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Abstract

In this diploma thesis, the implementation of Metamodel-Assisted Evolutionary
Algorithms (MAEASs) in the optimization process of various common engineering
cases is tested. Two main MAEA-based optimization methods are utilized and are
affiliated with the approach followed in the training of the metamodels, i.e. on-
line and off-line training. Both these methods are implemented using an external,
Python-based software, called Surrogate Model Toolbox (SMT), and are compared
to plain EAs in terms of efficiency and computational cost. The optimization is
carried out using EASY (Evolutionary Algorithm SYstem) in-house software that is
developed by the Parallel CFD & Optimization (PCOpt) Unit of NTUA. From the
various built-in surrogate models found in EASY, Radial Basis Functions (RBF's)
are utilized in this thesis. However, the optimization via the use of EASY can be
additionally assisted by external metamodels, which are found in SMT software.
From those external surrogate models, namely Kriging, its applications in reduced
design space using Partial Least Squares, i.e. KPLS and KPLSK, and RBFs are
utilized in this thesis. Each optimization method is initially implemented in two
simple pseudo-engineering optimizattion problems, i.e. welded beam and speed re-
ducer case, and subsequently in the shape optimization of a 2D isolated airfoil. The
Reynolds Averaged Navier-Stokes equations of compressible flows are solved using
PUMA (Parallel solver, for Unstructured grids, for Multi-blade row computations,
including Adjoint) CFD solver that is developed by PCOpt/NTUA.



E9vixd MetoofBwo ITohuteyveio

Xy oA Mnyavoroywy Mryavixdv

Touéag Pevotoy

Movdda IlapdAAning Ymrohoyiwotixrig Peuorto-
ouvapxrc & BeAltiotonoinong

Q

po
S

F ¥
"’
e 3>
S

=N
s

WeT$08
N ar
(O | 4
u ;.!\ Y
POMHOEVS LY.
SHI=E(E:>

& g

ITepi Béhtiotng Xenong Metanpotinwy otoug EEehixtinoig
Alyopidpoug pe Egapuoyéc otnyv Acpoduvauix

Amhopotin Epyootia
Muyding AnurteLog

EmupBiénov: Kupdxog X. Tavvéxoyiou, Kadnyntic EMII
Adrva, 2022

ITepiAndm

Y10 mAaiolo aUTAC TNS BIMAWUUTIXAC ERYACIUC UEAETATOL 1) EQUOUOY T EEENN TNV
olyoplduwy (EAs) vroBondoluevey ano yetopoviého (Metamodel-Assisted Evolu-
tionary Algorithms MAEAs) oe didgopec eQapuoyéc Unyovohoyixol evilopépovTtoc.
Ao eivan ot xpieg pédodol Bedtiotonoinong ue egopuoyt twv MAEAs xou oyetilov-
TOL UE TOV TEOTO EXTAUBEUOTC TWV UETOHOVTEA®Y, OnAadr emtypauuixd (on-line) xou
omoypapuixd (off-line). Kou ot 800 autol pédodol eqapudlovian pe tn Pordeto evog
elwtepinol hoylouxol e Bdon tnv Python, mou ovoudleton Surrogate Model Tool-
box (SMT), xou cuyxpivovtar pe touc xowvoic EAs pe Bdon ty anoteheopotixdtnta
X0l TO UTIOAOYLOTIXO XOGTOC TOU TROXUTTEL amd TN yeron Touc. H BeAtiotornolnon
oe xdie mepintwon mpayuatonoeiton pe tn yerion tou EASY (Evolutionary Algo-
rithm SYstem), evoc Aoytouxod tou avantiydnxe and t Movddo Iopdhining Y-
oloytotixrc Pevotoduvouic & Behtotonoinone (MIITPB) tou EMIIL. Ané to 618-
(YOO EVOWUATOUEVA UETAUOVTEAX oL UTdpy oLy 6Tov EASY, oL cuvapThcelg axTivinfc
Bdone (Radial Basis Functions (RBFs) yenotuonooivior otny mopoloo Stmhopatix)
epyaota. §lotdoo, 1 Behtiotonoinon péow tou EASY umopel va umoBonindel amd
e€wTepnd YeTanpotuna, to onola ebvan diardéao oto SMT. And autd to e€wTtepind
METOUOVTEAD, OE aUTH| TN BLmAwUaTXr epyaoia yivetar yerorn xuplwg tou Kriging, tov
TOEUANXLY (Y TOU YL Y (PO CYEDACUOU UELWHUEVLY DUC TACEWY YT OTNY EQUQUOYT| TNS
pedddou pepixdv ehaylotwy tetpaydvewy (Partial Least Squares), xupiwe tou KPLS
xou tou KPLSK, xodog xon twv RBFs. Kdle wa amo tig pedddoug Pertiotomoinong
€QopUOlETOL OF TPWTO OTAd0 e amhd TpofBAruaTa Peudo-unyovinic, xuplwe oty
TEPIMTWON TNG CUYXOAMNTAC BOXOU XAl TOU PELWTARA ToyUTNTOC, EVE OTY| GUVEYEL
otn BeltioTonolnon wopghc wag dwidotatng acpotourc. H enfluon twv edlohoenmy
Reynolds-Averaged Navier-Stokes cuunieotol peustol yhpw and TV agpotour yive-
Tou pe TN Yenon evoc CFD emiitn, mou ovopdletan PUMA xou avamtOydnxe and
MIITPB/EMIL.
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Chapter 1

Introduction

Optimization problems arise in every ripple of the scientific spectrum, from eco-
nomics to engineering. The art of mimicking nature’s ability to select the optimal
candidate solution from a larger population has captivated the entire scientific field
for centuries and, thus, the Evolutionary Algorithms (EAs) were created. EAs are
metaheuristic population-based search methods and are inspired by Darwinian evo-
lution. They fall under the greater category of stochastic optimization and do not
require the computation of derivatives, unlike the deterministic or gradient-based
methods, which allows them to calculate the global minimum more efficiently re-
gardless of the continuity or the differentiability of the objective function. More-
over, stochastic methods and therefore EAs, can be used with great success in both
single-objective (SOO) and multi-objective optimization (MOO). The latter is im-
plemented uniquely via stochastic methods with the computation of the Pareto front,
which serves as an optical representation of non-dominated candidate solutions.

The merit of EAs lies in the ability to effectively and effortlessly accommo-
date the problem-specific evaluation software, e.g. Computational Fluid Dynamics
(CFD). However, such software is commonly expensive in terms of computational
cost and thus the optimization time is severely prolonged. In an attempt to reduce
the wall clock time of the optimization the use of surrogate models, or metamodels,
is introduced. Metamodels approximate, as accurately as possible, the initial eval-
uation model/objective function by using a data-driven approach, which is based
on statistical analysis of the observed data. They tend to have considerably lower
computational cost, although generally they lack in accuracy. The introduction of
metamodels results in Metamodel-Assisted EAs (MAEAs)|[1].

In order for the surrogate models to be utilized by the evaluation software, they
must first be trained to fit the problem-specific evaluation model and are, therefore,
classified in two main categories accordingly. Off-line trained surrogate models are
built and updated statically, i.e. separately from the evolution. The termination or
continuation of the optimization depends on a process which assesses the deviation
between the optimal candidate solution obtained by the surrogate model and the
one obtained using the exact problem-specific model (PSM). The necessary patterns
for the training of this global model are collected via the use of various Design of
Experiments (DoE)[3] schemes, e.g. Random [12], Factorial [24, 26, 25] and Latin
Hypercube [13, 14].

On the other hand, on-line trained surrogate models are built dynamically, i.e.
both metamodels and the exact PSM are implemented in the entirety of the EA



population during the evolution in a well coordinated scheme, which results in the
training of a separate metamodel for each individual to be evaluated. Responsible
for the selection of promising individuals is the surrogate model, either global or
local, via a Low-Cost Pre-Evaluation (LCPE) [28] process that determines which
individuals are fit for exact reevaluation using the costly CFD evaluation software.
The training process ceases when a user-defined number of evaluations has been
performed. In this thesis, optimization via both MAEA methods, i.e. off-line and on-
line, is facilitated by EASY (Evolutionary Algorithm SYstem)[27] that is developed
by the Parallel CFD & Optimization Unit of NTUA (PCOpt/NTUA).

The effectiveness of both methods, i.e. on-line and off-line, depends heavily
on the efficacy of both the selected surrogate model and the training process, i.e.
complexity of the process, quality and adequacy of the training data. Therefore,
selected metamodels will be evaluated based on various criteria, such as goodness
of fit, estimated computational cost, complexity of training and overall robustness.
These criteria will be implemented individually in a plethora of surrogate models,
namely Radial Basis Functions (RBFs) [43, 44, 45] and Kriging[30, 32], along with
its variations in reduced design space using Partial Least Squares (PLS) regression,
e.g KPLS[39] and KPLSK[42]. Responsible for the metamodel training, is a Python-
based, open-source software called Surrogate Modelling Toolbox (SMT)[2], which is
highly efficient in deterministic methods since it offers gradient prediction modules.
However, its ability to work just as efficiently with stochastic methods and more
importantly with EASY software, makes SMT suitable for accommodating the pro-
cess of training surrogate models with the potential to replace or update the library
of built-in metamodels available in EASY.

The purpose of this diploma thesis is to assess the performance (and way of im-
plementation) of MAEA-based optimization in various applications. The first part
of the study is focused on observing the performance of MAEAs w.r.t. conventional
stochastic optimization methods; particularly in comparison to EAs. The second
part is focused on improving the implementation of MAEAs by selecting surrogate
models with enhanced qualities, e.g. reduced training time, improved response and
overall model fitting. The quality of each metamodel is tested on various optimiza-
tion problems of scaling difficulty, ranging from low-dimensional pseudo-engineering
optimization roblems, i.e. welded beam and speed reducer case, to airfoil shape op-
timization with aerodynamic criteria using the CFD solver, called PUMA (Parallel
solver, for Unstructured grids, for Multi-blade row computations, including Adjoint)
and developed by PCOpt/NTUA.



1.1. OPTIMIZATION

1.1 Optimization

An optimization process aims at maximizing or minimizing a mathematical function
via stochastic or deterministic methods w.r.t n. constraints. This mathematical

function is called objective function and is commonly denoted by f(3) € R". For n
objectives a constrained optimization problem can be described as follows:

— =

min f(8) = min {f1(5), f2(B), .. 7fn<g)}

- (1.1)

subject to ¢;(f) < cj»’“"es .7 =1,n,
where cz-’””es is the nominal threshold of each constraint imposed by the user for the
purpose of the optimization. The input values to the objective function are called
design variables and are commonly denoted by:

B =[B1,Bs,- . Buy] (1.2)

where ng is their number or interchangeably the number of problem dimensions.
Multi-objective optimization (MOO) consists of n objectives:

- o

(B) = [AB), L(B), ... fulB)] (1.3)

which are often conflicting and thus the minimization of each objective does not
vield the optimal minimization of the objective function vector f| (5) € R". The
most common approach for solving such a problem w.r.t. two objectives is the
depiction of the entirety of f (5) component values in a mutual plot. The vertical
and horizontal axis of such a plot correspond to the range of values of the respective
objective and the resulting plot is called Pareto front. A solution in Pareto front
is called non-dominated if none of the objectives can be improved in value without
degrading some of the other objective. The set of all the non-dominated solutions
is the Pareto frontier.

In single objective optimization (SOO), the output of the objective function to

a single design variable vector 5 € R™8 input is a scalar quantity:

- - —,

fB)=fB) =1 (1.4)



1.2. EVOLUTIONARY ALGORITHMS

1.2 Evolutionary Algorithms

Evolutionary algorithms are inspired by the Darwinian evolutionary theory and they
have therefore assimilated its key elements. In complete correspondence the evolu-
tionary process revolves around selecting the predominant/elite individuals from a
greater sample. This sample consists of A offspring which were created by u par-
ents during a generation of the evolutionary algorithm. The population involved
in a generation, denoted by g, is classified in the three aforementioned categories
that are denoted by PY, P{ or P{ to refer to elites, offspring or parents respectively.
EAs constantly form new generations by updating the three main population groups
until convergence is reached. The optimal candidate solution in SOO or the non-
dominated ones in MOO are included in the elite population set PJ. In order to
gain better insight into (u,\) EAs, their structure is further decomposed[4]:

EAs-1. Initialization
The generation counter ¢ is set to zero, marking the initialization of the algo-
rithm. The main objective of EAs is selecting the optimal candidate in SOO
or a set of non-dominated individuals in MOO problems from the offspring
population set P{ in each generation. This set is initialized randomly at start
of the evolution.

EAs-2. Offspring evaluation
Each individual 5 in the offspring population P§ is evaluated on the PSM.

- =

The outcome of the evaluation f() is archived in the database (DB).

EAs-3. Computation of cost/fitness function
Every individual 5 € P9 C R™ with P =P U P} U P7, is assigned a scalar

= -

value ®(3), where ®(f3) is a cost or fitness function computed as such:

®(B) =@ (f(B),{f(2) | e PP\ {B}}) €R (1.5)

In MOO problems sorting algorithms are implemented, namely NSGA[5],
SPEA[6], NSGA-II[7] and SPEA-II[8]. Such algorithms assign a cost value

®(f3) to every vector f(5) based on dominance criteria in the objective space.
In SOO problems such methods are redundant, since it suffices to compare the

-,

values obtained from a single objective function and hence ®(5)= f(5).

EAs-4. Identification of elites
The cost /fitness function serves as a metric for the selection of the optimal can-
didate solution, where lower @(5) values indicate a more suitable candidate
solution 5 in minimization problems; the opposite applies in maximization
problems. Depending on the number of objectives, the currently optimal solu-
tion in SOO or a set of non-dominated candidate solutions in MOO are stored

in the temporary set P,.



1.2. EVOLUTIONARY ALGORITHMS

EAs-5.

EAs-6.

EAs-7.

EAs-8.

Elitism
The elite population set of the next generation is updated via a process of
elitism that is applied to the set P., = PJ U F,. This process dictates the
number of of elite individuals to replace the worst offspring in the current
population P{ along with the probability for a random elite to be selected as
a parent.

Parent selection
The parents in the next generation Pg“ are selected from the wider set Pfi =
Py U Pg after they have outperformed other parents in a tournament.

Crossover and mutation

The set of offspring in the next generation Pf“ is subsequently formed via the
use of operators that mimic natural evolution, i.e. crossover/ recombination
and mutation. Crossover is responsible for the generation of a new offspring
by using a recombination of the prominent genetic features of each parent.
Mutation on the other hand, alters one or more genetic features in order to
introduce diversity in the selected population.

Termination

The next generation is now fully formed and the convergence of the process is
tested. If the convergence criteria are not yet met, then g < g+ 1 and the op-
timization is repeated beginning from step EAs-2. If however, a predetermined
threshold of PSM evaluations has been reached or the elite population remains
unchanged for a user-selected number of iterations, then EA terminates.

The aforementioned steps outline the function of EAs and will be subsequently
combined into the flowchart form of figure 1.1.



1.2. EVOLUTIONARY ALGORITHMS

g=20
Initialize PY

Evaluate P{ on PSM

—

Assign ®(5)

Update elites — P91

g=g+1 l
Parent

selection — Pg“

|

Crossover and
. 1
mutation — P{"

Termination
criteria

Figure 1.1: Flowchart of Evolutionary Algorithms



1.2. EVOLUTIONARY ALGORITHMS

Most optimization problems are usually subject to constraints, which EAs handle
via one of the following ways or a combination of those:

1. Penalty functions
2. Conversion of constraints into objectives

3. Correlation operators

EASY in particular, mainly uses the first method, which penalizes any value that
exceeds a certain threshold. That upper bound of acceptable constraint values is

called nominal threshold value czf“"es and is firstly introduced in equation 1.1. Once a

constraint exceeds this value (c; (5) > ¢'mes) "an exponential penalty function f,(ﬁ)
is triggered for each objective function [ € [1,n]:

¢ — G

e . __ qthres
Fu(B) = £(B) + [ exp (a—) (1.6)
j=1

where n and n. is the number of optimization objectives and constraints respectively,
a; a user-defined positive constant and cgel“x a user-defined constraint value that
is called relaxation threshold value. It is by definition larger than the nominal
threshold value cgel‘”‘ > c?hres and is introduced in order to prompt the evolution
process from terminating in its early stages, when the candidate solutions commonly
defy the imposed constraints. When a candidate solution exceeds the relaxation
threshold its fitness function @(g) receives a death penalty i.e. an almost infinitely
large value that practically renders the solution unsuitable for further evolution.
Equation 1.6 operates when the candidate solutions reside in the cg-}”es <cj < cgel“’
range and penalizes them depending on their distance from the nominal threshold
value ¢}/'"* (see figure 1.2). Nominal threshold determines, therefore, which solutions

are feasible and which are not.

®(¢y)

feasible
solutions

Figure 1.2: Penalisation of feasible and infeasible solutions in EASY



Chapter 2

MAEAs with off-line training

Off-line trained surrogate models are built prior to the evolution and are trained pri-
marily on a dataset of training patterns, which cover the entirety of the design space
and are collected via the implementation of various DoE techniques. The training
process is disconnected from the evolution and, thus, this method is described as
static. MAEAs with off-line training can be decomposed in the following steps:

OFFL-1.

OFFL-2.

OFFL-3.

Design of Experiments (DoE)

One of the various DoE techniques is applied and the sampling process initi-
ates, which involves the selection of ng,. observations y € R™ from within the
imposed bounds of the design space. Subsequently, the necessary objective

—

function values f(x) are computed on the PSM. Consequently, the resulting
Ndoe (X, I (X)) observed pairs are archived in a database reserved for the train-
ing of the metamodels which is referred to as metamodel database (MDB).
Any untried point in the design space that is not archived in the MDB, i.e.

each candidate solution, is denoted by 5 e R"s,

Training of the metamodel

The n; archived (X, f(X)) pairs are used in the training of the metamodel.
In the first optimization cycle, the number of training patterns n; is equal
to the ng.. observations. DoE techniques are applied mainly in MAEAs with
off-line training and are used to collect training patterns from the entirety of

the design space, resulting in the construction of a global metamodel.

Implementation of EAs

The optimization process initiates subsequently via the use of the EASY soft-
ware that implements EAs. The evolution follows the process described in
section 1.2 with one main variation; the offspring evaluation in step 2 (EAs-
2) is performed via the use of the trained surrogate model. The metamodel
serves as a black box that approximates A individuals, where A is the number
of offspring in the P{ set, and provides the corresponding prediction of the

= =, = =,

objective function value f(3), vﬁ € PY. Each prediction f(3) is assigned a
scalar fitness function value 5@(5), which in MOO problems is based on domi-
nance criteria and ®(5)= f(53) in SOO. The criterion that prohibits EAs from
exceeding a selected number of evaluations is accordingly modified to fit the

trivial computational cost of the metamodel.



OFFL-4.

OFFL-5.

Re-evaluation on the PSM

The re-evaluation process initiates once the evolution has been completed and
the optimal candidate solutions have been found. The best candidate solution
in SOO or a set of AY non-dominated solutions in MOQO, residing in the pY
temporary set, are re-evaluated using the exact PSM. Index ¢ is used to denote
the current cycle of the MAEA algorithm using off-line training.

Termination

The deviation between the metamodel and the PSM evaluated objective func-
tion values determines the convergence of the MAEA-based optimization. In
case the convergence criteria are not met, the optimal candidate solution/s
residing in the P set at the end of the evolution or some others arbitrarily
selected individuals are used to update the existing MDB. The outcome of their
evaluation, i.e. f (ﬁ) Vﬁ e pY , is subsequently added to the updated MDB
and the 44, evolution terminates. The next cycle of the optimization initiates
starting from step 1 (OFFL-1) and index i is set to ¢ < ¢ + 1. The evolu-
tion’s inability to yield an optimal solution is indicative of a poorly trained
surrogate model and, therefore, an improved metamodel needs to be trained.
Consequently in step 1 (OFFL-1) of the (i + 1);, cycle, DoE techniques are
implemented to select 7,1 doe NeW points and in the following step (OFFL-2)
a new metamodel is built on n; training patterns, where:

Ny = Ngoe + Z < + Npew_ doe) (2.1)

where )\((f) is the number of elites selected in the 7;;, generation and 7,c0_doe
a user-defined number of sample points that is sampled via DoE techniques
at the start of each optimization cycle in order to fill the MDB and improve
the fitting of the metamodel. The updated number of sample points will be
denoted by n,,. for simplicity, where:

n/doe = Ndoe T+ Z (nnew,doe) (22)

=0

The aforementioned steps outline the function of MAEAs with off-line trained
metamodels and will be subsequently combined into the flowchart form of
figure 2.1.
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2.1. DESIGN OF EXPERIMENTS (DOE)

2.1 Design of Experiments (DoE)

The predominant characteristic of off-line trained MAEAs is the construction of
a single global surrogate model [9]. The majority of necessary patterns for the
training of this global metamodel are collected via the use of various Design of
Experiments (DoE) techniques that sample the entirety of the design space. DoE
is a statistical tool used for analyzing the interactions between the parameters that
effect the performance of a system and controlling them in order to optimize its
performance[3, 10, 11]. The most commonly used DoE techniques and the ones
studied in this thesis are the following:

1. Random sampling
The most common technique of removing bias from a design is randomization,
which gives each sample point X'=[x1, X2, -, Xn;] € R™ equal probability of
being selected from the design space [12], as shown in figure 2.2.

-
o

x2
o = N W »~ U O N 00 O
L ]

Figure 2.2: Random design in 2D space for ng,e =10 sample points

2. Latin Hypercube Sampling (LHS)

A square grid containing a single sample point ¥ € R? per row and col-
umn is called a Latin Square. The generalization of this design in ng > 2
dimensions results in the creation of a Latin Hypercube (LH)[13]. A Latin
Hypercube Design (LHD) aims to improve the coverage of the design space
and eliminate the probability of two coinciding sample points and is created
via the implementation of LHS[14, 15] scheme. In LHDs, the design space
in each dimension is stratified into ng.' equiprobable and non-overlapping
intervals[14], called strata. Subsequently, n4, distinct values are selected, one
from each stratum, and are paired to form the components x1, X2, - - -, Xn; Of
each sample vector ¥ € R™. As a result of the stratification, the LHD con-
sists of ngee distinct sample points and can be written as a nge, X ng matrix
X = [X1, X2, - Xngoe) s Where each component X; = [xi.1, Xi.2, - - - s Xiyng) T€D-
resents an observation ' € R"#. LHDs can be enhanced with several optimality
construction criteria, some of which are presented here [2, 71]:

!The original design (i = 0) consists of ny = ngee points, while a separate design is constructed
for every npew_doe points sampled. Without loss of generality, we assume from this point forward
that in the description of DoE we refer to the original design of ng,e points.
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2.1. DESIGN OF EXPERIMENTS (DOE)

(a) Centered LHD
This construction criterion centers the selected values from within each
hypercube, as shown in figure 2.3.

[
o

x2
o - N w » 6] o ~ =] ©o

Figure 2.3: Centered LHD in 2D space. The grid has been modified to facilitate the
visualization of ngee = 10 strata in each dimension.

(b) Maximin LHD
This construction criterion was introduced by Johnson et al. [16] based
on the idea that the Euclidean distance between sample points should be
used as a metric for design construction. A maximin design, denoted by
Sum, guarantees that every pair of points will never coincide by maxi-
mizing the minimum distance between them [17].

max min d(x;, X;) =  min  d(X;, X;) Vi, J € [1, o) (2.3)

SCR"B Xi,Xj€S Xi>Xj €SMm

Each selected point Y €S, where S the selected design set, is the center of
a sphere, the radius of which is calculated by the algorithm that produces
the maximin design described by eq. 2.3. Consequently, the final design
contains ng.e non-overlapping spheres. In a maximin LHD, the sample
points must furthermore be selected from within within each hypercube,
as shown in figure 2.4.

(-
@

X2

_O
| @Q

Figure 2.4: Maximin LHD in 2D space for ng,. = 10 sample points

12



2.1. DESIGN OF EXPERIMENTS (DOE)

(¢) Maximin Centered LHD
Similar to maximin LHD with the exception that the selected sample
points are centered within each hypercube, as shown in figure 2.5.

