του σφάλματος στα ΔΕ δεν συνεπάγεται και ταυτόχρονη βελ-
τίωση της ικανότητας γενίκευσης των ΒΝΔ και, επειδή δεν είναι εφικτό να αξιολογηθεί

η ικανότητα γενίκευσης κατά τη διαδικασία της βελτιστοποίησης, κρίνεται απαραίτητη

η δοκιμή των ΒΝΔ σε νέες γεωμετρίες.

Τα επιλεγμένα ΒΝΔ τα οποία δοκιμάζονται σε νέες γεωμετρίες είναι το συνολικά βέλτι-

στο (DNNC) και δύο ακόμα από το σύνολο των καλύτερων λύσεων της βελτιστοποίη-

σης, τα οποία συμβολίζονται ως DNNB και DNNA. ΄Ενας τρόπος να αντιμετωπιστεί η

υπερ-προσαρμογή είναι μειώνοντας την πολυπλοκότητα της αρχιτεκτονικής του δικτύου.

Επομένως, τα δύο τελευταία δίκτυα, επιλέγονται καθώς έχουν τα λιγότερα κρυφά ε-

πίπεδα και παράλληλα μικρό σφάλμα. Στον Πίνακα.7.3 αναγράφονται οι διαμορφώσεις

των επιλεγμένων ΒΝΔ.

Πίνακας 7.3

Βέλτιστα

DNN
Επίπεδα Νευρώνες/Επίπεδο Δεδομένα-

Εισόδου

Συνάρτηση

Ενεργοποίη-

σης

DNNA 3 256, 2048, 2048 (x, ρ, p, d, uk,Ω, S) ReLu/tanh
DNNB 3 128, 64, 2048 (y, ρ, p, d, uk, S) ReLu/tanh
DNNC 10 256,2048,4096,1024,32,64,4096,256,256,1024 (xk, ρ, p, d, uk,Ω, S) ReLu/tanh

9

Τα σφάλματα των ΒΝΔ εκτιμώνται ως προς τις υπολογιζόμενες απώλειες ολικής πίεσης

εν σύγκριση με αυτές του ακριβούς μοντέλου σε 10 νέες γεωμετρίες. Τα ποσοστιαία

σφάλματα των τριών ΒΝΔ σε 10 νέες γεωμετρίες φαίνονται στο Σχ.7.5, όπου είναι

φανερό πως το μοντέλο PUMA−DNNA έχει το μικρότερο μέσο όρο σφάλματος σε

νέες γεωμετρίες και, άρα, τη μεγαλύτερη ικανότητα γενίκευσης. Η επίλυση της ροής

στην 1η και 4η γεωμετρία με χρήση του DNNA απέκλινε, ωστόσο, το πρόβλημα αυτό

μπορεί να διευθετηθεί με περαιτέρω ρύθμιση του ΒΝΔ όπως θα φανεί στη συνέχεια.

Επομένως το DNNA επιλέγεται ως το βέλτιστο ΒΝΔ.

Για την περαιτέρω αύξηση της ικανότητας γενίκευσης του ΒΝΔ καθώς και την ε-

πίλυση του προβλήματος απόκλισης, εφαρμόζονται δύο τεχνικές, οι οποίες ονομάζο-

νται dropout και early-stopping. Επιπλέον, η επαναληπτική αριθμητική επίλυση των
RANS εξισώσεων με το ΒΝΔ παρουσιάζει, σε μερικές περιπτώσεις, μία ταλαντωτική
συμπεριφορά. Για την αντιμετώπιση αυτού του φαινομένου, μια πρακτική είναι να λαμ-

βάνεται υπόψη ο μέσος όρος των απωλειών ολικής πίεσης λ.χ των τελευταίων 1000

επαναλήψεων αντί της τελικής τιμής. Η επίδραση των τεχνικών αυτών στα ποσοστιαία

σφάλματα του ΒΝΔ στις 10 νέες γεωμετρίες, φαίνονται στο Σχ.7.6, όπου το μέσο

σφάλμα του νευρωνικού μειώθηκε συνολικά κατά 2.11%.

