
National Technical University of Athens
School of Mechanical Engineering
Fluids Section
Parallel CFD & Optimization Unit

Assessment of Hybrid Computational Fluid Dynamics-Deep
Learning Solvers for Unsteady Problems

Diploma Thesis

Antonis Tzanetakis

Advisor: Kyriakos C. Giannakoglou, Professor NTUA

Athens, 2024

ii

Aknowledgements

Foremost, I extend my deepest gratitude to Professor Kyriakos C. Giannakoglou for
his mentorship. His expert guidance, patient support, and generosity throughout
the full course of this endeavor have been invaluable. Observing his unwavering
dedication to educating and extracting the utmost potential from each student has
genuinely been inspiring to me. I am truly honored to have worked under his
supervision.

I would also like to thank researchers Dr. Varvara Asouti and Dr. Marina Kontou,
part of the PCOpt team of NTUA, whose expertise, eager assistance and joyous
approach to problem-solving have supported and enriched my thesis experience.

I am also grateful to my friends, especially to Nikos, for our shared journey and
mutual encouragement through university life which has been both challenging and
joyful.

Lastly, to my family—my parents, brother, and cat-brother—for their love and
support.

iii

iv

National Technical University of Athens
School of Mechanical Engineering
Fluids Section
Parallel CFD & Optimization Unit

Assessment of Hybrid Computational Fluid Dynamics-Deep
Learning Solvers for Unsteady Problems

Diploma Thesis

Antonis Tzanetakis

Advisor: Kyriakos C. Giannakoglou, Professor NTUA

Athens, 2024

Abstract

This thesis delves into the realm of Computational Fluid Dynamics (CFD), or Com-
putational Mechanics in general, assisted by Deep Learning (DL) techniques. It
programs and evaluates two hybrid CFD-DL approaches which can accelerate the
solution of unsteady problems. The discretization error, which is heavily dependent
on the grid step size, is an important source of error in numerical simulations and is
what these methods aim to address. These hybrid solvers run on a coarse grid but
produce solutions corresponding to much finer grids by utilizing Artificial Neural
Networks (ANNs) trained on high resolution data.

The first technique replaces the conventional reconstruction step of the Finite Vol-
umes Method (FVM) with an ANN-driven process. Namely, the ANN is trained to
produce space and time dependent coefficients of a stencil, that when combined with
the local field values on a coarse grid, reconstruct the field at the cell faces to attain
results corresponding to solutions of much finer grids. In the second technique, the
numerical solver operates on a coarse grid to generate low-resolution solutions, which
are corrected at each time step by an ANN to achieve high-resolution results. Both
methods are implemented to solve two 1D unsteady problems: the 1D advection
equation and the 1D linear acoustics equation.

Key findings include the scalability and robustness of these hybrid approaches in
varied conditions and equation parameters. This is supported by extensive testing
and a study of the behavior of the models for different hyperparameter values. This
thesis combines current research in the Parallel CFD & Optimization Unit (PCOpt)
of NTUA with ideas from two recent papers in the literature and underscores the
potential of integrating data-driven techniques in numerical models.

ii

Εθνικό Μετσόβιο Πολυτεχνείο

Σχολή Μηχανολόγων Μηχανικών

Τομέας Ρευστών

Μονάδα Παράλληλης Υπολογιστικής Ρευστοδυναμικής

& Βελτιστοποίησης

Αξιολόγηση Υβριδικών Επιλυτών Υπολογιστικής

Ρευστοδυναμικής-Βαθιάς Μάθησης για Χρονικά

Μη-Μόνιμα προβλήματα

Διπλωματική Εργασία

Αντώνης Τζανετάκης

Επιβλέπων: Κυριάκος Χ. Γιαννάκογλου, Καθηγητής ΕΜΠ

Αθήνα, 2024

Περίληψη

Η διπλωματική εργασία διερευνά τρόπους υποβοήθησης της Υπολογιστικής Ρευστοδυ-

ναμικής (ΥΡΔ) από τεχνικές Βαθιάς Μάθησης (ΒΜ). Προγραμματίζονται και αξιολο-

γούνται δύο υβριδικές προσεγγίσεις ΥΡΔ-ΒΜ, που επιταχύνουν την επίλυση χρονικά

μη-μόνιμων προβλημάτων. Οι μέθοδοι διαχειρίζονται το σφάλμα διακριτοποίησης, που

καθοριζεται από το βήμα του πλέγματος, και είναι σημαντική πηγή σφάλματος στις

αριθμητικές προσομοιώσεις. Χρησιμοποιώντας Τεχνητά Νευρωνικά Δίκτυα (ΤΝΔ)

εκπαιδευμένα σε δεδομένα υψηλής ανάλυσης, οι υβριδικοί επιλύτες τρέχουν σε αραιό

πλέγμα, παράγοντας λύσεις που αντιστοιχούν σε πολύ πυκνότερα πλέγματα.

Η πρώτη τεχνική αντικαθιστά το κλασικό βήμα ανακατασκευής της μεθόδου των Πε-

περασμένων ΄Ογκων με μια διαδικασία που βασίζεται σε ΤΝΔ. Συγκεκριμένα, το ΤΝΔ

εκπαιδεύεται να παράγει χωροχρονικά μεταβαλλόμενους συντελεστές διακριτοποίησης,

που συνδυάζονται με τις κομβικές τιμές του πεδίου σε ένα αραιό πλέγμα. ΄Ετσι, ανακα-

τασκευάζει το πεδίο στα όρια των κελιών δίνοντας αποτελέσματα ως σε πολύ πυκνότερα

πλέγματα. Στη δεύτερη τεχνική, η αριθμητική επίλυση γίνεται σε ένα αραιό πλέγμα πα-

ράγοντας λύσεις χαμηλής ανάλυσης, οι οποίες διορθώνονται σε κάθε χρονικό βήμα

από ένα ΤΝΔ αναπαράγοντας αποτελέσματα αρκετά υψηλότερης ανάλυσης. Και οι

δύο μέθοδοι εφαρμόζονται σε δύο 1Δ χρονικά μη-μόνιμα προβλήματα: την εξίσωση

μεταφοράς και την εξίσωση γραμμικής ακουστικής.

Πιστοποιείται η σωστή εκπαίδευση και λειτουργία αυτών των υβριδικών μοντέλων σε

ποικίλες συνθήκες και παραμέτρους των επιλυόμενων ΜΔΕ με δοκιμές για διαφορετι-

κές τιμές των υπερπαραμέτρων. Η εργασία συνδυάζει τρέχουσα έρευνα στη Μονάδα

Παράλληλης Υπολογιστικής Ρευστοδυναμικής & Βελτιστοποίησης του ΕΜΠ με ιδέες
από δύο πρόσφατα άρθρα της βιβλιογραφίας.

ii

Acronyms

ΕΜΠ Εθνικό Μετσόβιο Πολυτεχνείο

ΕΘΣ Εργαστήριο Θερμικών Στροβιλομηχανών

ΜΠΥΡ&Β Μονάδα Παράλληλης Υπολογιστικής

Ρευστοδυναμικής & Βελτιστοποίησης

ΥΡΔ Υπολογιστική Ρευστοδυναμική

ΒΜ Βαθιά Μάθηση

ΤΝΔ Τεχνητά Νευρωνικά Δίκτυα

ΠΟ Πεπερασμένοι ΄Ογκοι

ΜΔΕ Μερικές Διαφορικές Εξισώσεις

NTUA National Technical University of Athens

PCopt Parallel CFD & Optimization unit

CFD Computational Fluid Dynamics

BC Boundary Conditions

IC Initial Conditions

CFL condition Courant-Friedrichs-Lewy condition

CR Coarsening Ratio

Hi-Fi High-Fidelity

Lo-Fi Low-Fidelity

Hi-Res High-Resolution

Low-Res Low-Resolution

TVD Total Variation Diminishing

iii

ODE Ordinary Differential Equations

PDE Partial Differential Equations

1D, 2D, 3D 1,2,3-Dimensional

N-S Navier Stokes

FVM Finite Volume Method

FV Finite Volumes

ML Machine Learning

DL Deep Learning

NNs Neural Networks

DNNs Deep Neural Networks

PCA Principal Component Analysis

POD Proper Orthogonal Decomposition

SVD Singular Value Decomposition

PINNs Physics Informed Neural Networks

UAT Universal Approximation Theorem

CNNs Convolutional Neural Networks

FC Fully Connected

ReLU Rectified Linear Unit

LReLU Leaky Rectified Linear Unit

ELU Exponential Linear Unit

L-BFGS Limited-memory
Broyden–Fletcher–Goldfarb–Shanno

algorithm

iv

SGD Stochastic Gradient Descent

MSE Mean Squared Error

MAE Mean Absolute Error

EA Evolutionary Algorithms

PSO Particle Swarm Optimization

AD Automatic Differentiation

TF 2.x TensorFlow version 2.x

LI Learned Interpolation

LC Learned Corrections

CORR Corrections

MAEA Metamodel-Assisted
Evolutionary Algorithms

ILSVRC 2015 ImageNet Large Scale
Visual Recognition Challenge 2015

v

vi

Contents

Contents i

1 Introduction 1

2 Neural Networks 7

2.1 Introduction . 7

2.2 Convolutional Neural Networks . 10

2.3 Neural Network setup . 13

2.4 Training a Neural Network . 19

2.4.1 Training algorithm . 19

2.4.2 Hyperparameters tuning . 20

2.5 Automatic Differentiation and AD&DL frameworks 21

3 Hybrid Solvers 23

3.1 Introduction . 23

3.2 Hybrid models presentation . 25

3.2.1 Stage 1: Run the numerical solver, coarsen and collect the data 26

3.2.2 Stage 2: Training the CNN . 28

3.2.3 Deployment of the hybrid models on new initial conditions . . 32

3.2.4 LI method . 33

3.2.5 LC method . 33

3.3 Additional elements of the hybrid models 36

3.3.1 A multistep Loss function . 36

3.3.2 Enforcing a regularizing constraint 37

i

3.4 Early stopping strategy . 39

3.5 Advantages of coefficient prediction in hybrid CFD-DL solvers 41

3.6 Advantages of corrections prediction in hybrid CFD-DL solvers 42

4 Case 1: 1D Advection Equation 43

4.1 Introduction . 43

4.2 Equation discretization . 44

4.2.1 General formulations . 44

4.2.2 The effect of the chosen scheme on the solution 46

4.2.3 The effect of spatial resolution on the solution 48

4.3 Training data and coarsening . 49

4.4 Results of the hybrid models . 50

5 Case 2: 1D Linear Acoustics 59

5.1 Introduction . 59

5.2 Equation discretization . 61

5.3 Training data . 62

5.4 Results of the hybrid models . 63

5.5 A parametric study on hyperparameters’ influence on solvers’ perfor-

mance . 68

5.5.1 LI hybrid solver . 68

5.5.2 LC hybrid solver . 71

6 Conclusions 75

Bibliography 79

ii

Chapter 1

Introduction

Over the past decades, the field of Computational Fluid Dynamics (CFD) has pros-
pered, and made significant contributions to technological advancements. The es-
tablishment and prosperity of the field have been primarily driven by two pivotal
factors: advancements in computational power and the refinement of numerical al-
gorithms [52]. The growth in computational capabilities, often refered to as Moore’s
Law, has played a pivotal role in the evolution of CFD. The increased processing
power available has enabled more complex and accurate simulations, allowing for
finer discretization of fluid dynamics equations and the handling of more intricate
fluid flow phenomena. Alongside hardware advancements, the development and
refinement of numerical algorithms have been crucial. Improved numerical meth-
ods for solving the Navier-Stokes equations, turbulence modeling techniques, and
optimization algorithms have all contributed to more efficient and accurate CFD
simulations. In recent years, the same pattern has appeared for ML: the exponen-
tial increase in available computational power has coincided with a surge in data
availability and the advancement of statistical techniques, giving rise to data-driven
engineering.

Statistical approaches have historically played a significant role in the field of CFD,
offering valuable tools for analyzing and understanding complex fluid flow phenom-
ena. These methods have been used to extract meaningful patterns from large
datasets, enabling the simplification and interpretation of intricate fluid dynamics.
Principal Component Analysis (PCA) [48] and Proper Orthogonal Decomposition
(POD) [33] are prime examples, employed to reduce the dimensionality of CFD data
and identify dominant flow features [27, 33].

In recent years, ML algorithms [5, 15], have been increasingly adopted to predict
flow behaviors and enhance simulation efficiency [7]. Data-driven methods have
been successfully used in turbulence modeling [30, 25], optimization of aerodynamic
designs [8, 24], and real-time flow prediction [44], marking a shift towards more

1

efficient and accurate CFD simulations by leveraging the vast quantities of data
generated in simulations and experiments. Deep Learning (DL), a subset of ML, has
emerged as a particularly successful technique in this domain due to its flexibility and
proven effectiveness across various disciplines. Its ability to handle large volumes
of data and learn complex patterns makes it particularly suited for CFD, where
simulations naturally generate extensive structured time- series data.

In the realm of DL applied to CFD, methodologies have evolved into three main
categories: end-to-end DL solvers, physics-informed DL solvers, and hybrid CFD-
DL solvers. End-to-end DL solvers attempt to learn fluid dynamics directly from
data, bypassing the explicit use of governing equations like the Navier-Stokes (N-S)
equations. However, this approach has shown limitations, including the requirement
for extensive training data, poor generalization, and lack of interpretability [43, 41].
These limitations partly stem from the inherent complexity of fluid flow phenomena
modeled by the N-S equations, for which analytical solutions are often unattainable.
Physics-informed DL solvers softly incorporate known physical laws, such as those
encapsulated in the N-S equations, to guide the learning process of NNs. This
approach tends to require less data and offers better interpretability than end-to-
end models. Hybrid CFD-DL solvers combine traditional CFD methods with DL
techniques, leveraging the strengths of both to improve accuracy and computational
efficiency. Such hybrid models benefit from the robustness of conventional CFD
in capturing the fundamental physics while utilizing DL for reducing the cost of
complex, high-dimensional problems in fluid dynamics. Next, some of the most
important methods of both physics informed and hybrid solvers will be presented
to provide the context of the technique used in the current thesis.

The fundemental physics-informed DL solvers, introduced by [45], are called Physics-
Informed Neural Networks (PINNs). PINNs integrate Partial Differential Equations
(PDEs) into the loss function of NNs, utilizing automatic differentiation to calculate
the partial derivatives of the PDE. The core concept of PINNs lies in aligning the
training process, conducted through gradient-based optimizers, with the minimiza-
tion of a loss function that encompasses a balance between data (which in the context
of the aforementioned paper is initial and boundary conditions) and PDE residu-
als. This formulation results in a combination of supervised and unsupervised loss
terms. PINNs are characterized by their meshless nature, ease of implementation,
and scalability, with a minimal data requirement typically consisting of sampled
boundary and initial conditions. However, a notable limitation of this technique is
the necessity to re-train the NN for each new set of initial or boundary conditions,
which can impede generalization.

In CFD, the primary source of error is typically discretization error, which is heav-
ily dependent on the grid step size [1]. Essentially, the finer the grid, the lower the
discretization error, but this translates to increased computational cost. This issue
is further intensified in 2D and 3D simulations, where computational requirements
increase exponentially with finer grid resolutions. Additionally, the non-linearity

2

of many CFD problems and the need for iterative methods in large-scale simula-
tions exacerbate the computational load. In practical engineering applications, such
as shape optimization, the frequent need of calling these computationally intensive
PDE solvers multiple times intensifies the problem of using expensive fine grid sim-
ulations. Furthermore, the resolution of the computational grid also plays a pivotal
role in the solver’s ability to accurately capture the dynamics governed by PDE, par-
ticularly in representing complex features like shocks. For instance, when operating
on a fine grid, a typical numerical solver is generally capable of resolving all degrees
of freedom inherent in the PDE, thereby capturing sharp features effectively. In
contrast, solving the same PDE on a coarser grid often leads to a loss of detail and
smearing of features, primarily due to the increased discretization error associated
with larger grid steps as previously discussed. Interestingly, if the solution obtained
from a fine grid is resampled to match the resolution of a coarse grid, it often re-
tains most of its sharp features. This observation suggests that the limitations in
achieving high accuracy on a coarse grid are not necessarily rooted in the spatial
resolution itself, but rather in the numerical errors introduced by the solver at this
coarser scale.

Hybrid approaches mostly exploit this very fact. By leveraging NNs, these hybrid
methods effectively compensate in some way for the numerical inaccuracies, bringing
the coarse-grid solutions closer to the fidelity of fine-grid results. This strategy
presents a significant advantage, as it allows for computationally efficient simulations
on coarser grids while still maintaining a high level of accuracy typically associated
with fine-grid computations.

A well received approach involves adopting a predictor-corrector idea. In this
methodology, the numerical solver operates on a coarse grid to generate a low-
resolution solution, which is then refined or “corrected” by a NN to align with
coarsened high-resolution solutions. This approach is rooted in the understanding
that, while analytical expressions for numerical errors in most CFD problems are
elusive, these errors often exhibit regular, predictable patterns. As demonstrated by
[54], such patterns render numerical errors feasible learning objectives for NNs.

This concept has been implemented in various forms, such as the one in [42], where
the NN correction is applied as an additive adjustment to the low-resolution solution
in an offline way. In this model, the numerical solver is treated as a black box.
Another more robust implementation is found in the “Solver-in-the-loop” paper by
[54], where the low-resolution solution itself directly feeds into the NN, with the NN
output being the corrected solution field.

A critical aspect of these approaches, and generally of methods which integrate the
NN within unsteady numerical solvers, is their consideration of the solver’s response
to corrections. This is particularly crucial as numerical errors can accumulate over
time. In an inference scenario, continuously inputting NN-adjusted snapshots back
into the solver can lead to solutions that progressively deviate from the training
data distribution. This divergence can potentially destabilize the solver, as the

3

errors compound with each successive iteration. This challenge, and strategies to
address it, are also discussed in greater detail in subsequent chapters of the thesis.

Another novel approach involves generating space and time-dependent coefficients
for discretized PDEs [2]. While the data-driven coefficients generated for PDE in
this approach are highly tailored, enhancing the model’s adaptability and precision,
it’s important to note that their specificity also limits their application exclusively to
the particular equation for which they were developed. This means that these coef-
ficients, while highly effective for their intended PDE, cannot be readily generalized
or applied to different equations without undergoing a separate, equation-specific
training process. However in many fields of study, including engineering, the num-
ber of important equations is relatively limited. This aspect significantly mitigates
the concern of equation-specificity. For instance, in fields like fluid dynamics, ther-
modynamics, or electromagnetism, key phenomena are often described by a core set
of well-established equations. Therefore, developing tailored coefficients for these
specific equations can be highly beneficial and applicable across a wide range of
problems within these disciplines.

This method capitalizes on the Finite Volume Methods (FVM) framework, specif-
ically focusing on the reconstruction phase. Traditional FVM relies on assuming a
polynomial representation of the quantity across each cell. For example, first-order
upwind methods assume a constant value of the variables of the PDE across the cell
(first-order reconstruction), while second-order methods assume a linear variation
(second-order reconstruction). The innovative approach proposed in the paper [2]
replaces this conventional reconstruction step with a NN-driven process. Here, the
NN is trained to produce coefficients that, when combined with local field values,
effectively transfer these values to the cell faces.

The purpose of this diploma thesis is to extend the ideas and methodologies devel-
oped by the Parallel CFD & Optimization Unit (PCOpt) of NTUA, which has been
actively engaging in integrating NNs to enhance CFD and optimization processes.
This includes work in areas such as turbulence modeling [25], shape optimization
[24, 26] and Metamodel-Assisted Evolutionary Algorithms (MAEA) for optimiza-
tion [12, 49]. The thesis focuses on testing two hybrid methods that combine CFD
and ML for accelerating unsteady PDE solutions, specifically the approaches by [54]
and [2] as discussed above.

These methods significantly accelerate simulations by enabling results comparable
to those obtained on a fine grid to be achieved on a much coarser grid. This effec-
tively means that we can perform complex fluid dynamics simulations with reduced
computational resources while maintaining high accuracy in the results. By mini-
mizing the grid size without compromising the quality of the output, these methods
also offer a practical solution for conducting detailed simulations in scenarios where
computational power is limited, thus making high-fidelity CFD simulations more
accessible and feasible in a wider range of settings and applications (e.g. combined
with ideas of [44] for flow control). They are applied to two 1D unsteady PDE prob-

4

lems: the 1D advection equation and the 1D linear acoustics equation, aiming to
validate their efficacy and robustness. It must be noted that for the effective gener-
alization of the NN within the solver, it’s crucial that the training data encompasses
all characteristic features of the flow.

Initially, the thesis involves generating training data through purely numerical solu-
tions of the discretized PDE on a fine grid across various initial conditions and PDE
parameters. A portion of the TensorFlow code developed for the purely numerical
solution is reused in building the hybrid models. While running the solver, a coars-
ening process is applied to transfer maximum information from the fine grid results
to the coarse grid. The hybrid models are then created using TensorFlow 2.x and
Keras Model subclassing, integrating NNs with the previously developed numeri-
cal components. It must be aknowledged that the open-source codebasis that was
available in the context of the original paper of [2] provided many insights in the
details of the relevant method and was very important in successfully developing
the code for this thesis. After identifying effective hyperparameters, the models are
trained using the coarsened fine grid solutions, saving the NN weights upon comple-
tion. This enables the use of the hybrid solver for time integration under different
initial conditions or PDE parameters (within the trained data distribution), offering
near-fine grid accuracy at significantly increased computational speed. The thesis
also includes a parametric study to evaluate the performance of the models under
various hyperparameter settings, highlighting that the number of recurrent steps
is the most critical factor. Finally, insights and implications are drawn from the
results.

5

6

Chapter 2

Neural Networks

2.1 Introduction

A Neural Network (NN) is a collection of nodes, or “neurons,” connected by edges,
or “synapses,” which transmit signals. Each neuron receives input, processes it
through an activation function, and passes the output it computes to the next layer.
The simplest form of a NN is the feedforward neural network, where the information
moves in only one direction—from the input to the output nodes, through the hidden
nodes. The mathematical representation of a single node is:

y = σ

(
n∑

i=1

wixi + b

)
(2.1)

where xi represents the inputs to the neuron, wi are the synaptic weights, and b is the
bias. The function σ denotes an activation function that introduces non-linearity,
adding to the complexity the neuron can model.

This structure allows the neuron to perform a weighted sum of its inputs, add a bias,
and then apply a non-linear transformation. The ability of a neuron to adjust its
weights and biases through optimization (“training”) is fundamental to its capability
to adapt and “learn” from a given dataset.

7

x1

x2

...

xn

Σ

w1

w2

wn

b

σ() y

Figure 2.1: A graphical representation of a single Neural Network node/“neuron”.
Here x1, ..., xn represent the inputs to the neuron, w1, ..., wn are the synaptic weights,
and b is the bias. The function σ denotes an activation function.

The ability of a single neuron to “learn” statistical correlations is severely limited
[34]. However stacking multiple layers of neurons in a new superstructure (a net-
work) is far more capable. Actually, the reason of the widespread adoption and
success of NNs as a regression function can be summarized by the fundamental
result known as the Universal Approximation Theorem (UAT) [10, 21, 20]. This
theorem states that a feedforward network with a single hidden layer containing a
finite number of neurons can succeed -meaning it possesses the minimum inherent
complexity- in approximating continuous functions on compact subsets of RN , un-
der minimal assumptions on the activation function. This represents a guarantee
of the expressivity that NNs possess as function approximators [15]. In theory, this
means that how well the underlying “real” function is approximated is simply a
matter of how representative the data is of the sample space and how well it is
optimized.

From a statistical perspective, a NN can be viewed as a complex and highly flex-
ible fitting function. It is designed to model the underlying relationships in data
which represent the ground truth (“training patterns”) by adjusting its parameters
(weights and biases) to minimize a cost function (“loss function”). During training,
pairs of input and output data are shown to the NN until the best values of the
trainable parameters are found, so that it successfully maps the provided inputs to
the provided outputs with minimum error. The loss function measures this error
between the predicted output of the NN and the actual target values in the training
data.

At its core, a NN is essentially performing a series of function mappings from the
input layer to the output layer. This can be expressed as a composition of functions,
where each layer fn transforms the input into a new representation, working from
the input layer to the output layer.