X2
o - N w F=y w o ~ =] w0 E
C

m

Figure 2.5: Maximin centered LHD in 2D space for ng.. = 10 sample points

(d) Maxent LHD

Information entropy as proposed by Shannon [18] is directly associated to
the level of information available from a design. Shewry and Wynn [19]
showed that maximizing the entropy of the response distribution at the
sampled design sites X is equivalent to maximizing the gain of information
of the response distribution at any untried location of the design space. If
the response distribution is given by a stationary Gaussian process Y'(+)
with mean py-, variance o2 and correlation function R(-), then the optimal
design S CR™ can be found by maximizing the simplified entropy of the
distribution of the responses at the design sites, as such:

max_—In [detR(Xi, X;)] (2.4)

Xi,Xj €S

where R(Xi, \;) = [1,2 exp(—6; |xi1 — x;ju]?) and ¢ a positive integer
with values 1 or 2, corresponding to an exponential or a Gaussian kernel,
respectively. The parameters #; denote the degree of correlation between
training points w.r.t. each design dimension [ € [1,ns]. In a maxent LHD,
the sample points must furthermore be selected from within within each
hypercube, as shown in figure 2.6.

-
o

x2

o B N W A U O N ® ©
S S

Figure 2.6: Entropy LHD in 2D space for ng,e = 10 sample points
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2.1. DESIGN OF EXPERIMENTS (DOE)

(e) Enhanced Stochastic Evolutionary (ESE) LHD

This criterion is an enhancement to the existing global search, stochastic
evolutionary (SE) algorithm, originally developed by Saab and Rao[20].
The need to further reduce the computational cost of SE resulted in
the creation of Enhanced Stochastic Evolutionary algorithm (ESE )[21].
This new approach is based on utilizing efficient methods for evaluating
various space-filling criteria, namely ¢, entropy and centered Lo discrep-
ancy criterion. The first criterion was proposed by Morris and Mitchel
(1995)[22] and is an extension of the maximin criterion. Lo discrepancy is
the most common expression of L, discrepancy, which is a metric of non-
uniformity of a DoE. The formula used to describe centered Ly or C'L,
discrepancy was proposed by Hickernell (1998)[23]. The minimization of
C L, discrepancy results in a uniform design. ESE combines these three
aforementioned space-filling criteria to construct an optimal design. In a
ESE LHD, the sample points must furthermore be selected from within
within each hypercube, as shown in figure 2.7.

[
o

x2
o - N w S w o ~ e} o

Figure 2.7: ESE LHD in 2D space for ng,e = 10 sample points

The quality of the LHD affects the convergence of the MAEA-based opti-
mization process and therefore selecting the most cost-efficient construction
criterion of an LHD is essential for the success of this method. An analysis
performed in appendix A.3, concluded that ESE LHDs are the most suitable
for the purpose of this thesis and therefore the LHS scheme is modified ac-
cordingly to produce such designs.
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2.1. DESIGN OF EXPERIMENTS (DOE)

3. Factorial sampling

In a factorial design, the relative importance of each design variable (factor)
on the objective function is tested by replicating all the possible combinations
of the factors. Each possible combination is replicated in a run of the design
with a total of ng,. runs being performed. Each factor is assigned a number of
discrete values in the [-1,1] range, called levels, where high and low influence
are assigned a level of 1 and -1 respectively[24]. The change in response caused
by an alteration in the level of each factor can, therefore, be correlated with
the relative importance of each factor. The complete replicate of a factorial
design that contains all possible combinations between ng factors is called a
Full Factorial Design (FFD). A conventional FEFD is performed at 2 levels, i.e
1 and -1, which results in ng, = 2™ possible combinations[25]. However, the
number of factorial runs ng,. is user-defined, i.e. ngoe 2™ or ng,e # 3™4, and
the cost of constructing a FFD grows exponentially as the number of factors
increases. In order to overcome the imposed restrictions, interactions between
factors that yield the lowest response are neglected. The resulting design is a
fractional factorial design[26]; such a design is depicted in the following case
for ng.e = 10 sample points in figure 2.8:

| Levels | -1 [-0.5| 0 | 0.5 | 1 |

| x1 | 6 733 - [866] 10 |
| x2 | 150 - 175 ] - [ 200 |
101 o ° °
9
8
7
6
‘;‘<50 ° °
4
3
2
1
04 ® ] ] ]

Figure 2.8: Example of Factorial design for 2 design variables with ng.e = 10 sample
points
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2.1. DESIGN OF EXPERIMENTS (DOE)

2.1.1 Comparison between DoE construction schemes

The selection of a suitable design is an essential step to the training of a surrogate
model. For that reason the available DoE construction schemes are evaluated w.r.t.
their effect on the training process of the metamodel. The comparison is limited to
Factorial and LH designs, since they tend to be the most reliable in overall coverage
of the design space and especially in the selection of a representative sample from the
total population set. Random designs are eliminated from the assessment process,
since they are considered unfit for large population sets due to equiprobable selection
of each individual. Optimality space-filling criteria are not utilized in random designs
and the outcome is a design that either contains a number of similar sample points
or omits significant sample points that are of great importance to the training of
the surrogate model [12].

The first difference between the two remaining DoE construction schemes is
detected in the selection process of sample points. In both full and fractional factorial
designs, the sample points are distributed as evenly as possible in the ng-dimensional
design space, utilizing its full capacity. In LHDs, the design space is stratified and
the sample points are selected from within the created intervals via the use of some
space-filling construction criterion. For up to ng = 3 design variables the resulting
designs can be replicated in 3D space as depicted in figure 2.9; in this example the
design space is created by the bounds of each design variable in eq. A.2.

Latin Hypercube
Factorial

2.01 . . .
120 130 140 150 160 170
Bl

(a) 3D design space

114 @ ;o
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(¢) 2D contour surface along x1, X3 plane

(b) 2D contour surface along x1, x2 plane
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8
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(d) 2D contour surface along x2, x3 plane

Figure 2.9: Factorial and LH designs in 3D design space



2.1. DESIGN OF EXPERIMENTS (DOE)

The implementation of factorial sampling in 3D space for ng,. = 20 runs results
in the creation of a fractional factorial design, which disregards a large section of
the design space. For the same number of runs, on the other hand, LHS scheme
spreads sample points optimally across the design space and yields, for this reason,
better designs. In LHDs furthermore, the MDB is more diverse and complete, since
it consists of ng, distinct values, unlike in factorial designs where the influence
of each design variable is tested on k; < ngee levels each. The responses of ng.e
sample points can be written as a ng, X n matrix F = [ﬁ, ﬁ, e ,ﬁ;doe]T, where
each component ﬁ = [fi1, fi2, .-, fin] represents a response f € R". The responses
of ngee = 20 sample points in eq. A.2 (see appendix chapter A.1) are depicted in
figure 2.10.

F(B) responses
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Figure 2.10: Comparison between F(X) responses to samples created via Factorial
and LHS DoE scheme

The two DoE schemes yield similar objective function values, as seen in figure
2.10). However, a similarity in objective function responses cannot lead to any
definite conclusions on the quality of the respective models. One of many metrics
for metamodel quality is the Root Mean Square Error (RMSE) (see appendix chapter
A.3). This metric depends on the order of magnitude of the observed values and
the size of the sample, so it is merely used in the comparison of various metamodels
when approximating the same PSM and trained on the same dataset. Consequently,
a high RMSE is a characteristic of a model that has been selectively trained for only
a narrow set of sample points, therefore lacking in robustness. This concept is tested
in a KPLS model with fitting shown in figure 2.11.

(a) LHD, NRMSE = 0.003818 (b) Factorial design, NRMSE = 0.010959

Validation of KPLS model trained on a LHD Validation of KPLS model trained on a factorial design
— f
f

800 700

700 1
600

600

500 5001

400 2004

3001
3004

200 1

200 300 400 500 600 700 800 900 300 400 500 600 700
f f

Figure 2.11: NRMSFE of metamodels trained on a LHD and a factorial design
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2.1. DESIGN OF EXPERIMENTS (DOE)

The RMSE is calculated using the following equation:

S (fi- 1)

Nyal

RMSE =

(2.5)

where n,, is the number of validation points and y; = [Xi,l; . ;Xi,nﬁ} € R™ the
vector of the 7;, training point. Validation points are selected from the design space
via the implementation of any DoE technique and are used in the evaluation of
the model[2]. Every set of sample points different than the one used to train the
metamodel is considered a set of validations point. The values obtained via the
use of the trained surrogate model are denoted by f and referred to as estimated
values. In equation 2.5 the existence of a single objective is assumed and the both
f and f are scalar quantities. In MOO problems, the RMSE is computed w.r.t.
to each objective iteratively. In order to remove the dependency on the order of
magnitude Normalised Root Mean Square Error (NRMSE) is introduced, which can
be calculated from the following formula:

Nyal r 2
NRMSE = || Z(fi_fi) (2.6)

Nyal fl
=1

NRMSE is dimensionless and assumes values in the R*, with values closer to zero
indicating a well-trained metamodel. NRMSE is not restricted in a specific dataset
but can rather be generalised to compare models of various orders of magnitude.

In addition to inferior metamodel quality, factorial designs are imposed with se-
vere limitations when sampling high-dimensional design spaces. Even in its simplest
form a FFD must consist of ng,. = 2™ possible combinations. In 10 dimensions,
the number of runs required to fully replicate the design is:

Naoe = (2)1° = 1024

If moreover the case in study is that of a 3D airfoil, then each set of design variable
values 5 would correspond to a different airfoil shape. That results in 1024 different
shapes and therefore to a beyond sustainability computational cost. The number of
factorial runs needed for the creation of a factorial design in 10-dimensional space is
Ngoe > 600, which results experimentally from the implementation Python software.
On the other hand, LHS scheme is suitable for creating high-dimensional designs
and offers a better coverage of the design space combined with minimal impact on
the computational cost, which leads to its selection as the main sampling scheme
used in this thesis.
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2.2. COMMUNICATION BETWEEN EASY AND SMT IN MAEAS WITH
OFF-LINE TRAINING

2.2 Communication between EASY and SMT in
MAEAs with off-line training

In the evaluation phase of MAEAs with off-line training the PSM is replaced by a
surrogate model, which is trained on n, training patterns that are collected via the
use of various DoE techniques. The creation of DoE, the training of the metamodel
and the prediction of the objective function value are performed via the use of SMT.
However, in order for SMT to facilitate the evolution performed by EASY (see
appendix C), a set of modifications must be applied in order for the two programs
to be compatible. Responsible for the establishment of a line of communication
between the two software is a Python script, which is manually created and can be
decomposed in the following sections:

1. Sampling (Code 1)
The design space is defined, i.e. upper and lower bound of each design vari-
able, along with the magnitude of the design, denoted by n;lae, and the DoE
technique utilized to construct it. The n,, collected training patterns X are
subsequently written in an ASCII text file sample_points.dat, prior to the ter-
mination of Code 1.

2. Evaluation of sample points on the PSM (Code 2)
Code 2 contains the exact PSM. Both the input to the PSM, i.e. the observa-

tions X € R™w0e*™8 contained in sample_points.dat, and the yielded responses

F(X) € R"0e*™ are written in a plain ASCII text file model_values.dat, along
with the constraints C(¥) = [¢1,C,...,C,,]T, in case the optimization prob-
lem is constrained. Each component & = [¢;1,¢i2, .. ., ¢ipn,| corresponds to the

— =

constraint vector ¢(x) of the iy, sample point ¥ € R"s.

3. Training of metamodel (Code 3)
Codes 1 through 3 are incorporated in the preprocessor.exe executable. Code 3
in particular is responsible for training the selected surrogate model. In order
to accomplish that, first n,, (¥, f(X)) observed pairs must be imported from
model_values.dat. At the end of each off-line optimization cycle the MDB is
updated with A, elites that are contained in the P, set. Consequently, Code
3 is also responsible for incorporating A, (,5 , f (E)) pairs in the training of the
metamodel, after importing them from a plain ASCII text file out.log that
is created by Code 6. Once the MDB is complete, a new surrogate model is

trained at the start of each optimization cycle using n, training pairs (¥, f(X))
(see eq. 2.1).

In the case of a constrained optimization, the matrix of constraints C(Y) is
imported into Code 3 along with the objective function values matrix F(¥),
and a distinct metamodel is trained on each constraint or a single metamodel
is trained for the entirety of the imposed constraints. Metamodels trained on
constraints require n; (%, (X)) training pairs to be built.

Once the training is complete, the parameters of each trained metamodel are
witten in a binary text file using the Python module .pickle(); in this way, it
can be utilized in the evaluation of prominent solutions in each generation of
the evolution. For some metamodels, however, .pickle() is not applicable, e.g.
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RBEF. In that case, a folder containing the cached data that are produced via
the training process is used in order to store and reuse the saved surrogate
model.

. Evaluation using the trained metamodel (Code 4)

The current script uses as input the file task.dat, which EASY creates, and con-
tains a single offspring E € PY. A metamodel prediction f (5) is subsequently
computed for every offspring 5 € Py C R™ by utilizing the stored metamodel
via the use of .pickle() module. Code 4 is identical in form to evaluation.eze,
but the PSM is replaced by a surrogate hence it is called prediction.eze.

. Selection of objectives and constraints (Code 5)

In order to establish the communication between EASY and the user, post-
processor.eze is manually created. This script is responsible for writing the
objectives and the imposed constraints of the optimization in a task.cns and
a task.res file, respectively. Text files task.res and task.cns contain the predic-

- -

tions f(/) and 8(5), respectively, of a single individual 5 € P} and are read by
EASY.

. Evaluation of elites using the trained metamodel (Code 6)
Code 6 performs the evaluation of the elite population P, using the exact PSM.

— =

The only difference with Code 2 is that the inputs (E, £(B)), (5, 8(5)), ‘v’g e P,
are imported from out_L1.log, which is created by EASY at the end of each

- =

optimization cycle, and the corresponding exact PSM evaluations (5, f(9)),

—

(B, &(B)) are written in out.log. Both these files follow ASCII text format.
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Chapter 3

MAEAs with on-line training

On-line trained surrogate models are built in each generation of the evolution and
hence this MAEAs method is described as dynamic. The most common approach is
one that involves the implementation of a Low-Cost Pre-Evaluation (LCPE) process.
LCPE is responsible for the selection of promising individuals via the implementation
of local or global metamodels. The former are however more widely used, since they
tend to approximate complex objectives function more effectively. MAEAs with
metamodels trained on-line via LCPE phase can subsequently decomposed in the
following discrete steps:

ONL-1.

ONL-2.

ONL-3.

Implementation of EAs

The initialization of LCPE phase requires the implementation of conventional
EAs for a number of generations. Fach untried individual E € Py is evalu-
ated on the PSM and subsequently archived in the DB. Once a user-defined
minimum number of individuals has been stored in the DB, LCPE[28] phase
initiates.

Low-cost Pre-evaluation

LCPE phase initiates by training on the fly a local surrogate model for each
untried individual E € PJ. The training of each metamodel in SOO problems
requires the selection of an appropriate set of training patterns from the vicin-
ity of each individual 5 . In MOO problems more sophisticated algorithms are
required. Such a method is developed by PCOpt/NTUA and is called Training
Pattern Selection (TPS)[29]. Using the trained local metamodels, the objec-
tive function value of each offspring s subsequently predicted and denoted by

- =

f(B),v3 € P.

Computation of fitness function

This step is identical to step EAs-3. Each candidate solution 5 € P, is as-
signed a scalar value. Depending on the process implemented to evaluate each
candidate solution, i.e. PSM or LCPE using local metamodels, the fitness
function is either exactly calculated (®()) or predicted (®(f)), respectively.

— - = —

®(F) = ©(f(5),{f(2) | 7€ P{\{B}}) €R for i=1,) (3.1)

or

~ ~
— - — —

O(5) = S(f(5,). {f(2) | 7€ PI\{B}}) €R for i =1\ (3:2)
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ONL-4.

ONL-5.

ONL-6.

ONL-7.

ONL-8.

Identification of elites
The values of the fitness function assigned to each candidate solution are used

-

to update the temporary set of elites P.. In SOO problems ®(5) = f(g),
(5(5) =f (5) and there is only one optimal solution \,=1. In MOO problems
the best A, <\ offspring are selected to populate the P, set. In the latter cat-
egory due to the large number of data the fitness function values are assigned
via the implementation of the simplest sorting algorithm, e.g. NSGA[5] or
SPEAI6], or via a simple ranking of non-dominated Pareto fronts. The final

P. set is formed as such:

P.2{3;: ®(f) < ®(2), 7€ PI\ P} for i=1\ (3.3)

The process of populating the P, set continues until:

)\e,min < )\e < )\e,maa: (34)

where Ac min, Aemaz are user-defined lower and upper bounds of the number of
elites \., respectively.

CFD evaluation

Subsequently, A, elite candidate solutions contained in the P, set are re-
evaluated on the PSM and are stored in the DB. Depending on the deviation
between metamodel and psm evaluated outcome, denoted by ep., either the
evolution continues or new elites are selected (step ONL-4) and re-evaluated
(step ONL-5). This criterion can be expressed mathematically as such:

ep, = M <ey ,VBeEP (3.5)

where ¢, a user-defined value upon which the criterion is satisfied.

Elitism

The temporary set P, is used to update the population of the current gen-
eration PY. The process of elitism subsequently commences and leads to the
formation of P9*! set. This step is identical to step EAs-5.

Crossover and mutation
Crossover and mutation operators are applied to form the set PfH, similarly
to step EAs-6.

Termination

Once the process of implementing evolution operators is complete, the con-
vergence of the on-line training process is tested. If a user-defined number of
generations has been formed the process terminates, alternatively, the next
generation initiates by setting ¢ = g + 1. If a user-defined number of idle
generations n;q. has been performed using metamodels in LCPE phase, then
plain EAs are utilized and the counter of idle LCPE generations c;q. is reset
to zero, as shown in figure 3.1.
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Figure 3.1: Flowchart of MAEAs using on-line trained metamodels
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3.1 Communication between EASY and SMT in

MAEAs with on-line training

The optimization based on MAEAs via the use of EASY[27] software is primarily
focused on training metamodels on-line and therefore a number of metamodels are
already archived in the database of EASY. In order to provide EASY with exter-
nal metamodels trained on SMT software, the following Python scripts must be
deployed:

1.

Evaluation of offspring using the exact model (Code 1)

This script contains the exact PSM and is responsible for computing the exact
objective function vector f (5 ) vﬁ € PY. Each one of those candidate solutions
is imported from the file task.dat. The script is subsequently converted to an
executable process, called evaluation.exe, and executed via task.bat batch file,

which has the following structure:
1 @echo off

2 erase results.dat
3 evaluation.exe > nul

| postprocessor.exe > nul

Listing 3.1: Structure of task.bat file that initiates the exact evaluation of offspring

2. Training of metamodel (Code 2)

LCPE phase initiates by training a local metamodel for each individual ﬁ € Py
Both the n; training patterns X and their corresponding exact model values
F(Y) are imported from a plain ASCII text file, which is called meta.db and
is created by EASY. Code 2 is converted to train.ere and executed via a user-
created batch file meta_train.bat that has the following structure:

1 @echo off

> train.exe > nul

Listing 3.2: Structure of meta_train.bat file that initiates training of the metamodel

3. Evaluation of offspring using the metamodel (Code 3)

Code 3 utilises each local metamodel, which is built in the vicinity of the i,

individual f; € PJ, in order to produce the evaluation 1 (ﬁi) Each individual
is contained in a plain ASCII text file meta.dat, which is structured similarly
to task.dat. Consequently, after converting the script to an executable predic-
tion.exe Code 3 is executed iteratively for A offspring via meta_use.bat batch
file, which has the following structure:

1 @echo off

2 erase results.dat
3 prediction.exe > nul

. postprocessor.exe > nul

Listing 3.3: Structure of meta_use.bat file that initiates the evaluation of some
candidate solution 5 € Py based on its personalised local metamodel
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4. Objectives and constraints (Code 4)
Code 4, which is called postprocessor.exe, is executed alternately via task.bat
and meta_use.bat batch files in order to provide EASY with the exact f (ﬁ) or
predicted f(5) objective function value of each individual E € Py, respectively.
EASY expects to read this value, or values if there are more than one objective,

-,

in task.res file. Any constraint ¢(f3) is subsequently written in a task.cns file.

In EASY, the MAEA-based on-line construction process consists of the same
fundamental steps, i.e. evaluation based on the PSM, training of the surrogate
model and prediction based on the trained model, but no additional user-constructed
scripts are needed to utilize the built-in metamodels of EASY, in contrast to SMT.
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Chapter 4

Surrogate Models

Metamodels approximate the initial evaluation model by utilising a data-driven ap-
proach, which is based on statistical analysis of the observed data. Consequently,
the selection of a suitable surrogate model is essential in the optimal utilization
of MAEA-based optimization. In attempt to achieve homogeneity throughout this
thesis, it is reminded that the observations’ matrix formed of n; training patterns is
denoted by X = [\1, X2, - -, Xn,) ", Where each component X; = [xi1, Xi.2, - - s Xiyng)
represents an observation Y € R". Their corresponding objective function val-
ues are included in matrix F(Y) = [f1, fa, ..., fu,]¥, where each component f; =
[fi1, fi2,- .., fin] represents a response f € R™8. In order to simplify the mathemat-
ical equations describing the surrogate models, F(Y) is reduced to an 1-dimensional
matrix by assuming, without loss in generality, that the optimization process has a
single objective. From there, the respective equations describing a MOO can be eas-
ily formulated by combining the SOO equations iteratively for n objectives. In SOO,
therefore, F(X)=F = [f1, f2, ..., fn,|T €R™. Surrogate models are used to predict
the objective function value f (5) at any untried location of the design space, i.e. at
each candidate solution B € R™. The theoretical background of every metamodel
utilized via SMT in this thesis is subsequently presented.