Σχήμα 7.5: Τα ποσοστιαία σφάλματα των PUMA−DNNA, PUMA−DNNB και

PUMA−DNNC σε νέες γεωμετρίες.

Αφού έχει επιλεχθεί και εκπαιδευτεί το βέλτιστο ΒΝΔ, πραγματοποιείται βελτιστοπο-

ίηση σχήματος της γεωμετρίας του πτερυγίου στροβίλου με MAEA, με χρήση δύο
λογισμικών αξιολόγησης. Το πρώτο είναι ο επιλύτης των RANS εξισώσεων με το
μοντέλο τύρβης k-ω και μετάβασης γ− R̃eθt (ακριβές μοντέλο - PUMA−TM) και το
δεύτερο είναι ο επιλύτης των RANS εξισώσεων με το μοντέλο του ΒΝΔ (εναλλακτικό
μοντέλο - PUMA−DNN). Στόχος της βελτιστοποίησης είναι η ελαχιστοποίηση των
απωλειών ολικής πίεσης, διατηρώντας σταθερή τη γωνία εξόδου της ροής.

Η βελτιστοποίηση σχήματος με ΜΑΕΑ βασιζόμενη στο ακριβές μοντέλο, πραγματο-

10

Σχήμα 7.6: Τα ποσοστιαία σφάλματα σε κάθε νέα γεωμετρία με ή χωρίς τη χρήση

του dropout (αριστερά), τα ποσοσταία σφάλματα με ή χωρίς early stopping και dropout
(δεξιά) και τα ποσοστιαία σφάλματα με ή χωρίς την χρήση του μέσου όρου (κάτω).

ποιείται για τρείς RNG seeds με κριτήριο τερματισμού τις 150 αξιολογήσεις. Μία
μονάδα κόστους ισοδυναμεί με μία αξιολόγηση του ακριβούς μοντέλου.

Το εναλλακτικό μοντέλο σε αυτήν την περίπτωση είναι περίπου δύο φορές πιο ταχύ απο

το ακριβές και, συνεπώς, μια αξιολόγηση με το PUMA−DNN ισοδυναμεί περίπου με
μισή μονάδα κόστους. Κατά τη διαδικασία της βελτιστοποίησης, το ΒΝΔ επανεκπαι-

δεύεται μετά από 50 αξιολογήσεις και συνεχίζει για ακόμα 200 αξιολογήσεις όπου και

η βελτιστοποίηση τερματίζεται, καθώς δεν μπορεί να βελτιώσει περαιτέρω τη βέλτιστη

λύση. Τα αποτελέσματα φαίνονται στον Πίνακα.7.4

Πίνακας 7.4

Λογισμικό Αξιολόγησης Βέλτιστη

λύση

(Pt,losses)

Επαναξιολόγηση

(Pt,losses)

Ποσοστό %

PUMA− TM (μέσος όρος) 1302 [Pa] - -11.3%
PUMA−DNN 1296 [Pa] 1318 [Pa] -10.3%

11

Στο Σχ.7.7 φαίνονται οι πορείες των βελτιστοποιήσεων με ΜΑΕΑ.

Σχήμα 7.7: Η πορεία της βελτιστοποίησης με ΜΑΕΑ βασιζόμενη στο PUMA−DNN
και στο PUMA − TM . Οι επαναξιολογημένες λύσεις του PUMA − DNN απο το

ακριβές μοντέλο είναι χρωματισμένες με κίτρινο. Το μοντέλο PUMA − DNN οδηγεί
σε γρηγορότερη σύγκλιση, ωστόσο, λαμβάνοντας υπόψη το σφάλμα, η τελική λύση είναι

χειρότερη αυτής του ακριβούς μοντέλου.

