
National Technical University of Athens
School of Mechanical Engineering
Fluids Section
Parallel CFD & Optimization Unit

Software Programming for the Analysis of Chaotic Systems
using Least Squares Shadowing, Data Assimilation and

Gridless Flow Analysis using Neural Networks

Diploma Thesis

Georgios D. Vamvouras

Advisor: Kyriakos C. Giannakoglou, Professor NTUA

Athens, 2025

ii

Acknowledgments

I would like to express my sincere gratitude to my supervisor, Professor Kyriakos C.
Giannakoglou, for his unwavering support throughout my Diploma Thesis journey
and for granting me the opportunity to work under his supervision for the better
part of two years. Thanks to his mentorship, I managed to attain new skills and
sharpen my existing ones, inspired by his relentless pursuit of perfection and awe-
inspiring dedication to his work, of which I hope to have picked up even a little,
along the way. His analytical proficiency fundamentally enhanced my approach to
problem-solving, not only within the context of scientific research, but life in general.

Additionally, I would like to thank the members of PCOpt/NTUA that were more
than willing to assist me with anything I needed. However, special thanks go to Dr.
Varvara Asouti for her valuable advice, which aided me in completing this thesis,
as well as other projects I undertook before it, and for the time she so generously
invested in doing so.

I also feel the need to thank God for giving me the strength to overcome the many
obstacles I faced during my studies and for blessing me with my amazing parents,
Marina and Dimitris, whose sacrifices I can only hope to one day be worthy of.

Last but certainly not least, I am deeply grateful to the person who has stood by
me with unwavering support—my loving partner, Marina—who was there for me
every step of the way and assisted me in the most selfless manner in everything I
needed. Her presence has been both my strength and my solace, and for that, I am
endlessly thankful.

iii

National Technical University of Athens
School of Mechanical Engineering
Fluids Section
Parallel CFD & Optimization Unit

Software programming for the analysis of chaotic systems
using least squares shadowing, data assimilation and

gridless flow analysis using neural networks

Diploma Thesis

Georgios D. Vamvouras

Advisor: Kyriakos C. Giannakoglou, Professor NTUA

Athens, 2025

Abstract

This diploma thesis explores three emerging computational methodologies that are
rapidly gaining attention in the fields of sensitivity analysis, data assimilation and
artificial intelligence. It focuses on the Least Squares Shadowing (LSS) algorithm
for sensitivity analysis, data assimilation for improved accuracy of state estimation,
and Physics-Informed Neural Networks (PINNs) for gridless flow simulations.

Traditional gradient-based sensitivity analysis techniques, such as finite differences
and adjoint methods, often fail when applied to chaotic systems due to their ex-
treme sensitivity to initial conditions, which leads to the exponential divergence of
trajectories with infinitesimally small difference of parameters. The LSS method
is shown to be a stable and computationally efficient alternative, leveraging the
mathematical properties of dynamical systems encountered in modelling of physical
phenomena, to ensure that perturbations in design parameters produce meaningful
sensitivity derivatives. By reformulating sensitivity analysis as a constrained opti-
mization problem, LSS allows for accurate derivative computations, even in highly
chaotic regimes. Also, a Discretely Consistent LSS (DCLSS) formulation is de-
veloped, improving numerical accuracy by ensuring consistency in finite difference
discretization schemes. The effectiveness of these methods is demonstrated through
applications to three mathematical problems, where conventional approaches fail to
provide reliable results, preparing the ground for CFD applications.

Beyond sensitivity analysis, this thesis examines the role of data assimilation in en-
hancing model prediction accuracy during unsteady simulations. A data assimilation
technique, namely the Extended Kalman Filter (EKF), is used to incorporate noisy
experimental data or observations into simulations based on noisy models of dynam-
ical systems with mathematically proven optimality, thereby producing states more
accurate than either the model or the observations alone. This process practically

iv

corrects model errors by combining numerical predictions and observational data.
Applications to the mathematical systems illustrate the EKF’s ability to improve
prediction accuracy, even in the presence of incomplete or uncertain measurements.
Additionally, parametric studies assess the impact of key hyper-parameters on the
effectiveness of data assimilation, providing insights into its robustness and practical
implementation.

Finally, the diploma thesis explores the use of PINNs as numerical solvers for fluid
flow simulations, eliminating the need for discrete computational grids. PINNs em-
bed governing equations, boundary conditions, and physical constraints directly into
the loss function of a neural network, leveraging automatic differentiation to compute
derivatives efficiently. Two flow problems are considered: a steady, incompressible
quasi-1D duct flow and a laminar flow through a 2D duct. The results demon-
strate that PINNs can successfully capture complex flow behavior while providing
smooth, continuous solutions. Compared to conventional CFD methods, PINNs
offer a promising approach for solving PDEs in irregular geometries, though their
computational efficiency and accuracy leave room for improvement.