4.1 Kriging

Kriging[30] is a surrogate model used for predicting the objective function value at
any candidate solution E € R™ in the design space. In order to make the prediction
Kriging uses an interpolation method that combines a deterministic term with the
realization of stochastic process. The former is replaced by a regression model and
the latter is the realization of the stationary process Gaussian z(f) N (0, C) with

-

a zero mean and a covariance kernel C'(/3) of the observations:

where o2 the variance of the process and R(x;, x;) the correlation between any two

observations x;, X; €R™, Vi, j € [1,ny]. In order to improve the fitting of the Kriging

model the distribution of training patterns in each problem dimension is normalized:
. X — Hy)

norm — 4.2
X ) (4.2)

26



4.1. KRIGING

where YU = [x1, X2.js - - - Xne )L €R™ is the column vector of the n; X ng matrix
X and Ky s O 5t the mean value and the standard deviation of the j;;, observation,
respectively. The correlation between any normalized training point ,,orm € S CR",
where S is the design set, can be computed using one of the following correlation
kernels ! [2, 31]:

e Exponential Ornstein-Uhlenbeck process

ng
R(xi,X;) = [ [ exp (=00 Ixia = x5u)) (4.3)
=1
e Gaussian
ng
R %) = [ [ ep (=0 (xi = x30)°) (4.4)
=1
e Matérn 5/2
o o 2
R =]] (1 + V5 X — xjul + 5952 (Xit — X51) >€$p(—\/§95 Xt — Xj,l|>
=1

(4.5)
e Matérn 3/2

ng

R(xi, ;) = H <1 + /36, \Xig — Xj,l‘) 69310(—\/591 X1 — Xj,l|) (4.6)

=1

where 6, are parameters that denote the degree of correlation between training points
w.r.t. each design dimension [ € [1,ng|. Kriging assumes that the estimated value
of each correlation parameter 6 is constant for each independent design variable and
therefore for each design dimension, leading to the creation of an isotropic model[32].
The correlation patterns of the observed data and their corresponding covariance
can be stated in the form of an orthogonal matrix R and C, respectively:

R()Zh)zl) s R()Zh)z)nt) C(%IJ%I) ce O()Zh)znt)
R = : : , C= : : (4.7)
R()?’Vlt? )?1) s R()?nt) )Znt) C(Ym: )21) s C(Ynta )?nt)

Under the assumption of a SOO problem, the Kriging model computes the ob-
jective function value at any normalized point € R™ outside the sampled design
as such:

-,

F(B) = + 2(5) (4.8)

where the deterministic term py is expressed as a constant, linear or quadratic
regression model:

i = Z w;p;(6) (4.9)

n all Kriging models from this point on, the notation of normalization will not be used for
sampled points but will be implied for simplicity, $0 ¥ = Xnorm and X = Xnorm

27



4.1. KRIGING

where w; is the jy, regression coefficient and p; : R™ +— R are k chosen functions.
The parameter k£ assumes various values to denote a constant, a linear or a quadratic
regression model [33]. In a constant regression model, k = 1 and py(f)=1. In a
linear regression model, kK = ng + 1 and the corresponding functions assume the
following values:

pi(B) =1, p2(B) = Bu, ..., pr(B) = P, (4.10)

1
In a quadratic regression model, k = §(nﬁ +1)(ng +2) and the functions p,; assume

the following values:

—, =,

pl(@) =1, p2(6) = 517 SRR
pn5+1(g) = ﬁnlgu pn5+2(g) = 6127 ce

anﬁ-‘,—l(ﬁ) = Blﬂnﬁu p2n5+2(5) - ﬂ§7 R (411>
P3ng (g) = 6257157 s
pe(B) = B,

where 3; €R is the component of any untried point E w.r.t. the j;;, design dimension
for je[1,ngl.

e Prediction with noise-free observations

Kriging, when provided with the observed data that are collected via the imple-
mentation of DoE, can predict the value of any individual at any untried location of
the design space accompanied by the measure of confidence of the prediction at that
location. Under the assumption of a SOO problem, consider the linear predictor
f (5) of the objective function at any untried point 5 , given the prior observations

F= [fluf?v‘”afnt]T:

A =

f(B)=c"(B)F (4.12)

where ¢(3) € R™ is the n; x 1 vector of coefficients. Then the deviation between
the predictor and the true objective function value:

F(B) = £B) = ET(F)F — (s + 2(5)) o>
= () (P + 2) — (57 () + 2(5)) (4.13)

T

where Z = [z1,22,...,2,,]" is the n; X 1 vector of errors at the observed points,

z(ﬁ) is the error at the untried location, p(8) = [pi1(B), p2(5),.- .. ,pk(g)]T is the
k x 1 vector of the chosen functions at any untried input 5 and P the corresponding
n; X k matrix for the complete design of observed data, which for ¢ = 1, n; training

patterns X; = [Xi,1, Xiz2 - - - Xijns) €5 CR"™ is expressed as:
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4.1. KRIGING

p1(>§1) P2(>§1) Pk(gl)
p_ pl(?@) Pz(?@) . pk(?@) (4'14)
pl(an) p2(>€m) pk(%”t)

The best linear unbiased predictor (BLUP) is obtained by selecting the vector
5(5) that minimizes the mean squared error (MSE). In order to keep the predictor
unbiased, we demand that the expected value of the predictor and objective function
coincides at the design sites X [35]:

E[f(B) - £(B) = 0 X2 BleT(F)Z - 2(F) + (PT&(B) — 5(F))"w] = 0 —
¢T(B)EZ] — E[=(B)] + E[(PT&(B) — p(F)" % ] o BP0, (4.15)
E[(PT&(5) — p(B)T]% = 0 — PTe(f) — 5(F) =

V22" ()] - 267 (5)22(5) + 2*(5)] (4.16)

where 7xs = [R(X1,8), R(X2, B - - - s R(Xnys B)]T is the ny x 1 matrix denoting the
correlation between the ny, observatlons and any untried candidate solution B eR™.
E[f(F)] is minimized w.r.t. ¢(3) and subject to the equality constraint PTé(f) —
ﬁ(g) = 0 stated in eq. 4.15, when the Kriging BLUP at some untried point 3 e R
is given by equation 4.17:

Ao -,

£(3) =" (B)W + ixpR " (F — PW) (4.17)

The regression coefficients of the BLUP are estimated at the observed design sites
using generalised least-squares method. The k x 1 vector W = [w1, wa, ..., wi]? of
the estimates of W are given by:

W= (PT/R'P) " P'R'F (4.18)

The MSE of the Kriging predictor can be computed using equation 4.19:

-

MSE(B) = 6°(1 — 7{ 4R '7xp) (4.19)
which can be solved by adopting generalised least-squares estimates for the variance:

1 . .
0’ = —(F - Pw)'R(F — Pw) (4.20)

Uz
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4.1. KRIGING

The computation of the Kriging predictor requires the inversion of the symmetric
matrix of correlations R, so the computational cost depends on the size of the
training sample n;. The calculation of R = R(g) requires the computation of ng
correlation parameters ¢, assuming an isotropic design, which are estimated using
either maximum likelihood or cross validation method. The former method is more
commonly used and dictates the selection of those parameters # that maximize

the likelihood function [ F(§|F) given the responses F, which is a function of 6 =

01,05, . ..,0,,] mathematically expressed as [34]:
" 1 —(F = PW)"R{(F — PWw)
lp(0|F) = 4.21
F(0|F) (27)"e /2 (02) e 2 det R/ exp o2 (4.21)

Intuitively, this process tries to infer the design space population that is most likely
to have generated the responses F. The complexity of the previous equation de-
creases by computing (n(lp(0|F)), since In(-) is monotonous:

—

In(lp(0]F)) = — %ln(?w) - %zn(oi) - %ln(detR)

(F — Pw)"R™'(F — Pw) (4.22)

2

g

After inserting equations 4.18 and 4.20 in eq. 4.22, the latter can be written in the
concentrated In-likelihood form where any constant terms are ignored:
| o P (F—P(P'R'P)"'P"R'F)"
L (4.23)
x R (F—P (PTR™'P) " P"R™'F)| + In(detR)

Due to the dependency on the correlation R(g) on the number of training patterns ny,
the cost of maximizing in(lr(A|F)), and therefore [ (6]F), increases as the number of
observations n; increases. In order to reduce the cost of solving this computationally
expensive equation, a variety of algorithms are utilized, the most common of which
is COBYLA algorithm (Constrained Optimization By Linear Approximation) [36],
which uses linear approximations for the objective and constraint functions.
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4.1. KRIGING

e Prediction with noisy observations

In the case of noisy predictions, the correlation matrix R € R™*™ is no longer
orthogonal, since the values in the leading diagonal of the matrix are not equal to
1 due to the introduced errors. In such a case, the least squares estimate given by
equations 4.18 and 4.20 will produce values that do not correspond to the phys-
ical model. In order to filter the noise, a parameter Ag, referred to as nugget,
is added to the leading diagonal of the matrix [37]. The nugget can be a vector
Ap = [ARys ARy - - AR, | and vary for each observation or a scalar value A and be
constant for all observations. Consequently, the correlation matrix R is replaced by
the term R + XRI as such:

-

£(8) = pT(B)W + Fxs(R+ Apl) ™" (F — Pw)
MSE(f) = 6*(1 — LR + Arl)"'7xp)

‘%} — (PT<R + XRI)—1P>71 PT<R + XRI)—lF (424>
1 R - R

0 = n—(F — Pw)" (R + A\gl) " (F — Pw)
t

where I is the n; X n; identity matrix.
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4.2. KPLS

4.2 KPLS

In an attempt to decrease the construction time of Kriging model in high-dimensional
design spaces, the number of parameters 0 is decreased via the use of Partial Least
Squares (PLS) method[38]. PLS is a statistical method used for observing the
correlation between the design variables and the objective function by projecting
the former in a design space of reduced dimensions h. This space is formed by h
parameters, which are called principal components or latent variables, and are linear
combinations of the design variables. In KPLS [39], the principal components P, =
[pe™, p@ . p.™] are retained via the implementation of the PLS method which
seeks the best direction DO that maximizes iteratively for h reduced dimensions the
covariance between p¥) and F¢—1 | where FU—1 are the responses at the observed
design sites X(~Y for the (I — 1), principal component.

DO = argmax DO XED'REDRED'XEDHO - for [ =1,k (4.25)
Do

which is maximized when DO" DO = 1, ie. DO = [Dgl),Dél), . .,DSZ]T is the
ng X 1 eigenvector that corresponds to the scalar eigenvalue M., € R with the
largest absolute value, which is estimated using the power iteration method pro-
posed by Lanczos[40]. Let A1 = XU-D"RU-DRE-DTX =1 then each principal
direction vector D) maximizes the covariance of A(=D. For the first iteration of
the algorithm, X© =X € R**" and F(® =F € R™, assuming a SOO. With D®
known, the principal component for the l;;, iteration can be calculated:

) = XD p0 (4.26)
where p.() = [pﬁ?, pg), ce pE{Et]T is the n; x 1 principal component vector for the Iy,
principal dimension. Subsequently, the matrices of the design space and its response
are calculated and will be used to compute the values in the next iteration.

(4.27)

where W\ and w" are the regression coefficients of the [, principal component for

the local regression of X and F, respectively, with the former being a 1 x ng matrix
and the latter a scalar. Prior to the initialisation of the iterative process, matrices
X, F have been scaled and centered on the origin point of the initial coordinate sys-
tem O(0,0,...,0); this has no impact on the correlation matrix R. In addition, each
resulting principal component is orthogonal to all the other principal components,
since they compose the axes of the new coordinate system.

The completion of the iterative process results in the creation of a formatted
design space of h < ng dimensions, which is defined by the coordinate system that
the principal components form and is created by rotation of the original design
space. This rotation can be quantified by the definition of a new matrix[41]:

O]
F

D, =D (W/D)" (4.28)
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4.2. KPLS

In the previous equation, W, = [w, ", w,@", ... w,®"] is the ng x h matrix

containing the regression coefficients of A principal components for the local regres-
sion of X and D = [DW, D@ ... D®] is the ng x h matrix of principal direction
vectors. D, = [59), 59), e 5,@] € R"*" is obtained by restating eq. 4.26 as such:

70 = XD [0 = xOp® (4.29)

where the scalar elements Dill , DiQ), e ,forzﬁ in each vector ﬁil) measure the im-
portance of each corresponding dimension in the construction of the [, principal
component, where its correlation with the response f is maximized. Respectively,
the correlation parameters § € R™ in Kriging quantify the importance of each di-
mension in the calculation of the respective response f The estimation of such
parameters via maximization of the likelihood function in eq. 4.23 is the most
costly process of constructing the Kriging model. By assuming an isotropic and
stationary process R; : S x S +— R, VI € [1, h], we can construct the KPLS kernel
by using the scalar elements D(ll), Dilz), ey DEJQLB to replace 0 when measuring the

*

importance of each one of the ng dimensions for the Iy, principal component.

Ry (Xis XG) HRZ ( (XJ)) ., with fc(l) S = S

(4.30)
Xi — |:D§<1)Xi,la D»EQXZ 2y Dgr)bﬁxz "5}

and 0 0 0
X — [P0, DB xsa. -, DY, X

where fc(l) denotes some correlation function defined in the rotated ng-dimensional
design space of h principal components. This approach can be used to reconstruct
two correlation kernels in order to decrease the number of parameters 6 € R":

e Exponential Ornstein-Uhlenbeck process

R (X X)) HH&M)( GZ‘D*k;XZk_ *kx;kD (4.31)
I=1 k=1
e (Gaussian
h 7ng 9
R (X, X;) HHewp (—91 (DO — DY) ) (4.32)
=1 k=1

The maximum likelihood given by eq.4.23 is subsequently estimated w.r.t. 6 €
R", thus significantly decreasing the computational cost. With 6 € R" known, the
correlation matrix is calculated and inserted in equations 4.17 and 4.19 that provide
the KPLS prediction and the corresponding MSE.
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4.3 KPLSK

The KPLSK model is used for improving the maximum likelihood function of Kriging
described by equation 4.23. This improved maximum likelihood function is obtained
by following the construction process of KPLS model with one variation. After the
values of parameters # have been calculated in the h-dimensional space via the use
of KPLS model, KPLSK performs a local optimization of the likelihood function
of Kriging by making it equivalent to the KPLS one [42]. The idea is to express
the KPLS kernels, which are defined in a subset of the ng-dimensional space, in the
entirety of the ng-dimensional space. In the subset S C R™, the equivalence of the
KPLS and Kriging kernels eq. 4.32 can be proved for exponential kernels of order
q. In this case, ¢ = 2 to refer to the Gaussian correlation kernel:

h

ng
=1 k=1
h ng

T e (-0 (s~ 07)

ng h )
= exp ( Z (—QlDil,z (Xik — ijk)2)> (4.33)
k=1 I=1
ng
= exrp < <— Nk (Xi,l - Xj,l)2)>
k=1
ng

Consequently, n, = Z?Zl QlDilk)Q for k = 1,2,...,ns aids in the transition to the

ng-dimensional space, where it serves as a starting point for the local optimization
of the Kriging likelihood function based on the values of parameters 8% obtained
via the use of the KPLS method for [ =1,2... h.
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4.4 Radial Basis Function (RBF)

The comprehension of o RBF interpolation model initially requires defining radial
functions. A function ¢ : R"# — R is called a radial function when its value at any
given point B € R™ depends on the distance r between that point and some other
fixed point, called the center of the RBF and denoted by c.[43].

w(B) = g(|B - 2l) = g(r) (4.34)

where ||-|| denotes the Euclidean norm ||-||; and ¢ : [0, 00) — R is a univariate radial
basis function that depends solely on the distance r. The approximating model uses

the n; observed pairs (¥, f(X)) to yield the interpolant s(f) at an untried point
€ R", which is a linear combination of RBFs[44] ¢(r;), Vj € [1,n].

s(B) = "wig (18=x11) =D wi,g(ry)
j=1 =1

such that s(x;) = F(x;) = F;, ,for i=1,n,

(4.35)

where each observation X; serves as a center point for the RBF g(r;), with the
distance between the j;;, interpolation center and the 7;;, observation being equal to
rj =/ (Br = x51)? + (B2 — Xj2)? + .-+ (Buy — Xyns)? Bach RBF is additionally
weighted by an interpolation coefficient w;,. The system described by eq. 4.35 is
linear and solvable Vi, j € [1,ny]:

ZWt]g(H)ZZ—)ZJH) :Fl ,fOI' 1= 1,7’1,,5 (436)
j=1

which in matrix form is written as follows:

gllxy =xall gl = xall -+ gllXn = Xall | | W, Fy
G, —F o 9”)?1.—)?2H 9H>Z2‘—932H 9|\>Znt‘— Xal Wi | _ 1*?2
ngl _X'ntH 9H>22_>ZMH g”fnt _X‘ntH W, Fnt

(4.37)

Consequently, the solution of the linear system results in the calculation of the
interpolation coefficients W, and is executed during the training phase. This is the
simplest method of implementing multivariate RBF interpolation.

It is often useful, however, to use a linear combination of conventional RB_If’s and

a linear regression model consisting of low order polynomials, denoted by p(5), and
given by[45]:

ne k
s(B) =" wig (15— %ill) + > wipi(F) (4.38)

j=1 i=1
where w; is the coeﬂicient of the iy, polynomial and k is their number. The polyno-
mial term Zle w;p; () is identical to the one used in Kriging model. Consequently,

the distinction between Kriging and this method lays in the approach of the stochas-
tic term, which in this case is expressed as the linear combination of RBFs.
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4.4. RADIAL BASIS FUNCTION (RBF)

Equation 4.38 can then be restated in matrix form as a linear system of the
following form:
Gw, +Pw=F (4.39)

where P is the matrix of known polynomials for the complete design presented in eq.
4.14. In order to form a solvable linear system one complementary equation must be
added. By arbitrarily assuming that the objective function can be described by the
same polynomial matrix P and a different coefficient matrix wg, as such F = Pwy.
Consequently, eq. 4.39 can be restated as follows:

Gw, + Pw = Pwy; —
G#, = P (g — %) = 0 50, (4.40)
W GW, = W] P (Wg — W) =0
The left hand side must be zero if the following constraint is applied.
WP = (PTw,)" =0 (4.41)
If subsequently this constraint is incorporated in eq. 4.39, the linear system takes

the following form:
G P szt] B {F}
[PT O} [V_x? 0 (4.42)

The solution of the linear system results in the calculation of the interpolation
coefficients w;, w and is part of the training process. The polynomials used to
facilitate the RBF interpolation can be of order 0,1 or 2 corresponding to a constant,
linear or quadratic trend respectively.

Another variation of plain RBF's uses a constant trend that can be obtained from

=,

eq. 4.38 by setting k = 1 and p;(f) = 1.

s(8) =D wi,g (15 = Till) +wi (4.43)
j=1
The previous equation for n; training patterns can be written in matrix form as
follows: .
G P v_\?t} B {F
5 g0
where P is the ny X 1 matrix:
p1(X1) 1
P = : = (4.45)
P ()Znt) 1
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4.4. RADIAL BASIS FUNCTION (RBF)

In order to perform the interpolation of n; sample points, a plethora of radial
basis functions g(r) can be used. Some of the most common are presented in the
following table:

RBF g(r) Scaling pa- | Order
rameters

Gaussian el-ar)? a>0 0
Multiquadratic Vr? + a? a>0 1
Inverse Multiquadratic | (1+(ra)?)~"/2 | a > 0 0
Inverse Quadratic 1+ (ra)>)™t [a>0 0

Thin Plate Spline r2log(r) ceN ¢
Polyharmonic Spline | r2¢7! ceN c—1

Table 4.1: Common radial basis functions

Gaussian basis functions are most commonly implemented with the scaling pa-
rameter « often being replaced by the parameter dy > 0, where a = 1/dy. The
restated formula that describes Gaussian RBFs is the following:

— — 2
5 o Xi = Xj
o) = g (15~ 1) = eap (- 10X (4.46)
0

where the scaling parameter dj is used to adjust the shape of the radial basis function
g(r) and can therefore affect the accuracy of the RBF interpolation. This parameter
can be adjusted via the modifying the parameter d0. The effect of this parameter
on the shape of the radial basis function ¢(r) is presented in the following figure.

1

d0=0.1
d0=0.5
do=1.0
d0=5.0
0.8 - d0=10.0
d0=20.0
d0=40.0
d0=80.0
do=100
0.6 |
k)
0.4
0.2 |
o ; . .
-20 -15 -10 -5 0 5 10 15 20

X

Figure 4.1: g(x) RBF shape for various dy values when x € [—20, 20]

EASY built-in RBFs are described by equation 4.35. In SMT,
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Chapter 5

Numerical Cases

The efficacy of the selected metamodels is tested on a pair of pseudo-engineering
optimization problems. The study involves a comparison between MAEA-based
optimization using the metamodels selected in this thesis, MAEAs using EASY
built-in RBF models and plain EAs. The entirety of the evaluations are performed
on the multi-processor platform of the PCOpt/NTUA that consists of 3 clusters
with combined computational power of 62 Teraflop. The outcome of the evaluation
will provide important feedback regarding the potential of the selected surrogate
models.

5.1 Welded Beam Design

The first case is a welded beam design [46], a SOO optimization problem where
a beam is welded onto a rigid body (see figure 5.1). In this optimization case,
the dimensions of the beam and the weld are modified in order for the overall
construction cost to be minimized subject to constraints on shear stress, bending
stress, buckling load and the end deflection. The design variables to be modified are
four, i.e. the thickness of the welds h, the length of the welds [, the height of the
beam t and the width of the beam b. Consequently, the vector of design variables
assumes the following form 3 = (B1, B2, B3, B1) = (h,1,t,b) € R

Figure 5.1: Welded beam design
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5.1. WELDED BEAM DESIGN

The beam is made of 1010 steel and must be supported by an upper and a lower
weld when a constant load P = 6000 1b is applied at distance L = 14 in from the
rigid body. The fabrication cost of the welds is given by the equation:

fw = (Cl —|— CQ)hQZ

where ¢, is the cost per unit volume of the weld material, ¢, the labour cost per unit
weld volume and V,, = h%l the volume of the weld material.
The fabrication cost of the beam is proportional to the amount of material in
the beam:
Jo = cstb(L 4 1) = c3tb(14.0 + 1)

where c3 is the cost per unit volume of the beam and Vj, = tb(L + [) the respective
volume. The construction costs ¢q, ¢s, c3 have been estimated:

e For the welds:

cp = 0.10471 ig and cp = 1 ig
n n
e For the beam: ;
n

The overall fabrication cost can be written as:
frot = fu + fo = 1.10471A%1 4 0.04811¢b(14.0 + 1) (5.1)

The stress states that describe the optimization case are subsequently defined and
will serve as the imposed constraints. The first is the shear stress of the welds that
must not exceed the maximum allowable shear stress of the material 7,,,, < 13600
psi. The shear stress of the welds is defined as such:

cosb=l/2R It Tt
= \/7'5 + 27,0080 + T ——— \/7'102 + —]p% + 77 (5.2)
where R is the distance from the center of the cross-section of the beam, 7, the
primary stress of the weld throat and 7; the torsional stress developed on the beam

due to the torque M developed by the applied load P at its end. The equations
describing the aforementioned static mechanical phenomena are the following:

12 (h+t)2
w0

___P _ 6000

" V2hl V2Rl (5.3)
MR

Tt:—J

l l
M=P (L+ 5) = 6000 (14.0+ 5)
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5.1. WELDED BEAM DESIGN

In torsional stress equation, the variable J is the polar moment of inertia of the

weld: ) )
[ <h+t>
= 2V2hl | — —
J=2V2 [12 +(— ]

The second stress that affects the quality of the design is the normal bending stress
of the beam that must not exceed the maximum yield strength of the material
Omaz < 30000 psi and is equal to:

6PL 504000
_ _ 5.4
7T e b2 (5:4)

The deflection at the end of the beam is the next constraint that must be incorpo-
rated into the optimization of the welded beam. The deflection of a cantilever beam
of length L = 14 in must not exceed 0,4, < 0.25 in and is calculated as such:

4PL3 21952
0= = 2.5
Ebt3 bt3 (5:5)

where F is the Young’s modulus; for 1010 steel is equal to 30 x 10° psi.

Additionally, the structural integrity of the beam requires that the buckling load
in the vertical direction must be greater than the applied load P = 6000 psi. The
critical buckling load of the beam is calculated as such:

P, = (5.6)

| EGt2b5
4.013 36 1_i\/z
4G

L? 2L

where G is shearing modulus; for steel 1010 is equal to G = 12 x 10° psi.

It is evident that the thickness of the welds h should not exceed the width
of the beam and therefore the last imposed constraint is h < b. Consequently,
the optimization of the welded beam design requires the minimization of a single
objective, i.e. the fabrication cost of the structural design, in the 4-dimensional space
formed by the design variables 8= (B1, B, B3, B1)=(h,1,t,b) € R* and bounded by
the 5 imposed constraints.

subject to ¢1(8) = 7(6) — Timaz < 0
Cg( :) = U( _‘) Omaz < 0 (57)
cs(B) =P =B <0
04(_)) =0 H)_émaa: <0
() = P— P(F) 0

where the bounds of each design variable are 0.125 < £, < 10.0, 0.1 < [, f 10.0,
0.1 <f5 <10.0 and 0.1 < 84 < 10.0. The formulas that describe 7(8), o(B), 5(5)

and Pc(ﬁ) can be found in equations 5.2, 5.4, 5.5 and 5.6, respectively.
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5.1. WELDED BEAM DESIGN

e Optimization using EAs

First, the welded beam design is optimized using plain EAs that utilise the
problem-specific evaluation model. The optimization is performed using EASY soft-
ware in order to identify the most suitable values for the parameters of the evolu-
tion, e.g. offspring and parents population size, mutation probability and crossover
scheme. The evolution parameters identified via the use of EAs are later used to
facilitate the evolution in MAEA-based optimization. The number of offspring and
parent population is set to (i, A\) = (20,60) where 4 parents are combined to create
a single offspring with one-point crossover. Gray binary encoding is used and 15 bits
are assigned to each design variable. The optimization phase terminates after 27000
PSM evaluations have been performed and is repeated for 5 randomly initialised
offspring populations P} via the use of a Random Number Generator (RNG). The
results are presented in table 5.1 and in figure 5.2.