NN(x,W) = fN ◦ fN−1 ◦ ... ◦ f1(x,W) (2.2)

8

where x is the input vector and W is the matrix containing all optimizable parame-
ters (weights and biases) of the NN, and assuming identical activation functions at
every layer:

fn(x,Wn) = σ(Wnx+ bn) (2.3)

describes the operation within each layer, where Wn is the weight matrix for the
n-th layer, bn is the bias for the n-th layer, and σ is the activation function.

A typical graph representation can be seen in Fig.2.2.

x1

x2

x3

x4

y1

y2

Inputs
Hidden
Layer 1

Hidden
Layer 2

Outputs

Figure 2.2: A graphical representation of a typical NN with four inputs, two outputs
and two hidden layers in between.

NNs come with two main costs: the expense of acquiring the data and the cost
of training the model, typically accomplished using backpropagation and gradient
descent. However, they are highly computationally efficient during testing or run-
time. In the context of CFD runs, this efficiency could become particularly valuable
during optimization cycles, where the simulation model is called several times as
incremental changes are made to the design variables.

They have also several limitations. A substantial amount of data is needed to suc-
cessfully train a model from scratch (it can be easier to just fine-tune a pre-trained
model for widespread applications). Moreover, the larger and more complex the
model, the greater the volume of data required to train a useful generalizable NN.
For example, in fluid dynamics, data aquisition would mean making several calls to
a CFD software or collecting experimental data, both of which would cost greatly in
time and resources. Plus, the higher the quality of the data, the more they would cost
to aggregate. Additionally, even if these models excel at interpolation, meaning they
can predict well within the range of the data they were trained on, they are prob-
lematic in extending to cases beyond the training data distribution (extrapolation)
[16, 58]. Finally, despite the guarantee provided by the UAT, finding the optimal
values for the parameters of a NN to achieve a meaningful or minimal representation
is a challenging task [38]. Often, this compels users of this technology to increase

9

the complexity of the model significantly by substantially increasing the number of
trainable parameters. Meaning that to ensure that the network can capture the
complexity of the function it is trying to approximate, practitioners often increase
the number of layers (making the network deeper) and/or the number of neurons in
each layer (making the network wider) to provide the network with more “capacity”
or “power” to learn and represent more intricate patterns in the data. However, it
is entirely possible that the same NN -without increasing its complexity- could be
theoretically sufficient [50] for the fitting task, but does not perform perfectly for a
number of reasons (e.g. convergence to local minima, data issues,hyperparameters
choices) [13]. This, in turn, makes the model more computationally expensive both
during training and at runtime. It also must be noted that the training phase may
not be a one-time event. If a data pipeline is in place, the NN may require ongoing
fine-tuning or even re-training.

When dealing with physics simulations, another concern is that the phenomena
described by PDEs and their spatiotemporal behavior can be exceptionally intricate
(as they have more degrees of freedom than ODEs), making it even more challenging
for fitting functions to effectively capture them. Multiscale phenomena, for instance
(such as turbulent flow), would be a very hard problem, as fitting functions tend to
focus on capturing the bigger-scale patterns in the data, whereas it is well known in
physics that turbulence, which is a small scale phenomenon, significantly influences
the overall solution.

2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs), to be exclusively used in this work, were
introduced by [28] as a specialized kind of NN used predominantly in processing
data with a grid-like topology [15], such as images, videos and, more recently, sim-
ulations. CNNs provide a mechanism to effectively recognize spatial hierarchies in
data. Convolutional networks are a type of NN where, in one or more layers, the
standard matrix multiplication is replaced with convolution operations.

Generally, a convolution is a mathematical operation that combines two functions
to produce a third function. In the context of CNNs, supposing there is a large
matrix D of size N ×M representing the input of the operation, and a small matrix
F (“filter” or “kernel”) of size n×m, the convolution operation involves sliding the
kernel accross the data matrix computing the sum of element-wise multiplications
at each position. This sum forms a single value in the output (“feature map”). The
convolution operation at every spatial position (x,y) of the data matrix D can be
computed as:

10

(F ∗D)(x, y) =
N−1∑
i=0

M−1∑
j=0

F (i, j)D(x+ i, y + j) (2.4)

More specifically, the detailed steps for a typical 2D convolution (depth is excluded
for simplicity here) are the following:

1. Initialization: Position the top-left corner of the filter F at the top-left corner
of the input matrix D.

2. Compute dot products: At each position (x, y), perform element-wise mul-
tiplication between the filter F and the overlapping sub-matrix of D, and sum
these products. This summation yields a single scalar value that constitutes
one element of the output feature map.

3. Slide the filter: Move the filter F across the input matrix D by a specified
number of matrix elements (the ’stride’) horizontally (or vertically once it
reaches the edge of theD matrix), repeating the multiplication and summation
process at each step.

4. Form the output: The values obtained from the summation process at each
filter position, form the output of the operation, called “feature map” or “ac-
tivation map”.

This convolution operation is schematically presented in Fig.2.3.

d11 d12 d13 d14

d21 d22 d23 d24

d31 d32 d33 d34

w1 w2

w3 w4

d11w1 + d12w2 + d21w3 + d22w4 d12w1 + d13w2 + d22w3 + d23w4 d13w1 + d14w2 + d23w3 + d24w4

d21w1 + d22w2 + d31w3 + d32w4 d22w1 + d23w2 + d32w3 + d33w4 d23w1 + d24w2 + d33w3 + d34w4

Input D Filter F

Output

Figure 2.3: A schematic representation of the convolution operation for a 3 × 4
input matrix D and a 2× 2 filter F. Firstly, the dot product of the filter and the first
submatrix of D is computed (blue box in input and output). Then the filter slides
over (in this example, stride = 1) to the next submatrix and the new dot product is
computed (red box in input and output). This is repeated until the whole input matrix
D has been slided over and the output matrix has been competely filled.

11

It is clear that each convolution operation examines a small region of the input
matrix D at a time, so when all of these sums are aggregated in the feature map,
this will allow it to distill local spatial relationships between different regions in the
input.

In CFD, convolution is a common operation: To compute spatial derivatives, for
example, via a finite difference scheme, a stencil of coefficients is chosen which then
slides over the grid’s field values, computing dot products at each position which
amount to the approximated spatial deriatives at each point on the grid. This spatial
derivatives snapshot would, in that case, be the “feature map”.

In general, when depth is also included, filters of convolution must match the input
tensor’s dimensions. For instance, a 2D field snapshot of N × M points with L
variables would amount to a (N,M,L) tensor. Then, the filter’s dimensions would
be (n,m, l), where n ≤ N,m ≤ M, l = L. This can also be generalized for a 3D
field. Now, as described above, for such a filter a scalar is computed at all possible
positions. When a scalar is computed at all positions, the output is an activation
map with dimensions (N ′,M ′, 1) where N ′&M ′ values are based on the input tensor
size, the input size and the stride (and in general N ′ ≤ N,M ′ ≤ M).

Of course in practice, many independent filters NF -containing independent weights-
are convolved with the input, which means that the input is tranformed to a tensor
with a shape of (N ′,M ′, NF). All these filters together constitute a convolutional
layer. What the convolutional layer has achieved is a re-representation of the input
tensor in terms of the weights of each filter. Now this (N ′,M ′, NF) tensor, after
being activated by a non-linear function (e.g. ReLU), serves as an input of the next
convolutional (or fully-connected) layer and so on and so forth.

It must also be noted that because convolution produces by default a result of smaller
spatial dimensions compared to the input (as N ′ ≤ N,M ′ ≤ M) padding may be
needed. Padding is the process of simply extending the tensor to be convolved with
some lines of cells or pixels so as to keep the dimension of every re-representation
at the same size (which would mean that N ′ = N,M ′ = M is forced) or to prevent
it from quickly diminishing. In the context of the CFD example discussed above,
with a stencil of coefficients being convolved with the field values of a grid, this is
equivalent to adding ghost cells to the computational domain.

In a CNN, the hidden layers include one or more layers that perform convolutions.
Otherwise, a typical CNN architecture may also include pooling and Fully Connected
(FC) layers. An example of a prototype of a CNN architecture is presented in Fig.2.4

12

Inputs
Conv
Layer 1

Activation
Max

Pooling
Conv
Layer 2

Activation
Max

Pooling
Fully

Connected
Outputs

Figure 2.4: A simple CNN architecture could include convolutional layers, activation
functions, pooling layers (e.g. max pooling) and a FC layer.

Pooling layers perform a downsampling operation of some sort but their usage has
generally been declining [51], so they will not be further analyzed. Finally, FC layers
are commonly used as the final (or couple of final) layer(s), as a way to flatten the
activation maps to a vector. In this thesis, pooling and FC layers are not used.

One of the key advantages of CNNs is their inherent ability of translation invariance
[28]. Once a feature is learned at one location, the same feature can automatically be
recognized at a different location, making CNNs very efficient in recognizing patterns
no matter where they appear in the field of view (or on a grid, in a CFD application).
This is particularly useful in tasks like object detection and classification in images,
where the location of the object is not fixed. But it is also one of the main reasons
that CNNs are the most prominent choice when dealing with CFD simulations. The
way that hyperbolic systems are treated -which comes down to the method of the
characteristics- clearly indicates that information translation is the most dominating
pattern in fluid dynamics. This means that having translational invariance built-in
from the start would provide huge gains in saving costs of the NN having to learn it
purely from data by itself. It is noted that it is also possible to attain rotation or any
transformation invariance for a CNN, but this comes with the cost of significantly
altering (and increasing) the training data accordingly.

2.3 Neural Network setup

When setting up a NN, various elements need to be carefully considered to ensure
optimal performance. Below some of these critical components are briefly presented:
activation functions, weight initialization, and regularization.

Activation Functions

Activation functions are an essential component of NNs as they are the reason the
NN can learn complex behavior. If they were not present, multiple layers of the NN
would just collapse to a single linear transformation, which has very limited capacity
to model statistical correlations. This can be seen in the following formula:

y = WNWN−1...W1x = Wtotx (2.5)

13

However, if an activation function is included at each layer (here identical activations
are presumed at each layer), a more complex structure can be built:

y = σN(WNσN−1(...W2σ1(W1x)) (2.6)

The choice of activation function has a big influence on the NN’s training speed and
performance. At the beginnings of the AI field, the activation function that was
used was a step function [46]. This was an attempt to mimic the way the human
brain was thought to function at the time. However its shortcomings of being non-
differentiable and always saturated (which means the neuron’s response becomes
insensitive to changes in its input) has now rendered it obsolete. Nowadays, most
common activation functions include sigmoid, hyperbolic tangent (tanh), Rectified
Linear Unit (ReLU), Leaky ReLU (LReLU) and Exponential Linear Unit (ELU)
functions. The behaviour of their output y for an input z, can be observed in
Fig.2.5. Then, they are further analyzed below.

Figure 2.5: A graphical representation of common activation functions.

Sigmoid activation function and the hyperbolic tangent one are given by

sigmoid(z) =
1

1 + e−z
, tanh(z) =

ez − e−z

ez + e−z
(2.7)

14

Sigmoid was one of the first moderately successful activation functions [47]. Sigmoid
and hyperbolic tangent activation functions both suffer from some disadvantages.
Firstly, if the neuron is saturated, meaning that z = −10 or z = 10 (see Fig.2.5), the
gradients are “killed” during backprogation. The core issue is that the sigmoid func-
tion squashes its inputs to a range between 0 and 1, and its derivative is maximally
0.25 (at the origin). This means that if the neuron is saturated, when the input z
is relatively small or big, the gradients during backpropagation will be very small.
Meaning that when these small gradients are multiplied through an increasing num-
ber of layers, this leads to an exponential decrease of the gradient magnitude in the
layers near the start. This makes it difficult for the network to learn, as the weights
in the earlier layers receive very small updates, leading to slow convergence.

Next, ReLU and its most common variants LReLU and ELU are presented, though
there are other ones like Gaussian Error LU (GELU) [18] which has shown promising
results in CFD-DL combination settings [26].

In [14], which introduced ReLU, it was demonstrated that deep NNs with ReLU acti-
vation functions can achieve better performance than those with traditional sigmoid
or tanh activations, especially the deeper the architectures get.

ReLU(z) = max(0, z) (2.8)

LReLU [35] was proposed to mitigate the ”dying ReLU” problem. This problem
occurs when neurons activated by ReLU are continuously fed negative inputs which
results in them constantly outputing zeros (see Fig.2.5). This means that they do
not contribute to the learning process anymore. Leaky ReLU allows a small, non-
zero gradient (regulated by the constant a in Eq.2.9) to pass through when the input
is negative, which allows backpropagation to continue updating the weights of these
neurons.

LReLU(z) =

{
x if z > 0

αx if z ≥ 0
(2.9)

ELU [9] was proposed to preserve the benefits of LReLU while also providing real dif-
ferentiability everywhere (whereas ReLU and LReLU are differentiable everywhere
except at z = 0), where, in practice, a value for the gradient is arbitrarily chosen (0
or 1 usually).

ELU(z) =

{
z if z > 0

α(exp(z)− 1) if z ≥ 0
(2.10)

where again, constant a regulates how small or big the gradient is for negative input
values z ≤ 0.

15

ReLU and its variants are generally preferred for hidden layers in deep networks
due to their computational efficiency and also due to their proven ability to mit-
igate the vanishing gradient problem as previously discussed. However, a signifi-
cant advantage of sigmoid and tanh functions over LU variants are that they are
C∞ functions. This means that their derivatives of higher order are also existent
and computable. This is extremely important in certain cases where higher order
derivatives are needed, for instance in a PINN [45] where derivatives of a PDE of
an arbitrary order may be needed or for using a second-order optimization method
like L-BFGS [32, 36]. Hence in these cases the hyperbolic tangent function may still
be the best alternative. In the present thesis, ReLU activation function was chosen,
mainly because it still dominates the CNN literature and also due to its reduced
computational cost (e.g. in contrast to ELU).

Weight Initialization

In a NN, weights define the strength and direction of influence between neurons.
The adjustment of these weights through training is what enables the network to
learn from data. The training process involves many iterations of updating the
weights to minimize the difference between the actual output of the network and the
desired output, a process guided by backpropagation (see sec.2.5) and optimization
techniques like Stochastic Gradient Descent (SGD). More details for the training
procedure of a NN can be found in sec.2.4.

Weight initialization is the process of assigning initial values to these weights and
is critical to the NN’s training behavior. Starting with arbitrary or random values
might lead to problems: excessively large weights can cause neurons to become
saturated, leading to issues such as exploding gradients, where changes in weights
blow up. In constrast, starting with very small weights might result in the vanishing
gradients problem, where changes in weights are so small that the optimization
process of the NN becomes exceedingly slow or even stops [3]. Different initialization
strategies aim to balance these concerns by setting the weights to values that are
neither too large nor too small and to preserve a reasonable and diverse norm of
neuron outputs, and hence, a reasonable norm of gradients during training.

Xavier initialization [13] is designed to address the issue of initializing the weights
in a Deep NN (DNN) in such a way that the variance of the inputs is maintained
through each layer. The key idea is to keep the scale of the gradients roughly the
same in all layers, preventing the gradient problems that were described previously.
The Xavier initialization sets a layer’s weights W to values randomly drawn from a
Gaussian distribution with zero mean and a variance of 2/(Nin+Nout), where Nin is
the number of neurons feeding into the layer and Nout is the number of neurons the
layer feeds into. This choice is based on the assumption that the activation function
is symmetric (e.g. tanh). However, even for non-symmetric activation functions this
initialization method provides a good starting point which has been shown to work
quite well, and has even become the default choice for weight initialization in Keras.

16

He initialization’s [17] main idea is to address the problems associated with training
DNNs that use ReLU -or one of its variants- as activation functions. It sets the initial
weights of the network layers to random values drawn from a Gaussian distribution
with mean 0 and variance 1/Nin, where Nin is the number of input units in the
weight tensor.

As one can see in the variance term, Xavier initialization considers both the number
of input and output units, while He initialization only considers the number of input
units. This is due to ReLU activations not outputing values in a symmetric way
around zero, and because when passing through a ReLU activation, the variance is
halved (as all negative values are sent to zero).

The significance of weight initialization becomes more relevant as the NNs get
deeper. Then, the issues of vanishing or exploding gradients across layers are mag-
nified as the gradients pass through more layers during the backward pass (meaning
they are multiplied with inappropriately big or small values of weights or resulting
activations more times). The choice of initialization method often depends on the
activation function used in the network. For instance, He initialization is generally
preferred for networks with ReLU activation functions, as it accounts for the non-
linear nature of ReLU. The overarching goal of these methods is to ensure a stable
and steady flow of gradients through the network so as to foster a more effective
learning process. In the present thesis, both methods gave similar results for both
Xavier and He initialization, so Xavier initialization was chosen.

Regularization

Regularization techniques are essential in the construction and optimization of NN
models to prevent overfitting (and hence improve generalization), and maintain
model simplicity. Overfitting occurs when a model learns patterns specific to the
training data, reducing its accuracy on new data that it has not explicitly encoun-
tered while optimizing but are inside the training data distribution.

Generally, there are arbitrarily many functions that fit any arbitrary dataset. Reg-
ularizers are a way to kind of circumvent this problem by adjusting the NN to
produce solutions that exist in a certain part of the solution manifold. This helps
the NN choose between all these infinitely many alternatives, that all cupture the
data statistics, to be a meaningful one based on the problem at hand. Practically,
regularization introduces additional constraints into the model to penalize overly
complex solutions. It can also be viewed as a way of trading off training loss and
generalization loss on a test set. Next, some common regularization techniques for
NNs are presented.

L1 regularization [53] introduces a penalty to the loss function equal to the absolute
value of the weights (a L1 norm of the weights vector) which promotes sparsity,
and L2 regularization adds a penalty equal to the square of the magnitude of the
weights (a L2 norm of the weights vector), effectively promoting small and diffused

17

values, with consistent norms to one another. A combination of both regularization
techniques, called Elastic Net [60], is also possible. Mathematically these can be
described in the following way:

Lreg = L+ λ1

n∑
i=1

|wi|+ λ2

n∑
i=1

w2
i (2.11)

where:

� Lreg: Regularized loss function.

� L: Original loss function.

� λ1: Control knob of the strength of the L1 regularization term.

� λ2: Control knob the of strength of the L2 regularization term.

� |wi|: Absolute value of the ith NN weight.

� w2
i : Square of the ith NN weight.

� n: Number of weights.

Given the regularization parameters λ1 and λ2, the regularization method applied
is:

Regularization method =

L2 regularization if λ1 = 0 and λ2 ̸= 0,

L1 regularization if λ2 = 0 and λ1 ̸= 0,

Elastic Net if λ1 ̸= 0 and λ2 ̸= 0.

(2.12)

Dropout [19] is a computationally inexpensive way to regularize large neural net-
works. During training, a proportion of neurons is randomly set to zero within each
update cycle. This prevents units from co-adapting too much and forces the network
to learn more robust features.

Early stopping [39] involves halting the training process when the performance on
a validation set starts to deteriorate. This simple approach assumes that as the
model begins to overfit the training data, its performance on the validation set will
begin to decline. There have been papers that challenge this approach as, in many
problems, the performance on the validation set might firstly get worse but then get
better again [40].

In the present thesis, regularization is treated with extreme caution. In this work
there are included techniques that even though they serve a different primary pur-
pose, also have a regularizing effect, in the sense that they too enforce solutions
that have certain significant characteristics. This includes the layer that enforces
polynomial accuracy (see 3.3.2) and the recursion or stockpiling of multiple steps

18

in the loss function (see sec.3.3.1). In the current thesis, using L1 and L2 regular-
ization was tested and led to worse results during inference time. Hence, from the
traditional regularizers, only early stopping was used.

2.4 Training a Neural Network

2.4.1 Training algorithm

Algorithmically, training a NN consists of the following steps:

1. Acquire data: Collect and preprocess the data suitable for the neural net-
work. It should be expected that NNs perform well on test data that lie inside
the training data distribution.

2. Initialize the architecture and parameters of the NN: Define the struc-
ture of the neural network and initialize parameters (weights and biases).

3. Forward pass:

� Input data is passed through the network layer by layer. At each layer,
the input undergoes a linear transformation: z = Wx+ b.

� The result is, then, passed through an activation function σ: y = σ(z).
This introduces non-linearity, allowing the network to learn complex pat-
terns.

� This process continues until the output layer is reached, producing the
network’s prediction.

� The loss (error) is calculated using a loss function (e.g., Mean Squared
Error (MSE) or Mean Absolute Error (MAE)). The loss quantifies how
close the network’s prediction is to the target values associated with the
training set.

4. Backward pass: Compute the gradient of the loss function with respect to
each weight using the chain rule. This process, called error backpropagation, is
performed, during which information travels backwards from the output layer
to the input layer.

5. Update weights: Use an optimization algorithm (e.g., Stochastic Gradient
Descent or Adam) to adjust the weights in the direction that minimizes the
loss, which is the direction of the gradient of the Loss with respect to the
weights.

The forward and backward propagation steps are repeated for many iterations or
epochs over the training set. An epoch is completed when all data points have been
used once in training.

19

2.4.2 Hyperparameters tuning

Hyperparameters in NNs are the parameters whose values are set before the learning
process begins. Unlike model optimizable parameters, which are learned during
training, hyperparameters are predefined and govern the overall configuration and
performance of a neural network. NN hyperparameters include the number of layers
-or more generally, the number of optimizable parameters in the NN-, the batch size,
the size of the learning rate, the number of epochs and the strength of regularization
terms in the Loss function. The choice of hyperparameters affects how quickly a
model learns, its overall performance, and its ability to generalize from training data
to unseen data. Hence, selecting the right set of hyperparameters can potentially
be the difference between a mediocre and a state-of-the-art model.

Hyperparameter tuning is a critical aspect of designing and training machine learn-
ing models, especially in cases combining CFD and DL, where models can be in-
credibly complex and sensitive to the settings (see sec.5.5). The typical methods
for hyperparameter optimization include grid search, random search, Bayesian op-
timization, and meta-heuristic algorithms (Evolutionary Algorithms (EA), Particle
Swarm Optimization (PSO)) [4].

Traditionally, grid and random search algorithms have been the primary methods
for hyperparameter optimization. Grid search systematically works through multi-
ple combinations of parameter values, evaluating and comparing the models’ perfor-
mances. It is represented as an exhaustive searching through a manually specified
subset of the hyperparameter space of a learning algorithm. However, grid search
suffers from the curse of dimensionality: as the number of hyperparameters increases,
the number of evaluations needed grows exponentially. This makes it computation-
ally infeasible for large datasets or models with many hyperparameters. Random
search, on the other hand, randomly samples the space of possible hyperparameters.
For certain types of problems and hyperparameter spaces, it can find good solutions
faster than grid search [4].

Next, Bayesian optimization uses past evaluation results to form a probabilistic
model mapping hyperparameters to a probability of a score on the objective function
and then uses that model to select the most promising hyperparameters to evaluate
in the true objective function. This approach is particularly powerful when the
budget for evaluations is limited or when each evaluation is time-consuming.

Finally, meta-heuristic algorithms such as EA [57] and PSO [55] are designed to
explore large and complex search spaces and can often find good solutions quickly
for a wide range of problems.

Each method has its trade-offs in terms of computational cost, convergence speed,
and suitability for the dimensionality and nature of the hyperparameter space. One
might also explore hybrid approaches [11], which combine the strengths of different
methods. In this thesis, random search is the technique employed for identifying

20

effective hyperparameters for the NNs.

2.5 Automatic Differentiation and AD&DL frame-

works

Automatic Differentiation (AD) [56], is a technique to evaluate the (exact) derivative
of a function specified by a computer program. AD exploits the fact that every
operation, no matter how complex, is composed of elementary arithmetic operations
and elementary functions, which are almost always differentiable [22]. By suitably
applying the chain rule repeatedly to these operations, derivatives of arbitrary order
can be computed automatically and efficiently. This capability is fundamental in
DL, where optimization algorithms require the computation of gradients with respect
to a great number of design variables. There are two modes of AD, forward [56]
and reverse [31], each being computationally efficient in different scenarios: reverse
mode is more efficient when the dimensionality of the design variables is bigger
than the dimensionality of the output and conversely, forward mode is cheaper in
the opposite cases. In NNs, reverse-mode AD (backpropagation [47]) is preferred
because the number of design variables (weights and biases) typically far exceeds
the number of output variables.