Overall, this diploma thesis accomplices to utilize the LSS method of computing
SDs, in cases where adjoint methods fail and FDs are prohibitively expensive, such
as many chaotic and/or challenging systems, successfully incorporating them in op-
timization loops. Moreover, the EKF is utilized as an efficient way to incorporate
experimental data in numerical simulations, correcting the unavoidable uncertain-
ties contained in models of complex phenomena, which is especially useful in chaotic
systems. Finally, PINNs are shown capable of solving complex PDE systems, by
incorporating their physics in the network loss function. All three of these method-
ologies are demonstrated by numerous cases developed in Python and C++ codes,
and a thorough examination of their nature is performed.

v

Εθνικό Μετσόβιο Πολυτεχνείο
Σχολή Μηχανολόγων Μηχανικών
Τομέας Ρευστών
Μονάδα Παράλληλης Υπολογιστικής Ρευστοδυναμικής & και
Βελτιστοποίησης

Προγραμματισμός Λογισμικού για την Ανάλυση
Χαοτικών Συστημάτων με Μεθόδους Σκίασης

Ελαχίστων Τετραγώνων, την Αφομοίωση Δεδομένων
και την Επίλυση των Εξισώσεων Ροής Χωρίς Πλέγματα

με Νευρωνικά Δίκτυα

Διπλωματική Εργασία

Γεώργιος Δ. Βάμβουρας

Επιβλέπων: Κυριάκος Χ. Γιαννάκογλου, Καθηγητής ΕΜΠ

Αθήνα, 2025

Περίληψη

Στα πλαίσια αυτής της διπλωματικής εργασίας διερευνώνται τρεις αναδυόμενες υπο-
λογιστικές μεθοδολογίες που προσελκύουν ραγδαία το ενδιαφέρον στους τομείς της
Ανάλυσης Ευαισθησίας (Sensitivity Analysis), της Αφομοίωσης Δεδομένων (Data
Assimilation, DA) και της Τεχνητής Νοημοσύνης (Artificial Intelligence, AI). Αρχικά
παρουσιάζεται η μέθοδος Σκίασης Ελαχίστων Τετραγώνων (Least Squares Shadow-
ing, LSS) για την ανάλυση ευαισθησίας, η αφομοίωση δεδομένων (Data Assimilation,
DA) για τη βελτίωση της ακρίβειας της εκτίμησης καταστάσεων συστημάτων, και τα
Ενημερωμένα από τη Φυσική των Ροών Νευρωνικά Δίκτυα (Physics-Informed Neural
Networks, PINNs) για προσομοιώσεις ροής χωρίς χρήση πλέγματος.

Συμβατικές μέθοδοι ανάλυσης ευαισθησίας, όπως οι πεπερασμένες διαφορές και οι συ-
ζυγείς μέθοδοι (adjoint methods), συχνά αποτυγχάνουν όταν εφαρμόζονται σε χαοτικά
συστήματα, λόγω της ακραίας ευαισθησίας τους στις αρχικές συνθήκες και στις τιμές
των παραμέτρων, η οποία οδηγεί σε εκθετική απόκλιση των τροχιών ακόμα και για
απειροελάχιστες μεταβολές των παραμέτρων. Η μέθοδος LSS αποτελεί μια σταθερή
και υπολογιστικά αποδοτική εναλλακτική, καθώς διασφαλίζει ότι οι απειροστές μετα-
βολές στις μεταβλητές σχεδιασμού οδηγούν σε απειροστές μεταβολές στις τροχιές, και
επομένως μπορούν να χρησιμοποιηθούν για την εύρεση παραγώγων ευαισθησίας, μέσω
της αναδιατύπωσης της ανάλυσης ευαισθησίας ως ένα πρόβλημα βελτιστοποίησης υπό
περιορισμούς. ΄Ετσι, η LSS επιτρέπει ακριβείς υπολογισμούς παραγώγων ακόμη και σε
έντονα χαοτικά συστήματα. Επιπλέον, αναπτύσσεται μια Διακριτά Συνεπής διατύπω-
ση της LSS, (Discretely Consistent LSS, DCLSS), η οποία βελτιώνει την ακρίβεια
και εξασφαλίζοντας συνέπεια στα σχήματα διακριτοποίησης πεπερασμένων διαφορών,
ενώ επιτυγχάνει να υπολογίσει παραγώγους ευαισθησίας ακόμα και σε περιπτώσεις που

vi

η LSS αποτυγχάνει. Η αποτελεσματικότητα αυτών των μεθόδων αποδεικνύεται μέσα
από εφαρμογές σε τρία μαθηματικά προβλήματα, όπου οι συμβατικές προσεγγίσεις α-
ποτυγχάνουν να παρέχουν αξιόπιστα αποτελέσματα, προετοιμάζοντας το έδαφος για
εφαρμογές στην Υπολογιστική Ρευστοδυναμική (CFD).