Welded beam case ‘

(i1, \) Best | Worst | Average | Average
popu- PSM
lation eval.

| EAs | (20,60) | 238 [249 [243 | 27000 |

Table 5.1: Optimization of welded beam design using EAs

(a) Comparison between the convergence

histories of & different X\ initializations (b) Convergence history of the optimal run
64 ; ‘ 16 ; ;
RNGL —— RNG1 ——
RNG2 ——
RNG3 ——
I RNG4 |
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8
16|
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Figure 5.2: Convergence history of welded beam optimization case using EAs

The design variable vector that minimizes the construction cost of the welded
beam using plain EAs initialized via RNG1 is 8 = [0.244,6.194, 8.329, 0.244].
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5.1. WELDED BEAM DESIGN

e Optimization using MAEAs with off-line trained metamodels

In MAEAs using off-line trained metamodels, both the objective F(ﬁ) and the
imposed constraints C(g) = [¢1, ..., C]", where & = [ci1,Ci2,--.,Cin.], are
approximated using surrogate models. Specifically, a global metamodel is built on
the single objective and n, unique metamodels on each imposed constraint. In this
case, the objective function is approximated by a KPLS model, while each constraint
is approximated via the use of Kriging model; responsible for the construction of
the aforementioned metamodels is SMT software. Alternatively, a single surrogate
model can be trained to approximate the entirety of the constraints but this approach
resulted in a poorly trained surrogate model. However, even the first approach
resulted in surrogate models with poor overall fitting, especially when approximating
a function with design variables in the denominator that tend to zero. To solve this
issue an approach is proposed where constraints with denominators that tend to 0
are reduced to polynomials. Let the original approach of unmodified constraints be
case 1 and let the modified approach be case 2, then:

Cl(_’):\/'r}?_‘_ ptﬁ?%—n Tmaz < 0= T§+Tpgﬁz+7} <72 2

R maw
TpTt g R ’7'2 + 7' ’7’2
ToTifr < —R [T+ T — Thge) ——— f220 c1(B)new = [+ 7~ Moo -1<0
TthﬁZ
(5.8)
> 6PL ., -
( ) — Omaz > <0 M) ( )new =6PL — Omaxﬁ46§ § 0 (59)
6453
> 4PL3 4 >
ca(B) = o — B < 0 2220 BP0 (B pew = APL? — 6pae EB1B3 <0 (5.10)
Eﬁ4ﬁ3
(a) Case 1: Comparison between cy( 3) and (b) Case 2: Comparison between cy( 5) and
ca(B) ca(B)
exact model exact mode| —
metamodel metamodel —
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-1x10%0 |
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-2x1010
-2.5%1010
-3x1010
-3.5x10%0
-4x1010

Figure 5.3: Error of the metamodel when approzimating the original NRMSE =
1.206111 (left) and the modified NRMSE = 1.182408-1075 (right) equation c4(/3)
using an LHD composed of ny = 240 training patterns
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5.1. WELDED BEAM DESIGN

=, =,

(a) Case 1: ca(B) function (b) Case 2: co(B) function
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Figure 5.4: Contour projections to 2D plane for the original (left) and modified
(right) function of the 2nd constraint

In both figures, i.e. 5.3 and 5.4, the visualization of the constraint function justi-
fies the initial assumption of underfitted metamodels built vE € Rj when By, 5y — 0;
such metamodels are trained in case 1. In case 2, the modification in constraints
c(B1), c(B2) and ¢(B,) results in a better model fitting, NRMSE = 1.182408107¢ com-
pared to NRMSE = 1.206111 of case 1. The minimization of the welded beam case
that through 5 runs is presented in table 5.2, where a maximum of 5000 evaluations
per cycle are performed using MAEAs with off-line trained metamodels:

‘ Case 2 ‘
(1, A) Best | Worst | Average | Avg. Avg.
popu- metamodel | cycles
lation eval./cycle

| MAEAs, off-line | (20, 60) | 2.35 | 256 |2.44 | 3168 |3 |

Table 5.2: Optimization of welded beam design using MAEAs with off-line training
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5.1. WELDED BEAM DESIGN

The optimal candidate solution obtained via this method is 5 = [0.336, 5.067,
7.323,0.338]. The corresponding value of each constraint and objective is presented
in table 5.3.

‘ Case 2 H c1(B) c2(B) cs(B) cs(B) cs(B) £(8) ‘
MAEASs || -0.412243 -29020.84 -0.019 -1065388211  -276.80 2.35
PSM 1129.41 -1633.52 -0.019 -0.235446 -261.95 2.35

Table 5.3: C, F responses to Bfound via MAEAs with off-line training in case 2

MAEASs with off-line training utilizing the approach of modified constraints (case
2) converge in candidate solutions that violate the first constraint 01(5 ). In order to
determine the extent to which the design space has changed, the aforementioned ap-
proach is implemented in plain EAs that utilize the modified problem-specific model,
denoted by PSM' for simplicity. If PSM -based EAs converge to an optimal solution
that lies in the design space of the original PSM, then the modification in constraints
did not lead to a significant change in the design space of candidate solutions and
the unsatisfactory solutions are contributed to metamodel-related flaws. EAs using
PSM’ find the optimal solution § = [0.272,4.300, 7.856,0.272]. The corresponding

value of each constraint and objective is presented in table 5.4

| Case 2 || c1(B) ca(8) cs(B)  ca(B) cs(8) £(8) |
PSM’ -0.000037 -273.75 0 -963206327 -529.75 2.15
PSM 3445.91 -16.286 0 -0.234001 -529.75 2.15

Table 5.4: C, F responses to Efound via EAs using the PSM’

The implemented modifications seem to distort the design space significantly,
since the optimal solution results in a design with welds that undergo massive shear
stress 01(5) = 17045.91 psi. Consequently, optimal solutions found in case 2 do not
satisfy the constraints imposed on the design space and result in a unsatisfactory
welded beam design. However, metamodels trained off-line on the PSM do not
converge to an optimal solution due to poor constraint model fitting. For this
reason, a new approach is proposed, referred to as case 3, and is based on the
observation that the entirety of optimal solutions found via the use both the PSM’
and metamodels trained on the PSM (case 2) do not satisfy the first constraint
c1 (ﬁ) In case 3, therefore, constraints co, ¢, are modified according to equations
5.9 and 5.10, respectively, and the corresponding problem- specific model is denoted
by PSM". The implementation of EAs via the use of PSM" yields the optimal
solution 5 =10.279,5.679,7.698,0.284]. The corresponding value of each constraint

and objective is presented in table 5.5.

— - — —

‘ Case 3 H c1(8) c2(B) cs3(8) cs(B) cs(B) £(8) ‘

PSM" | -13.645  -355.91  -0.004  -904782848  -2906.86 2.56
PSM -13.645  -21.170  -0.004  -0.233038 -2906.86  2.56

Table 5.5: C, F responses to gfound via EFAs using the PSM”
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5.1. WELDED BEAM DESIGN

Unlike previous approaches, PSM"-based EAs converge to an optimal solution
that satisfies the entirety of the constraints imposed to the original model. Meta-
models trained off-line on the PSM  through 5 runs yield the outcome shown in
table 5.6.

‘ Case 3 ‘
(1, A) Best | Worst | Average | Average Avg.
popu- metamodel | cycles
lation eval./cycle

| MAEAs, off-line || (20, 60) |2.90 |3.55 |3.12 | 2883 E |

Table 5.6: Optimization of welded beam design using MAEAs with off-line training

The best solution 5 = [0.336,5.067, 7.323, 0.338] obtained via MAEAs with off-
line training, produces the constraint and objective function values shown in table
5.7 when evaluated on the PSM.

- — — -

‘ Case 3 H c1(8) c2(B) cs(B)  ca(B) cs(8) £(8) ‘

MAEAs || -469.56 ~ -39385.13 -0.002  -928918812  -8492.04 2.90
PSM -797.35  -2194.43  -0.002  -0.233450 -8522.98 2.90

Table 5.7: C, F responses to Bfound via MAEAs with off-line training in case 3

Consequently, the MAEA-based optimization of the welded beam case is per-
formed by utilizing metamodels built off-line exclusively on PSM", since MAEAs
with surrogate models trained off-line on PSM' and PSM either converge to prohib-
ited by the constraints solutions or they do not converge after performing 20 opti-
mization cycles, respectively. The convergence histories of EAs using PSM, PSM’
and PSM" are subsequently presented in figure 5.5 all EA methods are initialized
with the same offspring population set P{ corresponding to best solution.

16

PSM ——
PSM' ——
PSM" ——

f(B)

L\&_

Sl . . .
1000 3000 5000 10000 20000
Number of evaluations

Figure 5.5: Welded beam design. Comparison between the convergence history of
EAs performing evaluations on the PSM, PSM and PSM"
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5.1. WELDED BEAM DESIGN

The deviation between metamodel predicted values and evaluated ones, using
the PSM" of either objective function or some constraint, can be observed in figures
5.6, 5.7 and 5.8. The surrogate models are trained on n; = ng,e. = 240 patterns X
collected via the implementation of LHS that makes use of the ESE algorithm to
construct an optimal space-filling design. At the end of each optimization loop, a
new random design of n,c g0 =20 points and 1 elite are added to the initial LHD.
The optimization process converged after 10 cycles and, therefore, at the end of
the optimization the metamodels are retrained on n; = n,,, =429 patterns. Each
individual 3 € P selected in the first of the 5 total runs is used to validate both
metamodels and calculate the NRMSE.

(a) Initial f, NRMSE=0.00000269

— f(B)

800 q -
< B

o 200

400 600 800
f(B)

(b) Final f, NRMSE=0.00000042

— f(B)

800 s
fiB)
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400 600 800
f(B)

Figure 5.6: Case 3, welded beam case with RNG1. Deviation between eract PSM”

- =

values of the objective function f(f) and KPLS predictions f([5).

- =

The initial KPLS

model is trained on ng.. =240 and the final on n,,, =429 training patterns.

(a) Initial c;, NRMSE=0.7773964

150000 4

— <c(B)
- &B)

125000 4

100000 1

75000 A

Constraint 1

50000

25000

o4

—25000
o

(¢) Initial ca, NRMSE =0.00000249

1e7

20000 40000
Constraint 1

60000

0.0 <(B)

L))

—0.51

—1.01

Constraint 2

—1.51

—2.01

—2.0

—1.5

—-1.0 —0.5 0.0

Constraint 2 le

7

(b) Final ¢, NRMSE =0.55329077

1200001 —— <c(B)
- 4B
100000 4

80000

60000

40000 1

Constraint 1

20000 A

0

—20000 4

o

20000 40000
Constraint 1

60000

(d) Final co2, NRMSE =0.00000063

le7

0.0 <(B)

- B

—0.54

—~1.04

Constraint 2

—1.54

—2.04

—2.0

-1.5 -1.0 —-0.5 0.0
Constraint 2 le7

Figure 5.7: Case 3, welded beam case with RNG1. Deviation between ezxact PSM”
constraint values 5(5) and Kriging predictions 8(5) given via the implementation of
SMT. The initial Kriging model, which approximates the first two constraint func-
tions, is trained on ngee=240 and the final on n,,, =429 training patterns.
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5.1. WELDED BEAM DESIGN
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Figure 5.8: Case 3, welded beam case with RNGI1. Deviation between exact PSM
constraint values ¢(B) and RBF predictions ¢(f) given via the implementation of
SMT. The initial Kriging model, which approximates the remaining three constraint

unctions, is trained on ngee =240 and the final on n,, =429 training patterns.
doe g p

The NRMSE calculates the mean normalised deviation between the predicted
and exactly evaluated on the PSM" values on A =60 untried design sites B, where
5 = 51 =[Bi1: Bigs - Bing) € P is any untried point in the design space contained in
the initial offspring population set. NRMSE serves as a metric of model fitting and
indicates that all trained metamodels are well-fitted, except from the one built on
the 1st constraint function cl(g). This underfitted surrogate model hinders the con-
vergence of the optimization process, which reaches an satisfactory optimal solution
after 8 cycles.
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5.1. WELDED BEAM DESIGN

e Optimization using MAEAs with on-line trained matamodels

In the MAEA-based optimization of welded beam design using on-line trained
metamodels, the LCPE phase is set to initiate once 480 exact evaluations are per-
formed. In LCPE, personalised local metamodels are trained on 20 < n; < 21
training patterns and subsequently 2 < A, < 4 individuals are re-evaluated using
the exact evaluation model. A total of 10000 PSM evaluations are performed, un-
less 75 generations are formed without improving the current outcome, in which
case the optimization terminates. Local metamodels are built by utilizing either
the assisting software SMT or EASY. The former accommodates the use of Kriging,
KPLS, KPLSK and RBFs, while the latter relies on Kriging and most often RBFs.
In order to identify the most suitable metamodel in SMT for the welded beam opti-
mization case, a comparison between each respective model is performed w.r.t. the
convergence history and the produced outcome; the results of each comparison are
presented in table figure 5.9 and table 5.8, respectively.

16 16

KpLs —— KpLs ——

KPLSK —— KPLSK ——
Kriging —— Kriging ——
RBFs in SMT RBFs in SMT

EAs — EAs ——

f(B)
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2 | | | . 2 L | | .
0 1000 2000 3000 4000 5000 0 2000 4000 6000 8000 10000

Number of evaluations Number of evaluations

Figure 5.9: Welded beam design with RNG1. Comparison between the convergence
history of EAs and MAEAs with metamodels trained on-line via SMT

‘ Welded beam case ‘

MAEAs, || (1, \) KPLS KPLSK | Kriging | RBFs
on-line popula-

tion
‘ SMT H (30, 100) ‘ 2.45 ‘ 2.74 ‘ 2.72 ‘ 2.62 ‘

Table 5.8: Welded beam case with RNG1. Optimal candidate solution found using
metamodels trained on-line via SMT

The comparison between convergence histories of the SMT built-in metamodels,
depicted in figure 5.9, indicates that KPLS model is most suitable to facilitate the
optimization of the welded beam case due to its fast convergence to the threshold
of both 5000 and 10000 PSM evaluations. In plain EAs, RNG1 yields the best op-
timization outcome and for that reason MAEAs with on-line training are initialized
with the same offspring population PY.
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5.1. WELDED BEAM DESIGN

KPLS is yet to be compared to EASY built-in RBFs and plain EAs; the results
are presented in table 5.9.

Welded beam design

MAEAsSs, (1, A) Best Worst | Average | Avg. Avg. meta-

on-line popu- exact model eval.
lation eval.

SMT (20, 60) | 2.45 2.62 2.54 10000 11579

EASY (20, 60) | 2.38 2.82 2.53 10000 10738

Plain EAs || (20, 60) | 2.42 3.05 2.59 10000 -

Table 5.9: Welded beam case. Comparison between the outcome of the optimization
using MAEAs with on-line training and plain EAs

The design variable vector that minimizes the construction cost of the welded
beam via the implementation of KLPS is 5=[0.234,5.717,9.276, 0.239]. For MAEAs

utilizing EASY built-in RBFs the respective optimal design variable vector is E =
[0.255, 5.664, 8.527, 0.260).
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Figure 5.10: Welded beam case with RNG1. Comparison between the convergence
histories of the optimization using EAs and MAFEAs with metamodels trained on-line
via SMT and EASY

In the comparison of convergence histories depicted in figure 5.10, EASY built-in
RBF's are seemingly more accurate than KPLS model and yield a faster convergence.
The impact of MAEAs on the computational cost is evident, since they outperform
conventional EAs prior to the threshold of 10000 exact PSM evaluations.

49



5.1. WELDED BEAM DESIGN

5.1.1 MOO of Welded Beam Design

The welded beam case appears in the majority of the scholar literature as SOO
problem, where the single objective is the minimization of the fabrication cost of
the design. However, a variation of this optimization case also exists where the
welded beam design is optimized w.r.t. to two objectives, which are the fabrication
cost of the design and the deflection § (E) of the beam. In this case, the deflection of
the beam does not bound the design space of possible candidate solutions and the

optimization problem assumes the following mathematical expression:

-

min f1(6) = 1104715785 + 0.048115364(14.0 + )

) — Tmax S 0 (511)

where the bounds of each design variable are 0.125 < £; < 10.0, 0.1 < ﬁ24§ 10.0,
0.1 < fB3 < 10.0 and 0.1 < B4 < 10.0. The formulas that describe 7(3), o(3)

and P.(f) can be found in equations 5.2, 5.4 and 5.6, respectively. In this case, the
objectives are conflicting and their corresponding values are presented in figure 5.11.
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Figure 5.11: Pareto front of 15 non-dominated candidate solutions found in the
MOO welded beam case for 1000 exact PSM evaluations

The first two fronts are obtained by optimizing the MOO welded beam case via
the use of MAEAs with on-line training, namely EASY built-in RBFs and the KPLS
model found in SMT. The LCPE phase is set to initiate once 240 exact evaluations
are performed on the PSM. In LCPE, personalised local metamodels are trained
on 20 < n; < 21 training patterns and subsequently 2 < A\, < 6 individuals are
re-evaluated using the exact evaluation model. The comparison is completed by the
front that results from the optimization of the MOO case via the use of plain EAs.
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5.1. WELDED BEAM DESIGN

Since all fronts are seemingly overlapping, it is not evident which method yielded
the best outcome. A way to determine this, is by calculating the hypervolume
indicator [47] of each front F C R", which is defined as the measure of the region
weakly dominated by F and bound by a reference point z,, € R™ and expressed as:

HF) =A{peRIGe F:G<pand §<Z.}) (5.12)

where H(-) denotes the Lebesgue measure which is a way of assigning measure to
subsets F of n-dimensional Euclidean space. In the 2D space, which is the case
here, the Lebesgue measure H(F) is equivalent to the area defined by each ¢ € F
and the reference point #, € R™. The coordinates (x,,, x,,) of the reference point in
2D space are defined as:

r={q € Fi:qn > §VE € Fi,Vi € [L,ngl} +&

5.13
CC'W:{QQEEQng,VSGE,VZE[].,nf]}‘i_é.Q ( )

where ¢, ¢ are the coordinates of ¢ € F point in 2D space, ny is the number
of compared fronts and &, & user-defined values. In this case, the parameters as-
sume the values (&,&) = (0.002,20) and (z,,,x,,) = (0.0181,98.27) and yield the
hypervolume indicators for each Pareto front shown in figure 5.12.
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Figure 5.12: MOO welded beam case. Hypervolume indicator H for fronts formed
via the use of EAs, on-line trained KPLS and RBFs in FASY

According to the H value, the best front is the one formed via the use of on-line
trained KPLS. Consequently, § = [0.481, 3.383,6.572,0.481] is selected that yields
the response (f1, f2) =(6.41, 0.0031), since a minor increase in beam deflection yields

a significant decrease in the fabrication cost.
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5.2. SPEED REDUCER DESIGN

5.2 Speed Reducer Design

The second optimization case is the SOO problem of minimizing the overall weight
of a speed reducer. This design is used to reduce the output speed by increasing
the output torque via the use two gears that are mounted to two separate shafts
of diameter d; and dy. The structure is enclosed within a housing, while a pair
of pairings is used at the connection point of each shaft in order to reduce friction
produced by the rotation movement of the shafts (see figure 5.13). The minimization
of the overall weight of the structure is, therefore, refers to the minimization of the
total weight of both gears and shafts. The speed reducer case[49] is optimized w.r.t.
the following design variables:

Face width of the gear b in [cm], where 2.6 < ; < 3.6

Teeth module m in [em], where 0.7 < 55 < 0.8

Number of pining teeth Njeen, where 17 < 83 < 28

Length between bearings of the first shaft L; in [em], where 7.3 < 8, < 8.3
Length between bearings of the second shaft Lo in [cm], where 7.3 < 5 < 8.3
Diameter of the first shaft d; in [cm], where 2.9 < 35 < 3.9

Diameter of the second shaft dy in [cm], where 5.0 < 5; < 5.5
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Figure 5.13: Speed reducer design
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5.2. SPEED REDUCER DESIGN

The volume of the speed reducer in [cm?3] can be calculated using the following
equation [48], which multiplied by the density of the material yields the weight of
the speed reducer:

Wspr = clme (CQNEeeth + C3Nteeth - 64) — Cx (d12 + d22)

5.14
¢ (dy’ +dy) + ¢ (Lidy® + Lody) (5.14)

where the occurring parameters are calculated by Golinski [49]:

e ¢c; =0.7854
e 5 = 3.3333
e c3 =14.9334
e ¢y, = 43.0934
e 5 = 1.508

® cg = 14777

and thus the previous equation can be restated as such:

Wi = 0.7854bm* (3.3333N7yp, + 14.9334Neer, — 43.0934) — 1.508 (dy” + d)
7ATT7 (d? + dy’) + 0.7854 (Lydy® + Lody)
(5.15)

The volume function is optimized in R space formed by the design variables
{b, m, Nicetn, L1, Lo, dy,ds}. The design space is bound by the imposed constraints
that are associated with limitations on the bending stress of gear teeth, surface
stresses, transverse deflections of the shafts due to transmitted force and stresses in
shafts. Subsequently the imposed constraints are presented analytically. The upper
bound on the bending stress of a gear tooth is given by the following formula:

2M, = 2 1 (5.16)

g e < g
7 megNteeth - mae bmtheeth o

where Y = 0.3937 is the Lewis tooth form factor, M, the bending moment for the
gear teeth and o, .. = 900 g/cm? is the maximum bending stress of the gear teeth.

Similarly the upper bound of the compressive stress of a gear tooth for both gears
is defined as such:

2BM 397.5
P =—"2 <P = —— <1 5.17
91,2 meNthEth — © 9mazl,2 meNEeeth — ( )

where P, ..., = 5800 g/cm? is the maximum surface compressive stress for both
gears and B is a coefficient dependent on Young’s modulus of elasticity F.
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5.2. SPEED REDUCER DESIGN

The transverse deflections of the shafts due to the transmitted load P are required
to not exceed the following bounds:

1 PL? 1.93L3

Shaft 1: 6 = —— < flpae = ———L— < 1 5.18
. T REL = M Npond,? (5.18)
Shaft 2: ¢ L PL; <4 = 1.93L; <1 (5.19)
a. S max A7 g4 = .
*T 48 FEL — M Nyeernds)

where [ is the moment of inertia of the shafts and 61,42, 02maez the maximum per-
missible transverse deflections of shaft 1 and 2 respectively.
Subsequently, the bending stress conditions for the shafts are limited based on the

following formulas:
2
\/( Tk ) +16.9 x 10°
mNteeth

M,
Shaft 1: o4 = L<o =

<1100 (5.20)

Wml — Y 9lmazx 0.1d13
74505 \°
" \/< NQ) +157.5 x 106
z MiVteeth
Shaft 2: oy, = sz < Ogomas = 0147 <850  (5.21)
where o, = 1100 g/cm?, 0,4, = 850 g/cm? are the maximum permissible

bending stresses for shaft 1 and 2, respectively. W, is strength section modulus if
each shaft and M, is moment of each shaft formulated by the equation:

M, = /M2 +0.75M?

where M, is the torsional moment of each shaft.
In order to improve the optimization process, various dimensional restrictions are
applied based on experience:

Nee .. 5 . b
MPreeth < ) <1 i) — <1 (5.22)

D S b= 12m

Similarly a pair of restrictions are applied on the dimensions of shafts based on
previous experience:

1.5dy +19 < 14

5.23
1.1dy +1.9 < Ly ( )
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5.2. SPEED REDUCER DESIGN

The final optimization case is formulated as such:

-,

min f(8) = 0.7854bm” (3.3333 N}y, + 14.9334 Nyeers, — 43.0934) — 1.508 (d;* + d’)
7ATT7 (d + dy’) + 0.7854 (Lydy + Lady)

subject to ¢ (f) = ﬁ -1<0
2
L 3975
= B =0
o 19380
(P) = Ghpa ~ =0
19383
) =G gas ~ 1 =0
2
\/(745@‘) +16.9 x 106
c (_’) _ ﬁ253 1< 0
b 110433
2
\/(745/35) +16.9 x 106
AN B2/33
() = 557 —1<0
c(B) = ﬁig*”‘ ~1<0
es(f) = 5—612 —1<0
co(B) = 15;2 ~1<0
u(@ =222 1 <0
611(3)2%—1§0

(5.24)

where the bounds of each design variable are 2.6 < g; < 3.6, 0.7 < 35 < 0.8,
17< (3 <28, 73< B4 <83, 7.3<05<83, 29<5<39,and 5.0< ;<55
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5.2. SPEED REDUCER DESIGN

e Optimization using EAs

The optimization of the speed reducer design is performed via the use of plain
EAs that utilize the PSM. Multiple experiments concluded that the optimal number
of offspring and parent population is (u, A) = (30, 100) where 5 parents are combined
to create a single offspring with two-point crossover. Gray binary encoding is used
where 12 bits are assigned to each design variable, except for (s, f3 and (§; that are
assigned 8, 8 and 11 bits respectively. The optimization process terminates after
52000 total PSM evaluations have been performed and is repeated for 5 randomly
initialised offspring populations P via the use of a RNG. The results are presented
in in table 5.10 and figure 5.14.

| Speed reducer design |

(1, A) Best Worst | Average | Exact Average
popula- model exact
tion eval. eval.

| EAs | (30,100) | 2994.91 | 3001.97 | 2997.74 [ 52207 | 40246 |

Table 5.10: Optimization of speed reducer design using EAs

(a) Comparison between the convergence (b) Comparison between the convergence
. . . O g 7: . . . . o3 .
histories of & different Py initializations histories if f(B3) range is narrowed
5500 T T 3080 T T T T T
RNG1 — RNG1 ——
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4500
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=

f(B)
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(c) Convergence history of the optimal run
5500
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Figure 5.14: Convergence history of speed reducer optimization case using EAs

In 3 of the runs depicted in the previous figures, all evaluated individuals violate
the imposed constraints in the first few generations and therefore their corresponding
objective function values are penalised and do not appear in the range shown here.
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5.2. SPEED REDUCER DESIGN

e Optimization using MAEAs with metamodels trained off-line

In MAEA-based optimization using off-line trained metamodels, both the ob-
jectives F(g) and the imposed constraints C(g) are approximated using surrogate
models. Specifically, a global metamodel is built on the single objective and n,
unique metamodels on each imposed constraint. Alternatively, a single surrogate
model can be trained to approximate the entirety of the constraints with the same
efficacy. In this case, the objective function is approximated by a KPLS model, while
each constraint is approximated via the use of RBF's; responsible for the construction
of the aforementioned metamodels is SMT software. In addition, the optimization
of the speed reducer requires the formation of a mixed-integer design, since the num-
ber of teeth of the gear ny..; assumes strictly integer values. The outcome of the
optimization through 5 runs is presented in table 5.11, where 20000 evaluations per
optimization cycle are performed utilizing the trained metamodel.