In recent years, a range of frameworks have emerged that significantly reduce the
computational demands and programming complexity associated with AD and DL.
Core to this development are engines like Tapenade, TensorFlow, PyTorch and JAX.
Many of these feature integration of specialized tools and auxiliary libraries, such
as Keras for TensorFlow, which specifically focus on facilitating DL techniques. In
this thesis, reverse AD (backpropagation) was employed for the backward pass (see
section 2.3) through the hybrid models, which encompass both the NN and the
differentiable numerical model components. This crucial process was handled using
TensorFlow 2.x in conjunction with Keras.

21

22

Chapter 3

Hybrid Solvers

3.1 Introduction

In this thesis, the term “model” refers to any method or process that takes the
input ρ(t) and generates the output ρ(t + ∆t). The term “solver” refers to the
model along with a loop iterating over all desired time steps. The discretization
indices used throughout this chapter are: i ∈ [1,M] for space and n ∈ [1, N] for
time. The 1D advection equation, which is the first case examined in this work (see
Ch.4), serves as an example for the following sections.

A numerical model is a discretized version of the ODE/PDE. A typical numeri-
cal solver for the 1D advection equation using a FVM second-order scheme and
no limiters, with a 3-point stencil is presented in Fig.3.1. In this model, spatial
derivatives are computed based on the field snapshot values and the pre-defined
Taylor-expansion derived coefficients. Fluxes are then calculated using these spatial
derivatives and the field snapshot at the next time step is obtained through time in-
tegration. The same process can be implemented for any PDE. This model iterated
over all desired time steps would constitute a complete numerical solver.

23

ρ̂ni ,∀i

Initial Condition

ρ|n=0
i ,∀i

Spatial derivatives calculation

∂ρ
∂x

∣∣∣n
i
=

aρni+1+bρni +cρni−1

2∆x

∂ρ
∂x

∣∣∣n
i
,∀i

Flux calculation

F n
i+ 1

2

= ūρni +
1
2|ū|

(
1− |ū|∆t

∆x

)
∂ρ
∂x

∣∣n
i

F n
i+1

2
,∀i

Time derivative calculation

∂ρ
∂t

∣∣n
i
= −

Fn

i+1
2
−Fn

i− 1
2

∆x

∂ρ
∂t

∣∣∣n
i
,∀i

Integrating in time with forward Euler

ρ̂n+1
i = ρni +∆t∂ρ∂t

∣∣∣n
i
,∀i

ρ̂n+1
i ,∀i

x(time steps)

N
u
m
er
ic
al

m
o
d
el

Figure 3.1: Flowchart of a typical numerical solver for the 1D advection equation
(see Ch.4) using a second-orde, not limited, FVM scheme and no limiters, with a
3-point stencil. First, spatial derivatives are computed based on the field snapshot
values and the pre-defined Taylor-expansion derived coefficients {a,b,c}. Then, fluxes
are computed, and finally, the field snapshot at the next time step is obtained through
time integration using an explicit first-order Euler scheme. The same process can be
implemented for any PDE.

24

The approach examined in this thesis is the combination of a numerical model
with NNs aiming to speed up the numerical solver. This chapter presents two
specific hybrid models. In the first one, as initially proposed by [2], a CNN is
employed to produce space and time dependent nodal coefficients, which are fed
into the numerical model instead of using the traditional Taylor expansion derived
coefficients. In the second hybrid model (see also [54]), a CNN provides space and
time dependent corrections to the prediction of the numerical model in an online
manner.

The essential parameters for the two hybrid methods are defined in Tab.3.1.

Parameter Description
K # different initial conditions
CR coarsening ratio = 2β, β ∈ N∗\β < λ2

λ1 factor that defines # grid points
λ2 exponent that defines # grid points
Mf # points on the fine grid = λ1 × 2λ2

Mc # points on the coarse grid =
Mf

CR

Nf # time steps for the fine grid
Nc # time steps for the coarse grid
S stencil size

Table 3.1: Important parameters and their description. Subscript f is used to denote
parameters associated with the fine grid and subscript c to denote parameters associ-
ated with the coarse grid. β can be any natural number. The formula providing the
number of points on the fine grid is defined in a way that facilitates experimenting
with various coarsening ratios.

3.2 Hybrid models presentation

The hybrid methods (see also [2, 54]) consist of the following basic stages:

Stage 1: Integrate the discretized PDE in time, on the fine grid (Mf points),
for one initial condition (e.g. a square waves of some height). This is
done for as many time-steps Nf as necessary until all characteristics of
the flow have manifested (e.g. including both transient and periodic
steady state). While the solver is running, coarsen in time (via down-
sampling) to Nc time instances, and in space (via averaging) to Mc

points and save these coarsened fields into storage. Repeat the same
process for K different initial conditions (e.g. K square waves of dif-
ferent heights). These K sets of solutions are indepedent and can, in
principal, be parellized. At the end, the training dataset is K×Nc×Mc

in size.

25

Stage 2: Train the CNN on the previously coarsened data. The output of the
CNN are nodal coefficients (for the LI method) and field corrections
(for the LC method).

Stage 3: A new initial condition of high resolution, which has not been seen by
the model during the training phase, (e.g. a square wave of different
height) is coarsened and fed into the hybrid solver. The CNN produces
either nodal coefficients (in the LI method) or field corrections (in the
LC method) and the numerical parts of the solver use these to predict
the solution at the next time steps.

Each of the stages are described in detail in the following subsections. For simplic-
ity’s sake, the procedure is analyzed for the case of the 1D advection equation with
constant values to the parameters of Tab.3.1. Specifically, K = 30 different initial
conditions are used (square waves with varying heights and widths), the number of
fine time steps are Nf = 1536, of coarse time steps Nc = 192, of fine grid points are
Mf = 384 and of coarse grid points are Mc = 48. Also, a 3-point stencil is chosen
(meaning that S = 3), the coarsening ratio is CR = 8.

3.2.1 Stage 1: Run the numerical solver, coarsen and collect

the data

The numerical solver of the discretized problem of 1D advection (see Fig.3.1) runs
on a Mf = 384-points grid (“fine grid”) for Nf = 1536 time steps (which correspond
to 2-periods) for all 30 initial conditions (can be done in parallel). While this solver
runs, only every CR = 8-th snapshot is averaged in groups of CR = 8 and, then,
stored. This corresponds to temporally coarsening (via downsampling) the 1536
time steps to 192 ones and spatially coarsening the 384 to 48 grid points (according
to CR = 8). At the end of stage 1, a K × Nc × Mc dataset is obtained, whose
dimensions correspond to different initial conditions, time steps and spatial points
respectively. In the case of 1D advection, a 30× 192× 48 dataset is obtained. Stage
1 is presented in Fig.3.2.

26

ρ̂ni ,∀i

DATABASE 1

for k = 1 : K
initial conditions

Initial Condition

ρ|n=0
i ,∀i

Numerical Model

ρ̂n+1
i ,∀i

Temporal Coarsening:
if mod(n,CR) = 0

Spatial Coarsening:
averaging out nodes
in groups of CR

DATABASE 2

x(time steps)

Figure 3.2: Flowchart of Stage 1: running the numerical solver (fine grid), spa-
tiotemporally coarsening and collecting data. For the 1D advection case (where
CR = 8), every 8-th time step, the snapshot is spatially coarsened and saved into
storage. Spatial coarsening is done via averaging out every group of CR = 8 nodes
into a single one. The (if) node of the flowchart practically executes temporal coars-
ening through downsampling.

These coarsened fields in storage constitute the data that the CNN is going to
be trained on. This means that the quality of the training data depends on how
well the coarsening step maps the high-resolution fields on the coarse grid. In the
square waves case, because of the simple geometry involved, this is relatively easy

27

to perform. For more details see sec.4.3.

3.2.2 Stage 2: Training the CNN

This is the stage where the two methods of LI and LC start to diverge. Each one
is presented in the following two subsections. In the training dataset there are
K different initial conditions and Nc available coarse time steps. Meaning that in
general there areK×Nc available (coarsened) snapshots or 30×192 for the discussed
case, meaning 5760 available snapshots. If n is the counter over the Nc = 192
time steps, then the snapshots from n = 0 to n = Nc − 1 = 191 (which amount
to K × (Nc − 1) snapshots in general and 30 × 191 = 5730 in the specific case)
constitute the training input data. And the -displaced in time- snapshots from
n = 1 to n = Nc = 192 (K × (Nc − 1) or 30× 191 = 5730 snapshots) constitute the
training output data. Recall that both hybrid models operate on the coarse grid.

LI method

For all the snapshots in the training input in parallel:

Step 1: The weights of the NN are initialized in an appropriate manner (Xavier
initialization).

Step 2: Firstly, the coarsened field snapshots ρni , ∀i are fed into the hybrid model
(see Fig.3.3). These are processed by the CNN which produces nodal
coefficients for the Mc = 48-points (coarse) grid. This means that in the
current case, (S = 3-point stencil), 48 different groups of 3 coefficients
are produced for each snapshot. As discussed, this is done in parallel for
all available snapshots in the training input, meaning that, at the end,
(K × (Nc − 1)) ×Mc × S or in the specific case (30 × 191) × 48 × 3 =
5730× 48× 3 coefficients are produced.

Step 3: These coefficients are fed into the numerical part of the solver (on the
coarse grid), which is the FVM with a second-order scheme with a 3-
point stencil (no limiter).

Step 2a: The coefficients are used in conjuction with the field values
(see Step 1) to compute the spatial derivatives at every grid
point, as follows

∂ρ

∂x

∣∣∣n
i
=

aiρi+1 + biρi + ciρi−1

2∆x

∣∣∣n
i
,∀i (3.1)

Step 2b: The spatial derivatives are used to compute fluxes at the

28

faces

F n
i+ 1

2
= ūρni +

1

2
|ū|
(
1− |ū|∆t

∆x

)
∂ρ

∂x

∣∣∣n
i
,∀i (3.2)

Step 2c: The fluxes are used to update time derivatives of ρ and,
using forward Euler, the field snapshot at the next time
step is

ρ̂n+1
i = ρni +∆t(−

F n
i+ 1

2

− F n
i− 1

2

∆x
),∀i (3.3)

These are the field snapshots estimated by the hybrid model.

Step 4: The hybrid model predictions ρ̂n+1
i ,∀i for all training data, are a dataset

of size (K×(Nc−1))×Mc or (30×191)×48 = 5730×48 in the discussed
case. Using a Loss function, these are compared with the coarsened high
fidelity (Hi-Fi) snapshots that are available in the training output data
ρn+1
∀i (of the same size).

Step 5: The weights of the CNN inside the hybrid model are updated, using
Minibatch Gradient Descent, to minimize the Loss function. The weight
update for the hybrid model utilizes the chain rule :

W new = W old − lr
∂L

∂W

∣∣∣∣old = W old − lr
∂L

∂ϕ4

∂ϕ4

∂ϕ3

∂ϕ3

∂ϕ2

∂ϕ2

∂ϕ1

∂ϕ1

∂NN

∂NN

∂W

∣∣∣∣old,
(3.4)

where L stands for the Loss function, W is the matrix of all the weights of
the NN, ϕ1,2,3,4 are defined in Fig.3.5. Note that both the CNN and the
numerical model part of the hybrid model are Automatically Differen-
tiated (reverse mode). This is only possible for differentiable numerical
parts, which is why traditional limiters are excluded from hybrid models.

This whole procedure (for the LI method) is summarized in Fig.3.3

29

For k = 1 : K
initial conditions

For n = 1 : Nc

time steps

For i = 1 : Mc

grid points

DATABASE

ρni ,∀i,∀n,∀k

Spatial derivatives calculation

ϕ1(coeffs
n
i , ρ

n
i) =

aiρ
n
i+1+biρ

n
i +ciρ

n
i−1

2∆x

CNN

∂ρ
∂x

∣∣n
i

Flux calculation

ϕ2

(
ρni ,

∂ρ
∂x

∣∣n
i

)
= ūρni +

1
2 |ū|

(
1− |ū|∆t

∆x

)
∂ρ
∂x

∣∣n
i

F n
i+1

2

Time derivative calculation

ϕ3

(
F n
i+ 1

2

, F n
i− 1

2

)
= −

Fn

i+1
2
−Fn

i− 1
2

∆x

∂ρ
∂t

∣∣n
i

Integrating in time with forward Euler

ϕ4

(
ρni ,

∂ρ
∂t

∣∣n
i

)
= ρni +∆t∂ρ∂t

∣∣n
i

ρ̂n+1
i ,∀i,∀n,∀k

Loss

MAE= 1
K

1
Nc

1
Mc

∑K
i=1

∑Nc

i=1

∑Mc

i=1 |ρ
n
i − ρ̂ni |

ρn+1
i ,∀i,∀n,∀k

coeffs ani , b
n
i , c

n
i

Figure 3.3: LI method flowchart of the forward pass (see Sec.2.4) of a single epoch
(full-batch for simplicity) of the training phase (Stage 2). The data are high-resolution
numerical solutions that have been coarsened. For all initial conditions k ∈ [1,K], all
(coarse) time steps n ∈ [1, Nc] and every grid point i ∈ [1,Mc] (coarse grid) the hybrid
model, given the nth precomputed snapshot, estimates the n+ 1th snapshot. Train-
ing is done by comparing all n+ 1th estimated snapshots to the n+ 1th precomputed
(coarsened Hi-Res) snapshots and updating the weights in the direction of the gradient
of the Loss function w.r.t. the weights (computed via backprop).

30

Steps 2 to 5 are iterated for as many epochs as needed until the Loss function has
sufficiently converged. At the end of stage 2, after the training is over, the synaptic
weights of the NN are saved. Then the hybrid model can be used to produce solutions
for an initial condition out of its training patterns (see sec.3.2.3). However, before
analyzing the inference part of this model, the LC method’s training stage is also
going to be described.

LC method

For all the snapshots in the training input, meaning in general for K× (Nc− 1) and
in the 1D advection case for 30× 191 = 5730 in parallel:

Step 1: The weights of the NN are initialized (Xavier initialization).

Step 2: Firstly, the coarsened field snapshots ρni , ∀i are fed into the hybrid model
(see Fig.3.4). The field snapshots ρni ,∀i (which areK×(Nc−1) in general
and 5730 in the discussed case) are processed by the numerical part of
the hybrid model which produces temporary new field snapshots (of the
same size) at the next time step ρ̂n+1

i |temp,∀i.

Step 3: Then, the 5730 temporary-new field snapshots ρ̂n+1
i |temp, ∀i are fed into

the CNN which provides corrections for the Mc = 48-points (coarse)
grid. This means that (K × (Nc − 1)) × Mc or (30 × 191) × 48 =
5730×48 different corrections CORRn+1

i ,∀i to the temporary-new fields
are produced. (This means that at each different point in spacetime a
different correction is generated).

Step 4: The new field snapshots ρ̂n+1
i ,∀i, are the sum of the temporary-new field

snapshot and the produced corrections ρ̂n+1
i = ρ̂n+1

i |temp+CORRn+1
∀i ,∀i.

Step 5: The hybrid model predictions ρ̂n+1
i ,∀i ((K×(Nc−1))×Mc new snapshots

in general and 5730 × 48 in the examined case) are compared with the
coarsened Hi-Fi snapshots that are available in the training output data
ρn+1
i ,∀i (obviously of the same size as the predictions). This is done

using the Loss function.

Step 6: The weights of the CNN inside the hybrid model are updated, in the
direction that the Loss function is minimized, similarly to the LI method.

Steps 2 to 6 are iterated for as many epochs as needed until the Loss function has
sufficiently converged as previously discussed in the LI method.

31

For k = 1 : K
initial conditions

For n = 1 : Nc

time steps

For i = 1 : Mc

grid points

DATABASE

ρni ,∀i, ∀n,∀k

Numerical model

ρ̂n+1
i

∣∣
tempCNN

correctionn+1
i

+

ρ̂n+1
i ,∀i,∀n,∀k

Loss

MAE= 1
K

1
Nc

1
Mc

∑K
i=1

∑Nc

i=1

∑Mc

i=1 |ρ
n
i − ρ̂ni |

ρn+1
i ,∀i,∀n,∀k

Figure 3.4: LC method flowchart of the forward pass (see Sec.2.4) of a single epoch
(full-batch for simplicity) of the training phase (Stage 2). The data are high-resolution
numerical solutions that have been coarsened. It is very similar to the LI method
except for what the CNN is doing. The LC hybrid solver includes the numerical model
using standard Taylor-defined constant coefficients, see Fig.3.1, (FVM second-order
scheme with a three-point stencil) and the CNN producing space and time dependent
corrections while training.

3.2.3 Deployment of the hybrid models on new initial con-

ditions

Once the training is finished, each hybrid model is ready to be used. It is wrapped
inside a loop which iterates over all desired time steps and thus, a hybrid solver is
obtained. This solver, trained on K initial conditions, is used to produce solutions
for initial conditions that were not in the training data. This enables the acquisition
of high-resolution results (as the CNN was trained on fine-grid results that were
coarsened but preserved most of their accuracy) with lower computational costs (as
the hybrid model runs on a coarse grid). The hybrid solvers for the LI and LC
methods are presented in Figs. 3.5 and 3.6 respectively. The steps involved in each

32

method are detailed below.

3.2.4 LI method

Step 1: An out-of-sample high-resolution initial condition is coarsened and fed
into the hybrid model (ρn=0

i ,∀i).

Step 2: This goes into the -already trained- CNN which produces coefficients for
the Mc-points (coarse) grid. This means that in the case of a (S-point
stencil), Mc × S coefficients are produced.

This CNN coefficients-generator has been trained on coarsened field
snapshots of close to high fidelity. This means that the produced co-
efficients construct -in conjuction with the field values of the stencil-
such spatial derivatives that the estimated field snapshot at the next
time step is going to also be Hi-Fi despite of the solver operating on the
coarse grid.

Step 3: The coefficients are fed into the numerical model (FVM second-order
scheme with a 3-point stencil and no limiter) which utilized them to ap-
proximate spatial derivatives and to eventually compute the field snap-
shot at the next time step ρ̂n+1

i ,∀i. This is the field snapshot estimate
of the hybrid model.

Step 4: These predictions ρ̂n+1
i ,∀i are then fed back into the hybrid model, so

that ρ̂n+2
i ,∀i is constructed. This is repeated for all the time steps in

the user-defined time window.

3.2.5 LC method

Step 1: An out-of-sample high-resolution initial condition is coarsened and fed
into the hybrid model (ρn=0

i ,∀i).

Step 2: This is passes into the numerical model which produces a temporary new
field snapshot ρ̂n+1

i |temp,∀i .

Step 3: The temporary new field snapshot is fed into the CNN, which produces
a corrections field snapshot CORRn+1

i ,∀i.

Step 4: The corrections are summed with the temporary new field snapshot to
generate the new field snapshot estimate ρ̂n+1

i = ρ̂n+1
i |temp+CORRn+1

∀i , ∀i.

Step 5: These predictions ρ̂n+1
i , ∀i are then fed back into the hybrid model, to

generate the new field snapshot estimate ρ̂n+2
i ,∀i. This is repeated for

all the time steps.

33

ρ̂ni ,∀i

Out-of-Sample

Initial Condition

ρ|n=0
i ,∀i

Spatial derivatives calculation

∂ρ
∂x

∣∣n
i
=

ani ρ
n
i+1+bni ρ

n
i +cni ρ

n
i−1

2∆x

CNN

∂ρ
∂x

∣∣n
i
,∀i

Flux calculation

F n
i+ 1

2

= ūρni +
1
2 |ū|

(
1− |ū|∆t

∆x

)
∂ρ
∂x

∣∣n
i

F n
i+1

2
,∀i

Time derivative calculation

∂ρ
∂t

∣∣n
i
= −

Fn

i+1
2
−Fn

i− 1
2

∆x

∂ρ
∂t

∣∣n
i
,∀i

Integrating in time with forward Euler

ρ̂n+1
i = ρni +∆t∂ρ∂t

∣∣n
i

ρ̂n+1
i ,∀i

ani , b
n
i , c

n
i ,∀i

coeffs

x(time steps)

H
y
b
ri
d
m
o
d
el
:
L
ea
rn
ed

In
te
rp
ol
at
io
n

Figure 3.5: LI hybrid solver deployment. At inference time -after the CNN in-
side is trained- the solver is fed a Hi-Fi (coarsened) out-of-sample initial condition
and produces the solution in a user-defined time window. Each estimated snapshot
ρ̂ni ,∀i passes through both the CNN that produces space and time dependent coeffi-
cients ani , b

n
i , c

n
i , and the numerical model (FVM second-order scheme, no limiter,

three-point stencil) that utilizes these varying coefficients. Based on this procedure,
the estimated snapshot ρ̂n+1

i ,∀i is predicted. This is looped for all desired time steps.

34

ρ̂ni ,∀i

Out-of-Sample

Initial Condition

ρ|n=0
i ,∀i

Spatial derivatives calculation

∂ρ
∂x

∣∣n
i
=

aρni+1+bρni +cρni−1

2∆x

∂ρ
∂x

∣∣n
i
,∀i

Flux calculation

F n
i+ 1

2

= ūρni +
1
2|ū|

(
1− |ū|∆t

∆x

)
∂ρ
∂x

∣∣n
i

F n
i+1

2
,∀i

Time derivative calculation

∂ρ
∂t

∣∣n
i
= −

Fn

i+1
2
−Fn

i− 1
2

∆x

∂ρ
∂t

∣∣n
i
,∀i

Integrating in time with forward Euler

ρ̂n+1
i

∣∣
temp

= ρni +∆t∂ρ∂t
∣∣n
i

ρ̂n+1
i

∣∣
temp

,∀iCNN

correctionn+1
i ,∀i +

ρ̂n+1
i ,∀i

x(time steps)

H
y
b
ri
d
m
o
d
el
:
L
ea
rn
ed

C
or
re
ct
io
n
s

Figure 3.6: LC hybrid solver deployment. At inference time -after the CNN inside
is trained- the solver is fed a Hi-Fi out-of-sample initial condition and produces the
solution in a user-defined time window. Each estimated snapshot ρ̂ni ,∀i passes through
the numerical model (FVM,second-order scheme, no limiter, three-point stencil with
Taylor-defined coefficients) and a temporary subsequent snapshot ρ̂n+1

i |temp,∀i is pre-
dicted. Then this temporary snapshot passes through the CNN which predicts space
and time dependent corrections CORRn+1

i ,∀i for this field snapshot. Summing the
temporary snapshot and the correction, the estimated snapshot ρ̂n+1

i , ∀i is predicted.
This is looped for all desired time steps. 35

3.3 Additional elements of the hybrid models

The previous sections presented the most fundemental parts of the discussed hybrid
methods, but there are additional elements that were proposed in [6, 2, 59, 54] and
are paramount for them to perform well.

3.3.1 A multistep Loss function

This technique is applied to both hybrid solvers. Instead of the typical Mean Abso-
lute Error (MAE), the selected Loss function is going to be a multistep MAE. What
a multistep Loss function does is that the hybrid model is requested to predict mul-
tiple following field snapshots instead of just the next one. In each such multistep
prediction, the weights of the embedded NN do not change.

Based on these, the Loss function -for a single snapshot as input- is defined as:

MAE =
1

Q

1

M

Q∑
n=1

M∑
i=1

|ρn
i − ρ̂n

i |, (3.5)

where ρni is the target snapshot from the Hi-Fi training data and ρ̂ni is the snapshot
predicted by the hybrid model. The i indexing iterates over spatial points, and n
indexing iterates over the set (“quantum”) of snapshots that have been stockpiled
for Q time-steps.

The use of multiple steps aids the hybrid model recognize that its next prediction
is not isolated; it has an impact on future predictions beyond just the next time
instance. That way, it produces forecasts that don’t blow up in time. The number
of snapshots stockpiled is the most important hyperparameter of such models (see
Sec.5.5). A quantum of time steps is produced at each model run, so this hyper-
parameter is refered to as “quantum” or “Q time-steps”. A high-level view of the
procedure can be seen in Fig.3.7.