Συμπεράσματα

Απο τις μελέτες, συμπεραίνεται πως το ΒΝΔ μπορεί να υποκαταστήσει αποτελεσματικά

το μοντέλο τύρβης k-ω και μετάβασης γ − R̃eθt και να βοηθήσει τη βελτιστοποίηση
σχήματος με ΜΑΕΑ. Το μοντέλο PUMA −DNN έχει ένα κόστος αξιολόγησης το
μισό απο αυτό του ακριβούς μοντέλου, με αποτέλεσμα την ταχύτερη σύγκλιση. ΄Οσο

το υπολογιστικό κόστος του ακριβούς μοντέλου είναι μεγαλύτερο, τόσο υψηλότερο

όφελος αναμένεται από τη χρήση ΒΝΔ. Βέβαια απαιτείται ακόμη αρκετή διερεύνηση

ώστε και να αυτοματοποιηθελι περισσότερο η διαδικασία και να αυξηθεί το όφελος από

τη χρήση ΒΝΔ.

12

Bibliography

[1] Kontou M., Asouti V, Giannakoglou K.: DNN surrogates for turbulence closure
in CFD-based shape optimization. Applied Soft Computing, 134:1-11, January
2023, https://doi.org/10.1016/j.asoc.2023.110013

[2] Spalart, P., Allmaras, S.: A One-Equation Turbulence Model for Aero-
dynamic Flows, 30th Aerospace Sciences Meeting and Exhibit, 1992.
https://doi.org/10.2514/6.1992-439, 10.2514/6.1992-439.

[3] Menter, F.R.: Two-Equation Eddy-Viscosity Turbulence Models for Engineer-
ing Applications, AIAA Journal, 32(8):1598-1605, 1994. doi:10.2514/3.12149,
10.2514/3.12149.

[4] Langtry, R.B., and Menter, F.R.: Correlation-based transition modeling for
unstructured parallelized computational fluid dynamics codes, AIAA Journal,
47(12), 2894-2906. doi:10.2514/1.42362, 10.2514/1.42362.

13

https://doi.org/10.1016/j.asoc.2023.110013

	Contents
	Artificial Intelligent - AI
	Introduction to Artificial Intelligent - AI
	Machine Learning
	Deep Learning
	AI in CFD
	Thesis Outline

	Deep Neural Network - DNN
	Introduction
	Artificial Neuron Model
	Training Process
	Loss function
	Back-Propagation: The derivative calculation
	Optimization Algorithm

	Components of the Learning Algorithm
	Generalization in Neural Networks
	Reduce Overfitting by Constraining Complexity
	Regularization Methods for Neural Networks

	Aerodynamic Analysis in Turbulent Flows
	RANS equations
	The Spalart-Allmaras (SA) Turbulence Model
	The k- Turbulence Model
	The - Transitional Model
	The GPU-enabled CFD Solver PUMA

	Optimization using Evolutionary Algorithms - EA
	Introduction to Evolutionary Algorithms
	Basic structure of EAs
	Constituents of an EA
	Metamodel-Assisted Evolutionary Algorithms (MAEA)
	The Evolutionary Algorithms SYstem - EASY software

	Replacing Turbulence Model by DNNs in the Optimization of an Isolated Airfoil
	The NACA4318 Airfoil Case
	Parameterization and Training Data Creation
	Validation of the DNN configuration
	Shape Optimization Studies
	Conclusions

	Replacing Turbulence and Transition Models by DNNs in a Turbine Blade Shape Optimization
	The LS89 turbine case
	CFD Analysis of LS89 blading - Validation
	Parameterization and Training Data Creation
	Optimization of DNN Architecture and Inputs
	Regularization of the Optimal DNN configuration
	Shape Optimization Studies
	Conclusions

	Conclusion
	Overview
	Conclusions
	Future Work for Proposals

	Bibliography
	Bibliography