‘ Speed reducer design ‘

(1, N) Best Worst | Average | Average Avg.
popula- metamodel | cycles
tion eval./cycle
MAEAs, || (30, 100) | 3000.95 | 3017.68 | 3006.01 20000 1
off-line

Table 5.11: Optimization of speed reducer design using MAFEAs with off-line training

The best candidate solution E = [3.502,0.7,17,7.578,7.779, 3.357,5.287] ob-
tained via MAEAs with off-line training, produces the constraint and objective
function values shown in table 5.12 when evaluated on the PSM.

‘ Speed reducer design ‘

MAEAs, | PSM Relative

off-line Error
c1(8) -0.077830 | -0.074335 | 0.045478
Co (B) -0.202314 -0.198362 0.019438
cs(8) -0.442547 | -0.444165 | 0.003865
c4(,[§) -0.902293 -0.902275 0.000004
cs(B) -0.004910 | -0.005490 | 0.120189
() (B) -0.000146 -0.000187 0.204286
c7(,é) -0.702511 -0.702500 0.000015
cs(8) -0.000203 | -0.000453 | 0.645450
cg(,é) -0.584013 -0.583144 0.001573
clo(ﬁ) -0.084767 -0.084822 0.000209
cu(é) -0.008184 -0.008183 0.005690
£(8) 3000.95 3000.95 0

Table 5.12: C, F responses to optimal gfound via MAEAs with off-line training
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5.2. SPEED REDUCER DESIGN

The deviation between metamodel predicted values and evaluated ones, using
the exact PSM of either objective function or some constraint, can be observed
in figures 5.15, 5.16, 5.17. The surrogate models are trained on n; = ng,. = 150
patterns X collected via the implementation of LHS scheme that makes use of the
ESE algorithm to construct an optimal space-filling design. Each individual 5 € Py
selected via RNG1 is used to validate the trained model and calculate the NRMSE.

— f(B)
< fB)

6000 1
55001
50001
S 4500 |
40001
35001

3000 4

3000 3500 4000 4500 5000 5500 6000
f(B)

Figure 5.15: Speed reducer case with RNG1. Deuviation between exact PSM values of

— = — =

the objective function f(5) and KPLS predictions f(3) with NRMSE = 0.0000847

(a) 1st constraint, NRMSE=0.0082325 (b) 2nd constraint, NRMSE=0.0043814
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Figure 5.16: Deviation between exact PSM constraint values ¢(3) and RBF predic-

tions 8(3) given via the implementation of SMT. The results refer to the first four
constraints in speed reducer case with RNG1.
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(a) 5th constraint, NRMSE =0.02209353
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Figure 5.17: Deviation between exact PSM constraint values ¢(3) and RBF predic-

tions 8(5) given via the implementation of SMT. The results refer to the remaining
seven constraints in speed reducer case with RNGI.

The NRMSE calculates the mean normalised deviation between the predicted
and exactly evaluated on the PSM values on A = 100 untried design sites B, where
5:@ =[Bi1, Bi2s - Bimy) € PY is any untried point in the design space contained
in the initial offspring population set. NRMSE serves as a metric of model fitting
and indicates that all trained metamodels are well-fitted, which explains why the

optimization process converges after 1 cycle.



5.2. SPEED REDUCER DESIGN

e Optimization using MAEAs with metamodels trained on-line

In the MAEA-based optimization of welded beam design using on-line trained
metamodels, the LCPE phase is set to initiate once 100 exact PSM evaluations are
performed. In LCPE, personalised local metamodels are trained on 15 < n; < 30
training patterns and subsequently 2 < A, < 4 individuals are re-evaluated using
the exact evaluation model; a total of 20000 PSM evaluations are performed. Local
metamodels are built by utilising either the assisting software SMT or EASY. The
former accommodates the use of Kriging, KPLS, KPLSK and RBFs, while the
latter relies on Kriging and most often RBFs. In order to identify the most suitable
metamodel in SMT for the speed reducer optimization case, a comparison between
each respective model is performed w.r.t. the convergence history and the produced
outcome; the results of each comparison are presented in table figure 5.18 and table
5.13, respectively.

5500

KPLSK ——
KPLS ——
Kriging

3080

"KPLSK ——

KPLS ——
Kriging

5000 - RBFs in SMT —— | s060l 7‘

RBFs in SMT —— |
EAs

EAs

4500 b 3040 -

f(B)
f(B)

4000 b 3020 -

3500 R 3000

3000 2980

0 1000 2000 3000 4000 5000 0 5000 10000 15000

Number of evaluations

20000

Number of evaluations

Figure 5.18: Comparison between the convergence histories of speed reducer case
using EAs and MAEAs with metamodels trained on-line via SMT

‘ Speed reducer case ‘

MAEAs,|| (i, \) KPLS KPLSK | Kriging | RBFs
on-line || popula-

tion
| SMT || (30, 100) | 3002.44 | 2997.06 | 3001.38 | 3002.14 |

Table 5.13: Speed reducer case with RNG1. Optimal candidate solution found using
MAFEAs with metamodels trained on-line via SMT

The comparison between convergence histories of the SMT built-in metamodels,
depicted in figure 5.18, indicates that KPLSK model is most suitable to facilitate the
optimization of the speed reducer case due to its fast convergence to the threshold
of both 10000 and 20000 PSM evaluations. In plain EAs, RNG1 yields the best op-
timization outcome and for that reason MAEAs with on-line training are initialized
with the same offspring population P5.
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5.2. SPEED REDUCER DESIGN

KPLSK is yet to be compared to EASY built-in RBFs and plain EAs; the results
are presented in table 5.14.

| Speed reducer case |

MAEAsSs, (1, \) Best Worst Average Average | Avg. meta-

on-line popula- exact model eval.
tion eval.

SMT (30, 100) | 2997.06 3005.35 3002.68 20000 22792

EASY (30, 100) | 2998.53 3011.25 3005.46 20000 24775

Plain EAs || (30, 100) | 2999.32 3008.35 3004.34 20000 -

Table 5.1/: Speed reducer case. Comparison between the outcome of the optimization
using MAEAs with on-line training and plain EAs

The design variable vector that minimizes the weight of the speed reducer via
the implementation of KLPSK is 5 = [3.501,0.7,17,7.348, 7.769, 3.352, 5.287]. For
MAEASs utilizing EASY built-in RBFs the respective optimal design variable vector
is /67: [3.503,0.7,17,7.499, 7.750, 3.352, 5.287].

5500 T 3080 T T T
KPLSK —— \ KPLSK ——
RBFs in EASY —— L RBFs in EASY ——
EAs ‘ EAs
5000 [ 1 3060 [
4500 - 8 3040 -
@ @
=g =
4000 R 3020
3500 |- q 3000 |
TN
3000 L L : 2980 : L L
0 1000 2000 3000 4000 5000 0 5000 10000 15000 20000
Number of evaluations Number of evaluations

Figure 5.19: Speed reducer case with RNG1. Comparison between the convergence
of the optimization using MAFEAs with on-line training and plain EAs

In speed reducer optimization case, both MAEA methods outperform EAs and
converge to a better optimal solution when compared prior to the threshold of 20000
PSM evaluations, as depicted in figure 5.19. Out of the two on-line trained MAEAs,
KPLSK is seemingly the better option in the optimization of the speed reducer
case, despite the fast convergence of EASY built-in RBFs for the first 6000 PSM
evaluations. The optimization of the speed reducer case using MAEAs with on-line
trained KPLSK model resulted on average in a smaller speed reducer weight, in
comparison to conventional EAs and MAEAs with EASY built-in, on-line trained
RBFs.
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5.3 Analysis of the SOO outcome

The results and observations made during the study will subsequently be included in
the analysis of the performance of each MAEA method and each utilized metamodel.
The performance of each model or method is measured by two conflicting objectives,
i.e. model/method efficacy and computational cost. The former can be quantified
by observing the convergence of each model, while the latter can be measured via
the wall clock time needed to preform each process related to the optimization. The
results regarding these two objectives are presented subsequently.

e Convergence

The plot of convergence histories can be used in the comparison of methods
that evaluate the evolution individuals on the exact PSM, therefore, MAEAs
with off-line training cannot effectively be compared using this method. For
this reason, the yielded outcome of each method is compared. In welded beam
case, MAEAs with on-line training perform significantly better than the ones
with off-line training due to poor fitting of the metamodels approximating
the constraint functions. MAEAs with EASY built-in RBFs trained on-line
outperform plain EAs and MAEASs using metamodels trained on-line via SMT
when compared prior to the threshold of 10000 PSM evaluations.

In the speed reducer case MAEA-based optimization, off-line trained meta-
models well-fitted and yield a similar average outcome compared to plain EAs
after 5 runs. MAEAs with on-line training, however, outperform both meth-
ods, i.e. EAs and MAEAs with off-line training.

e Total function calls

The total wall clock time depends heavily on the number of exact PSM eval-
uations performed, so it is necessary to calculate the total amount of PSM
evaluations performed by each optimization method. In MAEAs with off-line
training, the number of initial sample points selected via DoE techniques is
equal to ng. = 240 and ng, = 150 for the welded beam and the speed re-
ducer design, respectively, while the average number of PSM evaluations is
calculated as such:

npsM = Ndoe + (ncycles - 1)n/doe + Netites (525)

In the previous formula, n..s is the total number of elite individuals selected
throughout the optimization process, which for SOO problems is equal to the
number of cycles performed, since a single elite individual is selected in each
cycle. In welded beam optimization case, an average of Npg,,» = 240 + 7-
20 + 8 = 388 PSM" evaluations were performed, while in speed reducer case
the respective PSM evaluations are mpgys = 151. In comparison, EAs and
MAEAs with on-line training used for the minimization of welded beam case
perform an average of mpgy = 10000 evaluations respectively. In speed reducer
case, the corresponding exact PSM evaluations performed are mpgy; = 20000.
This decrease in exact evaluations, when compared to conventional EAs and
MAEASs with on-line training, yields a proportional reduction in computational
cost, making MAEAs with off-line training the most cost-efficient optimization
method.
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In MAEAs with on-line or off-line training, metamodel approximation is used,
which contributes in an insignificant increase in the total wall clock time compared
to the exact evaluation performed by the PSM. Consequently, the total function
calls must account for the number of times the Python or C++ function that is
responsible for the metamodel prediction was called; the corresponding number is
denoted by T,etq- The total number of function calls, i.e. Tipgy and Tpere, along
with the average outcome of each optimization method, is presented in table 5.15.

| Average outcome |

Welded beam | Nipgng | Nieta || Speed reducer | Npsng | Nimeta
MAEAs, on-line || 2.54 10000 | 11579 || 3002.68 20000 | 22792
training via SMT
MAEAs, on-line || 2.53 10000 | 14422 || 3005.46 20000 | 24775
training via EASY
EAs 2.59 10000 | - 3004.34 20000 | -
MAEAs, off-line || 3.12 388 23064 || 3006.01 151 18239
training via SMT

Table 5.15: Comparison between the average optimization outcome using plain EAs,
MAFEAs with on-line and off-line training after 5 runs

MAEASs using metamodels trained on-line via SMT yield the best optimization
outcome, increase significantly, however, the computational cost of the process. The
high computational cost, also observed in MAEAs trained off-line via SMT, is con-
tributed to the implementation of Python in the optimization process. Python is
built dynamically, i.e. the data types are determined at run time, on an interpreter,
unlike other coding languages that are pre-compiled, e.g. C++ that EASY is based
on. Both these attributes, along with the use of several custom functions, prolong
the wall clock time needed for each process to be executed. Another factor in the
increase of the computational cost is the evaluation of each offspring individually;
if the entirety of the population in a generation was being evaluated, then the cost
would decrease A-fold. Consequently, the implementation of SMT and any other
Python-based package that utilizes metamodels is not recommended for pseudo-
engineering applications with low-order objective functions. MAEAs with on-line
trained RBF's found in EASY are based on C++ and their use does not increase the
computational cost of the optimization significantly. They additionally converge
faster than conventional EAs and MAEAs using SMT metamodels trained either
on-line or off-line, and their use is preferred in simple pseudo-engineering cases.
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Chapter 6

Airfoil Shape Optimization

The efficacy of the selected metamodels has been tested on a pair of pseudo-engineering
optimization problems, where the exact PSM is cheap in terms of computational
cost. The study now focuses on performing a comparison between MAEAs, i.e.
both the methods and the metamodels will be evaluated, and plain EAs when imple-
mented in the shape optimization of a 2D airfoil. The parameters of the optimization
are computed by solving the steady-state Reynolds-Averaged Navier-Stokes (RANS)
equations for compressible flows via the use of the one-equation turbulence model
Spalart-Allmaras [50]. Consequently in this case, the exact PSM model is a CFD
model, which is solved using PUMA software (Parallel solver, for Unstructured grids,
for Multi-blade row computations, including Adjoint) [51] developed by the PCOp-
t/NTUA. The entirety of the CFD evaluations are performed on Nvidia Tesla K40
12 GB GPUs, using a GPU-enabled variant [52] of PUMA programmed in CUDA.

6.1 Mesh and parametrization

The accuracy and the computational cost of CFD evaluations highly depends on
the type and quality of the airfoil mesh. There are three types of grids regarding
their structure; structured, unstructured and hybrid. Due to the formation of un-
structured grids, unstructured solvers are commonly slower then structured ones.
However, the constant increase of computational power, along with the high adapt-
ability to any geometry and the fast construction time, lead to the widespread use of
unstructured grids in CFD applications. In this diploma thesis, a structured C-type
grid is generated for the purpose of the study, as seen in figure 6.1, which is handled
by PUMA as a hybrid grid of tetrahedral cells. C-type grids are preferred due to
their shape that matches the trailing edge curvature, thus effectively capturing the
wake in viscous flows.

The second parameter that affects the accuracy and the computational cost of
CFD evaluations is the quality of the mesh. The higher the resolution of the mesh,
the greater the accuracy of the outcome. The construction of a high-resolution
mesh would, however, severely increase the number of nodes where the RANS need
to be solved. In a steady-state compressible flow, turbulence is developed near the
walls, i.e. in the viscous sublayer, and in the wake of the airfoil, where a finer
mesh is needed in order to account for the small fluctuations in the values of flow
components. Consequently, a mesh of ranging resolution is implemented; coarse in
the far field and fine near the walls and in the wake of the airfoil.
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6.1. MESH AND PARAMETRIZATION
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Figure 6.1: 2D C-type structured mesh
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The optimization process aims at yielding the airfoil shape that minimizes or
maximizes the flow properties, e.g. Cr, Cp, under certain imposed flow conditions
and constraints. The modification of the airfoil shape is performed via univariate
Non Uniform Rational B-Splines (NURBS). The used NURBS are built via the
interpolation of 15 control points in 2D space and produce the curves of the airfoil.
Subsequently, the nodes contained in the front patch of the grid are shifted in order
to adapt to the new airfoil shape using the spring analogy method, according to
which the grid is modelled as net of linear springs with elasticity proportional to
the inverse of mesh edge length. The control points of the volumetric NURBS
are displaced in the y direction during the optimization and the airfoil shape is
modified accordingly. Consequently, the 13 y coordinates of the control points are
set as the design variables of the optimization; the y coordinates of the control
points corresponding to the leading edge and trailing edge points are kept fixed, as
depicted in figure 6.2.
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Figure 6.2: Design of NACA 4318. Parametrization of the baseline airfoil geometry
using volumetric NURBS with control points that have one (red) or none (black)
degree of freedom.
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6.2. RANS FLOW EQUATIONS

6.2 RANS flow equations

indicates Reynolds averaging. If Favre averaging is applied to all flow quantities,
then the continuity, momentum and energy RANS equations can be formulated as
such':

0

Eril a—xj(ﬂuj) =0

0, __ O .. ~tot :

&(puz) + %(puiuj +poi; — 7;5") =0, for i=1,2 (6.1)
j

8 = 8 —~ ~ ~tot ~ ~tot

E(PE) + %(PUJE +a,p — g —uT;") =0
j

where Reynolds averaging is indicated by the overline. The RANS equations can be
also written in conservative form:

315 3;1:j 3;1:j

(6.2)

where in 2D flow j = 1,2 and U = [, pii, pv, pE]" is the conservative flow variable
vector with components the averaged terms in the continuity, momentum and energy
Navier-Stokes equations for compressible flows. The inviscid and viscous fluxes

denoted by ﬁ”” and j?-’is, respectively, and expressed as:

5l 0

o | PO+ D0 | ms G

5= Pzt + Pdyj |’ 5= 750" (6.3)
i, (E; + ) 3 + 07y

where:

. D 1 ou"u”
B= T~ + 2
y—1 2

tot _ o e (3711- N 8%) 1 5W 6.4
3

Y Re \Ox; Ox Re” p

i T T,
J Re \Pr ~ Pr,/) Oz;

where p; the turbulent or eddy viscosity and Pr, Pr; the Prandtl and the turbu-
lent Prandtl number, respectively. The stress tensor depends on the molecular or
dynamic viscosity of the fluid, denoted by u, and the Reynolds number Re given by:

[
Re="%

; (6.5)

'For brevity, the Einstein summation convention for repeated indices is applied in all flow-
related equations
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6.2. RANS FLOW EQUATIONS

where [ the characteristic length of the airfoil, which in this case is normalized
using the chord length ¢, so [ €]0,1]. The term ¢; that appears in energy equation
denotes the j;;, component of the heat flux and T} is the static temperature, which
for an ideal gas is given by:

= p
T, = — (6.6)
PR,
where R, is the specific gas constant, which for air is R, = 287 J/kgK. The gas
specific heat ratio is equal to v = % = 1.4. The constant parameters C,, C, denote

the specific heat under constant prvessure and constant volume, respectively. The
term 7;; that appears in momentum and energy equation, denotes the viscous stress
tensor.

The RANS steady-state equations are discretized using finite volume method
and intergraded in pseudo-time and can be subsequently solved using a 3rd order
Runge-Kutta scheme with residual smoothing, in this case flux Jacobian technique,
developed by the Lab of Thermal Turbomachines (LTT), is used to smooth the
residuals. The smoothing process requires the implementation of a linear algebra
solver and, in this case, Gauss-Seidel method is applied. The process of calculating
the RANS residuals is iterative and converges after the residuals have reached a
user-defined value or a user-defined number of pseudo-time steps has been reached.

The no-penetration condition is applied, i.e. the normal component of the rela-
tive to the wall velocity is set to zero a-i =0 for stationary walls. The no-slip wall
condition is applied in Spalart Allmaras transport equation and 7 is set to zero near
the wall. The solid walls of the airfoil are subsequently modelled as adiabatic and

the normal component of the relative to the wall heat flux is set to zero q:’j-‘” -n = 0.
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6.3. TURBULENCE MODEL

6.3 Turbulence model

In order to improve the boundary layer prediction in the presence of adverse pres-
sure gradients various turbulence models are employed. In this thesis, one-equation
Spalart-Allmaras turbulence model is implemented, which is based on the observa-
tion that on a flat plate in the log-law region of the boundary layer (y* > 30) the
profile of turbulence kinematic viscosity v; with y* is linear, while in the viscous
sublayer (y* < 5) the profile is quartic. If however we assume a new variable 7,
similar to 14, with linear profile w.r.t. %™ in the entirety of the sublayer region,
then we can produce more stable results near the solid wall while simultaneously
reducing the computational cost that arises from constructing a fine mesh near the
solid wall. In order to account for any geometry and possible flow conditions, 7 is
calculated by solving the modelled transport equation for compressible flows [55]:
a(ﬂﬁ) + a—(PDUj) =

L i((~+ )i>+ @ﬁ]
x; owRe L0z, Y V@:rj CbQ@xjaxj

N2
s pon(1 = Jia)Sid = 2 (cunfo = 1) ()

0 0 P

(6.7)

where d, is the distance from the closest solid wall and gh is the modelled vorticity,
which is connected with the vorticity via the following formula:

~ 1% 0s

R e T A 0.8
h h+<de>2f2 f 1+03fv1 ( )
where f,, a function that models damping effects near the solid walls:
03 v
v = = 0s=— 6.9
e il (6.9)

The remaining functions are given by:

I 7
w = | ——2 , w = Ts + Cy TS+T5, re =min| ————, 10
fo=9 Yo+ Cong ! : ) (ReShK2d§ )
fi, = ctge—cﬂo?’ e, = 1.2, ¢, =05, K =041, ¢, =03, cyu =20

o Cp, 1+ Chy
oy = —L
K2 Ow

¢y, = 0.1355, ¢y, = 0.622, 0, = 0.6667, ¢, = 7.1
(6.10)

Solving equation 6.7 yields a 7 value, which is then utilized to calculate the
turbulent kinematic viscosity via the equation:

v = Ufy, (6.11)

With 1, known, the eddy viscosity u; can be calculated and used to update the
RANS equations.
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6.4 Optimization cases

For the purposes of this thesis, the selected metamodels and the respective MAEA
methods are tested on the optimization of a NACA 4318 airfoil. The study will
focus on optimizing the airfoil shape w.r.t. one or two objectives, namely the aero-
dynamic lift and drag force. These parameters are commonly contradicting, so each
is alternatively used as an objective or an imposed constraint to the optimization
problem. The entirety of the CFD evaluations are performed on Nvidia Tesla K40
12 GB GPUs, using a GPU-enabled variant of PUMA running on CUDA language.

6.4.1 MOO optimization at take-off conditions

The first optimization case simulates the conditions governing the take-off stage of
an aircraft flight, which are characterized by low free-stream velocity U =51 m/s,
high angle of attack a=10° and fluid properties at sea level given in table 6.1. The
flow field quantities of the initial baseline geometry at take-off conditions can be
seen in figure 6.3.