ρ̂ni ,∀i Hybrid model ρ̂n+1
i ,∀i Loss

[ρn+1
i , ..., ρn+Q

i],∀i

[ρ̂|n+1
i , ..., ρ̂|n+Q

i],∀i

x(Q time-steps)

Figure 3.7: The stockpiled snapshots are fed into the Loss function and compared
with the training dataset. Depicted for a single snapshot as input.

36

For example, in the case of 1D advection, where the “Q” hyperparameter was set
to four, the Loss function can be computed as so:

MAE =
1

4

1

M

Q=4∑
n=1

M∑
i=1

|ρn
i − ρ̂n

i |, (3.6)

This means that the hybrid solvers use an initial snapshot of the coarsened field as
input and generate not one but four subsequent snapshots of the field. The hybrid
models then utilize the last predicted snapshot out of these four to generate the next
four ones and this is repeated for the totality of time steps the user has predefined.

3.3.2 Enforcing a regularizing constraint

This part is relevant only for the LI method. At first, it may seem logical to design
the CNN inside the model to generate coefficients c that are arbitrary. However, it
could be helpful if these coefficients possessed certain desirable properties. One such
property is that they could exhibit a certain level of formal polynomial accuracy [2].
This would offer a valuable guarantee that at least for simple functions the derivative
(spatial derivative in the LI method) approximation would be exact. If this objective
can be accomplished, it would also serve as an effective, built-in regularizer for the
model. In the sense that, loosely speaking, it would constrain the solutions to
originate from a specific meaningfull set of coefficients, narrowing down the solution
space to a submanifold within the original space.

Accomplishing formal accuracy order coefficients requires that they are are solu-
tions to the following linear system Ac = b of equations, derived using the Taylor
expansion. For a given arbitrary stencil s of length N with the order of derivatives
d < N :

s01 s02 . . . s0N
s11 s12 . . . s1N
...

...
...

...
sN−1
1 sN−1

2 . . . sN−1
N

c1
c2
...
cN

 = d!

δ0,d
δ1,d
...

δi,d
...

δN−1,d

If the requested order of accuracy is lower than the maximum that can be achieved
for the specific derivative order with the specific stencil, it is enough for coefficients
to satisfy a reduced-rows version of this linear system. Namely, for securing mth

accuracy order for a dth derivative with a N-sized arbitrary stencil, N −m− d rows
must be retained. This would then constitute an underdetermined system.

37

If someone aims to ensure that the vector c satisfies an underdetermined linear
system (which can be interpreted as a set of linear constraints), then this equation
for the residual R must hold:

R(c) = Ac− b = 0 (3.7)

However, if the CNN generates arbitrary numbers as coefficients and is trained as
such, it is evident that this constraint would not be met by default.

R(cCNN) ̸= 0 (3.8)

So, how can the CNN be forced to inherently produce c in a way that naturally
satisfies this constraint? There is actually a way around this. It is a Linear Algebra
fact that a solution ccnstr which satisfies this underdetermined linear system can be
represented as follows:

ccnstr = cbias + (arbitrary-weights)Anull−basis (3.9)

where, cbias is any solution -of the infinitely many- of the underdetermined system
such that:

R(cbias) = 0 (3.10)

and
Anull−basis = [v1 v2 ... vM] (3.11)

where [v1 v2 ... vM] are the basis vectors of the nullspace.

So based on Eq.3.9, if someone intends to generate constrained coefficients, they
should make the CNN produce not the coefficients themselves, but rather these
“(arbitrary-weights)” which are essentially some weights to the nullspace basis.
By doing this, regardless of what the CNN may initially produce, after passing
it through Eq.3.9, the result is coefficients that adhere to the constraint by default.
The nullspace basis of the underdetermined system can be obtained through a Sin-
gular Value Decomposition (SVD).The right eigenvectors of the SVD of matrix A
constitute a basis for the nullspace of A.

In the trial-and-error procedure of the cases presented in the next chapters, it was
verified (see also [2, 59]) that when approximating spatial derivatives, enforcing
first-order accuracy is the choice that gives both a well converged behavior during
training and a stable and generalizable model during inference. For instance, in the
cases of this thesis where a first-order spatial derivative is approximated, first-order
accuracy just amounts to enforcing that the nodal coefficients produced by the CNN

38

for each node, sum up to zero. Namely, if ∂ρ
∂x
|ni = ani ρ

n
i−1 + bni ρ

n
i + cni ρ

n
i+1, then the

constraint ani + bni + cni = 0 should be enforced.

3.4 Early stopping strategy

One of the inherent challenges in hybrid solvers that integrate NNs into numerical
solvers is to attain a stable solver after training. This challenge arises from the
unique nature of a solver’s operation for unsteady problems during inference. More
specifically, at inference time, the hybrid solver does not encounter input that is
guaranteed to fall within the training data distribution. The solver, upon receiv-
ing an initial condition, iteratively progresses to generate subsequent snapshots of
the fluid dynamics. Each snapshot beyond the first is a result of the solver’s own
predictions, rather than being a direct instance from the training dataset. This it-
erative process introduces a compounding effect on prediction errors. For instance,
the solver’s output at the second step (snapshot) includes the errors from the first
prediction. When this output is used as the input for the next step, the prediction
is based on slightly erroneous data, which were not exactly represented in the train-
ing set. This means that the hybrid solver is not guaranteed to produce the third
prediction with the Loss value that has been observed in training even for initial con-
ditions that are included in the training dataset. As the solver continues to iterate,
these small deviations accumulate, potentially leading to a significant divergence
from what the NN has seen during training. This, in turn, may lead to the NNs
producing irrational coefficients or corrections (LI and LC methods respectively)
which can introduce instability to the hybrid solver.

This could be avoided if the trained CNN does not overfit. This is typically ensured
through early stopping using validation data. However it was observed that tradi-
tional validation sets do not exhibit the typical behavior of independent validation
data in these hybrid solvers. Instead, their Loss curves closely followed the trend
of the training Loss curve. This lack of divergence between training and validation
Loss curves meant that they fail to provide the necessary feedback to determine
any point for early stopping. This should perhaps be expected as the generalization
capabilities of hybrid solvers are mostly due to the preserved parts of the numerical
solver and not due to the NN.

To effectively implement early stopping and prevent overfitting, thereby ensuring the
stability of hybrid solvers, a simple way is to integrate the solver operation into the
training phase. This approach involves running the hybrid solver with the current
NN weights at periodic intervals during training. However, due to the computational
costs associated with this process, a sensible strategy is required.

In this thesis, the hybrid solver is activated during training every some fixed num-
ber of epochs, a frequency determined by an additional hyperparameter. While a
constant step is utilized here for simplicity, more complex scenarios might require a

39

statistically informed approach for determining this interval.

for epoch = 1 : epochs

if mod(epoch, bv) = 0

for k = 1 : Kv ⊆ K

for n = 1 : Nv ⊆ Nc

Update weights

ρ̂ni ,∀i

Hybrid model
with current epoch’s

CNN weights

ρ̂n+1
i ,∀i

if MAEn < thr
and

|MAEn+1 −MAEn|
< |MAEn −MAEn−1|

ρn+1
i ,∀i,∀n,∀k

DATABASE 1

Stop
validating run

and
Continue
training

if n+ 1 = N
Stop

training

DATABASE 2

Yes

No Yes

Yes

No

No

Figure 3.8: Early stopping strategy for unsteady CFD-DL solvers. In this figure,
k is the iterator over the subset (of all initial conditions in the training data K) of
validating initial conditions Kv, n is the iterator over the subset (of total time steps
in the training data Nc) of validating time steps and i is the index for grid points.
Also, bv and thr define the frequency and thresold hyperparameters of the strategy
respectively. When the training stops, the weights are saved and stored.

For each evaluation, a set of initial conditions from a validation set (or even from
the training set) is randomly selected and used for running the solver. For example,

40

in the linear acoustics case, 5 out of 10 square wave initial conditions of the training
set were used. This is a big percentage of the training data but, in the specific
case, this is necessary, as using a smaller absolute number for the sample size would
significantly compromise the statistical validity of the procedure. For larger datasets,
a sample size of approximately 5%-15% of the original training set is suggested,
aligning with traditional practices for validation set sizes in other domains.

The solver runs using this set of initial conditions, for all time steps in a predefined
temporal domain, until the MAE at the current time step MAEn reaches a pre-
defined threshold (hyperparameter set by the user) or if the difference in MAEs of
subsequent steps keeps growing for some number of time steps (another hyperpa-
rameter), which means the solver becomes unstable.

|MAEn| > threshold, for any n

or

|MAEn+1 −MAEn| > |MAEn −MAEn−1|, for multiple n

(3.12)

These MAEs represent the error between the solver’s prediction and the correspond-
ing coarsened Hi-Fi dataset. If the MAE exceeds the threshold or keeps growing
before completing all time steps (see Eq.3.12), the solver run is terminated early,
and NN training continues. This approach helps reduce unnecessary solver runs.
Conversely, if the above MAE criterions are not met for the entire duration of the
solver run (e.g. for all time steps), the training stops (early stopping).

This way of checking for instability is possible also due to the similar nature of
error progression, in both purely numerical and hybrid solvers (end-to-end NNs are
not guaranteed to exhibit this behavior): for each run the error initially exhibits a
gradual increase before reaching a point of rapid escalation or explosion.

3.5 Advantages of coefficient prediction in hybrid

CFD-DL solvers

Incorporating NNs into existing numerical solvers for CFD presents several advan-
tages when the NNs are tasked with predicting coefficients rather than directly
producing spatial or temporal derivatives. First of all, this approach represents a
minimal alteration to the numerical solver. This means that the bulk of the physics
captured by the solver is retained ensuring the generalizational capabilities of the hy-
brid solver. Predicting coefficients may also present a more straightforward learning
task for the NN as they typically exhibit smaller variance than spatial or temporal
derivatives to accurately predict dynamics. This is evidenced by traditional nu-
merical schemes where a limited number of constant or simply varying coefficients

41

can yield accurate results when spatial and temporal derivatives vary greatly across
different points in space and time. This reduction in the learning objective’s vari-
ance/complexity can lead to more efficient training and improved model stability.
Finally, by focusing on coefficient prediction which are combined with local field
values, the model intrinsically enforces a sense of locality in the hybrid solver. In
CFD, a point in the flow field is predominantly influenced by its immediate sur-
roundings and predicting coefficients that interact with local field values adheres to
this principle.

3.6 Advantages of corrections prediction in hy-

brid CFD-DL solvers

Prediction-Correction schemes are a well established notion in many engineering
fields including Numerical Analysis (predictor-corrector schemes), Control Theory
(state feedback control) and the Deep Learning field (residual connections). The
LC method discussed in this thesis implements this very idea, and there are specific
advantages to doing so. First of all, errors have been verified to follow concrete
patterns which constitutes them a valid learning target [54]. It is also true that
this prediction-correction summation inherently acts as a type of residual connec-
tion leading to the same beneficial properties as those of the well-established Resnet
type architectures. These include a reduction of the vanishing and exploding gradi-
ents problem and the observation that if residual connections are utilized in a NN,
training error certainly goes down when the trainable parameters are increased.
This is important as, deeper networks (with more parameters) without residual con-
nections can have higher training error (and hence test error) than their shallower
counterparts [17], which would mean that one cannot scale the complexity of the
NNs to match, for example, the increased complexity of the data. Additionally, in
the LC method, the CNN only needs to predict a small correction since much of
the dynamics have been captured by the numerical parts of the solver. Because
there is a correction at each time step, the error does not get a chance to grow and
the necessary correction always remains reasonable and easy to predict. This is the
same argument made before for the LI method on minimally modifying numerical
solvers. However here, these error corrections might be easier to learn for another
reason: in many simulations the scales that the error spans are fewer than the the
scales of the full dynamics plus the error scales combined. For example, in the 1D
advection case there are roughly two scales in the simulation results. One due to
the dynamics of the equation and the other one due to the error. If, given a field
snapshot, the CNN had to directly predict the next snapshot (or any other quantity
of the field), it would have to handle both propagating the wave in space and also
dampen the error in the new place of the wave. This means it would have to deal
with two scales when, in the LC method, it only has to deal with one.

42

Chapter 4

Case 1: 1D Advection Equation

4.1 Introduction

The first case examined aligns with one of the problems presented in [59], which is
also based on one of the fundemental methods that were studied in this thesis. This
is very important, as it establishes an essential point of reference for the results that
follow. This is the standard 1D advection equation:

∂ρ

∂t
+ ū

∂ρ

∂x
= 0, (4.1)

where the convecting velocity ū is considered positive, known and constant.

The spatial domain is defined as x ∈ [0, L] and the time domain as t ∈ [0, tfinal],
with periodic boundary conditions (BC) in space:

ρ(x = 0, t) = ρ(x = L, t) (4.2)

and a typical initial condition of a square wave of some height and width:

ρ(x, t = 0) =

{
height, if xl < x < xr

0, elsewhere
(4.3)

The analytical solution is a square wave travelling through space unaltered, with

43

a velocity ū, until it reaches the right end of the spatial domain (as ū > 0). Any
portion exiting re-enters from the left end of the domain, and so on and so forth.

Figure 4.1: Exact square wave traveling unaltered, at t = {0, T/2, 3T/4, T}.

Next, this equation needs to be discretized to be used as the numerical model both
for generating high-resolution training data and for parts of it to be integrated inside
the hybrid solvers.

4.2 Equation discretization

4.2.1 General formulations

The discretization of Eq.4.1 is based on the FVM due to its advantage of being able
to conserve quantities throughout space [29] if properly handled. Firstly, a general
formulation of the method of lines, with the spatial derivatives discretized in a FV
manner is given:

∂ρ

∂t

∣∣∣∣
i

=
1

∆x
(Fi+1/2 − Fi−1/2) (4.4)

For time integration, it is common to use a forward Euler scheme. This leads to:

ρn+1
i = ρni −

∆t

∆x
(F n

i+1/2 − F n
i−1/2) (4.5)

Choosing the formula of the numerical flux function F defines different FV schemes.
Note that, in the following formulas, ū− = min(0, ū) and ū+ = max(0, ū).

44

� A Typical First-Order Accuracy Scheme (Upwind Method):

F n
i−1/2 = ū−ρni + ū+ρni−1, (4.6)

� Second-Order Accuracy Schemes:

F n
i−1/2 = ū−ρni + ū+ρni−1 +

1

2
|ū|
(
1− |ū|∆t

∆x

)
δni−1/2, (4.7)

where,
δni−1/2 = ϕ(θni−1/2)∆ρni−1/2 (4.8)

and,

θni−1/2 =
ū−∆ρni−1/2 + ū+∆ρni+3/2

(ū− + ū+)∆ρni−1/2

(4.9)

In the formula of F n
i−1/2 in Eq.4.7, the first term enforces the upwind method

(as in Eq.4.6), while the second term introduces a correction that exhibits anti-
diffusive behavior when the CFL condition is satisfied. The term δni−1/2, given

by Eq.4.8, represents a regulator of slope. The function ϕ(θ) represents the
imposition of a limiter designed to control the strength of this anti-diffusive
term. Further details can be found in [29].

Many common schemes, of either first or second order, with or -degenerately- with-
out limiting, can be implemented using a limiter function. Namely:

� First-order of accuracy:

– upwind: ϕ(θ) = 0

� Second-order of accuracy without limiters:

– Lax-Wendroff: ϕ(θ) = 1

– Beam-Warming: ϕ(θ) = θ

� Second-order of accuracy with limiters:

– superbee: ϕ(θ) = max(0,min(1, 2θ),min(2, θ))

– monotonized central difference (MC): ϕ(θ) = max
(
0, 1+θ

2
, 2, 2θ

)
– Van Leer: ϕ(θ) = θ+|θ|

1+θ

The behavior of ϕ with respect to θ is presented in Fig.4.2. The ratio θ which
represents the ratio of successive gradients, as defined in Eq.4.9, can be thought of
as a measure of the smothness of the quantity that is to be approximated near xi−1/2.

45

If the data is smooth, it is expected that θ ≈ 1, whereas near a discontinuity it is
expected that θ diverges from 1. It is obvious that one would like that ϕ(θ ≈ 1) = 1
so that when the quantity is smooth, a pure second-order scheme is achieved. Each
limiter then differs in how it handles non-smooth regions, where pure second-order
methods fail (see Fig.4.3) respecting the TVD condition. More details on these can
also be found in [29].

Figure 4.2: Behavior of ϕ with respect to θ, which concisely describes how schemes
handle reconstruction. Upwind is a first-order reconstruction scheme, L-W, B-W
schemes employ non-limited second-order reconstruction and Superbee, MC, Van Leer
are limited second-order schemes.

4.2.2 The effect of the chosen scheme on the solution

Before finalizing the discretization, it is important to conduct tests to identify the
most suitable scheme and grid resolution for this specific problem. As shown in
Fig.4.3 and Fig.4.4, the choice of numerical scheme significantly impacts result qual-
ity. In the following snapshots of the numerical solution, the square wave is becoming
smeared out as it propagates through space. This diffusion is an inherent artifact
of the approximate numerical schemes. This effect can be problematic because it
fundamentally alters the underlying physics: sharp discontinuities in the solution
are transformed into smooth pulses. For instance, in CFD, such discontinuities may
represent shock waves. Their transformation into smooth pulses could then lead
to an inaccurate evaluation of the safety of an aerodynamic design. As previously
discussed, second-order schemes include an anti-diffusive term that sharpens the
solution. Therefore, they are expected to exhibit less smearing effect. However,
to avoid a byproduct of second-order schemes (unnatural oscillations), limiters are
used. These reduce the intensity of the anti-diffusion term in specific points in the
solution to smooth out these oscillations.

In Figs. 4.3 and 4.4 it is obvious that acceptable results are given only by limited
second-order accurate methods. The best ones are those with the superbee and the
MC limiters.

46

Figure 4.3: Traveling square wave in 192 grid points resolution, at
t = {0, T, 16T, 32T, 64T}.The first-order scheme smears out the equation too much,
the non-limited second-order schemes exhibit dispersion in the form of oscillations.
The limited second-order schemes give sufficient results. The spatial resolution of
192-points is inadequate in the first row schemes (deformation of the shock’s geome-
try) and borderline adequate at the second row schemes.

Figure 4.4: Traveling square wave in 384 grid points resolution, at
t = {0, T, 16T, 32T, 64T}. Same comments with Fig.4.3 apply. The only difference
is that the spatial resolution of 384-points is deemed adequate in the second-order lim-
ited schemes.

47

4.2.3 The effect of spatial resolution on the solution

Figure 4.5: Traveling square wave in {12,24,48,96,192,384} grid points resolutions,
at t = {0, T, 16T, 32T, 64T}. The wave becomes progressively more smeared out with
each passing period. At 384 grid points, even after 64 periods have elapsed, the smear-
ing effect is still considered acceptable.

Firstly, it is important to consider if the spatial discretization is rich enough to
capture the continuous phenomena and the full spectrum of scales of the solution.
In the current case, the geometry remains constant but shifts in position, so one can
tell if the number of points is sufficient by how well the square wave geometry is
represented at zero time. In Fig.4.5 it is clear that the simple geometry of a square
wave can be captured for more than 24 grid points.

However, a significant factor to consider is that the discretization error in numerical
schemes depends on the size of the grid step. In practical terms, this implies that
for a fixed spatial domain, as the number of points becomes higher, the grid step
becomes smaller, leading to a reduction in error. Essentially, to achieve more accu-

48

rate solutions, it is necessary to use finer grids. Reducing the discretization error is
the primary purpose of the hybrid solvers presented in this thesis. In CFD, a widely
used technique for ensuring the quality of a grid is to enforce grid independence.
This is typically achieved by placing an upper limit to the error between solutions
obtained from successively finer grids. In Fig.4.5, the solution with 384 grid points
is regarded as the grid-independent solution. It is clear that refining the grid brings
the achieved result closer to the exact solution and diffusion of the wave takes much
longer.

4.3 Training data and coarsening

Firstly, regarding the discretization of the spatial and temporal domains, a uniform
grid with step size of ∆x = 1 is chosen and the time step is determined using the
CFL condition: c = ū∆t

∆x
. By setting the courant number to c = 0.5, and the velocity

to ū = 1m/s, the time step becomes ∆t = 0.5s.

When generating training data for the model, the discretized equation is solved with
a FVM second-order limited (superbee) scheme, on a 384-points grid, using 30 initial
conditions of square waves with varying heights and widths. In case 1,

height ∈ [0.1, 1] with step 0.1

width ∈ [48, 144] with step 48 grid points (on the fine grid)

Note also that all square waves start from the 96th node of the 384-node grid. The
time integration spans two periods: tfinal = 2T = 768s. That means that with a
time step of ∆t = 0.5s, the total time steps needed are 1536.

Both methods described in the current thesis require coarsening to harness the
benefits of the hybrid models. Actually, the choice of length (and consequently,
tfinal), was made in such a way so as to achieve a grid size with a number of points
that follows the pattern 3 × 2n (so that progressive coarsening can be executed),
and with a grid step size of one (∆x = 1). Practically, concerning coarsening, while
the high-resolution numerical solver is running, results undergo coarsening in time
(downsampling) and space (averaging) with a 8× coarsening ratio, which is the
maximum allowable one. Averaging coarsening entails the computation of the mean
of every eight density values, while the grid must also be adjusted accordingly. It
is preferable to other coarsening techniques (e.g. downsampling) for space because
it does not break the conservation property of the FVM. The maximum possible
coarsening depends on how the initial conditions were set in the grid, and on the
scales involved. In the scenario examined here, the initial waves have a minimum
width of 48 grid points, which is equivalent to 1/8th of the total grid points. To
maintain the geometry of these waves, the maximum coarsening factor that can be
applied is 8×. A demonstration is given in Fig.4.6:

49

Figure 4.6: Different coarsening ratios applied to the solution of the discretized
equation. Coarsening ratio 16×, creates unnatural geometry at all time steps because
of the initial width of the square wave.

Since the 8× coarsened solution is the largest compression performing well, this is
the one to be used. Which means that the 384-points grid is mapped to a 48-points
grid and the 1536 time steps are mapped to 192 time steps. Reducing the number of
time steps is necessary so that the inherent time step of the hybrid model matches
with the time step of the provided data. It is important to note that this represents
the most challenging scenario for the hybrid model to perform well because it is
based on the coarsest grid. However, it also presents the greatest potential for
reducing computational costs.

4.4 Results of the hybrid models

The main parameters’ values, as defined in Tab.3.1, and analyzed for case 1 in the
previous section, are summarized in Tab.4.1. Additionally, the hyperparameters for
each hybrid method are presented in Tab.5.2.

In the following demonstrations, it is shown that the results that have been produced
with a runtime cost of a numerical simulation on a 48-points grid plus the CNN
inference cost, attain an accuracy close to what would be generated by a 384-points
grid one. Some of the capabilities and shortcomings of the model are presented in
the following tests.

Firstly, the models’ performance is evaluated after being fed the initial conditions
of the training data but scaled by a factor of 0.65 in height, changed width and

50

Parameter Value
K 30 initial conditions
λ1 3
λ2 7
Mf 384 grid points
Mc 48 grid points
Nf 1536 time steps
Nc 192 time steps
S 3-point
CR 8

Table 4.1: Table with the parameter values for both methods.

Hyperparameter LI method LC method
number of layers 4 4
number of filters 32 32

kernel size 3× 1 3× 1
batch size 64 64

learning rate 3e-3, 3e-4 3e-3, 3e-4
epochs 102 156

Q time-steps 4 4
optimizer Adam

weight initialization Xavier
activation functions ReLU

Table 4.2: Chosen Hyperparameters for the hybrid models. All layers have the same
number of filters and same activation function. Hyperparameter Q defines how many
subsequent snapshots the solver produces per run (see sec.3.3).

translated by 6 grid points. This tests the behavior of the models to initial conditions
of sizes and initial positioning that it has not seen in the training data. It is asked
to predict over the time period it has encountered in its training data, as well as
for future times. This is then compared to the performance of a pure numerical
solution using 48 grid points. The traditional solution employs the same solver that
generated the training data. In Figs. 4.7 and4.8, the mean MAE errors between an
end-to-end numerical simulation in the fine grid of 384-points and the hybrid models’
simulations are showcased. This is done for all snapshots of all time steps up to 32
periods (when the training has taken place for only 2 periods) in time. Note that
all fine grid simulations, are projected to the coarse grid (via coarsening) to enable
comparison with the coarse ones. The hybrid models’ performance is superior to the
one of the numerical solution on the 48-points grid for initial conditions involving
square waves with heights falling inside the trained range (height ∈ [0.1, 1] with
step 0.1). Spatial shifts of the initial condition do not pose any problems, which
probably means that the CNN has manifested translation invariance [28].