‘ Fluid properties at sea level h = 0 m ‘

| | pkg/m®] |p[bar] | T [K] |
| Air [ 1225 | 1.01325 | 288 |

Table 6.1: Air properties at sea level
(a) Mach field (b) Pressure field

Figure 6.3: Flow field quantities of the baseline airfoil geometry

The airfoil is subsequently optimized w.r.t. two objectives, minimization of the
produced drag force and maximization of the produced lift force, while no constraint
is imposed. The optimization problem solved is the following:

maz fi(B) =L (6.12)

min fo(5) = D

where the bounds of the design variables shaping the pressure side of the airfoil are
—0.26 < B1_5 < —0.24, while the design variables shaping the camber line and the
suction side are —0.01 < [5_g < 10.0 and 0.24 < [y_13 < 0.26, respectively.
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6.4. OPTIMIZATION CASES

The optimization is performed via the use EAs and MAEAs, where A\ = 40
offspring are evaluated in each generation and p =20 parents are retained, 3 of which
are combined to create a new offspring at the start of every new generation. In the
optimization of the airfoil using MAEAs with on-line training, the LCPE phase is
initialized after 60 CFD evaluations and uses KPLS and RBFs metamodels that are
trained via SMT and EASY, respectively. Both methods terminate after 400 CFD
evaluations have been performed and are subsequently compared with to MAEAs
using KPLS trained off-line on n4,. =80 initial training patterns. The evolution in
all methods retains 15 prominent solutions that are stored in the temporary elite set
P,., which at the end of the evolution stores the Pareto frontier of non-dominated
solutions. Three Pareto fronts are produced via the use of a RNG seed number that
corresponds to a different offspring population P{ and are presented in figure 6.4;
the set PY contains the baseline airfoil geometry.
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Figure 6.4: NACA 4318 optimization at take-off flow conditions.
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The optimization initialized with seed number RNG1 is allowed to perform more
CFD evaluations and for this reason the corresponding Pareto front contains slightly
better non-dominated individuals. In each case, the Pareto fronts formed via the im-
plementation of each optimization method do not reveal which method is dominant
and therefore a hypervolume indicator is assigned to each front F C R".

In the 2D space, which is the case here, the hypervolume indicator H(F) is
equivalent to the area defined by each ¢ € F and the reference point 7, € R" is
defined as such:

xﬁz{ql € '/—_; - q1 Z f,VS € ~FZ>VZ € [Lnf]}_'_gl

6.13
IQ:{QQEEIC]ng,ngE,ViE[1,nf]}+§2 ( )

In this case, the parameters assume the values (£, &) = (0.25,20) and the outcome
is presented in the table 6.2.

| Hypervolume indicator H(F) |

| |RNG1 | RNG2 |RNG3 |
MAEAS, on-line training via SMT || 274.588 222.513 224.786
MAEAS, on-line training via EASY || 257.987 206.800 211.937
MAEASs, off-line training via SMT || 252.866 213.701 216.461
EAs 257.512 200.114 204.289

Table 6.2: NACA 4318 optimization at take-off flow conditions. Hypervolume indi-
cator of Pareto fronts formed via the implementation of various optimization meth-
ods

The Pareto front generated by the implementation of MAEAs with metamodels
trained on-line via SMT assumes the highest hypervolume indicator value for every
RNG. On the contrary, the lowest hypervolume indicator is observed when the
optimization is performed via the use plain EAs. MAEAs with off-line training
perform better than MAEAs with metamodels trained on-line via the use of EASY
for RNG2, RNG3. For those RNG seed numbers, each optimization cycle converges
after 1000 evaluations have been performed on the trained metamodel, while for
RNGT1 only 520 metamodel evaluations are performed. This increase in metamodel
evaluations has a cost-efficient impact in the efficacy of the method and is retained
in the following optimization cases.
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At take-off conditions the main objective is generating an airfoil design that
produces the maximum lift force; such designs are compared in figure 6.5.

(a) MAEAs, on-line training via SMT, (b) MAEAs, on-line training via FASY,
L=1217.45 N and D=16.14 N L=1207.19 N and D=15.87 N

(¢) MAEAs, off-line training,
L=1216.79 N and D=16.12 N (d) EAs, L=1201.47 N and D=16.07 N

Figure 6.5: NACA 4318 optimization at take-off conditions with RNG3. Compari-
son between airfoil desings that yield the highest lift force in the Pareto front (red)
compared to the baseline design (black).

The use of MAEAs with metamodels trained on-line via SMT result in both the
optimal Pareto front and the best optimal solution. In the relative ranking of each
method, MAEAs using metamodels trained off-line via SMT finish second when
considering their reduced computational cost.
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6.4.2 SOO optimization at take-off conditions

The second optimization case focuses on the maximization of the produced lift force
when the airfoil operates at take-off conditions. In this case, however, the maxi-
mization of the lift force is the only objective of the optimization and the design
space solutions is bounded by a user-imposed demand of a less than 8% increase in
drag force produced compared to the initial baseline geometry, where Djq =15.53
N. The constrained SOO can be expressed as such:

-,

max f(p) =L

-

subject to ¢1(8) = D — 1.08Dpy < 0

(6.14)

with bounds of the design variables identical to the ones used in the MOO case.

The optimization is performed via the use EAs and MAEAs, where A\ = 40
offspring are evaluated in each generation and p = 20 parents are retained, 3 of
which are combined to create a new offspring at the start of every new generation.
In the optimization of the airfoil using MAEAs with on-line training, the LCPE
phase is initialized after 40 CFD evaluations. Both optimization methods terminate
after 400 CFD evaluations have been performed. Based on the outcome of the
MOO optimization case, the initial offspring population P} is produced via the use
of a RNG2 and RNG3 seed; the set P contains the baseline airfoil geometry. The
convergence history of RNG3 optimization using plain EAs and MAEAs with on-line
training is presented in figure 6.6.
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Figure 6.6: Mazimizing NACA 4318 lift force at take-off conditions using RNGS.
Comparison between the convergence histories of plain EAs and MAFEAs with meta-
models trained on-line via SMT and EASY

Both MAEA methods outperform conventional EAs in the number of CFD eval-
uations performed. The optimization facilitated by MAEAs with surrogate models
trained on-line via SMT, however, has seemingly the best convergence speed, since
it converges to the optimal solution after performing circa 150 CFD evaluations.
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Both methods are subsequently compared with to MAEAs using KPLS trained
off-line on n4,. =80 initial training patterns, in order to determine which method is
more efficient. The optimization processin MAEAs with off-line training converges
after 1000 evaluations per cycle have been perfomed on the surrogate model, in this
case KPLS. At the end of each cycle Ny goe = 5 random training patterns are
sampled.

(a) MAEAs, on-line training via SMT, (b) MAEAs, on-line training via EASY,
L=1222.52 N and D=16.54 N L=1222.06 N and D=16.44 N

T

(c) MAEAs, off-line training via SMT,
L=1221.02 N and D=16.29 N (d) EAs, L=1211.35 N and D=16.25 N

e

Figure 6.7: NACA 4318 optimization at take-off conditions with RNG3. Comparison
between optimal airfoil desings.

All optimized designs in figure 6.7 result in a positive displacement of the camber
line. In the suction side, the increase in curvature near the leading edge of the
airfoil results in an increase of the favourable pressure gradient dp/dx < 0. The
adverse pressure gradient dp/dx > 0 in the suction side, which is responsible for the
turbulence generation, remains relatively unchanged to prevent the flow separation
in the boundary layer. In the pressure side, an increase in the pressure gradient is
desired and is achieved via an increase in the airfoil curvature. The pressure field
of the optimized airfoil is presented next, where the optimized airfoil shows a 6.1%
increase in lift force L and a 4.5% increase in drag force D, as shown in figure 6.8.

(b) Optimized via MAEAs with metamodels
(a) Baseline trained off-line

Figure 6.8: Comparison between baseline and optimized airfoil
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In the current airfoil shape optimization cases, the PSM is the CFD solver.
A single CFD evaluation, which is combined with some subprocess related to the
adaptation of the mesh around the new airfoil design, is far more costly than any
PSM evaluation performed in previous pseudo-engineering optimization cases and
metamodel predictions. For this reason, npgy; alone significantly increases the com-
putational cost. For the sake of completeness, however, the total functions calls,
i.e. mpsy and Moerq, and the average outcome produced via the implementation of
each method are presented in table 6.3, in order to ensure that the best possible
optimization method is selected.

‘ NACA 4318 optimization at take-off conditions ‘

‘ H Averagef npsMm Nmeta ‘
MAEAsSs, on-line training via SMT | 1222.33 400 2988
MAEAsSs, on-line training via EASY | 1221.90 400 4000
MAEAsSs, off-line training via SMT | 1221.27 81 1000
EAs 1211.54 400 -

Table 6.3: Comparison between all implemented optimization methods

The total wall clock time of the optimization is significantly decreased when
MAEAs with off-line training are implemented and their corresponding outcome is
similar to the one obtained via the implementation of MAEAs with on-line training.
Consequently, the lift force L of the NACA 4318 at take-off conditions is maximized
when MAEAs with off-line training are implemented, followed closely by MAEAs
with surrogate models trained on-line via SMT that yield an optimal solution after
circa 150 CFD evaluations have been performed.
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6.4.3 SOO optimization at cruise conditions

The last optimization case simulates the conditions governing the cruise stage of an
aircraft flight, which are characterized by high free-stream velocity U =206.64 m/s,
low angle of attack a=2° and fluid properties at sea level given in table 6.4.

‘ Fluid properties at h = 11000 m ‘

| | plkg/m?®] |p[bar] |T[K] |
| Air ][ 0.364805 | 0.227 | 216.8 |

Table 6.4: Air properties at cruise height

In this case, the minimization of the produced drag force is the only objective of
the optimization and the design space is bounded by a user-imposed demand of a
less than 8% decrease in lift force compared to the initial baseline geometry, where
Ly =1123.81 N. The constrained SOO can be expressed as such:

min f(3) =D
. (6.15)
subject to ¢1(8) = L —0.92L5 > 0

with bounds of the design variables identical to the ones used in the MOO case.

The optimization is performed via the use EAs and MAEAs, where A\ = 40
offspring are evaluated in each generation and p = 20 parents are retained, 3 of
which are combined to create a new offspring at the start of every new generation.
In the MAEA-based optimization of the airfoil using on-line training, the LCPE
phase is initialized after 40 CFD evaluations. Both optimization methods terminate
after 400 CFD evaluations have been performed. The initial population set P is
produced via the use of a RNG2 and RNG3 seed; the set P contains the baseline
airfoil geometry. The convergence history of RNG3 optimization using plain EAs
and MAEAs with on-line training is presented in figure 6.9.
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Figure 6.9: Minimizing NACA 4318 drag force at cruise conditions with RNGS3.
Comparison between the convergence histories of plain EAs and MAFEAs with meta-
models trained on-line via SMT and EASY
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Both MAEA methods outperform conventional EAs in the number of CFD eval-
uations performed. The optimization facilitated by MAEAs with surrogate models
trained on-line via SMT, however, has seemingly the best convergence speed, since
it converges to the optimal solution after performing circa 150 CFD evaluations.

Both methods subsequently compared with to MAEAs using KPLS trained off-
line on ngee = 80 initial training patterns, in order to determine which method is
more efficient. The optimization process in MAEAs with off-line training converges
after 1000 evaluations have been perfomed per cycle on the surrogate model, in this
case KPLS. At the end of each cycle n,c0 40 = D random training patterns are
sampled.

(a) MAEAs, on-line training via SMT, (b) MAEAs, on-line training via EASY,
D=148.87 N and D=1373.12 N D=149.24 N and D=1383.62 N

(¢) MAEAs, off-line training via SMT,
D=150.06 N and L=1367.56 N (d) EAs, D=155.25 N and L=1429.83N

Figure 6.10: NACA 4318 take-off conditions with RNG3. Comparison between air-
foil desings that resulted after the implementation of each optimization methods.

The streamline flow of Mach=0.7 is accelerated in the suction side and becomes
supersonic, reaching its peak Mach = 1.3 for the baseline airfoil as seen in figure
6.11. As a result, a shock wave is formed that interacts with the boundary layer
and leads to flow separation. The aim of the optimization is to delay the formation
of the shock wave and by extension the flow separation. As depicted in figure 6.10,
this can be achieved by decreasing the curvature near the leading edge of the airfoil,
and therefore the favourable pressure gradient dp/dx < 0. On the other hand, the
adverse pressure gradient dp/dx > 0 is increased by an increase of curvature. The
pressure side of the optimized airfoil forms a slightly concave surface that is formed
due to the negative displacement of the camber line and results in high pressure
region. Flow separation is mostly responsible for the induced drag force and thus
the optimized airfoil designs reduce the flow separation region while simultaneously
increasing the pressure coefficient around the airfoil and by extension the produced
lift force L. In the baseline geometry, the flow separation initiates at x/c = 0.33,
while in the optimized designs the flow separation initiates at x/c = 0.43 of the
normalized characteristic length. As a result the optimized designs show a 26.3%
decrease in drag force D, combined with a 21.8% increase in lift force L.
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(b) Optimized Mach field via MAEAs with
(a) Baseline Mach field metamodels trained off-line
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Figure 6.11: Comparison between baseline and optimized airfoil

In the current airfoil shape optimization cases, the PSM is the CFD solver.
A single CFD evaluation, which is combined with some subprocess related to the
adaptation of the mesh around the new airfoil design, is far more costly than any
PSM evaluation performed in previous pseudo-engineering optimization cases and
metamodel predictions. For this reason, npgy; alone significantly increases the com-
putational cost. For the sake of completeness, however, the total functions calls,
i.e. mpsy and My,eq, and the average outcome produced via the implementation of
each method are presented in table 6.5, in order to ensure that the best possible
optimization method is selected.

‘ NACA 4318 optimization at cruise conditions ‘

H Average? NpsM | Nmeta ‘
MAEAsSs, on-line training via SMT | 148.86 400 2988
MAEASs, on-line training via EASY | 149.57 400 4000
MAEAsSs, off-line training via SMT | 149.60 87 2000
EAs 154.63 400 -

Table 6.5: Comparison between all implemented optimization methods

The total wall clock time of the optimization is significantly decreased when
MAEAs with off-line training are implemented and their corresponding outcome is
similar to the one obtained via the implementation of MAEAs with on-line training.
Consequently, the induced drag force D of the NACA 4318 at cruise conditions is
minimized when MAEAs with off-line training are implemented, followed closely
by MAEAs with surrogate models trained on-line via SMT that yield an optimal
solution after circa 150 CFD evaluations have been performed.
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Chapter 7

Conclusions and Future Work

7.1 Overview

In this diploma thesis, the implementation of Metamodel-Assisted EAs (MAEAs) in
the optimization process of various common engineering cases is tested. MAEAs are
introduced due to the increased computational cost observed in CFD applications
optimized via the use of conventional EAs. In the entirety of methods utilized, the
optimization process is accommodated by EASY. Two main MAEA-based optimiza-
tion methods are used in this thesis and are based on the approach followed in the
training of the metamodels, i.e. on-line and off-line training.

In the former, a global surrogate model is built prior to the evolution on n,
training patterns X that are collected via the implementation of a DoE scheme. The
most commonly used DoE techniques and the ones used in this thesis are accom-
modated by a Python package, called PyDOE, and result in the construction of a
random, a LH or a factorial design. According to the construction method imple-
mented, LHDs can be further categorized in centered, maximin, maximin centered,
maxent or ESE LHDs. A comparison between the attributes of LH and factorial
designs led to the conclusion that LHS with ESE construction criterion will be the
main sampling method in this thesis. In MAEAs with off-line training, responsible
for the training of the metamodels and the DoE construction is a Python- based,
open-source software, called SMT. In SMT software, a variety of surrogate models
can be found; in this thesis, namely Kriging, its applications in reduced design space
using PLS, i.e. KPLS and KPLSK, and RBFs are utilized. The structure of MAEA-
based optimization with off-line training and the Python codes written needed to
implement it, are subsequently presented.

In optimization using MAEAs with on-line training, an LCPE phase is introduced
where metamodels are utilized. The structure of MAEA-based optimization with
on-line training and the Python codes written needed to implement it using SMT,
are subsequently presented. In this method, EASY built-in RBFs can be utilized in
order to perform the optimization and this built-in metamodel is therefore compared
to the surrogate models provided by SMT.

Both these methods are compared to plain EAs in terms of efficacy and com-
putational cost. Each optimization method is initially implemented in two simple
pseudo-engineering optimization problems, i.e. welded beam and speed reducer
case. The first optimization case requires the minimization of the fabrication cost
of a welded beam design w.r.t. 4 design variables E and the design space is bound
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-

by 5 imposed constraints ¢(5). The second optimization problem dictates the mini-
mization of the weight of a speed reducer w.r.t. 7 design variables 5 and the design
space is bound by 11 imposed constraints c(g)

Once the optimization methods have been tested on these simple pseudo-engineering
cases, they are implemented in the shape optimization of a 2D NACA 4318 airfoil.
The RANS equations of compressible flows are solved using PUMA CFD solver.
The flow field is simulated at take-off and cruise conditions, where the former are
used in the MOO optimization and constrained maximization of the lift force L of
the airfoil and the latter in the constrained minimization of the drag force D.

7.2 Conclusions

By completing the studies in this diploma thesis, the following conclusions are drawn:

e In pseudo-engineering applications of low computational cost the implementa-
tion of MAEAs using metamodels trained off-line or on-line via SMT severely
prolongs the wall clock time of the optimization. This is contributed to na-
ture of SMT, which is Python-based, and the communication between EASY
and SMT. Consequently, in low fidelity models the use of MAEAs with surro-
gate models trained via SMT are not recommended. However, MAEA-based
optimization using EASY built-in RBFs that are trained on-line is a more
cost-effective solution and are generally preferred.

e In the shape optimization of the naca 4318, MAEAs using off-line and on-
line training outperform conventional EAs and MAEAs using on-line trained,
EASY built-in RBFs. In S00 cases in particular, the use of MAEAs with KPLS
trained-on line via SMT results in the convergence of the optimization after
circa 150 CFD evaluations have been performed. Consequently, MAEA with
off-line and on-line training yield a 80% and 60% decrease in the computational
cost of CFD applications, respectively. For this reason, MAEAs with surrogate
models trained via SMT are generally preferred in such applications.

e Almost in all tested applications KPLS is seemingly the model with the better
fitting and the best overall performance, followed by the KPLSK model. EASY
built-in RBFs are placed third in the overall metamodel ranking, followed by
Kriging and RBFs found in SMT.

e Overall MAEAs using on-line trained surrogate models perform better than
off-line trained ones, since the latter are heavily dependent on the fitting and
the accuracy of the metamodel.

e The uncertainty of the results leads to the conclusion that the use of each op-
timization method and surrogate models heavily depends on the optimization
problem. Consequently, a conclusion that applies to every application cannot
be extracted, since the user must be the judge of the situation.
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7.3 Future Work

Based on the results of this investigation the following can be proposed for future
work:

e The efficacy of MAEAs degrades in high-dimensional optimization problems
and commonly a plethora of methods are used to facilitate EAs implemen-
tation. Most common are distributed search models, e.g. Distributed EAs
(DEASs)[56, 57], that distribute the individuals of any population in multi-
ple semi-isolated subpopulations which are called demes. In computationally
expensive problems, DEAs are assisted by metamodels (DMAEAs)[58]. It is
common to combine DEAs with Hierarchical EAs (HEAs)[57, 59|, thus cre-
ating HDEAs[60]. If then metamodels are used, HDMAEAs[61] are formed.
HEAs have an hierarchical topology structure that resembles a binary tree
that expands in two or more rarely three layers. Alternatively, Memetic Algo-
rithms (MAs)[62], which are regarded as hybrid EAs and are similar to HEAs,
combine conventional EAs with methods of refining individuals usually in the
form of local search heuristics. When combined with metamodels, Metamodel
Assisted MAs (MAMAS)[63, 64] are formed. Finally, the synchronization gap
during each evolution of HEAs or DEAs led to the creation of Asynchronous
EAs (AEAs)[65, 66] and AMAEAs[67]. Some of these methods are available
in EASY, e.g. HEAs and DEAs, and can be utilized in future work.

e The prolonged wall clock time that resulted from the implementation of MAEA-
based optimization with metamodels trained via SMT is attributed to the use
of Python. However, the code responsible for the communication between
EASY and SMT could be optimized via the use of Python in-house modules
and packages. Alternatively, any Python function can be rewritten in C++ in
order to drastically reduce the computational cost of the optimization.

81



Appendix A

Tests in Metamodel Fitting

The fitting of SMT metamodels is tested on a pair of low-fidelity models that are
used as conceptual level estimate of the wing weight of an aircraft. The testing
phase initiates by creating a DoE design w.r.t. a semi-arbitrarily imposed lower and
upper bound for each design variable. This DoE design consists of n; training data,
which are subsequently evaluated on the problem-specific low-fidelity model, i.e. the
exact evaluation model. The resulting n; (ﬁ f (E) pairs are used for the training of a
selected surrogate model. After the training process has been completed, a new set of
sample points is selected from the design space via the use of DoE techniques. These
are called validation points, are equal in number to training points, i.e. 1; =n,, =40
and are used to validate the accuracy of the trained metamodel. Validation points
are evaluated using both the exact evaluation model and the trained metamodel
resulting in F and F values, respectively. The deviation between these values for
the n; training data is calculated by the use of NRMSE, which serves as a metric for
metamodel accuracy. The computations have been performed on a i7-9750H, 2.60

GHz CPU.

A.1 3 design variable aircraft wing equation

The quality of each metamodel is tested in a simplistic 3 design variable wing weight
equation that is used for the conceptual design of light, low performance aircrafts.
This equation applies to cantilever wings and includes the weight of wing tip and
flight control surfaces, i.e. ailerons, while it excludes fuel tank weight, the effect
of sweep angle and spar flight loads from wing and fuselage. The wing weight is
determined from the following equation[68]:

Wawing = 0.0467W 2307 50-397 y0-360 4 p1.712 (A1)

where Wro is the aircraft take-off weight, N, the ultimate load factor, S the wing
area and AR the wing aspect ratio. The search of a low-performance, light utility
aircraft with maximum speed Vyjgne < 200 kn resulted in the selection of Evektor
VUT100-131i Cobra[69]. The aforementioned aircraft is used as a template and
its design values are set as a baseline for the range of each design variable in the
previous equation.
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A.1. 3 DESIGN VARIABLE AIRCRAFT WING EQUATION

| VUT100-131i Cobra |

| MTOW [Ib] | S [f#?] | N, | AR |
| 3,197 | 141.1 | 3.8 | 8.4 |

Table A.1: Design values for VUT100-1311 Cobra

By making the assumption that take-off weight is a constant parameter arbi-
trarily set equal to Wro = 2,500 [b, then the previous equation can be restated as
such:

Woping = 1.04350397 N0-360 4 p1.712 (A.2)

The design space under study now consists of three independent design variables
S, N,, AR that define the design variable vector § = [S, N,, AR]. The range of each
design variable is set arbitrarily as such:

e 120 < S <170

e 2< N, <6

e 6<AR< 11

The deviation between the predicted and the exact model value for n,,; validation
points is subsequently depicted in the following figures:
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A.2. 8 DESIGN VARIABLE AIRCRAFT WING EQUATION

A.2 8 design variable aircraft wing equation

With the testing of the first objective function now complete, the ability of SMT
metamodels to handle high-dimensional problems is still in question. For this rea-
son, the software’s capabilities will now be tested in an objective function consisting
of 8 design variables. An increase in the number of design variables is expected
to increase the complexity of the problem and therefore the computational cost.
Consequently, an increase in design variables is a good metric of the software re-
sponsiveness to problems of higher dimensionality.

The second weight equation is used for the conceptual design of cargo/transport
aircrafts. This equation accounts for the effect of sweep angle and excludes fuel tank
weight and spar flight loads from wing and fuselage. The wing weight is determined
from the following equation [68]:

—0.4
Woping = 0.0051(Wy, N, )1-557,50-649 4 g0-0035 (f> (14+ M) (cosA)1S2 (AL3)

c root

where Wy, is the flight design gross weight, N, the ultimate load factor, S is the
wing area, AR the aspect ratio, A, the taper ratio, A the quarter-chord sweep, (t/c)
the airfoil thickness to cord ratio at the root of the wing and S, flight control surface
area. A search for a cargo aircraft resulted in the selection of Airbus A400M Atlas.
Its design values are presented in the following table:

A400M Atlas

Wag 264555 [1b]

N, - -

S 2384 [££2]
AR 8.1 -
(t/c)root - -

Ar - -

A 15 [degrees|
Se 867 [ft?]