51

It is important to emphasize that, in the specific problem which is periodic, the
temporal extrapolation serves as a means to assess the stability of the hybrid models,
ensuring that minor adjustments do not lead to solution divergence.

Figure 4.7: Comparison of end-to-end numerical solver and hybrid models’ perfor-
mances in a MAE sense. MAE is a very important metric in Computational Engineer-
ing because outliers -that can complety alter the nature of a phenomenon in physics-
must be taken into account when evaluating a simulation. LI is marginally better than
LC in the time these models have seen during training.

Figure 4.8: Comparison of end-to-end numerical solver and hybrid model perfor-
mances in a MAE sense. The hybrid solvers extrapolate 16x as many periods as the
ones they have seen in the training data. LI method seems to work a bit better for this
case when extrapolating in time.

To make the quality of the results concrete, the wave propagation resulting from an
out-of-sample initial condition (a square wave of height = 0.39) is plotted in Figs
.4.9 and 4.10 for the LI model and the LC model respectively.

52

Figure 4.9: Comparison of a second-order FVM scheme with superbee limiter to the
LI hybrid model on the coarse grid of 48-points. The baseline is the numerical solution
on a 384-points grid, coarsened to 48 points. The solver is asked to integrate in time
for 16× the time domain that it has seen in the training data (32 versus 2 periods).

Figure 4.10: Comparison of second-order FVM scheme with superbee limiter to the
LC hybrid model on the coarse grid of 48-points. The baseline is the numerical solution
on a 384-points grid, coarsened to 48 points. The solver is asked to integrate in time
for 16× the time domain that it has seen in the training data (32 versus 2 periods).

53

Figure 4.11: Performance of the LI hybrid solver when given out of sample square
waves with smaller size than the ones that it has encountered during training. Having
learned an anti-diffusive behavior, it tends to take it to an extreme in this situation.

Figure 4.12: Performance of the LC hybrid solver when given out of sample square
waves with smaller size than the ones that it has encountered during training. The
behavior it has learnt is mostly diffusive. It takes diffusion to an extreme and com-
pletely smooths out the wave to zero height.

54

However, both models exhibit poor performance in integrating in time when the
out-of-sample initial conditions, are scaled below the smallest sized square waves
the hybrid models have been trained on (e.g. height = 0.065). Interestingly the LI
model seems to have acquired a mostly anti-diffusive behavior and tends to exhibit
an excessive version of it in this scenario. This can be seen in Fig.4.11. Whereas in
the LC model, in Fig.4.12, which seems to have learnt a mostly diffusive behavior
(probably to correct oscillations of the second-order not limited scheme) gradually
smears the extrapolated wave’s height to zero.

Furthermore, the variation in each coefficient (LI method), for a single grid point, is
presented in Fig.4.13 and the variation of each correction (LC method) is presented
in Fig.4.14. This is done for two periods in time, which constitute the total time
included in training. It is noteworthy that the corrections exhibit small oscillations
when the coefficients do not. This observation underlies the fact that the corrections
act directly on the field values in an alleviating/therapeutic way to any unwanted
occurence in the dynamics of the field (i.e. any divergence from the training data dis-
tribution) like the small oscillations produced by second-order not-limited schemes,
when the coefficients act in more of a preventive manner by generating solutions
that avoid the development of oscillations altogether.

Figure 4.13: The time evolution of the coefficients of the 30-th grid point in a time
span of two periods.

55

Figure 4.14: The time evolution of the corrections of the 30-th grid point in a time
span of two periods.

Then, the coefficients that are outputed by the LI model for different time steps
are presented in Fig.4.15. It is important to note that these coefficients lead to
slopes that interchange between centered, upwind, downwind or custom schemes
respectively. The choice of the proper scheme by the hybrid solver depends on the
shape of the square wave at every point. It is also noteworthy that, on the sharp
drops of the wave, a limiting effect is achieved, when no limiter has been built inside
the hybrid model. In this case, where the square wave is just advected in space,
optimal coefficients are learned for computing the spatial derivative for the initial
square wave and then, “attached” to the point of the wave in which they achieve
good results, they also just advect in space.

Finally, the corrections that are outputed by the LC model for different time steps
are presented in Fig.4.16. Again, as described for the coefficients, the NN finds some
good corrections and seems to attach them to the traveling wave. It has learned
that the dynamics is just propagating the wave.

56

Figure 4.15: The coefficients generated inside the hybrid model are space and time
dependent. The 3-point stencil for the i-th point includes i-1,i, i+1 points. In regions
that the solution is constant, the coefficients are identical or almost identical. The
values of the coefficients -all scaled by 1

2∆x - are depicted on the y-axis of the subplots,
with each colour representing the coefficient of one of the points in the stencil. Their
values also sum to zero, as a first-order accuracy constraint has been enforced (see
sec.3.3.2). Coefficients when interpolating in time, (timesteps 1,31,193), and when
extrapolating in time (timestep 3072) are presented. 57

Figure 4.16: The corrections that are generated inside the hybrid model are space and
time dependent. In regions that the solution is constant, the corrections are identical
and close to zero. Corrections when interpolating in time, (timesteps 1,31,193), and
when extrapolating in time (timestep 3072) are presented.

In summary, a substantial improvement has been realized. When utilizing a 48-
point grid, the hybrid solvers produce results that closely approximate those of a
384-point numerical solution. And they do so in an interpretable way.

58

Chapter 5

Case 2: 1D Linear Acoustics

5.1 Introduction

The 1D linear acoustic equations, often used to describe sound waves in a fluid
medium, consist of a system of two coupled PDEs that represent the conservation
of mass (continuity equation) and the conservation of momentum.

∂

∂t

[
p
u

]
+

[
0 K0
1
ρ0

0

]
∂

∂x

[
p
u

]
=

[
0
0

]
(5.1)

In these equations:

� p(x, t) is the pressure perturbation from the ambient pressure.

� u(x, t) is the velocity perturbation from the ambient velocity

� K0= ρ0c0
2 is the bulk modulus of the medium (c0 is the speed of sound)

� ρ0 is the density of the medium.

These equations assume small perturbations in pressure and velocity. The boundary
conditions will be periodic and the initial conditions square waves of different heighs
in pressure and zero velocity everywhere:

{
p(x = 0, t) = p(x = L, t)
u(x = 0, t) = u(x = L, t)

}
(5.2)

{
p
u

}
(x, t = 0) =

{
heightp, if xl < x < xr,
0, otherwise

}
(5.3)

59

The high-resolution solution on the fine grid (for heightp = 0.6) for different medium
densities ρ0 is presented in Fig.5.1. These simulation results also serve as a baseline
for evaluating the hybrid models in the next sections. It is also clear that for different
medium densities, using the previously defined typical initial condition the pressure
field retains the exact same dynamics and scale but the velocity fields while having
the same dynamics, have its scale change (orange curves in different rows of Fig.5.1).

Figure 5.1: The expected dynamics of the linear acoustic equations. The effect of
the change of medium density is a change of the scale in the dynamics of the velocity
fields. Hence, the relation between pressure and velocity also changes. The results
were produced by the numerical solver on the fine grid. The velocity snapshots are
multiplied by a factor of 680 for plotting purposes. The header “time” refers to time
steps.

60

5.2 Equation discretization

In vector form, the linear acoustics equation can be written as

∂Q

∂t
+ A

∂Q

∂x
= 0 (5.4)

Its discretization is similar to case 1, only applied to a system. For a second-order
scheme, using the Van Leer limiter, this would amount to:

Fi− 1
2
= A+Qi−1 + A−Qi + F̃i− 1

2
(5.5)

where

F̃i− 1
2
=

1

2
|A|
(
I − ∆t

∆x
|A|
) p=m∑

p=1

α̃p

i− 1
2

rp (5.6)

with A+ = RΛ+R−1, A− = RΛ−R−1 and |A| = A+ − A−, where R are the right
eigenvectors of the A matrix and:

Λ+ =

λ+
1 0 · · · 0
0 λ+

2 · · · 0
...

...
. . .

...
0 0 · · · λ+

m

 (5.7)

Λ− =

λ−
1 0 · · · 0
0 λ−

2 · · · 0
...

...
. . .

...
0 0 · · · λ−

m

 (5.8)

with λ+ and λ− being the positive and negative eigenvalues respectively.

Here, the sum
∑p=m

p=1 α̃p

i− 1
2

rp represents the eigendecomposition of the traveling dis-

continuitites as predicted by the Rankine-Hugoniot condition. Therefore, rp repre-
sent the right eigenvectors of the matrix A and α̃p

i− 1
2

represent the limited eigenco-

efficients

α̃p

i− 1
2

= ϕ(θni−1/2)α
p

i− 1
2

(5.9)

61

and

θp
i− 1

2

=
αp

I− 1
2

αp

i− 1
2

with I =

{
i− 1 if λp > 0,

i+ 1 if λp < 0.
(5.10)

Finally, the FV method along with Euler time integration would then amount to:

Qn+1
i = Qn

i −
∆t

∆x
(F n

i+1/2 − F n
i−1/2) (5.11)

5.3 Training data

Firstly, regarding the discretization of the spatial and temporal domains, a uniform
grid with step size of ∆x = 1 is chosen (for the fine grid) and the time step is
determined using the CFL condition: c = c0

∆t
∆x

, where c0 is the speed of sound and
is the maximum information propagation speed for both acoustics waves (traveling
in opposite directions). By setting the courant number to c = 0.5, and the speed of
sound to c0 = 340m/s, the time step becomes ∆t ≈ 0.00147s.

When generating training data for the model, the discretized equation is solved with
a FVM second-order limited (Van Leer) scheme, on a 384-points grid, using 10 initial
conditions of square waves (starting from the 96th node of the 384-node grid and has
width = 48 points) with varying heights in pressure and zero initial velocity always:

heightp ∈ [0.1, 1] with step 0.1
heightu = 0

The time integration spans two periods: tfinal = 2T ≈ 2.26sec. That means that
with a time step of ∆t ≈ 0.00147s, the total time steps needed are 1536.

As in the first case, the boundary conditions are periodic. Changing the equation
but retaining the same initial conditions can lead to safer conclusions about the
hybrid methods ability to capture different dynamics without possible interference
of the alteration of initial conditions.

In this case, the training data contain the results of the high-resolution numerical
simulation (fine grid) of these ten initial conditions for four different medium density
values (which leads to changes in the coefficient matrix of the system of PDEs)

ρ0 ∈ {0.75, 1, 1.25, 2}kg/m3

The effect of the change of medium density on the solution has been presented
in Fig.5.1. As in case 1, while running the high-resolution numerical solver, the
results undergo coarsening in time (downsampling) and space (averaging) with a 8×
coarsening ratio, which is the maximum allowable one.

62

5.4 Results of the hybrid models

Parameter Value
K 10 initial conditions
λ1 3
λ2 7
Mf 384 grid points
Mc 48 grid points
Nf 1536 time steps
Nc 192 time steps
S 3-point
CR 8

Table 5.1: Table with specified parameters’ values for both LI and LC hybrid methods.
The symbols have been defined in Tab.3.1.

Hyperparameter LI method LC method
number of layers 5 5
number of filters 64 64

kernel size 5× 1 5× 1
batch size 64 64

learning rate 3e-3 3e-3, 3e-4
epochs 13 170

Q time-steps 10 15
optimizer Adam

weight initialization Xavier
activation functions ReLU

Table 5.2: Chosen Hyperparameters for the hybrid models. All layers have the same
number of filters and same activation function. Hyperparameter Q defines how many
subsequent snapshots the solver produces per run (see sec.3.3).

The main parameters’ values, as defined in Tab.3.1, and analyzed in the previous
section, are summarized in Tab.5.1. And the hyperparameters for each hybrid model
are presented in Tab.5.2.

The chosen neural network is a CNN of five layers with ReLU activation functions.
Even though the problem exhibits more complex behavior, the required NNs to
capture its dynamics do not get proportionally bigger. That is a good sign that this
technique will be affordable for real world problems.

A key architectural consideration involved the treatment of different variables. In
the finally chosen CNN, the receptive field contains both variables as different chan-
nels. The approach of using two separate CNNs, each dedicated to one variable,

63

was explored but resulted in suboptimal performance. Specifically, it was observed
that to achieve comparable effectiveness, each CNN required five layers, indicating
a significant increase in model complexity. Subsequent design choices pivoted on
whether to use the same or different coefficients for the two variables within a sin-
gle CNN architecture. A trial-and-error procedure showed that the use of distinct
coefficients for each variable yields superior outcomes. This is likely attributable to
the additional flexibility afforded to the model, which is particularly beneficial in
the context of the physically constrained nature of hybrid CFD models. Providing
distinct coefficients for each variable allows the CNN to adapt more effectively to
the unique characteristics and dynamics of each variable.

As before, the model is firstly asked to predict over the time period it has encoun-
tered in its training data, as well as for future times. More specifically, the CNN
has seen two periods but is asked to predict four periods in time (to evaluate the
stability of the solver). This is then compared to the performance of a traditional
numerical solution using 48 grid points. The subsequent figures demonstrate the
hybrid solvers’ capability to generalize to different equation parameters, a critical
property for applying this technique to more complex equations and in more diverse
simulation scenarios.

Note that in all following plots, the velocity snapshots have been multiplied by a
factor of 680 to bring the pressure and velocity scales closer together and facilitate
showcasing them in the same axes.

First of all, Fig.5.2 presents a comparative evaluation where the MAE of the coarse-
grid numerical solution with respect to the coarsened fine-grid numerical solution
(serving as the baseline MAE) and the MAE of the hybrid solvers’ output on the
coarse grid with respect to the fine-grid numerical solution. The MAEs for pressure
and velocity are plotted separately to showcase the solver’s performance in each
quantity. In this analysis, both the wave height (IC) and the medium density have
not been encountered during training, but belong in the training data distribution.

Then, for LI and LC hybrid solvers respectively, Figs.5.3 and 5.4 showcase multi-
ple snapshots of a wave (out-of-sample initial conditions and medium density) at
different time points, including times beyond those seen in training. Its ability to
extend its predictions into future timeframes not explicitly presented during train-
ing underscores the hybrid solver’s stability and the way that, for converged solvers,
the error is spread almost evenly across time steps. This visualization illustrates
that these solvers closely follow the high-resolution solution. It also seems that the
LC model gets better performance than the LI model. However, because NNs are
stochastic machines, as they rely on random seeds, initializations and more, direct
comparisons for the two models should not be made in a naive manner.

64

Figure 5.2: Comparison of the MAE of pressure and velocity fields at every time step
by a numerical model with a second-order scheme with Van Leer limiter to the hybrid
models on the coarse grid of 48-points. The baseline is the numerical solution of the
discretized equation on a 384-points grid, projected to 48 points. This is for initial
conditions of square waves with heights not seen during training ((new heights) =
0.65 ∗ (old heights)) and with a medium of density also not seen in training (ρ =
1.5kg/m3). The solution is also extrapolated for two periods in time. The end-to-end
numerical solver makes bigger errors on velocity rather than on pressure snapshots
and so does the hybrid solver.

65

Figure 5.3: Comparison of multiple pressure and velocity field snapshots solved by a
second-order scheme with Van Leer limiter to the LI hybrid model on the coarse grid
of 48-points. The baseline is the numerical solution of the linear acoustics equation
on a 384-points grid, coarsened to 48 points. Neither the initial square wave has
been seen in training nor the specific -interpolated- medium densities (different per
row). The solution is also extrapolated for two periods in time. The velocity snapshots
are multiplied by a factor of 680 for plotting purposes. The header “time” refers to
time steps. Different rows correspond to different (interpolated) out-of-sample medium
density values.

66

Figure 5.4: Comparison of multiple pressure and velocity (multiplied by a factor of
680) field snapshots solved by a second-order scheme with Van Leer limiter to the LC
hybrid model on the coarse grid of 48-points. The baseline is the numerical solution
of the linear acoustics equation on a 384-points grid, coarsened to 48 points. Neither
the initial square wave have been seen in training nor these specific medium densities.
The solution is also extrapolated for two periods in time. The header “time” refers to
time steps. Different rows correspond to different (interpolated) out-of-sample medium
density values.

The previous demonstrations, have shown that the results that have been produced
by the hybrid solvers with a 48-points grid, attain an accuracy close to what would
be generated by a 384-points grid one when both initial condition and equation
parameters change.

67

5.5 A parametric study on hyperparameters’ in-

fluence on solvers’ performance

5.5.1 LI hybrid solver

In this section, a parametric study is conducted to explore the impact of important
hyperparameters (learning rate, batch size, Q time-steps) on the performance of
the hybrid solver. The key metric of interest here is the MAE between the hybrid
solver’s output on the coarse grid and the numerical solution results on the fine grid.

The lowest MAE in simulations is always achieved on the first few time steps, where
the solver’s (and thus the embedded NN’s) input and output closely aligns with the
training data. As the simulation progresses, the MAE typically increases, reaching
its peak in the later stages. This increase in MAE is expected due to the growing
deviation from the initial state, pushing the network into regions less represented in
the training data. Because of these qualities of the hybrid solver, MAE is a crucial
metric in assessing both the solver’s stability and the minimum accuracy achieved
at any point during the solver run, offering a comprehensive view of the solver’s
performance.

The initial aspect of the study focuses on how varying hyperparameter values affect
the proportion of training epochs at which stopping would result in a stable solver.
This aspect is crucial since the practice of early stopping involves periodic checks
every few epochs instead of after every single one to minimize computational costs
(see sec.3.4). If only a small percentage of epochs yield a stable solver, it becomes
increasingly unlikely to achieve stability. Even if early stopping is omitted, getting
stable solvers is a prerequisite for the successful implementation of the techniques
discussed in this thesis.

For evaluating the stability and accuracy of the solvers, the maximum MAE for all
time steps in the solution produced by a pure numerical solver on a coarse grid,
which is approximately 0.033, is defined as the baseline. In Fig.5.5, regions with
MAE values meeting or exceeding this baseline value are depicted in blue, indicating
solvers that are both stable and accurate. Conversely, orange regions denote solvers
that, while stable, fall short in accuracy compared to the baseline numerical solver,
rendering them mundane. It is clear that batch size does not significantly correlate
with the stability of the solvers. Instead, the learning rate emerges as a more critical
factor. Lower learning rates generally lead to increased occurance of stable solvers,
but further experimentation with even lower rates (e.g., 3e-5) yields mixed outcomes.
This suggests the existence of an optimal learning rate for stability but the way to
determine it remains unclear. Practically though, adjusting the learning rate can be
a strategic move when seeking to increase occurance of stable solvers. Moreover, it is
clear that the number of future snapshots produced by the solver (“quantum steps”)

68

significantly influences stability. This is consistent with the findings of [6, 54, 59].

Figure 5.5: Percentage of epochs when the trained LI hybrid solver is stable. Blue
regions represent epochs during which the solver is stable and at least as accurate as
the pure numerical solver on the coarse grid. Orange regions represent stable solvers
but with accuracy lower than that of the numerical solver on the coarse grid (MAE
ranging from 0.03 to 1). Green regions roughly represent possibly stable solvers with
unacceptable values (MAE ranging from 1 to 100).These intermediate values do not
occur, possibly because instability is quick to happen during running the solver. Finally,
red regions represent complety unstable values (MAE ranging from 100 to ∞). It is
apparent that better results are attainable using higher numbers of unrolled steps.

.

Next, the study presents a comparison in accuracy of all occured solvers across a
100-epoch training period with differing hyperparameter values, as shown in the
boxplot in Fig.5.6. This analysis focuses solely on solvers with acceptable MAE
(lower than the previously mentioned baseline). It reveals no distinct relationship
between accuracy and hyperparameters like learning rate or batch size. However,
a notable positive correlation emerges between solver accuracy and the “quantum
steps” hyperparameter. This means that, increasing “quantum steps” not only
enhances the likelihood of achieving a stable solver (up to 100% as seen in Fig.5.5)
but also heavily improves accuracy. These improvements, however, come at the cost
of increased training cost. For instance, if “quantum steps” equals 1, the training
cost per epoch correlates with the number of training snapshots, say 1000. But if

69

“quantum steps” is set to 15, the cost escalates, and is proportional to 15,000 for
the same number of epochs.

Figure 5.6: In the boxplot for the LI method, the box shows where the central bulk
of the MAE values lies, giving an idea of the typical range. The median line provides
a sense of a typical or “middle” value of the data. The whiskers extend to the most
extreme MAE values that are not considered outliers, giving a sense of the overall
spread of the data. Outlier points represent MAE values that are unusually high or
low compared to the rest of the data. In labels, lr represents learning rate, b the batch
size, q the quantum steps. In bigger quantum step sizes (e.g. q = 15), the box is far to
the left side, indicating achievement of significantly better accuracy, while also being
thinner indicating more consistent performance.

In addition to stability and accuracy, another critical aspect to consider is the time
at which representative low values for MAE (here the median value is chosen) are
attained, as shown in Fig.5.7. This is crucial as, in order to prevent overfitting and
get stable solvers, early stopping can be used. The analysis reveals that, on average,
smaller learning rates (indicated by red-colored bubbles) take longer to reach the
median MAE value compared to larger ones (blue bubbles), while the effects of
batch size (small and big bubbles for 32 and 64 batch size respectively) and the
number of quantum steps appear inconclusive. This hinges on a trade-off between
the potentially increased likelihood of stability offered by lower learning rates (as
noted in Fig.5.5) and the speed at which optimal results are achieved, which has
implications for the overall training cost.

70

Figure 5.7: For the LI solver, presentation of the epoch that in each hyperparameters’
case the threshold of the median value of the MAE is exceeded. Median value was
chosen as a representative of a good result relative to each set of hyperparameters. In
labels, lr represents learning rate, b the batch size, q the quantum steps. Learning rates
include the typical values of 3e-3 and 3e-4 (blue and red colors respectively) and batch
sizes include the typical values of 32 and 64 (small and big bubbles respectively). The
speed at which optimal -relative to each hyperparameters set case- results are achieved
is better for the bigger learning rates, as higher lr values mean bolder steps during
gradient descent optimization.

The analysis of these figures and prior discussions suggest that the most significant
hyperparameter decision in hybrid solvers relates to the number of field snapshots
that the solver is tasked to predict recursively. This decision hinges on a trade-off:
choosing a higher value for Q-steps typically enhances stability and accuracy, but
also increases the computational cost during training. Therefore, determining the
optimal value involves balancing the desire for improved solver performance against
the practical considerations of training efficiency and resource utilization. Sensibly
using early stopping (see sec.3.4), can also weigh in this decision to potentially
achieve good performance with less recursive steps. For instance in Fig.5.6 there
are quite accurate solvers occuring even when q = 4 (lr = 3e − 4, b = 64, q = 4
case), when for more consistent results during training one would opt for other,
more expensive, choices (e.g. lr = 3e− 4, b = 64, q = 15).

5.5.2 LC hybrid solver

The same parametric study is conducted again for the LC hybrid solver. Based
on the following figures, the main conclusions drawn for the LI solver still hold.
The Q time-steps are the most significant hyperparameter for achieving stable and
accurate solvers. Plus, as before, changing the learning rate is shown to be an

71

effective strategy to potentially getting different or better results and the batch size
correlation with stability and accuracy remain unclear (see Fig.5.8).

Figure 5.8: For the LC solver, presentation of the epoch that in each hyperparame-
ters’ case the threshold of the median value of the MAE metric is exceeded. In labels, lr
represents learning rate, b the batch size, q the quantum steps. Learning rates include
the typical values of 3e-3 and 3e-4 (blue and red colors respectively) and batch sizes
include values of 32 and 64 (small and big bubbles respectively). The speed at which
optimal -relative to each case- results are achieved is better for the bigger learning
rates, as higher lr values mean bolder steps during gradient descent optimization. The
hyperparameter cases where an acceptable stable solver does not occur are ommited.

However, some comparative observations of LI and LC methods can be made, at
least for the specific case examined here. Firstly, by comparing Figs.5.5 and 5.11, it
is clear that the occurence rate of stable solvers is quite higher in the LC method.
The reason behind this is that the CNN learns to predict very small corrections (as
the deviation of the coarse solution from the coarsened Hi-Fi results at each time
step is small) that are in a much smaller scale and of a much lower “energy” than the
dynamics of the flow and thus cannot lead to the explosions needed for an unstable
solver. It is also possible that this stems from the fact that the LC solver has
acquired a mostly diffusive behavior, whereas the LI solver a mostly anti-diffusive
one as previously seen in Figs.4.11 and 4.12.

By comparing Figs.5.6 and 5.9, it is also apparent that the LC method, in the
same amount of epochs, does not get solvers as accurate as the LI method. It
was found however that for more epochs, the solvers emerging from training do get
more accurate (see Figs.5.9 and 5.10) . This possibly means that the LC method
just converges slower. Of course, slower convergence leads to more epochs, which
significantly raises the training cost.

72

Figure 5.9: Boxplot for the LC method. The meaning of the box, median line,
whiskers and outliers have been explained in Fig.5.6. In labels, lr represents learning
rate, b the batch size, q the quantum steps. As for the LI case, in bigger quantum step
sizes (e.g. q = 15), the box is far to the left side, indicating achievement of significantly
better accuracy, while also being thinner indicating more consistent performance.

Figure 5.10: Same plot with Fig.5.9 except for the fact that the training lasts 200
epochs instead of 100. The results get better accross the board.

73

Figure 5.11: Percentage of epochs when the trained LC hybrid solver would be stable.
Blue regions represent epochs during which the solver is stable and at least as accurate
as the pure numerical solver on the coarse grid. Orange regions represent stable solvers
with accuracy lower than that of the numerical solver on the coarse grid (MAE from
0.03 to 1). Green regions roughly represent possibly stable solvers with unacceptable
values (MAE from 1 to 100).These intermediate values do occur in the LC model
training. Red regions represent unstable values (MAE from 100 to ∞). Better results
occur for bigger Q-steps values.

.

Choosing between LI and LC methods is not a straightforward task. Some of the
properties of each method have been showcased but the manner and case in which
they are implemented is also important. For instance, if the corrections of the LC
method were applied on a first-order scheme then its behavior would also be anti-
diffusive, leading to a possible convergence with some of the characteristics of the
LI method. Generally, the selection between these models should be treated with
an experimenting and case-specific mindset.

74

Chapter 6

Conclusions

This thesis is concerned with the application of two acclaimed hybrid CFD-DL tech-
niques to accelerate accurate solutions of unsteady PDE. The first method involved
producing space and time dependent coefficients with a NN for enhancing FVM,
and the second one used NNs as on-line correctors to coarse numerical solvers. Both
of the techniques were applied to the problems of 1D advection equation and 1D
linear acoustics by developing original code using TensorFlow 2.x and Keras. In the
pursuit of accumulating technical know-how about such hybrid methods via their
implementations, some important conclusions were drawn. Firstly, it is clear that
the complexity of the required NNs that are embedded inside the numerical solvers
does not scale unfavorably with the increasing intricacies of the problem. This sug-
gests the ability of these techniques to scale to harder problems. Additionally, a
range of tests, including a parametric study for the performance of these models,
have been conducted to corroborate the findings and behaviors reported in the orig-
inal research. These tests served to verify the models’ robustness, assessing their
generalizability in different scenarios with a relatively small amount of training data.

The gains of such hybrid solvers can be summarized as so:

Gains relative to numerical counterparts

� Simulation acceleration: Hybrid models, utilizing NNs, can significantly reduce
the computation time, offering faster simulations. Generally, in both end-to-
end NNs and in hybrid methods more arithmetic operations are needed at
the same resolution than in a purely numerical scheme. However, the nature
of these operations in NNs constitutes them extremely parellelizable, which
enables them to tap into the full capabilities of modern hardware such as
Graphical Processing Units (GPUs) and Tensor Processing Units (TPUs). The
speed-up -in getting solutions of the same quality- provided by the two pre-

75

sented methods relative to a numerical solver can be approximated as follows:

speed-up ≈ CRN

RoS

where CR is the coarsening ratio, N is the number of spatial dimensions of
the PDE and RoS is the Rate of Slowdown of hybrid solvers realtive to pure
numerical solvers on the same grid resolution (due to the increased arithmetic
operations).

In the literature [54, 59, 23] it has been shown that for 2D flow problems, with
the current hardware, the hybrid solvers can be up to 80× faster than their
traditional numerical counterparts for attaining solutions of the same quality.

Gains relative to end-to-end NNs

� Generalization: Hybrid models usually exhibit better generalization to unseen
data [54, 23].

� Stability: Hybrid methods provide stable unsteady solvers across a variety of
conditions.

� Interpretability: Compared to NN models which are essentially black-boxes,
hybrid models offer interpretability, as they utilize well-established and well-
tested numerical algorithms to handle big part of the solution dynamics. This
significantly increases their reliability and credibility.

There are also several challenges in hybrid methods, especially when they are ex-
pected to handle real-world, scaled problems. These also represent ideas for future
work on the subject.

Challenges

� Extrapolation: The challenge of ensuring models extrapolate well beyond their
training distribution. This is an inherent property of pure numerical models.
More progress in this area seems possible for hybrid solvers and would be game
changing.

� Data representativeness: Achieving extrapolation capabilities may not be easy,
so the well-known principle of ML can come into play: with enough data, you
always interpolate. However, building large datasets that effectively represent
the sample space of initial conditions is also a challenge that can perhaps be
addressed using more advanced statistical techniques.

� Scaling up: Efficiently scaling these techniques to handle larger and more com-
plex simulations. These methods have been demonstrated for difficult prob-

76

lems (e.g. LC to 3D wake flow in [54]), but they must be further generalized
(e.g. to unstructured grids or to other important equations in Computational
Mechanics).

� Integration of NN architectural advances: CNNs have been shown to be a very
effective machine for physical problems because of their translation invariance
[28], but there have been impactfull architectural breakthroughs (like Trans-
formers) that could be tested, especially for scaled problems where much data
may be available.

� Effective coarsening: Developing strategies for coarsening (e.g. using Autoen-
coders) that better maps the fine grid fields to the coarse grid would also be
significant, as the maximum solution quality that hybrid solvers can achieve
is dependent on the quality of coarsening.

� Integration with existing codebases: Hybrid methods are usually implemented
in Python-based frameworks because of their implicit need for AD (e.g. TF-
Keras, Pytorch) and are “invasive” (especially the LI method). Their integra-
tion within the existent industry CFD codebases of Fortran and C++ remains
a challenge. TensorFlow C++ API and projects like Enzyme (LLVM that
takes arbitrary existing code and computes its derivative or gradient) may be
adequate to deal with these problems. However, if the surge in AI research
continues to bring significant enhancements to traditional CFD algorithms, the
porting of such codes to other emerging programming languages like Julia or
Swift (or even Python coupled with JAX) that have inherent AD capabilities
while also being very fast, is also conceivable.

On a closing note, in light of the significant advancements in ML, it would perhaps
be short-sighted to dismiss the potential dominance of end-to-end NNs, which do
not incorporate physics constraints, in simulations in the long term. Research has
demonstrated that NNs can learn statistical rules more efficiently than those ex-
plicitly provided, leading to superhuman performance in various benchmarks. Com-
puter vision is a prominent example of this. In fluid dynamics, the possibility exists
that NNs might learn the physics rules embedded in data in a more compact or
generalizable manner than the one provided through physics constraints.

However, the practicality of such end-to-end methods remains uncertain, particularly
concerning their economic viability. The increased costs associated with training and
inference of bigger NNs which also need more training data, plus the redundancy
of forcing the model to acquire knowledge that can be swiftly encoded are tangible
drawbacks of end-to-end NNs. It’s also crucial to recognize that the mathematical
equations representing the underlying physics of fluid dynamics are among the most
concise and accurate models humanity has developed. The challenge of surpassing
these equations or their numerical counterparts in terms of generalizability should
not be understimated.

Hybrid methods, as explored in this thesis, present a promising compromise. They

77

blend the reliability and generalizability of numerical methods with the computa-
tional speed of NNs, harnessing the strengths of both approaches. Current research
trends suggest that these hybrid methodologies are likely to be predominant in the
short to medium term, offering a balanced solution that leverages the advantages of
both traditional numerical methods and the latest developments in neural networks.

Finally, it is essential to recognize the profound impact that emerging hardware
technologies like TPUs and specialized GPUs are bound to have on the field of ML,
and consequently, on the intersection of scientific computing and ML. The synergy
between these hardware advancements and the ongoing surge in AI and statistical
algorithm research [37] is expected to create an environment highly fertile to further
integrating ML into CFD. This integration will likely lead to more sophisticated,
efficient, and accurate CFD models.

78

Bibliography

[1] Anderson, J.D.J.: Computational Fluid Dynamics: The Basics with Applica-
tions. McGraw-Hill, New York, NY, USA (1995)

[2] Bar-Sinai, Y., Hoyer, S., Hickey, J., Brenner, M.: Learning data-
driven discretizations for partial differential equations. Proceedings
of the National Academy of Sciences 116(31), 15344–15349 (2019).
https://doi.org/10.1073/pnas.1814058116, https://doi.org/10.1073/

pnas.1814058116, edited by John B. Bell, Lawrence Berkeley National
Laboratory, Berkeley, CA, approved June 21, 2019 (received for review August
14, 2018)

[3] Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with
gradient descent is difficult. IEEE Transactions on Neural Networks 5(2), 157–
166 (1994). https://doi.org/10.1109/72.279181

[4] Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-
parameter optimization. In: Shawe-Taylor, J., Zemel, R., Bartlett,
P., Pereira, F., Weinberger, K. (eds.) Advances in Neural Informa-
tion Processing Systems. vol. 24. Curran Associates, Inc. (2011),
https://proceedings.neurips.cc/paper_files/paper/2011/file/

86e8f7ab32cfd12577bc2619bc635690-Paper.pdf

[5] Bishop, C.: Pattern Recognition and Machine Learning. Springer Sci-
ence+Business Media, LLC, New York, NY, USA (2006), http://research.
microsoft.com/~cmbishop, library of Congress Control Number: 2006922522

[6] Brenowitz, N.D., Bretherton, C.S.: Prognostic validation of a neural network
unified physics parameterization. Geophysical Research Letters 45, 6289–6298
(2018). https://doi.org/10.1029/2018GL078510, https://doi.org/10.1029/

2018GL078510, first published: 13 June 2018, Citations: 175

[7] Brunton, S., Noack, B.R., P.Koumoutsakos: Machine learning for fluid
mechanics. Annual Review of Fluid Mechanics 52, 477–508 (2020).
https://doi.org/10.1146/annurev-fluid-010719-060214, https://doi.org/10.

1146/annurev-fluid-010719-060214, first published as a Review in Advance
on September 12, 2019

79

https://doi.org/10.1073/pnas.1814058116
https://doi.org/10.1073/pnas.1814058116
https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
http://research.microsoft.com/~cmbishop
http://research.microsoft.com/~cmbishop
https://doi.org/10.1029/2018GL078510
https://doi.org/10.1029/2018GL078510
https://doi.org/10.1146/annurev-fluid-010719-060214
https://doi.org/10.1146/annurev-fluid-010719-060214

[8] Chen, W., Chiu, K., Fuge, M.: Aerodynamic design optimization and
shape exploration using generative adversarial networks. In: Proceedings of
the [Conference Name]. University of Maryland, College Park, Maryland
(2019). https://doi.org/10.2514/6.2019-2351, https://www.researchgate.

net/publication/330197128, the paper was presented in January 2019 and
uploaded by Wei Wayen Chen on 20 March 2019

[9] Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep net-
work learning by exponential linear units (elus). In: International Conference
on Learning Representations (ICLR) 2016. Johannes Kepler University, Linz,
Austria (2016)

[10] Cybenko, G.: Approximation by superpositions of a sigmoidal func-
tion. Mathematics of Control, Signals, and Systems 2(4), 303–314
(1989). https://doi.org/10.1007/BF02551274, https://link.springer.com/

article/10.1007/BF02551274

[11] Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hut-
ter, F.: Efficient and robust automated machine learning. In: Cortes,
C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Advances
in Neural Information Processing Systems. vol. 28. Curran Associates,
Inc. (2015), https://proceedings.neurips.cc/paper_files/paper/2015/

file/11d0e6287202fced83f79975ec59a3a6-Paper.pdf

[12] Giotis, A., Giannakoglou, K., Periaux, J.: A reduced-cost multi-objective op-
timization method based on the pareto front technique, neural networks and
pvm. In: European Congress on Computational Methods in Applied Sciences
and Engineering (ECCOMAS 2000). Barcelona, Spain (Sept 2000)

[13] Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedfor-
ward neural networks. In: Teh, Y.W., Titterington, M. (eds.) Proceedings of
the Thirteenth International Conference on Artificial Intelligence and Statistics.
Proceedings of Machine Learning Research, vol. 9, pp. 249–256. PMLR, Chia
Laguna Resort, Sardinia, Italy (13–15 May 2010), https://proceedings.mlr.
press/v9/glorot10a.html

[14] Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In:
Proceedings of the 14th International Conference on Artificial Intelligence and
Statistics (AISTATS 2011). vol. 15. JMLR: Workshop and Conference Pro-
ceedings, Fort Lauderdale, FL, USA (2011), http://proceedings.mlr.press/
v15/glorot11a.html, appeared in Volume 15 of JMLR: Workshop and Con-
ference Proceedings. Copyright 2011 by the authors.

[15] Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016),
http://www.deeplearningbook.org

[16] Haley, P., Soloway, D.: Extrapolation limitations of multilayer feed-
forward neural networks. In: [Proceedings 1992] IJCNN International

80

https://www.researchgate.net/publication/330197128
https://www.researchgate.net/publication/330197128
https://link.springer.com/article/10.1007/BF02551274
https://link.springer.com/article/10.1007/BF02551274
https://proceedings.neurips.cc/paper_files/paper/2015/file/11d0e6287202fced83f79975ec59a3a6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/11d0e6287202fced83f79975ec59a3a6-Paper.pdf
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v15/glorot11a.html
http://proceedings.mlr.press/v15/glorot11a.html
http://www.deeplearningbook.org

Joint Conference on Neural Networks. vol. 4, pp. 25–30 vol.4 (1992).
https://doi.org/10.1109/IJCNN.1992.227294

[17] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recogni-
tion. CoRR abs/1512.03385 (2015), http://arxiv.org/abs/1512.03385

[18] Hendrycks, D., Gimpel, K.: Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415 (2023), https://arxiv.org/abs/1606.08415v5, work done
while the author was at TTIC. Code available at github.com/hendrycks/GELUs

[19] Hinton, G., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Improving neural networks by preventing co-adaptation of feature detectors.
CoRR abs/1207.0580 (2012), http://arxiv.org/abs/1207.0580

[20] Hornik, K.: Approximation capabilities of multilayer feedforward networks.
Neural Networks 4, 251–257 (1991), received 30 January 1990; revised and
accepted 25 October 1990

[21] Hornik, K., M.Tinchcombe, White, H.: Multilayer feedforward networks are
universal approximators. Neural Networks 2, 359–366 (1989), printed in the
USA. All rights reserved.

[22] Innes, M., Edelman, A., Fischer, K., Rackauckas, C., Saba, E., Shah, V.B.,
Tebbutt, W.: A differentiable programming system to bridge machine learning
and scientific computing. CoRR abs/1907.07587 (2019), http://arxiv.org/
abs/1907.07587

[23] Kochkov, D., Smith, J., Alieva, A., Wang, Q., Brenner, M., Hoyer,
S.: Machine learning–accelerated computational fluid dynamics. Pro-
ceedings of the National Academy of Sciences 118(21) (may 2021).
https://doi.org/10.1073/pnas.2101784118, http://dx.doi.org/10.1073/

pnas.2101784118

[24] Kontou, M., Kapsoulis, D., Baklagis, I., Trompoukis, X., Giannakoglou, K.: λ-
DNNs and their implementation in conjugate heat transfer shape optimization.
Neural Computing and Applications 34, 843–854 (2022)

[25] Kontou, M., Asouti, V., Giannakoglou, K.: DNN surrogates for turbulence
closure in CFD-based shape optimization. Applied Soft Computing 143, 110013
(2023)

[26] Kovani, K., Kontou, M., Asouti, V., Giannakoglou, K.: DNN-driven gradient-
based shape optimization in fluid mechanics. In: International Conference on
Engineering Applications of Neural Networks (EANN 2023). Leon, Spain (2023)

[27] L., S.: Turbulence and the dynamics of coherent structures part i: Coherent
structures. Quarterly of Applied Mathematics 45(3), 561–571 (Oct 1987)

81

http://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1606.08415v5
http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1907.07587
http://arxiv.org/abs/1907.07587
http://dx.doi.org/10.1073/pnas.2101784118
http://dx.doi.org/10.1073/pnas.2101784118

[28] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied
to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (Nov
1998). https://doi.org/10.1109/5.726791

[29] LeVeque, R.: Finite Volume Methods for Hyperbolic Problems. Cambridge Uni-
versity Press, Cambridge, United Kingdom (2002), http://www.cambridge.
org, first published in printed format

[30] Ling, J., Kurzawski, A., Templeton, J.: Reynolds averaged turbulence mod-
elling using deep neural networks with embedded invariance. Journal of Fluid
Mechanics 807, 155–166 (2016). https://doi.org/10.1017/jfm.2016.615, c Cam-
bridge University Press 2016. This is a work of the U.S. Government and is not
subject to copyright protection in the United States. Received 2 August 2016;
revised 14 September 2016; accepted 16 September 2016; first published online
18 October 2016

[31] Linnainmaa, S.: Taylor expansion of the accumulated rounding error. BIT
Numerical Mathematics 16, 146–160 (1976), https://api.semanticscholar.
org/CorpusID:122357351

[32] Liu, D.C., Nocedal, J.: On the limited memory BFGS method
for large scale optimization. Mathematical Programming 45, 503–528
(1989). https://doi.org/10.1007/BF01589116, https://doi.org/10.1007/

BF01589116, issue Date: August 1989

[33] Lumley, J.L.: The Structure of Inhomogeneous Turbulent Flows, pp. 166–177
(1967)

[34] M., M., S., P.: Review of “Perceptrons: An Introduction to Computational Ge-
ometry”. IEEE Transactions on Information Theory 15(6), 738–739 (Dec 1969).
https://doi.org/10.1109/TIT.1969.1054388, https://ieeexplore.ieee.org/

document/1054388, iEEE Xplore

[35] Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural
network acoustic models. In: Proceedings of the 30th International Conference
on Machine Learning (ICML 2013). vol. 28. JMLR: Workshop and Confer-
ence Proceedings, Atlanta, Georgia, USA (2013), http://proceedings.mlr.
press/v28/maas13.html, copyright 2013 by the author(s)

[36] Martens, J., Sutskever, I.: Training Deep and Recurrent Networks with Hessian-
Free Optimization, pp. 479–535. Springer Berlin Heidelberg, Berlin, Heidelberg
(2012)

[37] Maslej, N., Fattorini, L., Brynjolfsson, E., Etchemendy, J., Ligett, K., Lyons,
T., Manyika, J., Ngo, H., Niebles, J.C.and Parli, V., Shoham, Y., Wald, R.,
Clark, J., Perrault, R.: The AI index 2023 annual report. Tech. rep., AI Index
Steering Committee, Institute for Human-Centered AI, Stanford University,
Stanford, CA (April 2023)

82

http://www.cambridge.org
http://www.cambridge.org
https://api.semanticscholar.org/CorpusID:122357351
https://api.semanticscholar.org/CorpusID:122357351
https://doi.org/10.1007/BF01589116
https://doi.org/10.1007/BF01589116
https://ieeexplore.ieee.org/document/1054388
https://ieeexplore.ieee.org/document/1054388
http://proceedings.mlr.press/v28/maas13.html
http://proceedings.mlr.press/v28/maas13.html

[38] Montavon, G., Orr, G., Müller, K.R. (eds.): Neural Networks: Tricks of
the Trade, Lecture Notes in Computer Science, vol. 7700. Springer, Heidel-
berg (2012), https://www.springer.com/gp/book/9783642352881, second
Edition

[39] Morgan, N., Bourlard, H.: Generalization and parameter estimation
in feedforward nets: Some experiments. In: Touretzky, D. (ed.)
Advances in Neural Information Processing Systems. vol. 2. Morgan-
Kaufmann (1989), https://proceedings.neurips.cc/paper_files/paper/
1989/file/63923f49e5241343aa7acb6a06a751e7-Paper.pdf

[40] Nakkiran, P., Kaplun, G., Bansal, Y., Yang, T., Barak, B., Sutskever, I.:
Deep double descent: Where bigger models and more data hurt. CoRR
abs/1912.02292 (2019), http://arxiv.org/abs/1912.02292

[41] N.Thuerey, Weissenow, K., H.M., Mainali, N., Prantl, L., Hu, X.: Well, how
accurate is it? A study of deep learning methods for Reynolds-Averaged Navier-
Stokes Simulations. CoRR abs/1810.08217 (2018), http://arxiv.org/abs/
1810.08217

[42] Pawar, S., San, O., Aksoylu, B., Rasheed, A., Kvamsdal, T.: Physics guided
machine learning using simplified theories. CoRR abs/2012.13343 (2020),
https://arxiv.org/abs/2012.13343

[43] Pestourie, R., Mroueh, Y., Rackauckas, C., et al.: Physics-enhanced deep
surrogates for partial differential equations. Nat Mach Intell 5, 1458–
1465 (2023). https://doi.org/10.1038/s42256-023-00761-y, https://doi.org/
10.1038/s42256-023-00761-y

[44] Rabault, J., M.Kuchta, A.Jensen, Réglade, U., Cerardi, N.: Artificial
neural networks trained through deep reinforcement learning discover con-
trol strategies for active flow control. Journal of Fluid Mechanics 865,
281–302 (Feb 2019). https://doi.org/10.1017/jfm.2019.62, http://dx.doi.

org/10.1017/jfm.2019.62

[45] Raissi, M., Perdikaris, P., Karniadakis, G.: Physics-informed neu-
ral networks: A deep learning framework for solving forward
and inverse problems involving nonlinear partial differential equa-
tions. Journal of Computational Physics 378, 686–707 (2019).
https://doi.org/https://doi.org/10.1016/j.jcp.2018.10.045, https://www.

sciencedirect.com/science/article/pii/S0021999118307125

[46] Rosenblatt, F.: The perceptron: A probabilistic model for information storage
and organization in the brain. Psychological Review 65(6), 386–408 (1958).
https://doi.org/10.1037/h0042519, https://doi.org/10.1037/h0042519

[47] Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning repre-
sentations by back-propagating errors. Nature 323, 533–536 (1986).

83

https://www.springer.com/gp/book/9783642352881
https://proceedings.neurips.cc/paper_files/paper/1989/file/63923f49e5241343aa7acb6a06a751e7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1989/file/63923f49e5241343aa7acb6a06a751e7-Paper.pdf
http://arxiv.org/abs/1912.02292
http://arxiv.org/abs/1810.08217
http://arxiv.org/abs/1810.08217
https://arxiv.org/abs/2012.13343
https://doi.org/10.1038/s42256-023-00761-y
https://doi.org/10.1038/s42256-023-00761-y
http://dx.doi.org/10.1017/jfm.2019.62
http://dx.doi.org/10.1017/jfm.2019.62
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://doi.org/10.1037/h0042519

https://doi.org/10.1038/323533a0, https://www.nature.com/articles/

323533a0, published 09 October 1986

[48] S., W., K., E., P., G.: Principal component analysis. Chemometrics and Intel-
ligent Laboratory Systems 2, 37–52 (1987), printed in The Netherlands

[49] S.A. Kyriacou, V.A., Giannakoglou, K.: Efficient PCA-driven
EAs and metamodel-assisted EAs, with applications in tur-
bomachinery. Engineering Optimization 46(7), 895–911 (2014).
https://doi.org/10.1080/0305215X.2013.812726, https://doi.org/10.