Table A.2: Airbus A400M Atlas design values

where the constrictions for each variable involved are:

220000 < Wy, < 280000
e 25< N, <10

2000 < S < 3000

6< AR <10

0.08 < t, < 0.18
05<A<1

e —20< A <20

400 < S, < 2000
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A.3. OPTIMAL CONSTRUCTION METHOD

A.3 Optimal construction method

The main parameter affecting the quality of an LHD is the construction criterion,
denoted as criterion in Python. The fitting of the trained metamodel is used as a
metric for the quality of the profuced design. The parametric analysis is applied
on eq. A.3 that consists of 8 objective variables. The surrogate model utilized here
is KPLS with regression model (denoted as poly) and correlation function (denoted
as corr) set to their default values, i.e ’constant’ and ’'squar_exp’ respectively. The
design space is reduced to n_comp = 3 dimensions. The constructed designs consist
of ng.e =25 sample points.

| NRMSE

Criterion || average maximum | minimum | Standard

deviation
C 0.03724422 | 0.06002596 | 0.01691305 | 0.00860906
m 0.03731406 | 0.06309695 | 0.02201805 | 0.00823468
cm 0.03661358 | 0.08129392 | 0.00645364 | 0.01377246
corr 0.03634474 | 0.05715466 | 0.02144811 | 0.00869950
ese 0.03177641 | 0.04580328 | 0.01379077 | 0.00736666

Table A.3: Average NRMSE of each construction criterion that resulted from the
use of KPLS model for ni.s = 50 times

L§H (fi - fi)g
Nyal i—1 fz
where n,,; is the number of validation points, in this case n,, = 25, while the average
NRMSE in each case was calculated from the values that were collected from neq: =
evaluations. The entirety of the analysis is executed using an objective function
f ng — R". Consequently, 1 (ﬁ) =f (5) is the scalar value of the objective function
with inputs the validation points, while. f (5) is the predicted objective function
value using the trained surrogate model with inputs, yet again, the validation points.
NRMSE is used as a metric for model validation and therefore measures the accuracy
of the metamodel. In contrast to regular RMSE, this metric does not depend on the
order of magnitude of the observed values and the size of the sample, so it can be
used in the comparison of various metamodels when approximating different PSMs
and trained on different datasets. However, it is not the only option; the other two
types of regression error most often used are:

NRMSE = (A.4)

1. R*/Adjusted R? often called the coefficient of determination, measures how
much of variability in dependent variable can be explained by the model[70]:

Nya ~\2
2o it Wi =)
S (g =)

where y = F(f) and 7 is the mean of the observed objective function values:

(A.5)

1 Nyal

y (A.6)

y:

Nyal i—1



A.3. OPTIMAL CONSTRUCTION METHOD

R? value ranges in the span of [0o,1]. R? is negative when the model does not
follow the trend of the data, equal to zero when the calculated model value is
constant, disregarding the inputs and closer to 1 when the fit between predic-
tion and actual model value is more accurate. R? indicates a goodness of fit
and expresses the proportion of variance o2 of F; that has been described by
the independent design variables. However, it does not take into consideration
overfitting of the problem. Consequently, a regression model that has many
independent variables, due to its complexity, may fit well to the sample points
but perform poorly for validation points. That is why Adjusted R? is intro-
duced because it will penalise additional independent variables added to the
model and adjust the metric to prevent overfitting issue. However, variance is
dataset dependent and therefore the comparison between R? metrics obtained
from different datasets is fruitful.

2. Mean Absolute Error (MAE) takes the sum of absolute value of error[70]:

N

S Ufi—fi

Nyal i—1

MAFE =

(A7)

NRMSE is considered to be the optimal metric of displaying and comparing a
model’s goodness of fit. This metric is chosen by a process of elimination, since
adjusted R? is not ideal for comparing different models, nor is it directly available
in Python, and MAE does not indicate underperformance or overperformance of the
model. A NRMSE closer to zero is considered to depict a well-constructed design,
while the opposite is indicative of a poor design, which ignores important points in
the process and/or includes outliers. The quality of the design is the most decisive
factor in the selection of the most suitable LHD construction criterion, since the
time needed to construct a design is negligible in MAEAs with off-line training.
Consequently, criterion ’ese’ is selected in LHS method, which results in ESE LHDs
with the lowest NRMSE value among all LHDs. The time needed to construct each
LHD is subsequently presented in the following table:

‘ Average DoE implementation time ‘

‘ H C ‘ m ‘ cm ‘ corr ‘ ese
| time [s] || 0.0003 | 0.0007 | 0.0007 | 0.0016 | 1.4079 |

Table A.4: Average LHD construction time, the process is repeated ny.s; = 50 times
evaluations
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A.4. METAMODEL COMPARISON

A.4 Metamodel comparison

Now that the tests are complete, a vague impression for some of the surrogate
models has already been formed. However, the accuracy of each model must be
tested more thoroughly. In addition, accuracy is not by itself a decisive factor in
the selection of the optimal surrogate model. Unlike the DoE construction phase,
the training process is far more costly, especially in MAEA-based optimization with
on-line trained surrogaet models, and therefore the required time must be taken into
consideration. In order for the selection to be more discernible and indisputable,
the analysis is performed on both eq. A.2 and eq. A.3, all the surrogate models
are trained and validated on ESE LHDs of ng,. =n,u = 25 sample points; the same
number of training patterns is used in MAEAs with on-line training.

‘ Average NRMSE ‘

‘ H 3 design variables ‘ 8 design variables ‘
Kriging 0.00041113 0.03102203
KPLS 0.00088127 0.03177641
KPLSK 0.00042970 0.02945811
RBF 0.00509959 0.04157616

Table A.5: Average NRMSE, the validation process is repeated nyes; =50 times

| Average training time [s] |

‘ H 3 design variables ‘ 8 design variables ‘
Kriging 0.0812 0.2156
KPLS 0.0536 0.0797
KPLSK 0.1368 0.2995
RBF 0.0007 0.0003

Table A.6: Average training time, the validation process is repeated ny.s =50 times

Due to the fact that every surrogate model has been trained using the same
sampling method, leads to the conclusion that the generally lower NRMSE observed
in RBF is a direct correlation to the poorer model fitting. Additionally, KPLSK
displays increased training time,which is contributed to the optimization of the
parameters 6 calculation, combined with a goodness of fit similar to that of KPLS.
Kriging has the best fitting in all applications but has the longest training time.
KPLS is the most cost-efficient Kriging-based model and displays slightly inferior
fitting in comparison.
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NRMSE

NRMSE

Efficiency analysis on objective function consisting of 3 design variables

0.006

0.005 ®

0.004

0.003

0.002

0.001

o 0.02 0.04 0.06 0.08 01 0.12 0.14

time [s]

W Kriging
B KPLS

KPLSK
B RBF

Figure A.1: Efficiency analysis on eq. A.2
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Figure A.2: Efficiency analysis on eq. A.3
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Appendix B

SMT

B.1 DoE techniques in SMT

The implementation of the sampling process is facilitated by a Python-based, open-
source software, called SMT. The DoE sampling techniques available in SMT are
implemented in the 3D design space defined by the bounds of the 3 design variables
in equation A.2, i.e. B = [, B2, 5] =[S, N., AR], where 120 < S < 170,2 < N, < 6
and 6 < AR < 11. The constructed designs consist of ng4,, = 40 samples; the
corresponding Python scripts are presented subsequently.

Random sampling
The creation of a randomly generated design can be accomplished in SMT by
executing a Python script with the following form:

import numpy as np
from smt.sampling_methods import Random

ndoe = 40 #number of sample points

5 betalimits = np.array([[120.0,170.0], [2.0,6.0], [6.0,11.0]11)

~

N

; sampling = Random(xlimits = betalimits)

beta = sampling(ndoe)

Listing B.1: Implementation of Random sampling

Latin Hypercube Sampling (LHS)

LHS is a stratified sampling approach with the restriction that each of the
input variables has its range well sampled following a probability distribution.
In SMT, the creation of a LHD is performed by executing a Python script as
such:

import numpy as np
from smt.sampling methods import LHS

ndoe = 40 #number of sample points

5 betalimits = np.array([[120.0,170.0], [2.0,6.0], [6.0,11.0]11)

~

; sampling = LHS(xlimits = betalimits, criterion = ’ese’)

beta = sampling(ndoe)
Listing B.2: Implementation of LHS

The Python function LHS assumes various input values depending on the
scheme used to construct the LHD. The process of constructing such a design
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%)

w

]

is facilitated by PyDOE[71], where the construction criterion is denoted by ’¢’,

'm’, “em’, "corr’ and “ese’ to refer to Centered, Maximin, Maximin Centered,
Maxent and ESE LHD, respectively, as depicted in the following script:
import numpy as np

from smt.sampling_methods import LHS

ndoe = 40 #number of sample points
betalimits = np.array([[120.0,170.0], [2.0,6.0], [6.0,11.0]]1)

; crit = [’c’, ’m’, ’cm’, ’corr’, ’ese’]

i = int(input(’Define criterion between O and 4:’))
sampling = LHS(xlimits = betalimits, criterion = crit[i])
beta = sampling(ndoe)

Listing B.3: Various construction criteria

In SMT, the LHDs can be further optimized by expanding the initial design
by a multiple of the initial number of sample points. The expanded design
is implemented by setting the parameter method equal to either "basic’ or
"ese’. The former applies to centered, maximin, centered maximin and entropy
LHDs, while the latter to ESE LHDs. The process of creating expanded LHDs
is performed via the use of a Python script of the following format:

import numpy as np
from smt.sampling_methods import LHS

#Initial LHD

5 ndoe = 40 #number of sample points

1(

11

; betalimits=np.array([[120.0,170.0], [2.0,6.0], [6.0,11.01])

sampling = LHS(x1limits = betalimits, criterion = ’ese’, random_state = 1)
beta = sampling(ndoe)

#Expanded LHD

n_newdoe=ndoe #Points to be added

beta_new = sampling.expand_lhs(beta, n_newdoe, method = ’basic’)

Listing B.4: Expanded LHD

where random_state is a keyword argument that is used to control the Mersenne
Twister pseudo-random number generator If the input value can be an integer
between 0 and 232 — 1, an array of integer values, or type None that is the
default setting. Aslong as the argument assumes the same input value, it pro-
duces the same outcome and therefore this method is used for reproducibility.

Full Factorial

Although this sampling method is referred to as Full Factorial in SMT doc-
umentation, it creates either Full or Fractional Factorial Designs and can be
used by executing a Python script that resembles the following form:

import numpy as np
from smt.sampling_methods import FullFactorial

ndoe = 40 #number of sample points

5 betalimits = np.array([[120.0,170.0], [2.0,6.0], [6.0,11.0]11)

; sampling = FullFactorial(xlimits = betalimits)

beta = sampling(ndoe)

Listing B.5: Implementation of Full Factorial sampling
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B.2 Metamodel Training

1

6
8
9
10
11

12

13

14

Kriging

The four correlation functions in SMT are declared in the corresponding
Python function as an additive parameter corr, which is set to ’abs_exp’ (ex-
ponential), ’squar_exp’ (Gaussian), ‘matern52’ and 'matern32’, respectively.
Additionally, it is possible to alternate between regression models by defining
an extra input parameter in Python; that parameter is poly and can be set to
‘constant’, ‘linear’ or ’quadratic’, which corresponds to a constant, linear or
quadratic model as the notation implies. The correlation parameters 6 € R"s
are computed via the maximum likelihood estimation of equation 4.23, which
is minimized via the use of COBYLA algorithm [36], provided by the open-
source Python library sciPy[72]. A typical Python script that performs the
training of Kriging model has the following form:

import numpy as np

2 from smt.surrogate_models import KPLS, KRG, KPLSK, RBF

5 ndim = 3 #number of problem dimensions

listO0 = [’constant’, ’linear’, ’quadratic’]

7 1listl = [’abs_exp’, ’squar_exp’, ’maternb2’, ’matern32’]

polynomial = int(input(’Define regression model between O and 3:’))

correlation = int(input(’Define correlation function between 0 and 4:’))

th_range = np.array(([1e-8, 1e+3]))

t = KRG(thetaO = [le-2]#*ndim, theta_bounds = th_range, poly = listO[
polynomial], corr = listl[correlation], eval_noise = False)

t.set_training values(beta,F)

t.train()

Listing B.6: Training of Kriging model with noise-free observations via SMT

In order for the Python to account for the existing noise the parameter eval_noise
must be set to "True’. In addition, the lower bound for nugget must be defined
by using the parameter nugget and the value of the initial noise parameters
must be defined via the parameter noise. The default values of nugget and
noisel are 2.220446049250313 - 1071 and 0 for each design variable, respec-
tively.

import numpy as np

from smt.surrogate_models import KRG

5 ndim = 3 #number of problem dimensions

9

; th_range = np.array(([1e-8, 1e+3]))

t = KRG(thetaO = [le-2]#ndim, theta_bounds = th_range, poly = ’constant’,

corr = ’squar_exp’, eval_noise = True, noise0 = [le-2])
t.set_training values(beta,F)
t.train()

Listing B.7: Training of Kriging model with noisy observations via SMT
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e KPLS
The number of principal components in SMT is declared in the corresponding
Python function via the additive parameter n_comp. All the other parameters
are defined similarly to Kriging model.

import numpy as np
> from smt.surrogate_models import KPLS

s n_com = 2 #number of principal components
¢ th_range = np.array(([le-8, 1le+3]))
7t = KPLS(n_comp = n_com, theta0 = [le-2]*n_com, theta_bounds = th_range,

poly = ’constant’, corr = ’squar_exp’)
s t.set_training_values(beta,F)
9 t.train()

Listing B.8: Training of KPLS model with noisy observations via SMT

e KPLSK
All the necessary parameters in KPLSK model are declared in Python script
similarly to KPLS and Kriging.

| import numpy as np
from smt.surrogate_models import KPLSK

s n_com = 2 #number of principal components
¢ th_range = np.array(([1le-8, 1le+3]))
7t = KPLSK(n_comp = n_com, thetaO = [le-2]*n_com, theta_bounds = th_range,

poly = ’constant’, corr = ’squar_exp’)
s t.set_training_values(beta,F)
9 t.train()

Listing B.9: Training of KPLSK model with noisy observations via SMT

e RBF

In SMT, the degree and the existence of polynomials can be determined by
modifying the value of the Python parameter poly_degree. Consequently, a
value of -1, 0 or 1 is used to denote the absence of a polynomial trend, a con-
stant trend and a linear trend respectively. If no polynomial trend is used, i.e.
poly_degree=—1, multivariate RBF interpolation is performed by solving the
linear system described by equations 4.36 and 4.37. If however poly_degree=1,
then RBF interpolation is performed by solving the linear system described
by eq. 4.42.

| import numpy as np
> from smt.surrogate_models import RBF

5t = RBF(dO = 100, poly_degree = 1)
6 t.set_training values(beta,F)
7 t.train()

Listing B.10: Training of KPLSK model with noisy observations via SMT
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Appendix C

EASY

In order to gain a better grasp of how the communication channel between SMT and
EASY|27] software is established, first, it is important to analyze the way EASY
optimization software works.

EASY and EAs

In EASY menu, the parameters of the optimization and both the bounds and
the codification of the design variables can be modified. The evolutionary process
via the use of EASY is performed as follows:

1.

To perform an evaluation EASY writes and saves an ASCII text file task.dat
that consists of ng + 1 lines. The first line corresponds to the selected number
of design variables ng, while the remaining lines contain the values of each
design variable and are listed according to the sequence declared by the user
in EASY.

. EASY executes the batch file task.bat and then halts all other processes until

task.bat is finished. In EASY, this batch file is responsible for executing all
processes responsible for the evaluation of candidate solutions (EAs-2). A
typical task.bat has the following structure:

Q@echo off
erase results.dat

3 preprocessor.exe > nul

evaluation.exe > nul
postprocessor.exe > nul

Listing C.1: Structure of task.bat file

where @echo off in Windows OS, prevents the the system terminal from print-
ing any optimization-related results. The > nul command uses as output of
the respective executable process the temporary file nul.

After the results of the previous run have been deleted, preprocessor.eze is ex-
ecuted. This executable is responsible for reading task.bat file and transforms
the collected data in a readable format for the next process.
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. The evaluation of any untried candidate solution B € PJ C R™ is performed
via the execution of process evaluation.exe that contains the problem-specific
model, in most cases a CFD tool.

. The value of each objective and design variable value is then written in a
ASCII text file results.dat; each line of that file contains a single value.

. Subsequently, postprocessor.eze is executed. This executable reads the output
of evaluation.exe, i.e. results.dat file, and allows the user to denote the neces-
sary objectives and constraints of the optimization via the creation of task.res
and task.cns, respectively.

. After task.bat has finished, EASY expects to read a plain ASCII text file,
task.res, which contains as many lines as the number of objectives. Each line
of that file contains the value of the corresponding objective.

. Most optimization problems are confronted w.r.t. a set of imposed constraints.
In EASY, these constraints are declared in a plain ASCII text file, task.cns,
which contains as many lines as the number of constraints imposed.
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ITepi Béhtiotne Xerong Metanpotinwy otoug EEehixtinoig
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Muyding AnurteLog

EmupBiénov: Kupdxog X. Tavvéxoyiou, Kadnyntic EMII
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EKTENHY ITEPIAHVH YTA EAAHNIKA

Y10 mhalolo autrg TG SImALUUTIXNG Epyaciog MEAETATOL 1) EQUEUOYT ECENXTIXGY
olyopiluwy utofondoluevwy and petagovtéra ( Metamodel-Assisted EAs MAEAs)
o€ BIAPORPES EPUPUOYES Unyavohoyxol evdtagépovtoc. Avo elvor ol xlpleg pédodot
Behtiotonolnong ue epopuoyn twv MAEAs xou oyetiCovtou ye tov Tpémo exnaldeuong
TWY UETOPOVTEA®Y, dnhadY| cuvdedepéva (on-line) xou amocuvdedeuévo (off-line) and
Vv e&énln. Ko ot 6o autol pédodor epapudlovar pe tn Pordeia evog e€mtepnod
Aoytouxol ue Bdon tnv Python, mou ovopdletan Surrogate Model Toolbox (SMT)
[1], xou ouyxpivovtar ye toug xowvole EAs ue Bdon v onoteleopotixdtno xon To
UTIOAOYIG TXO XOGTOG Tou TEOXUTTEL amd T ¥eror tous. H Bedtiotonolnon oe xdie
nepintwon nporypotonoteitar Ue ) yerion tou EASY 2] (Evolutionary Algorithm SYs-
tem), evoc hoylopxol mou avantOydnxe and tn Movdda Ilapddinine Yroloyio-
wxhc Pevotoduvouinic & Beltiotonoinone (MIITPB) tou EMIIL. Ané to Sidgpopa
EVOOUATWHUEVN UETAULOVTERA TTOL LTy oLy otov EASY, ol cuvapThoELS oxTivinic ﬁdcng[?)}
(Radial Basis Functions RBFs) yenoyonotobvtor 6tny topoloo Sttheuatiny epyasio.
Qotéo0, 1 PektioTonoinon péow tou EASY unopel va unoforindel and elwtepxd
petompodTUTa, Tor omofor ebvan Stodéotua oto SMT. Amd autd to e€wtepnd YeToUOV-
o, oe auth TN Oimhouatixy epyacia yiveton yprion xuplwe tou Kriging[4], twv
TOEUANXY WY TOU YL YOPO GYEDLUCUOU UEWWUEVWY DLUCTACEWY YO OTNY EQUPUOYN
e wedodou pepxdv ehaylotwy tetpaydvev (Partial Least Squares PLS), xuplwcg
tou KPLSI[6] xou tou KPLSK[7], xod¢ xou twov RBFs. Kéle pio aro tic pedddoug
BehtioTtonolnong eqapuoleton 68 TEHOTO GTABI0 GE amAd TEOBAAUTA Peudo-Unyovixnic,
xWplwe oTNV TEPITTWOTN TS GUYKOMANTAC 50%00 XaL TOU UEIWTHEA To UTNTAUC, EVE 0T
ouvéyewr otr BeltioTomolnon popgrc pag dlodtdo tatng acpotounc. H enihuon tov e&-
lowoewv Reynolds Averaged Navier-Stokes (RANS) cuymieoto) peuotol ylpw omnd
v agpotoul| yiveton pe t yeron evog CED emhdtn, mou ovoudletar PUMA([S] xou
avamtoyinxe and  MIITPB/EMIL.
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o EZelhixtixol ANyoprdpor (EA)

Ov EAs[9] éyouv Bdom Toug oty e€ehtinr Yewpior Tou AagBivou Tou opllel
v xuplapyla Ay atéuwy ot xdde mhnduopion| yevid (U,h). Xe xdde yevid ali-
ohoyolvto A madid oo PSM, ta omola Pploxovtoar 6to npocwpetvd thniuculoxd

-

olvolo P, xar Toug avotiieton giar Tir omod Yo cLVAETNOT XOCTOUG d(F). Me
Bdomn v T mou €xel To xdde unodPlo dTouo Blakéyovton oL eAT TN oUY-
HEXPWEVNG YEVIAS XAl AVUVEDVETAL TO TANJUCULIXO GUVORO TwV EALT Pg“ UEoW
wag Oradixaotag elTiopov. 2Tn cuvéyelo oy Nuatiletor To GOVORO TV YOIV
NG EMOUEVNS YEVIAC Pg*l, XIS AL TWV VEOY TUOLOY UECW ULog dladixaotag
AVIUELENC TV YOOV 4 TOU GUVOBEVETOL oo iar Stodixacior uETEAAAENG.

e MAEAs pe off-line exnaidcuon

Yy Peitiotonoinon pe yeron MAEAs pe off-line exmaldevon, éva xodolnd
UETOUOVTENO exTudeleTon omoxopuéva and TNy eEENEN, ue Bdom n,,, onpeiwy
X mou emhéydnxay yden otny egoupuoyr xdmotag DoE uedddou deryuatorndiog.
YN ouvéyewa, 1 e€éMin mpaypaToTolElton Topduola Ye TN uédodo TwV amAev
eEMXTIXOV, PE TN HOVT] Blopopd OTL 1) a&LOAOYTOT| TV Toudlwy TAéoV yiveTan pe
™ YeNoN TWV EXTUSELUEVLY UeTaoVTEAwY. H alyxhion tng ueddodou Bactleton
otnv axp{Bela Tou xodohxol yetagovtérou. O pédodor DoE tou SMT ue Bdon
TV onolwv mpaypatonoleiton 1 derypotoindla elvon e€hc:

— Tuyada Sevypotorndio (Random sampling)[10]
— Latin Hypercube Sampling (LHS)[11]

Centered
* Maximin[12]

*

* Maximin centered
Maxent[13]
« Enhanched Stochastic Evolutionary (ESE)[14]

*

— Hopayovtny Sevypatoindio (tAvene 1 pepweh) (Factorial sampling)[15]

e MAEAs pe on-line exnoidsuon

H exnaideuon twv petopoviéhwy oe auth 0 Yédodo yivetow amotehel uépog
e eZENENG péow e dadixaotag tpooeyytoTnhc tpo-allohdynone (Low-Cost
Pre-Evaluation LCPE [5]). Xto mhaioto tne Swdicacioc autic yiveton nemhoy
XTIV PoTiBwy exmaideuone otny yeitovd Tou xde LTo-alloAOYN oM E
Bdon tewv onolwy exToudEVOVTAUL TOTUXE, TEOCWTOTOUNUEVO UETULOVTEAL,

H o0leuin SMT xou EASY anawtel 0 olvtodn twv €£hc xwdixwy otnv Python
TOU EXTEAOLY TIC TTUEUXATL EVEQYEIEC:

1. A&wohdynon twv deryudtwy pe o PSM
2. Exnaldeuon tou yetapoviéiou

3. Hpé@ksq)n UE BAom TO EXTOUOEVUEVO UETUUOVTENOD

ii
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H rntepdtntor xon 1 xowvotopta Tou EASY Boloxetar otny on-line exnaideuon,
omou 1 eméufaoT Tou yeNoTN OTNV TERITTMOOTN TWV EEWTEPIXOY UETUUOVTEAWY YivETOL
HE TNV XAOT TOV avOTERE xWOXemY. Ot xMOixeg auTol xoAoUVTUL OTNY GUVEYELX OO
tov EASY péow xoatdhinia Swpopgouévey batch apyelwv. H ypron eowtepdv
HETOOVTEA®Y amoutel T oOVTAEN HOVO evOS (WO Tou etvor uTebuvog yia Ty ot
oAOYNoTN TV LTOPAPLWY AIGEWY.