1080/0305215X.2013.812726

[50] Shen, Z., Yang, H., Zhang, S.: Optimal approximation rate of relu networks
in terms of width and depth. Journal de Mathématiques Pures et Appliquées
157, 101–135 (2022), https://www.elsevier.com/locate/matpur, received
18 February 2021; Available online 16 July 2021

[51] Springenberg, J., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for sim-
plicity: The all convolutional net. In: International Conference on Learn-
ing Representations (ICLR) 2015, Workshop Track. University of Freiburg,
Freiburg, 79110, Germany (2015), https://arxiv.org/abs/1412.6806v3,
arXiv:1412.6806v3 [cs.LG] 13 Apr 2015

[52] Μπεργελές Γ.: Υπολογιστική Ρευστομηχανική. ΣΥΜΕΩΝ (2012)

[53] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996),
https://www.jstor.org/stable/2346178

[54] Um, K., Brand, R., Y.R.Fei, P.Holl, N.Thuerey: Solver-in-the-loop: Learn-
ing from differentiable physics to interact with iterative pde-solvers. In: Pro-
ceedings of the 34th Conference on Neural Information Processing Systems
(NeurIPS 2020). Vancouver, Canada (2020), https://arxiv.org/abs/2007.
00016v2, arXiv:2007.00016v2 [physics.comp-ph] 5 Jan 2021

[55] Wang, Y., Zhang, H., Zhang, G.: cpso-cnn: An efficient pso-based al-
gorithm for fine-tuning hyper-parameters of convolutional neural net-
works. Swarm and Evolutionary Computation 49, 114–123 (2019).
https://doi.org/https://doi.org/10.1016/j.swevo.2019.06.002, https:

//www.sciencedirect.com/science/article/pii/S2210650218310083

[56] Wengert, R.E.: A simple automatic derivative evaluation program. Communi-
cations of the ACM 7(8), 463–464 (Aug 1964), received February, 1964

[57] Xiao, X., Yan, M., Basodi, S., Ji, C., Pan, Y.: Efficient hyperparameter opti-
mization in deep learning using a variable length genetic algorithm (2020)

[58] Xu, K., Zhang, M., Li, J., Du, S., Kawarabayashi, K., Jegelka, S.: How neural
networks extrapolate: From feedforward to graph neural networks. In: Inter-

84

https://www.nature.com/articles/323533a0
https://www.nature.com/articles/323533a0
https://doi.org/10.1080/0305215X.2013.812726
https://doi.org/10.1080/0305215X.2013.812726
https://www.elsevier.com/locate/matpur
https://arxiv.org/abs/1412.6806v3
https://www.jstor.org/stable/2346178
https://arxiv.org/abs/2007.00016v2
https://arxiv.org/abs/2007.00016v2
https://www.sciencedirect.com/science/article/pii/S2210650218310083
https://www.sciencedirect.com/science/article/pii/S2210650218310083

national Conference on Learning Representations (ICLR 2021). Massachusetts
Institute of Technology (MIT), University of Maryland, University of Washing-
ton, National Institute of Informatics (NII) (2021)

[59] Zhuang, J., Kochkov, D., Bar-Sinai, Y., Brenner, M., Hoyer,
S.: Learned discretizations for passive scalar advection in a two-
dimensional turbulent flow. Physical Review Fluids 6(064605) (2021).
https://doi.org/10.1103/PhysRevFluids.6.064605, received 12 April 2020;
accepted 19 April 2021; published 14 June 2021

[60] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net.
Journal of the Royal Statistical Society. Series B (Statistical Methodology)
67(Part 2), 301–320 (2005). https://doi.org/10.1111/j.1467-9868.2010.00771.x

85

Εθνικό Μετσόβιο Πολυτεχνείο

Σχολή Μηχανολόγων Μηχανικών

Τομέας Ρευστών

Εργαστήριο Θερμικών Στροβιλομηχανών

Μονάδα Παράλληλης Υπολογιστικής Ρευστοδυναμικής

& Βελτιστοποίησης

Υβριδικοί Επιλύτες Υπολογιστικής

Ρευστοδυναμικής-Βαθιάς Μάθησης για Χρονικά

Μη-Μόνιμα Προβλήματα

Διπλωματική Εργασία - Εκτενής περίληψη

Αντώνης Τζανετάκης

Επιβλέπων: Κυριάκος Χ. Γιαννάκογλου, Καθηγητής ΕΜΠ

Αθήνα, 2024

Εισαγωγή

Τις τελευταίες δεκαετίες, το πεδίο της Υπολογιστικής Ρευστοδυναμικής (ΥΡΔ) έχει

συνεισφέρει σημαντικά στην τεχνολογική πρόοδο. Η ευημερία του πεδίου οφείλεται

σε δύο καταλυτικούς παράγοντες: την εξέλιξη των υπολογιστών και της ισχύος τους

και τη βελτίωση των αριθμητικών αλγορίθμων [10]. Στις μέρες μας, το ίδιο μοτίβο

εμφανίζεται για την Τεχνητή Νοημοσύνη (ΤΝ): η εκθετική αύξηση σε διαθέσιμους

υπολογιστικούς πόρους και δεδομένα και η πρόοδος των στατιστικών τεχνικών έχουν

προκαλέσει την ωρίμανση του πεδίου και την εφαρμογή του σε ποικίλους τομείς της

ανθρώπινης δραστηριότητας, συμπεριλαμβανομένου της μηχανικής. Η ΥΡΔ διαθέτει

πλήθος ποιοτικών και καλά οργανωμένων δεδομένων, εύρωστους υπολογιστικούς αλ-

γορίθμους και πρόσβαση σε σημαντικούς υπολογιστικούς πόρους. Η συνέργεια αυτών

των παραγόντων με την άνθηση της ΤΝ οδηγεί σε αξιόλογους συνδυασμούς της ΥΡΔ

και της ΤΝ [4, 12].

Η διπλωματική εργασία εξερευνά το πεδίο υποβοήθησης της ΥΡΔ από τεχνικές Βαθι-

άς Μάθησης (ΒΜ). Προγραμματίζονται και αξιολογούνται δύο υβριδικές προσεγγίσεις

ΥΡΔ-ΒΜ [2, 11], που επιταχύνουν την ακριβή επίλυση χρονικά μη-μόνιμων προβλη-

μάτων. Οι μέθοδοι αυτές στοχεύουν στην αντιμετώπιση του σφάλματος διακριτοπο-

ίησης, που εξαρτάται κυρίως απ΄το βήμα του πλέγματος [1], και είναι σημαντική πηγή

σφάλματος στις αριθμητικές προσομοιώσεις. Χρησιμοποιώντας Τεχνητά Νευρωνικά

Δίκτυα (ΤΝΔ) εκπαιδευμένα σε δεδομένα υψηλής ανάλυσης, αυτοί οι υβριδικοί επι-

λύτες ενώ λειτουργούν σε ένα αραιό πλέγμα, επιτυγχάνουν λύσεις που αντιστοιχούν

σε πολύ πυκνότερα πλέγματα. Και οι δύο μέθοδοι εφαρμόζονται για να λύσουν δύο 1Δ

χρονικά μη-μόνιμα προβλήματα: την εξίσωση μεταφοράς και την εξίσωση γραμμικής

ακουστικής.

Τεχνητά Νευρωνικά Δίκτυα

Τα Τεχνητά Νευρωνικά Δίκτυα (ΤΝΔ) είναι πολύπλοκες και ευέλικτες συναρτήσεις

προσαρμογής [5]. Κατά τη διαδικασία της εκπαίδευσης, τα βάρη του ΝΔ ανανεώνονται

μέσω κάποιας διαδικασίας βελτιστοποίησης (συνήθως μέσω της μεθόδου της απότομης

κλίσης) μέχρις ότου να ελαχιστοποιηθεί μία συνάρτηση απωλειών. Αυτή η συνάρτηση

απωλειών μετρά το σφάλμα μεταξύ της πρόβλεψης του ΤΝΔ και της πραγματικής τιμής

στα δεδομένα εκπαίδευσης.

Η μαθηματική τους περιγραφή μπορεί να συνοψισθεί ως μία σύνθεση γραμμικών μετα-

σχηματισμών ανάμεσα στους οποίους παρεμβάλλονται μη-γραμμικές συναρτήσεις (‘‘συ-

ναρτήσεις ενεργοποίησης¨).

NN(x,W) = fN ◦ fN−1 ◦ ... ◦ f1(x,W) (1)

όπου x είναι το διάνυσμα εισόδου και W είναι το μητρώο των παραμέτρων (βάρη και

πολώσεις) του ΝΔ, και θεωρώντας ίδιες συναρτήσεις ενεργοποίησης για κάθε στρώση,

μπορεί να γραφτεί:

ii

fn(x,Wn) = σ(Wnx+ bn) (2)

που περιγράφει την πράξη μέσα σε κάθε στρώση, όπου Wn είναι το μητρώο βαρών για

την ν-οστή στρώση, bn είναι η πόλωση για την ν-οστή στρώση και σ είναι η συνάρτηση
ενεργοποίησης.

Στην διπλωματική εργασία, χρησιμοποιείται μία υποκατηγορία των ΤΝΔ που ονομάζε-

ται Συνελικτικά Νευρωνικά Δίκτυα (ΣΝΔ). Τα ΣΝΔ χρησιμοποιούν πράξεις συνέλιξης

αντί για πολλαπλασιασμούς πινάκων και είναι η πιο συνηθισμένη επιλογή σε προβλήμα-

τα χωροχρονικών δεδομένων και άρα και σε πλεγματικές τοπολογίες. Ο κύριος λόγος

που τα καθιστά κατάλληλα για αυτά τα προβλήματα είναι ότι από κατασκευής τους

είναι μεταφορικά αδιάφορα [6], δηλαδή όταν ένα χαρακτηριστικό αναγνωρισθεί/μαθευ-

τεί σε μία τοποθεσία, αναγνωρίζεται ως το ίδιο χαρακτηριστικό και σε οποιαδήποτε

άλλη τοποθεσία. Αυτή τους η ιδιότητα εξασφαλίζει εξοικονόμηση σε απαραίτητα δεδο-

μένα και σε χρόνο εκπαίδευσης σε σχέση με τις γενικές Πλήρως Συνδεδεμένες (ΠΣ)

αρχιτεκτονικές, για τα ειδικά αυτά προβλήματα.

Υβριδικοί Επιλύτες

Και οι δύο εξεταζόμενες τεχνικές χρησιμοποιούνται για την επίλυση διακριτοποιημένων

χρονικά μη-μόνιμων Μερικών Διαφορικών Εξισώσεων (ΜΔΕ). Η μέθοδος Παραγω-

γής Συντελεστών (ΠΣ) αντικαθιστά το κλασικό βήμα ανακατασκευής της μεθόδου

των Πεπερασμένων ΄Ογκων (ΠΟ) (βλ. [7]) με μια διαδικασία που βασίζεται σε ΤΝΔ.

Συγκεκριμένα, το ΤΝΔ εκπαιδεύεται να παράγει χωροχρονικά μεταβαλλόμενους συντε-

λεστές διακριτοποίησης, που σε κάθε χρονική στιγμή, συνδυάζονται με τις κομβικές

τιμές του πεδίου σε ένα αραιό πλέγμα προσεγγίζοντας τις χωρικές παραγώγους της

διακριτοποιημένης ΜΔΕ στο κέντρο των κελιών. Αυτές χρησιμοποιούνται για τον υ-

πολογισμό των fluxes στα όρια των κελιών (βήμα ανακατασκευής), και εκείνα μέσω
ΠΟ με κάποιο σχήμα χρονικής ολοκλήρωσης βρίσκουν τα πεδία ροής. Τελικά, επιτυγ-

χάνονται αποτελέσματα που αντιστοιχούν σε λύσεις πολύ πυκνότερων πλεγμάτων σε

σχέση με εκείνο στο οποίο λειτουργεί το αριθμητικό μέρος του επιλύτη.

Στη μέθοδο Παραγωγής Διορθώσεων (ΠΔ), επιλύεται με έναν συμβατικό αριθμητικό

επιλύτη η διακριτοποιημένη ΜΔΕ σε ένα αραιό πλέγμα, παράγοντας λύσεις χαμηλής

ανάλυσης. Σε κάθε χρονικό βήμα, σε αυτές προστίθεται μία διόρθωση (διαφορετική

για κάθε κόμβο του αραιού πλέγματος) από ένα εκπαιδευμένο ΤΝΔ. ΄Ετσι, το σφάλμα

της αριθμητικής λύσης διορθώνεται σταδιακά χωρίς να προλάβει να γιγαντωθεί. Με

αυτόν τον τρόπο παράγονται αποτελέσματα υψηλής ανάλυσης, αντίστοιχα ενός πολύ

πυκνότερου πλέγματος σε σχέση με εκείνο στο οποίο λειτουργεί το αριθμητικό μέρος

του επιλύτη.

Ο ορισμός και οι τιμές των βασικών παραμέτρων για τα δύο προβλήματα που θα παρου-

σιαστούν περιλαμβάνονται στον Πιν.1. Ο αριθμός σημείων του πλέγματος θα δίνεται

από τη σχέση λ1 × 2λ2 , το οποίο είναι βοηθητικό για τον πειραματισμό με διάφορους

συντελεστές αραίωσης. Οι υβριδικοί επιλύτες που παρουσιάζονται (βλ. και [2, 11])

iii

συμπεριλαμβάνουν τα ακόλουθα στάδια.

Παράμετρος Περιγραφή Τιμή

Κ
αρ. διαφορετικών

αρχικών συνθηκών

30 για το προβλ. 1 και

10 για το προβλ. 2

CR
λόγος πύκνωσης

= 2β, β ∈ N∗\β < λ2
8

λ1
παράγων του αρ. των

πλεγματικών σημείων
3

λ2
εκθέτης του αρ. των

πλεγματικών σημείων
7

Μf
αρ. σημείων στο πυκνό

πλέγμα = λ1 × 2λ2
384

Μc
αρ. σημείων στο αραιό

πλέγμα =
Mf

CR

48

Νf
αρ. χρονικών βημάτων

στο αραιό πλέγμα
1536

Νc
αρ. χρονικών βημάτων

στο πυκνό πλέγμα
192

S μέγεθος στένσιλ 3-σημείων

Πίνακας 1: Πίνακας με σημαντικές παραμέτρους, τις περιγραφές τους και τις τιμές

που παίρνουν για τα δύο προβλήματα. Το μόνο που αλλάζει είναι οι αρχικές συνθήκες.

Σημειώνεται ότι ο δείκτης f θα χρησιμοποιείται για παραμέτρους σχετικές με το πυκνό
πλέγμα και ο δείκτης c για παραμέτρους σχετικές με το αραιό πλέγμα.

Στάδιο 1ο: Για μία αρχική συνθήκη, ολοκλήρωση στον χρόνο της διακριτοποιημένης

ΜΔΕ στο πυκνό πλέγμα (Mf σημεία), για Nf χρονικά βήματα μέχρι όλα τα χαρα-

κτηριστικά της λύσης να έχουν εκδηλωθεί (λ.χ. να περιλαμβάνεται και η μεταβατική

και η περιοδική μόνιμη κατάσταση ενός προβλήματος). Καθώς γίνεται η ολοκλήρωση,

αποθηκεύονται, αραιωμένα χωροχρονικά σε Mc σημεία και Nc χρονικά βήματα, τα α-

ποτελέσματα της ολοκλήρωσης. Η ίδια διαδικασία γίνεται -εν δυνάμει με παράλληλο

τρόπο- για K αρχικές συνθήκες (π.χ. τετράγωνα κύματα διαφορετικού ύψους). Τα
τελικά δεδομένα μεγέθους K×Nc×Mc που αποθηκεύτηκαν θα χρησιμοποιηθούν σαν

δεδομένα εκπαίδευσης. Το στάδιο αυτό περιγράφεται στο Σχ.1.

Στάδιο 2ο: Εκπαίδευση του ΣΝΔ στα αραιωμένα δεδομένα. Η έξοδος του ΣΝΔ είναι

συντελεστές διακριτοποίησης για την μέθοδο ΠΣ ή διορθώσεις των πεδιακών τιμών για

τη μέθοδο ΠΔ.

Στάδιο 3ο: Χρήση του εκπαιδευμένου ΣΝΔ στον υβριδικό επιλύτη για νέες αρχικές

συνθήκες που δεν έχουν χρησιμοποιηθεί κατά την εκπαίδευση. Το ΣΝΔ θα παράξει

είτε συντελεστές διακριτοποίησης (για την μέθοδο ΠΣ) είτε πεδιακές διορθώσεις (για

τη μέθοδο ΠΔ) και τα αριθμητικά κομμάτια του επιλύτη θα χρησιμοποιήσουν είτε το

iv

ένα είτε το άλλο αντίστοιχα για να παράξουν το πεδίο της ροής την επόμενη χρονική

στιγμή.

ρ̂ni ,∀i

Initial Condition

ρ|n=0
i ,∀i

DATABASE 1

for k = 1 : K
initial conditions

Numerical Model

ρ̂n+1
i ,∀i

Temporal Coarsening:
if mod(n,CR) = 0

Spatial Coarsening:
averaging out nodes
in groups of CR

DATABASE 2

x(time steps)

Σχήμα 1: Διάγραμμα ροής του 1ου σταδίου: Επιλύεται με το συμβατικό αριθμητικό

επιλύτη (ΠΟ, 2ης τάξης ακρίβειας, πυκνό πλέγμα) η διακριτοποιημένη ΜΔΕ, γίνεται

χωροχρονική αραίωση και συλλέγονται τα δεδομένα. Για την 1Δ εξίσωση μεταφοράς

(όπου CR = 8), κάθε 8ο χρονικό βήμα (αντιστοιχεί σε χρονική πύκνωση, βλ. κόμβο
με το εάν), το πεδίο της ροής αραιώνεται χωρικά και αποθηκεύεται. Η χωρική αραίωση

γίνεται λαμβάνοντας τον μέσο όρο για κάθε ομάδα από CR = 8 κόμβους.

v

ρ̂ni ,∀i

Out-of-Sample

Initial Condition

ρ|n=0
i ,∀i

Spatial derivatives calculation

∂ρ
∂x

∣∣n
i
=

ani ρ
n
i+1+bni ρ

n
i +cni ρ

n
i−1

2∆x

CNN

∂ρ
∂x

∣∣n
i
,∀i

Flux calculation

F n
i+ 1

2

= ūρni +
1
2 |ū|

(
1− |ū|∆t

∆x

)
∂ρ
∂x

∣∣n
i

F n
i+1

2
,∀i

Time derivative calculation

∂ρ
∂t

∣∣n
i
= −

Fn

i+1
2
−Fn

i− 1
2

∆x

∂ρ
∂t

∣∣n
i
,∀i

Integrating in time with forward Euler

ρ̂n+1
i = ρni +∆t∂ρ∂t

∣∣n
i

ρ̂n+1
i ,∀i

ani , b
n
i , c

n
i ,∀i

coeffs

x(time steps)

H
y
b
ri
d
m
o
d
el
:
L
ea
rn
ed

In
te
rp
ol
at
io
n

Σχήμα 2: Αξιοποιήση του υβριδικού επιλύτη ΠΣ, αφού έχει γίνει η εκπαίδευση του

ΣΝΔ. Μία υψηλής ανάλυσης αρχική συνθήκη που δεν εμπεριέχεται στα δεδομένα εκ-

παίδευσης αραιώνεται και τροφοδοτείται στον υβριδικό επιλύτη. Αυτός παράγει την λύση

για ένα συγκεκριμένο χρονικό διάστημα με τον ακόλουθο τρόπο: Κάθε εκτιμώμενο πεδίο

ροής σε μία χρονική στιγμή ρ̂ni , ∀i περνά τόσο μέσα από το ΣΝΔ που παράγει χωροχρο-
νικά μεταβαλλόμενους συντελεστές όσο και από το αριθμητικό μοντέλο (ΠΟ, 2ης τάξης

σχήμα, χωρίς περιοριστή, στένσιλ 3-σημείων) που χρησιμοποιεί αυτούς τους συντελε-

στές, για την προσέγγιση των χωρικών παραγώγων. ΄Ετσι, προβλέπεται το πεδίο στο νέο

χρονικό βήμα ρ̂n+1
i ,∀i. Αυτό επαναλαμβάνεται για όλα τα χρονικά βήματα.

vi

ρ̂ni ,∀i

Out-of-Sample

Initial Condition

ρ|n=0
i ,∀i

Spatial derivatives calculation

∂ρ
∂x

∣∣n
i
=

aρni+1+bρni +cρni−1

2∆x

∂ρ
∂x

∣∣n
i
,∀i

Flux calculation

F n
i+ 1

2

= ūρni +
1
2|ū|

(
1− |ū|∆t

∆x

)
∂ρ
∂x

∣∣n
i

F n
i+1

2
,∀i

Time derivative calculation

∂ρ
∂t

∣∣n
i
= −

Fn

i+1
2
−Fn

i− 1
2

∆x

∂ρ
∂t

∣∣n
i
,∀i

Integrating in time with forward Euler

ρ̂n+1
i

∣∣
temp

= ρni +∆t∂ρ∂t
∣∣n
i

ρ̂n+1
i

∣∣
temp

,∀iCNN

correctionn+1
i ,∀i +

ρ̂n+1
i ,∀i

x(time steps)
H
y
b
ri
d
m
o
d
el
:
L
ea
rn
ed

C
or
re
ct
io
n
s

Σχήμα 3: Αξιοποιήση του υβριδικού επιλύτη ΠΔ, αφού έχει γίνει η εκπαίδευση του

ΣΝΔ. Μία υψηλής ανάλυσης αρχική συνθήκη που δεν εμπεριέχεται στα δεδομένα εκπα-

ίδευσης αραιώνεται και τροφοδοτείται στον υβριδικό επιλύτη. Αυτός παράγει την λύση για

ένα συγκεκριμένο χρονικό διάστημα με τον ακόλουθο τρόπο: Κάθε εκτιμώμενο πεδίο ρο-

ής σε μία χρονική στιγμή ρ̂ni , ∀i περνά μέσα από το αριθμητικό μοντέλο (ΠΟ, 2ης τάξης
σχήμα, χωρίς περιοριστή, στένσιλ 3-σημείων με του κλασικούς συντελεστές Taylor) και
προβλέπεται ένα προσωρινό πεδίο για την επόμενη χρονική στιγμή ρ̂n+1

i |temp, ∀i. Τότε,
αυτό το προσωρινό πεδίο περνά μέσα από ένα ΣΝΔ που γεννά χωροχρονικά μεταβαλλόμε-

νες διορθώσεις CORRn+1
i ,∀i για το πεδίο αυτό. Προσθέτοντας το προσωρινό πεδίο και

την διόρθωση, γίνεται η πρόβλεψη του (τελικού) επόμενου χρονικά πεδίου ρ̂n+1
i , ∀i. Αυτό

επαναλαμβάνεται για όλα τα χρονικά βήματα.
vii

Πρόσθετα στοιχεία των Υβριδικών Επιλυτών

Και για τους δύο υβριδικούς επιλύτες, επιλέγεται ως συνάρτηση απωλειών μία πολυβη-

ματική εκδοχή του κλασικού Μέσου Απόλυτου Σφάλματος [3]. Μια υψηλού επιπέδου

όψη της διαδικασίας φαίνεται στο Σχ.4. Η χρήση πολλών βημάτων βοηθά τα μοντέλα

να αναγνωρίσουν ότι η πρόβλεψη της επόμενης χρονικής στιγμής επηρρεάζει και τις

μελλοντικές τους προβλέψεις και είναι ένα από τα βασικά στοιχεία που καθιστά τους

επιλύτες αυτούς ευσταθείς.

ρ̂ni ,∀i Hybrid model ρ̂n+1
i ,∀i Loss

[ρn+1
i , ..., ρn+Q

i],∀i

[ρ̂|n+1
i , ..., ρ̂|n+Q

i],∀i

x(Q time-steps)

Σχήμα 4: Τα συσσωρευμένα πεδία για Q στον αριθμό χρονικών στιγμών συγκρίνονται
με τα δεδομένα εκπαίδευσης στη συνάρτηση απωλειών.

Για τον υβριδικό επιλύτη ΠΣ, επιβάλλεται επίσης ελάχιστη τάξης πολυωνυμικής α-

κρίβειας στο προκύπτον σχήμα πεπερασμένων διαφορών που προσεγγίζει την χωρική

παράγωγο και καθορίζεται από τους χωροχρονικά μεταβαλλόμενους συντελεστές που

παράγει το ΣΝΔ. Οι δοκιμές της παρούσας εργασίας συμφωνούν με τα ευρήματα των

[2, 13] ότι η βέλτιστη ελάχιστη ακρίβεια είναι η 1η τάξη ακρίβειας. Για την 1ης τάξης

χωρική παράγωγο που χρησιμοποιείται στην παρούσα εργασία, αυτό σημαίνει πρακτικά

ότι οι παραγόμενες ομάδες (τριάδες εν προκειμένω) συντελεστών από το ΣΝΔ πρέπει

να αθροίζουν στο μηδέν. Η τήρηση αυτού του περιορισμού επιβάλλεται στην πράξη με

έναν κατάλληλο γραμμικό μετασχηματισμό της εξόδου του ΣΝΔ.

΄Εγκαιρη διακοπή της διαδικασίας εκπαίδευσης

Ο τυπικός τρόπος να αποφευχθεί η υπερπροσαρμογή στα δεδομένα είναι με την έγκαι-

ρη διακοπή της εκπαίδευσης με χρήση δεδομένων επικύρωσης [9]. Στις συγκεκριμένες

μεθόδους αυτό δεν λειτουργεί λόγω της φύσης των μη-μόνιμων επιλυτών. Μία λύση σε

αυτό μπορεί να είναι η χρήση του ίδιου του υβριδικού επιλύτη κατά τη διάρκεια της εκ-

παίδευσης, με έναν όσο το δυνατόν πιο οικονομικό τρόπο. Το κριτήριο που επιβάλλεται

για την διακοπή της εκπαίδευσης είναι το εξής: σε ένα μικρό αλλά ικανό κλάσμα του

χρονικού διαστήματος που επιθυμείται να δουλεύει καλά ο επιλύτης, πρέπει το Μέσο

Απόλυτο Σφάλμα μεταξύ υβριδικής λύσης στο αραιό και αραιωμένης αριθμητικής λύσεις

να μένει σταθερό στον χρόνο, άρα να μηδενίζεται σχεδόν εντελώς το σχετικό σφάλμα

λόγω αριθμητικής διακριτοποίησης μεταξύ αραιού και πυκνού πλέγματος.

viii

Δεδομένα προβλημάτων

Και για τα δύο προβλήματα που εξετάζονται, το χωρικό πεδίο ορίζεται ως x ∈ [0, L]
και το χρονικό πεδίο ως t ∈ [0, tfinal], με περιοδικές οριακές συνθήκες στον χώρο:

ρ(x = 0, t) = ρ(x = L, t) &

{
p(x = 0, t) = p(x = L, t)

u(x = 0, t) = u(x = L, t)
(3)

Οι αρχικές συνθήκες έχουν μορφή τετράγωνου κύματος κάποιου ύψους και πλάτους

για την εξίσωση μεταφοράς:

ρ(x, t = 0) =

{
height, αν xl < x < xr

0, αλλού
(4)

και μορφή τετράγωνου κύματος κάποιου ύψους στην πίεση και μηδενική ταχύτητα για

την εξίσωση ακουστικής:

{
p
u

}
(x, t = 0) =

{
heightp, αν xl < x < xr,
0, αλλού

}
(5)

Τα χαρακτηριστικά των ΣΝΔ που εκπαιδεύτηκαν παρουσιάζονται στον Πιν.2.

Κατηγορία
Πρόβλ. 1

(ΠΣ)

Πρόβλ. 1

(ΠΔ)

Πρόβλ. 2

(ΠΣ)

Πρόβλ. 2

(ΠΔ)

αριθμός στρώσεων 4 4 5 5

αριθμός φίλτρων 32 32 64 64

μέγεθος πυρήνα

συνέλιξης
3× 1 3× 1 5× 1 5× 1

μέγεθος του batch
64 64 64 64

βήμα εκμάθησης 3e-3, 3e-4 3e-3, 3e-4 3e-3 3e-3, 3e-4
εποχές 102 156 13 170

αρ. χρονικών

βημάτων Q
4 4 10 10

βελτιστοποιητής Adam
αρχικοποίηση

βαρών
Xavier

συν. ενεργοποίησης ReLU

Πίνακας 2: Τα χαρακτηριστικά των ΣΝΔ για κάθε μέθοδο και πρόβλημα. Η υπερπα-

ράμετρος Q καθορίζει το πόσα χρονικά βήματα προβλέπει ο επιλύτης ανά τρέξιμο.

ix

1Δ εξίσωση μεταφοράς

Η 1Δ εξίσωση μεταφοράς γράφεται:

∂ρ

∂t
+ ū

∂ρ

∂x
= 0, (6)

όπου η ταχύτητα μεταφοράς ū θεωρείται σταθερή και θετική.

Οι παράμετροι του προβλήματος έχουν οριστεί στον Πιν.1.

Σε αυτό το πρόβλημα, οι αρχικές συνθήκες είναι 30 τετράγωνα κύματα με διαφορετικά

ύψη και πλάτη. Ζητείται από τους υβριδικούς επιλύτες να προβλέψουν την εξέλιξη

για ένα τετράγωνο κύμα με διαφορετικό ύψος και πλάτος, μετατοπισμένο στο πλέγμα

κατά την αρχική χρονική στιγμή. Η πρόβλεψη τους ελέγχεται σε μεγαλύτερο χρονικό

διάστημα απ΄ όσο έχουν εκπαιδευθεί για την διασφάλιση της ευστάθειας τους.

Σχήμα 5: Σύγκριση του αποκλειστικά αριθμητικού επιλύτη στο αραιό πλέγμα και των

υβριδικών στο αραιό πλέγμα, βάσει του Μέσου Απόλυτου Σφάλματος (ΜΑΣ) τους σε

σχέση με την αποκλειστικά αριθμητική λύση στο πυκνό πλέγμα -προβεβλημένη στο αραιό-

για τετράγωνο κύμα ύψους που δεν έχει χρησιμοποιηθεί στην εκπαίδευση και με αρχική

θέση μετατοπισμένη κατά 6 κόμβους στο πλέγμα. Η μέθοδος ΠΣ φαίνεται να είναι οριακά

καλύτερη από τη μέθοδο ΠΔ ειδικά όταν γίνεται ολοκλήρωση στον χρόνο πέρα από το

χρονικό κομμάτι που έχει χρησιμοποιηθεί στην εκπαίδευση.

x

Σχήμα 6: Σύγκριση ενός 2ης τάξης σχήματος με superbee περιοριστή σε αραιό πλέγμα
48-σημείων (πορτοκαλί), με τον υβριδικό επιλύτη ΠΣ σε αραιό πλέγμα 48-σημειών (μπλέ).

Η σύγκριση γίνεται με βάση την αριθμητική επίλυση σε πυκνό πλέγμα 384-σημείων που

προβάλλεται στο αραιό (πράσινο). Προεκβολή στον χρόνο κατά 16 φορές το χρονικού πεδίο

που υπάρχει στα δεδομένων εκπαίδευσης.

Σχήμα 7: Σύγκριση ενός 2ης τάξης σχήματος με superbee περιοριστή σε αραιό πλέγμα
48-σημείων (πορτοκαλί), με τον υβριδικό επιλύτη ΠΔ σε αραιό πλέγμα 48-σημειών (μπλέ).

Η σύγκριση γίνεται με βάση την αριθμητική επίλυση σε πυκνό πλέγμα 384-σημείων που

προβάλλεται στο αραιό (πράσινο). Προεκβολή στον χρόνο κατά 16 φορές το χρονικού πεδίο

που υπάρχει στα δεδομένων εκπαίδευσης.

xi

Τα αποτελέσματα μπορούν να συνοψισθούν στην εξής πρόταση: χρησιμοποιώντας ένα

αραιό πλέγμα 48 σημείων, οι υβριδικοι επιλύτες επιτυγχάνουν λύσεις κοντινές σε αυτές

που παράγονται από (καθαρά) αριθμητικούς επιλύτες σε πυκνό πλέγμα 384-σημείων που

προβάλλεται στο αραιό. Στο Σχ.5 γίνεται εμφανές ότι η υβριδική λύση ακολουθεί πιστά

την υψηλής ποιότητας λύση. Τα σχήματα αυτά στο σύνολο τους αποδεικνύουν τόσο την

ποιότητα των λύσεων που επιτυγχάνονται όσο και την ευστάθεια του προκυπτόμενου

επιλύτη.

1Δ εξίσωση γραμμικής ακουστικής

∂

∂t

[
p
u

]
+

[
0 K0
1
ρ0

0

]
∂

∂x

[
p
u

]
=

[
0
0

]
(7)

΄Οπου:

� p(x, t):: διαταραχή της πίεσης σε σχέση με το περιβάλλον

� u(x, t): διαταραχή της ταχύτητας σε σχέση με το περιβάλλον

� K0= ρ0c0
2
: το όριο συμπιεστότητας του μέσου (c0: ταχύτητα του ήχου)

� ρ0: η πυκνότητα του μέσου

Σε αυτό το πρόβλημα, οι αρχικές συνθήκες στις οποίες εκπαιδεύτηκε το ΤΝΔ είναι

10 τετράγωνα κύματα με διαφορετικά ύψη και κυμαινόμενη πυκνότητα του μέσου με-

τάδοσης σε τέσσερις διακριτές τιμές ρ = {0.75, 1, 1.5, 2}kg/m3
. Ζητείται από τους

υβριδικούς επιλύτες να προβλέψουν την εξέλιξη για ένα τετράγωνο κύμα με διαφορετι-

κό ύψος (ενδιάμεσο των άλλων) και με διαφορετική (ενδιάμεση) πυκνότητα μέσου. Και

ελέγχεται η πρόβλεψη τους σε μεγαλύτερο χρονικό διάστημα απ΄ όσο έχουν εκπαιδευθεί

για διασφάλιση της ευστάθειας τους.

Επιβεβαιώνονται τα αποτελέσματα του πρώτου προβλήματος. Χρησιμοποιώντας ένα α-

ραιό πλέγμα 48-σημείων, οι υβριδικοι επιλύτες γεννούν λύσεις κοντινές σε αυτές που θα

παράγονταν από (καθαρά) αριθμητικούς επιλύτες σε πυκνό πλέγμα 384-σημείων -αφού

προβληθούν στο αραιό-, απαλείφοντας σχεδόν το σφάλμα διακριτοποιήσης στο βαθμό

που αυτό μπορεί να γίνει αντιληπτό από το ΤΝΔ μέσα από τα δεδομένα εκπαίδευσης

του.

xii

Σχήμα 8: Σύγκριση των πεδίων πίεσης και ταχύτητας (πάνω και κάτω σχήματα α-

ντίστοιχα) του (καθαρά) αριθμητικού επιλύτη στο αραιό πλέγμα 48-σημείων (μπλέ) και

των υβριδικών στο αραιό πλέγμα 48-σημείων (μέθοδος ΠΣ: πορτοκαλί και μέθοδος ΠΔ

:πράσινο), βάσει του Μέσου Απόλυτου Σφάλματος (ΜΑΣ) τους σε σχέση με την (κα-

θαρά) αριθμητική λύση στο πυκνό πλέγμα 384-σημείων που έχει προβληθεί στο αραιό.

Αυτό γίνεται για αρχικές συνθήκες τετράγωνων κυμάτων με ύψη που δεν έχουν χρησι-

μοποιηθεί στην εκπαίδευση ((νέα ύψη) = 0.65 ∗ (παλιά ύψη)) και με πυκνότητα μέσου
(ρ = 1.5kg/m3

) που πάλι δεν έχει χρησιμοποιηθεί στην εκπαίδευση. Γίνεται προέκταση

στον χρόνο για δύο ακόμα περιόδους (διπλάσιος χρόνος από αυτόν στα δεδομένα εκπαίδευ-

σης). Εδώ η μέθοδος ΠΔ φαίνεται να είναι κάπως καλύτερη από την ΠΣ αλλά και οι δύο

παράγουν καλά αποτελέσματα και ευσταθείς επιλύτες.

xiii

Σχήμα 9: Για τον επιλύτη ΠΣ: σύγκριση πολλών πεδίων πίεσης (χρωματική ομάδα

πράσινο, πορτοκαλί, μπλέ) και ταχύτητας (χρωματική ομάδα: μπορντό,μωβ, κόκκινο) σε

διάφορα χρονικά βήματα (ανά στήλη) και για τέσσερις διαφορετικές πυκνότητες (ανά

σειρά). Ούτε το αρχικό τετράγωνο κύμα, ούτε οι συγκεκριμένες πυκνότητες μέσου έχουν

χρησιμοποιηθεί στην εκπαίδευση. Η σύγκριση γίνεται για ένα 2ης τάξης σχήμα με V an
Leer περιοριστή σε αραιό πλέγμα 48-σημείων (μωβ και πορτοκαλί) και για τον υβριδικό
επιλύτη ΠΣ σε αραιό πλέγμα 48-σημειών (κόκκινο και μπλέ). Η σύγκριση γίνεται με

βάση την αριθμητική επίλυση σε πυκνό πλέγμα 384-σημείων που έχει προβληθεί στο

αραιό (μπορντό και πράσινο). Η λύση της ροής έχει προεκταθεί και για δύο περιόδους στον

χρόνο (διπλάσιος χρόνος από αυτόν στα δεδομένα εκπαίδευσης). Τα πεδία ταχύτητας είναι

πολλαπλασιασμένα με έναν παράγοντα 680 για την οπτικοποίηση των αποτελεσμάτων στο
γράφημα. Η επικεφαλίδα “time” αναφέρεται σε διαφορετικά χρονικά βήματα.

xiv

Σχήμα 10: Για τον επιλύτη ΠΔ: Σύγκριση πολλών πεδίων πίεσης (χρωματική ομάδα

πράσινο, πορτοκαλί, μπλέ) και ταχύτητας (χρωματική ομάδα: μπορντό,μωβ, κόκκινο) σε

διάφορα χρονικά βήματα (ανά στήλη) και για τέσσερις διαφορετικές πυκνότητες μέσου

(ανά σειρά). Παρόμοια αποτελέσματα με το Σχ.9.

Παραμετρική μελέτη για την συμπεριφορά των υβριδικών επιλυτών

Πολύ σημαντική για την ευστάθεια και γενικότερη επίδοση των υβριδικών αυτών μο-

ντέλων -κατά την εκπαίδευση και την χρήση τους- είναι η επιλογή των υπερπαραμέτρων.

Από την μικρή παραμετρική μελέτη που διεξάγεται, συμπεραίνεται ότι η πιο σημαντική

υπερπαράμετρος τόσο για την ευστάθεια του προκυπτόμενου υβριδικού επιλύτη, όσο

και για την ακρίβεια των αποτελεσμάτων του είναι ο αριθμός των προβλέψεων που

κάνει άνα ένα τρέξιμο του ο υβριδικός επιλύτης. Είναι εμφανές ότι απαιτείται ένας

συμβιβασμός. Περισσότερα αναδρομικά βήματα οδηγούν σε καλύτερη ακρίβεια και ευ-

xv

στάθεια αλλά αυξάνουν σημαντικά το κόστος κατά την εκπαίδευση. Η αυστηρότητα

του κριτηρίου της έγκαιρης διακοπής όπως περιγράφηκε παραπάνω επίσης είναι μία πα-

ράμετρος που πρέπει να συνυπολογιστεί, μιας και μπορούν πιθανώς να ληφθούν καλά

αποτελέσματα με λιγότερα τέτοια αναδρομικά βήματα.

Το βήμα εκμάθησης και το μέγεθος του batch εκπαίδευσης φαίνεται να παίζουν μικρό
ρόλο (το βήμα μεγαλύτερο) και χωρίς κάποια καθαρή ένδειξη στο πώς να επιλεγούν

εφόσον τα αποτελέσματα σε μία δοκιμή δεν είναι καλά.

Συμπεράσματα

Κατά τον προγραμματισμό και αξιολόγηση των δύο περιγραφόμενων υβριδικών επιλυ-

τών, αποκτήθηκε τεχνογνωσία γύρω από το πεδίο τομής της ΥΡΔ και της ΒΜ καθώς

και αντλήθηκαν χρήσιμα συμπεράσματα. Αρχικά, επιβεβαιώθηκε ότι η πολυπλοκότη-

τα των απαιτούμενων ΤΝΔ που ενσωματώνονται μέσα στους αριθμητικούς επιλυτές

δεν αυξάνεται δυσμενώς με την αύξηση της πολυπλοκότητας του προβλήματος. Αυ-

τό υποδεικνύει την δυνατότητα εφαρμογής αυτών των τεχνικών σε μεγαλύτερα και

πιο δύσκολα προβλήματα. Επιπλέον, μία σειρά από δοκιμές χρησίμευσαν για να ελέγ-

ξουν την ευστάθεια των μοντέλων σε διάφορες υπερπαραμέτρους και να επαληθεύσουν

την ανθεκτικότητα της εκπαίδευσης και της ποιότητας των αποτελεσμάτων τους σε ποι-

κίλες συνθήκες χρησιμοποιώντας σχετικά μικρή ποσότητα δεδομένων εκπαίδευσης. Το

κέρδος των επιλυτών αυτών -στο αραιό πλέγμα- σε ταχύτητα σε σχέση με τους αριθμη-

τικούς -στο πυκνό πλέγμα- εξαρτάται από τον λόγο αραίωσης, τον αριθμό των χωρικών

διαστάσεων και από το κατά πόσο χρησιμοποιείται υλικό που αξιοποιεί παράλληλους

υπολογισμούς.

Οι τρέχουσες τάσεις της σχετικής βιβλιογραφίας υποδηλώνουν ότι υβριδικές μεθοδολο-

γίες όπως αυτές που παρουσιάστηκαν είναι πιθανό να επικρατήσουν σε βραχυπρόθεσμο

έως μεσοπρόθεσμο διάστημα, προσφέροντας μια ισορροπημένη λύση που εκμεταλλεύε-

ται την αξιοπιστία και γενικευσιμότητα των παραδοσιακών αριθμητικών μεθόδων και

την ταχύτητα των ΤΝΔ.

Η συνέργεια προόδων στο υλικό (TPUs και εξειδικευμένες GPUs) και η συνεχιζόμε-
νη άνθηση της έρευνας των στατιστικών αλγορίθμων [8] αναμένεται να δημιουργήσει

ένα ιδιαίτερα γόνιμο περιβάλλον για την περαιτέρω ενσωμάτωση της ΤΝ στην ΥΡΔ.

Και αυτό φαίνεται ότι θα οδηγήσει μακροπρόθεσμα σε πιο αποδοτικά και ακριβή μοντέλα

ΥΡΔ.

xvi

Bibliography

[1] Anderson, J. D., J.: Computational Fluid Dynamics: The Basics with Appli-
cations. McGraw-Hill, New York, NY, USA (1995)

[2] Bar-Sinai, Y., Hoyer, S., Hickey, J., Brenner, M.: Learning data-
driven discretizations for partial differential equations. Proceedings
of the National Academy of Sciences 116(31), 15344–15349 (2019).
https://doi.org/10.1073/pnas.1814058116, https://doi.org/10.1073/

pnas.1814058116, edited by John B. Bell, Lawrence Berkeley National
Laboratory, Berkeley, CA, approved June 21, 2019 (received for review August
14, 2018)

[3] Brenowitz, N.D., Bretherton, C.S.: Prognostic validation of a neural network
unified physics parameterization. Geophysical Research Letters 45, 6289–6298
(2018). https://doi.org/10.1029/2018GL078510, https://doi.org/10.1029/

2018GL078510, first published: 13 June 2018, Citations: 175

[4] Brunton, S., Noack, B.R., P.Koumoutsakos: Machine learning for fluid
mechanics. Annual Review of Fluid Mechanics 52, 477–508 (2020).
https://doi.org/10.1146/annurev-fluid-010719-060214, https://doi.org/10.

1146/annurev-fluid-010719-060214, first published as a Review in Advance
on September 12, 2019

[5] Hornik, K.: Approximation capabilities of multilayer feedforward networks.
Neural Networks 4, 251–257 (1991), received 30 January 1990; revised and
accepted 25 October 1990

[6] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied
to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (Nov
1998). https://doi.org/10.1109/5.726791

[7] LeVeque, R.: Finite Volume Methods for Hyperbolic Problems. Cambridge Uni-
versity Press, Cambridge, United Kingdom (2002), http://www.cambridge.
org, first published in printed format

[8] Maslej, N., Fattorini, L., Brynjolfsson, E., Etchemendy, J., Ligett, K., Lyons,
T., Manyika, J., Ngo, H., Niebles, J.C.and Parli, V., Shoham, Y., Wald, R.,
Clark, J., Perrault, R.: The ai index 2023 annual report. Tech. rep., AI Index

xvii

https://doi.org/10.1073/pnas.1814058116
https://doi.org/10.1073/pnas.1814058116
https://doi.org/10.1029/2018GL078510
https://doi.org/10.1029/2018GL078510
https://doi.org/10.1146/annurev-fluid-010719-060214
https://doi.org/10.1146/annurev-fluid-010719-060214
http://www.cambridge.org
http://www.cambridge.org

Steering Committee, Institute for Human-Centered AI, Stanford University,
Stanford, CA (April 2023)

[9] Morgan, N., Bourlard, H.: Generalization and parameter estimation
in feedforward nets: Some experiments. In: Touretzky, D. (ed.)
Advances in Neural Information Processing Systems. vol. 2. Morgan-
Kaufmann (1989), https://proceedings.neurips.cc/paper_files/paper/
1989/file/63923f49e5241343aa7acb6a06a751e7-Paper.pdf

[10] Γ. Μπεργελές: Υπολογιστική Ρευστομηχανική. ΣΥΜΕΩΝ (2012)

[11] Um, K., Brand, R., Y.R.Fei, P.Holl, N.Thuerey: Solver-in-the-loop: Learn-
ing from differentiable physics to interact with iterative pde-solvers. In: Pro-
ceedings of the 34th Conference on Neural Information Processing Systems
(NeurIPS 2020). Vancouver, Canada (2020), https://arxiv.org/abs/2007.
00016v2, arXiv:2007.00016v2 [physics.comp-ph] 5 Jan 2021

[12] Vinuesa, R., Brunton, S.: Enhancing computational fluid dynamics
with machine learning. Nature Computational Science 2(6), 358–366 (Jun
2022). https://doi.org/10.1038/s43588-022-00264-7, http://dx.doi.org/10.

1038/s43588-022-00264-7

[13] Zhuang, J., Kochkov, D., Bar-Sinai, Y., Brenner, M., Hoyer,
S.: Learned discretizations for passive scalar advection in a two-
dimensional turbulent flow. Physical Review Fluids 6(064605) (2021).
https://doi.org/10.1103/PhysRevFluids.6.064605, received 12 April 2020;
accepted 19 April 2021; published 14 June 2021

xviii

https://proceedings.neurips.cc/paper_files/paper/1989/file/63923f49e5241343aa7acb6a06a751e7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1989/file/63923f49e5241343aa7acb6a06a751e7-Paper.pdf
https://arxiv.org/abs/2007.00016v2
https://arxiv.org/abs/2007.00016v2
http://dx.doi.org/10.1038/s43588-022-00264-7
http://dx.doi.org/10.1038/s43588-022-00264-7

	Contents
	Introduction
	Neural Networks
	Introduction
	Convolutional Neural Networks
	Neural Network setup
	Training a Neural Network
	Training algorithm
	Hyperparameters tuning

	Automatic Differentiation and AD&DL frameworks

	Hybrid Solvers
	Introduction
	Hybrid models presentation
	Stage 1: Run the numerical solver, coarsen and collect the data
	Stage 2: Training the CNN
	Deployment of the hybrid models on new initial conditions
	LI method
	LC method

	Additional elements of the hybrid models
	A multistep Loss function
	Enforcing a regularizing constraint

	Early stopping strategy
	Advantages of coefficient prediction in hybrid CFD-DL solvers
	Advantages of corrections prediction in hybrid CFD-DL solvers

	Case 1: 1D Advection Equation
	Introduction
	Equation discretization
	General formulations
	The effect of the chosen scheme on the solution
	The effect of spatial resolution on the solution

	Training data and coarsening
	Results of the hybrid models

	Case 2: 1D Linear Acoustics
	Introduction
	Equation discretization
	Training data
	Results of the hybrid models
	A parametric study on hyperparameters' influence on solvers' performance
	LI hybrid solver
	LC hybrid solver

	Conclusions
	Bibliography
	Bibliography