Ytoug MAEAs pe off-line exnaideuon diec ov diepyasieg g Peitiotonoinong
xohoLvton P€oa amod Eva xodoAxd x@oixa tng Python xau eminpdoieta cuvidooeto
€vog xOOog mou extehel Tn derypatoAndio, xadde xon Evag yiol TNV ETAVAElOAGY O
¢ Pértiotne’ Aoong e to PSM. H off-line exmaldeuon etvor duvatd va mparyuatonol-
niel and eowtepixd petapovtéda tou EASY, wotéco dev evdeinvuta.

Yy Behtiotonoinon péow tou EASY ye MAEAS ue off-line ot on-line exnaideuon
yivetan yprion ewtepin®y petopovTéAwy Tou eivor dlrdéoya oto SMT. Autd elvon Ta
axdlovva:

e Kriging
Yto Kriging n npocéyyion tng emduuntric Abong yiveton yéow tng cuvdptnong:

A= - A

£(5) = pT(B)W + FxsR " (F — PW) (C.1)

OTOL Ll = ﬁT(g)@ elvan €vag VIETEQUIVIOTIXOS OpO¢ ToU UTopel Vo ExPEaoTel
¢ oTadepd, YRoUULXO 1) TETRAYWVIXO UoVTELO Taktvdpounone. O 2o¢ 6poc eivor
npayuatonoinon wog Gaussian diepyaotog 2(f) «~ N(0,C) ue undevixy| péon
T X0l GUVOLOXUUAVOT) C(B) = o*R(;, Xj) TV Topatneoluevey yeyedoy. H
ovoyétion YeTadd Tov Yeyedwy divetar 6to SMT and tny exdetiny cuvdptnon:

ng

R(xi,X;) = [ [ exp (=00 Ixia = x5u)) (C.2)

=1

evey Orotidevtar xon ov ouvaptroelc Gaussian, Matérn 5/2 xoau Matérn 3/2.
Yto Kriging diveton 1 uvotdTnTo BUVATOTNTO VoL UTOAOYIOTEL XL 1) OYETXT
afeBarotTnTa TNE TEOPAedNg and T oyéon:

=

MSE(B) =6*(1 — i ;R 'Fxs) (C.3)

H enlivon twv topamdve e€lohoemy anattel TOV UTOAOYIOUO TWV TOQUUETOMVY
ouoyétiong ¢ € R™ mou mpoxintouv and T UeyloTonolnomn tng cuvdpTnong
mdoavopdvetag Tou diveton amd TNV e€lowon:

—

In(lp(0]F)) = — %ln [nit (F-PP'R'P)'P'R'F) c4)
x R™ (F—P (P'R™'P)  P"R™'F)| + In(detR)

T

il
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e KPLS

Ye pa mpoomdieio va ehattwiel o ypdvog xataoxeuric Tou Kriging oe ywpoug
oyedaopol LPming BlacToTixdtnTog Yiveton epopuoyn tng pedodou PLS, mou
odnyel og avaywyY| Tou YWEou oyedlacuol o h<ng dwctdoec. H ypron tou
KPLS povtélou odnyel oe tpocopuoy) tne extetinhc (xoaw Gaussian) cuoyétiong
o¢ e€hc:

h ng
R(x:x;) = [[ [ exp ( 0 ‘D*kxz e — DX ) (C.5)
=1 k=1
6mou 1o untewo D, = [ﬁ(kl), ﬁ,(ﬁ ), .. D(h)] R7sxh exppdlel TV emppon) xdie

dudotaone k € [1,ng] otnv xotaoxeur e l-ng petacynuotiopévne SldoTaone,
étoL wote 10 HERM.

e KPLSK

Ou petaoynuatiopéveg ouvaptrioelg oucyetiong Tou KPLS elvon oplouéveg oe
unocUvolo Tou ng-Owdotatou yweou. H wéa mlow and to KPLSK elvar va
EXPEACTOUY OL GUVIRTHOELS AUTEC OTNY OAOTNTA TOU Ng-OldCTATOU YMEOU OTOU
elvan exgpacpévo to Kriging. Autéd emtuyydveton otn Gaussian cuvdptnon, n

omola YedpeTo GTY LOPYPY):

ng
R (X X)) HHewp( L (DSxin — *kX]k’)) Hewp( —k (Xik = Xik)?)

=1 k=1
(C.6)

OTOL O opog M = Zl 10D *k YLO( k=1,2,...,n3 dpa wq apywmd onueio yia
NV ToTxY| BehtioTonoinor tng ouvdptnong mavogdvetag tou Kriging ye Bdon
TIC TWES TWV TOROUETOMY 00 oy TeoxUTTOLY and TNy egopuoyr) Tou KPLS ya
[=1,2...,h.

e RBFs

To petapovtéro twv RBFSs, yenowomnotel n, nopatnpodueva Levyn (X, f(X)) v
VoL EXPEYOEL TN CLVAPTNOT TEOGEYYIoNG O xdnolo onueto B € R™ w¢ ypou-
X0 CLVBLUOHUG GUVHPTACEWY Bdong HE %E€VTpa TO exdcTOTE onueio ()Zg, IOV
exEACETOL PordNUATIXd 6G:

§) = ng (18- x1) = ;wtjgm) o

étoL wote s(x;) = F(\i) =F;  for i =1,

Ov pédodoc autr| elvan duvatdy vor cuVOLOOTEL Xo PE €Val YEOUUIXO UOVTEAD
TOALVOPOUNOTG:

nt k
3 =>"wig (15 = %1) + > wipi(B) (C.8)
j=1 i=1

v
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e Egoapuoyn oe npofAruata Peudo-ferticTonoinong

H onoteleopgatindmnta TV UETOUOVTEAWY doxdleTon apyixd O BUO ATAES EQap-
Hoyéc eudo-unyavixic yaunhot utohoyiotixol xé6ctouc. H mpddtn eqopuoyr agopd
™) Uelwan Tou x66ToUC XaTaoXELAC Uiot GUYXOMNTAC edBBou oe [$][16] xou 1 Sedtepn
™) pelwon Tou Bdpouc evic petmthpa oy dtntac ot [g][17]. H yekétn oe awth tn Simhe-
potixr) emxevTedInxe ot cUYxELon YETAE) TWV ATOTEAEOUATWY oL TEoExuday amd
™ Beltiotonoinon ue yeron amhev eCehixtixedy, MAEAs ye off-line exnoideuon xou
MAEA pe on-line exmoudeupéva yetapovtéha to onola examdebovion Yéow tou SMT
xou Tou EASY. Ta arotehéopata tng HEAETNG TapouctdlovTon oTr) GUVEYELL:

1. Ilepintwon ovykoAAnTng dokoV €viég oTdyou
HedBAnua 4 yetoBAntodv oyedlaouol 8= (B1, B2, B3, Ba) = (h, 1, t,b) € R* pe 5
TEQPLOPLOUOVC:

-,

min f(5) = 1.1047157 82 + 0.048115554(14.0 + 55)

subject to ¢1(58) = 7(8) — Timaz < 0
) = o) = s < 0 (©9)
cs(B) =01 — B <0
C4(_)) =0 A)_(Sma:v <0
() =P - P(F) <0

Axohoviel 1 olyxplon petoll Twv Sdéouwy petopovtédwy Tou SMT 5 op-
ywonofoelc RNG xan teppationsd otic 10000 PSM alohoyrioeic:

| IMepinTtworn cuyxoAANTYE BoxoL ‘

MAEAs, || (1,\) KPLS | KPLSK | Kriging | RBFs
on-line popula-

tion
| SMT || (30, 100) | 2.45 | 2.74 | 2.72 | 2.62 \

Table C.1: Ilepintwon ovykoAAntrs dokol e RNG1. H Béltiotn Alon Bpédnke ard
MAFEA e on-line exrtaidevuévov petapovtédwy uéow tov SMT
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Figure C.1: Illepintwon ovykoAAntnig doxol ue RNG1. XUykpion petaéd tng ovyk-
Aong EAs and MAEASs ue on-line eknaidevuévawr uetauovtélwy péow SMT
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To népiopa g uerétng eivon ot 1 yeron tou KPLS odnyel oe Béhtiotn olyx-
MoT) Tou TPOBANUNTOS TNG CLUYXOMANTHE BoX0V, eTouévng To KPLS cuyxpiveto
otn ouvéyeta Ue Tic on-line exnoudeupéveg RBFs mou diadétel o EASY.

kPLS ——
RBFs in EASY ——
EAs

I I I I
0 2000 4000 6000 8000 10000

Number of evaluations

Figure C.2: Ilepintwon ouvykoAAntnig doxol pue RNGI1. Xiykpion peta&d tov 10-
topikoU oUykAions amAov EAs and MAEAs e yprion on-line exmaidevpuévwy peta-
povtélwr puéow SMT kar tov EASY

To oTtopd clyxhong gavepwvel Tnyv utepoyy MAEAs ue yefion twv on-line
EXTIOUOEVUEVODY X EVOWUAToUéveyY otov EASY RBFs évavtt twv unélonmv
uedodwy Beltiotonolinong.

2. Ilepinttwon ocvykoAAnTNg dokod Vo 0T WV
Ye auth| TNV TepinTwon TheTtar wg BVTEPOE GTOYOG 1) UEWOT) TNG TURUUOPPHONG
d oTo dxpo TNg Boxol xou 1 BeATioTonoinor meaypatonoeiton ue MAEA ue on-
line exnaidevon yia 1000 PSM agoloyrioeic:

80 5

"KPLS | .
o RBFs in EASY o
70e EAs o

L

.
*
D

LI
*% cecse

0 L L ! L L L L !
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018
f2(B)

Figure C.3: Mérwno Pareto twy 15 un-kupiapyoluevwr vrnopneiwy AVoewy mou
PpéOniay uetd tnyv mpayuatonoinon 1000 PSM a&iodoynoewy

| Acixtng unepdyxou vy RNG1 H(F) |

MAEAs, on-line, SMT 1.6222
MAEASs, on-line, EASY || 1.6215
EAs 1.6061

Table C.2: Iepintwon avykoAAntnig dokol. Aelktng vnepdykov twy petwnwy Pareto
ToU TPoéKuay amé TNy epapuoyr twy oapopwy ueléowy Pedtiotonoinons

vi



BIBLIOGRAPHY

5500

5000 -

4500 -

f(B)

4000
3500

3000
0

Ye auth) TV mepinTwon gaiveton twg T MAEA ue yerion on-line exnoawdeupéverv
HETOROVTEAWY PEGw Tou SMT 0dnyolv o drtovpyia TOU XAAVTEPOU PETOTOU
Pareto cuyxpitixd ye Tic unéloimeg yedodouC.

Iepintwon peiwtipa taxvtntag €vog otéxov
IpbBAnua ehayiotonolnong tou Bdpoug oe [g] evic UELOTARN ToyUTNTAS UE 7
peToBANTEC oy edlaopol xou 11 xuTaoXELUGTINOUS TEPLOPLOUOUC:

-

min f(B) = 0.7854bm* (3.3333N,..,, + 14.9334N,eer, — 43.0934) — 1.508 (d,* + dy)
TATTT (d 4+ d5*) + 0.7854 (L1d > + Lody)
(C.10)

Apywnd éyive olyxplon petoll tne olyxhone MAEA ue on-line extoudeupévev
uetapovtédnvy wéow tou SMT. H Beitiotonoinon pe EAs xauw MAEAs éyet
oe xde mepinTwon we xpithpto Teppatiopol Tig 20000 PSM ofohoyroeig xou
enavorAginxe pe 5 RNG tyéc.

3080 T
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KPLS ——
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KPLSK —— |
KPLS —— |

Kriging
RBFs in SMT —— |
EAs

| Kriging
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2000
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1000 3000 4000 5000 5000 10000 15000 20000

Number of evaluations Number of evaluations

Figure C.4: Ilepintwon pewtipa tayvtntas pe RNG1. XVykpion petaéd tov 10-
topikoU oUykAions FA ka1 MAEA e on-line exnatdevon péow tov SMT
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f(B)

4000 -

3500 -

3000

H o0yxhion tou KPLSK ocuyxplveton otn cuvéyeta e tic on-line exnandeupéveg
RBF's mou dtodétel o EASY.
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Figure C.5: Ilepintwon peawtipa tayvtntas pe RNG1. Xoykpion peta&d tov 10-
topikoU oUykAions EA ka1 MAEA e on-line exnaibevpévor petapovtédwy

vil
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4. Ilepartépw avdAvon twv 600 €papproydV €vO0S oToXOU
[ty M opdotepne amdgouong otny emAoyr| TG XataAAnAoTERNS ued6d0uL
Behtiotonoinong cuunepthiginxe oty avdhuon o GUVOAXOS APLIUOS XAOEWY
Tou PSM xou TV PETUUOVTEAWY, OTOLU TO UTOAOYLOTIXO XOCTOC TOU OEUTEQOU
elvon aUEANTED OE OYEDT UE TO TEWTO.

| Méoco anotéhcoua ‘

SUYXOAANTY | Opsm | Mmeta || MetwThpoc TipsM | Tmeta
doxbe Ty LINTAC
MAEAs, on-line, SMT 2.54 10000 | 11579 || 3002.68 20000 | 22792
MAEASs, on-line, EASY || 2.53 10000 | 14422 || 3005.46 20000 | 24775
EAs 2.59 10000 | - 3004.34 20000 | -
MAEASs, off-line, SMT 3.12 388 23064 || 3006.01 151 18239

Table C.3: X0ykpion petabd twv tehikdy anotedeopdtwy

Ané tov avidrtepo Tivaxa Stagalveton Twe N BeAtiotonoinon ue MAEAs ue yerion
on-line exnawdeupévwy RBEs yéow tou EASY eivon 1 mo amodotxt| pédodog oe
TeoBAAUATo PELBO-UNYOVIXAC YUUNAOY UTOAOYIOTIXOU XOGTOUC.

e Beltiotonoinor popprc otn NACA 4318

H B dradicactior emovoroufdvetar, auth| T @opd ot Pehtiotonolnor wopeng uLog
owoddotatne NACA 4318. Autd to mpoPinua BeitioTtonoinong eivon uPniold utoro-
Yo TIXoU x6cT0UC, Aol amarteiton 1) emlhvon Twv edlowoewy RANS yioo uéviun xou
ouumec T por). [ v emlhvon yivetaw ypnon tou CFD emidtn PUMA nou avor-
OoyOnxe and t MIITYPB/EMIL. H yerétn emxevipdvetar otn Behtiotonoinon tng
YEWUETELOG TNG EV AOY W UEPOTOUNG UE AEQODUVOUIXE XELTYPLOL. DUYXEXQUIEVY, UEAETE-
Tou 1) BedTioTomolnoT Tng agpotounc ot cuVITXES amoyelwong xou evdelag TTHONG, omd
TI¢ omolec Tpoéxuay Ta oxdhoudo amoTERECUTA.

1. BeAtiotoroinon 6Vo otédxywv oge ovrvinkeg anoyeiwong

Ytoyot Tic Bertiotonoinong ivon 1 yelwon tng mopayouevng omo¥éixovoog D
xou aLENCT TNE TAUPAYOUEVNS GvwaoT g ot cuVITXES amoyelwong ue toydtnTa U =
51m/s, yovia tpéontwone a = 10° xou cuvdixeg aépor:

| ISu6TnTeg pevctol ot udbpetpo h = 0m |

| | pkg/m®] |pbar] |T[K] |
| Aépac || 1.225 | 1.01325 | 288 |

Table C.4: Indtnteg pevotol o€ undevikd vhduetpo

H Beitiotonoinon emavorfgdnxe yio 3 tipéc RNG. EAs xouo MAEAs ye on-line
exnofdevorn mpayuatonoinoay 400 CFD alloloyroelg, evd 1 BeAtioTonolnon e
MAEAs off-line exnofdevon cuvéxive petd and 1000 extiufioelc avd xOxho.

viii
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Figure C.6: BeAtiotonoinon tng NACA 4318 oe ouvrinkes aroyeiwons. YXiykpion
petall twv petdnwy Pareto 15 pun-kupiapyoluevwy AVoewy mov npoékupay and tny
epapuoyny EAs, MAEA e off-line kar on-line exraivevuévov KPLS ka1 MAEA e
on-line exnaidevuévwy RBFs péow tov EASY ya 400 CFD a&iokoynoeg

Axoloudel yprion Tng Ledddou BelxTn UTEPGYXOU Yid TO TPOCBLOPIGUO TOU XUplap-
you petwnrou Pareto.

| Acixtng unepdyxouv H(F) |

‘ H RNG1 ‘ RNG2 ‘ RNG3 ‘
MAEAs, on-line, SMT 274.588 222.513 224.786
MAEAs, on-line, EASY 257.987 206.800 211.937
MAEAs, off-line, SMT 252.866 213.701 216.461
EAs 257.512 200.114 204.289

Table C.5: BeAtiotonoinon tng NACA 4318 oe ovvOnkes amoyeiwons. YXUykpion
TV OEIKTWOV UTEPOYKOU Twy Uetwrwy Pareto mov oyxnuatiotnkay amé tn xpnon
didpopwy neblédwy PeAtiotonoinong

2. BeAtiotomoinon €vdég otédxov o€ ovvinkes anoyeiwong

211 0eltepn TepinTWoT g 0TOY0¢ TG BeATioToToMoN G TiieTon 1) ueytoToTolnoT
NG Aveong 6 SUVINXES amOYEIWONG UE EVal TEQLOPIOUO TOU apopd TNV adénom
¢ omoUEAKoVoUS TG oy Xng agpoToung Dyg=15.53 N:

-,

maz f(f) =L

-,

subject to ¢1(8) = D — 1.08Dpy <0

(C.11)

| Behtiotonoinon tne NACA 4318 ce cuvd¥xeg anoyeiwong |

‘ H Méco _f npsm Npeta
MAEAs, on-line, SMT 1222.33 400 2988
MAEAs, on-line, EASY 1221.90 400 4000
MAEAs, off-line, SMT 11221.27 81 1000
EAs 1211.54 400 -

Table C.6: YXUyrpion petaéd twr epappoopévoy pelédwy PeAtiotoroinong

X
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(a) MAEAs, on-line, SMT, (b) MAEAs, on-line, EASY,
L=1222.52 N and D=16.54 N L=1222.06 N and D=16.44 N

(c) MAEAs, off-line, SMT, (d) EAs, L=1211.35 N and D =16.25
L=1221.02 N and D=16.29 N N

e

Figure C.7: Belniotomoinon tng NACA 4318 oe ouvvinkes anoyeiwons pe RNGS.
Yoykpion petall twy Péltiotwy anoteleoudtwy.

(a) Apxikr) yewuetpia (b) BeAtiotomoinpérn yewpetpia

Figure C.8: X0yrpion peta&d tov mediov mieons apyikng kai tng PeAtiotomoinpévng
yewpetpias pe ypnon MAEA e off-line exraidevon

3. BeAtiotomoinon €vdég otdxov o€ ovvinkeg evieiag ntrjong

Y1 tedevtaia tepinTtwon wg otdyog g fehtiotonoinong tideton 1 edayioTonolnon
¢ omovérxoucag o cuvifixeg eudelag TTRoNG PE Eva TEPLOPLOUS TOL aPopEd
NV Uelwon tng dvwong Tng apyxng acpotounc Ly =1123.81 N:

min f(8) =D

subject to 01(5) =L—-0.92Lyy >0

H Beitiotomoinon npayuotonoteitan oe cuvirineg eudelag ntong pe toydtnTa
U = 206.64m /s, ywvia TEOOTTWONG v = 27 xou cLVITxES agpa:

(C.12)

| Fluid properties at h = 11000 m |

| | p kg/m?®] | p[bar] | T [K] |
| Air ][ 0.364805 | 0.227 | 216.8 |

Table C.7: Air properties at cruise height
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| Beltiotonoinom tne NACA 4318 ce cuvdixeg sudeiog nthong |

‘ H ME’O'O? ‘ ﬁPSM ‘ Nmeta ‘
MAEASs, on-line, SMT 148.86 400 2988
MAEASs, on-line, EASY 149.57 400 4000
MAEASs, off-line, SMT 149.60 87 2000
EAs 154.63 400 -

Table C.8: YVykpion petall twr epappoopévov pelédwy PeAtiotonoinong

(a) MAEAs, on-line, SMT, (b) MAEAs, on-line, EASY,
D=148.87 N and D=1373.12 N D=149.24 N and D=1383.62 N

(¢) MAEAs, off-line, SMT, (d) EAs, D = 155.25 N and L =
D=150.06 N and L=1367.56 N 1429.83N

A

Figure C.9: BeAtiotonoinon tng NACA 4318 o€ ovvOnkes evleiag ntriong e RNGS.
Yoykpion petall twy Péltiotwy anoteleoudtwy.

(a) Apxikr) yewuetpia (b) BeAniotomomnpérn yewpetpia
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Figure C.10: X0yxpion peta&v tov mediov Mach apxikns kar tng feAtiotomoinuérng
yewpetpias pe ypnon MAEA e off-line exraivevon
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e JUvodrn-Supuncpdopata

Ye outh) dimhwpoatixy epyacta pehethUnxe 1 BEATIOTH Yo ECEMXTIXGY ahyO-
clduwy vroBondolueveny and UEToHOVTENN GE EQUPUOYES Younhol (epopuoyéc Peudo-
Bektiotomoinang) xat udgmhol (BektioTonoinom AEPOTOUNG UE AEROBLVOIXE Y OEAUXTNELO-
Txd) unohoytoTixol xéotouc. Beélnxe 6t oty npdtn mepintwon, n yeron MAEAs
ue on-line exnadeupévwy RBFs mou diadéter o EASY éyel to wixpdtepo aviixtumo
07O UTOAOYLOTIXO XOGTOC OE GLUVOUACUO PE YeNYopn oUYXAoT TNne Behtiotonoinorng.
H emhoyn auty| Baotletar 1600 oty xoxry exnaidevorn (off-line) mou cuvavtdrton oe
TEOBAAUATH TOAAGY GTOY WY, 660 X 6Ty emPdpuvon g Behtiotonolinong Aoyw tng
yefone tne apyhc Python.

Ytnyv dedtepn teplntwon mou amouteiton 1) eniluon Twv RANS e€io®oewy ot 1o ut-
oMo TN %60 TOG Ebvon UYNAG, 1 eopuoyt Twv MAEA ue yerion off-line xou on-line
EXTIOUBEUUEVOLY UETOPOVTERWY péow tou SMT odnyel oe 60 — 80% ueiwon tou uTok-
0YL0TIN00 XOGTOUC. LUVETKCS, OF OEQOBLVUUIXES EQUpHOYES LYMAOL UTOAOYLOTINOD
%OGTOUC %o AlYy®V TEQLOPLOU®Y EVOEiXVUTAL 1) YO EEWTEQXWDY UETUUOVTEAWY.

Me Bdon Tic eopuoyEéc Tou eEETAG TNXAY OE QUTY| TN OLTAWHATIXY EYUsid, TEOXUTTEL
1 dtaponvouevn utepoy ) Tou KPLS petadl 1660 Tev e€WTERIXDY 660 %ol TWV ECHTERIXWY
UETAUOVTEA®Y ToL yenouylomotdnxay. Axoua, n Beitiotonoinon e yeron MAEAs pe
on-line exnafdeuon dagatvetar we 1 emxpatéotepn uévodog Peitiotonolnong.

xil
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