Πέρα από την ανάλυση ευαισθησίας, η εργασία εξετάζει τον ρόλο της αφομοίωσης δε-
δομένων στη βελτίωση της ακρίβειας των προβλέψεων μοντέλων κατά τη διάρκεια μη
μόνιμων προσομοιώσεων. Μια τεχνική αφομοίωσης δεδομένων, συγκεκριμένα το Ε-
κτεταμένο Φίλτρο Kalman (Extended Kalman Filter, EKF), χρησιμοποιείται για την
ενσωμάτωση θορυβωδών πειραματικών δεδομένων (παρατηρήσεων) σε προσομοιώσεις
βασισμένες σε θορυβώδη μοντέλα, διασφαλίζοντας μαθηματικά αποδεδειγμένη βέλτιστη
ακρίβεια. Με αυτόν τον τρόπο, τα σφάλματα του μοντέλου διορθώνονται στην πορεία
της προσομοίωσης, συνδυάζοντας ‘ζωντανά ’ αριθμητικές προβλέψεις και δεδομένα πα-
ρατήρησης. Οι εφαρμογές σε μαθηματικά συστήματα δείχνουν ότι το EKF μπορεί να
βελτιώσει σημαντικά την ακρίβεια των προβλέψεων, ακόμη και παρουσία πολύ λίγων
μετρήσεων. Επιπλέον, πραγματοποιούνται παραμετρικές μελέτες για την αξιολόγηση
της επίδρασης βασικών υπέρ-παραμέτρων στην αποτελεσματικότητα της μεθόδου.

Τέλος, η διπλωματική εργασία εξετάζει τη χρήση των PINNs ως αριθμητικών επιλυτών
για προσομοιώσεις ροής ρευστών, εξαλείφοντας την ανάγκη για διακριτά υπολογιστι-
κά πλέγματα. Τα PINNs ενσωματώνουν τις εξισώσεις, τις συνοριακές συνθήκες και
φυσικούς περιορισμούς απευθείας στη συνάρτηση κόστους ενός νευρωνικού δικτύου,
χρησιμοποιώντας αυτόματη διαφόριση (automatic differentiation) για υπολογισμούς
παραγώγων χωρίς σχήματα διακριτοποίησης. Εξετάζονται δύο προβλήματα ροής: μια
μόνιμη, ασυμπίεστη ψευδο-1D ροή σε αγωγό μεταβλητής διατομής, και μια στρωτή ροή
μέσα σε 2D αγωγό μεταβλητής διατομής. Τα αποτελέσματα δείχνουν ότι τα PINNs
μπορούν επιτυχώς να επιλύσουν πολύπλοκες ροές, παράγοντας αναλυτικές λύσεις. Σε
σύγκριση με τις συμβατικές μεθόδους CFD, τα PINNs προσφέρουν μια πολλά υπο-
σχόμενη προσέγγιση για την επίλυση μερικών διαφορικών εξισώσεων (PDEs) σε πε-
ρίπλοκες γεωμετρίες, αν και η υπολογιστική τους αποδοτικότητα και ακρίβεια αφήνουν
περιθώριο για βελτίωση.

Συνολικά, η παρούσα διπλωματική εργασία αναλύει τη μέθοδο LSS για τον υπολογισμό
των ΣΔς, σε περιπτώσεις όπου οι συζυγείς μέθοδοι αποτυγχάνουν και οι πεπερασμένες
διαφορές γίνονται απαγορευτικά δαπανηρές, όπως συμβαίνει σε πολλά χαοτικά ή/και α-
παιτητικά συστήματα, ενσωματώνοντάς τις επιτυχώς σε βρόχους βελτιστοποίησης. Ε-
πιπλέον, το EKF αξιοποιείται ως αποτελεσματική μέθοδος ενσωμάτωσης πειραματικών
δεδομένων σε αριθμητικές προσομοιώσεις, διορθώνοντας τις αναπόφευκτες αβεβαιότη-
τες που υπάρχουν στα μοντέλα πολύπλοκων φαινομένων, κάτι που είναι ιδιαίτερα έκδηλο
σε χαοτικά συστήματα. Τέλος, αποδεικνύεται ότι τα PINNs είναι ικανά να επιλύουν
πολύπλοκα συστήματα ΜΔΕ, ενσωματώνοντας τη φυσική τους στη συνάρτηση απω-
λειών του δικτύου. Και οι τρεις αυτές μεθοδολογίες επιδεικνύονται μέσω πολυάριθμων
εφαρμογών που αναπτύχθηκαν σε κώδικες Python και C++, ενώ πραγματοποιείται μια
διεξοδική ανάλυση των δυνατοτήτων τους.

vii

Contents

Contents i

1 Introduction 1

1.1 Gradient-Based Sensitivity Analysis 1

1.2 Failure of Conventional Sensitivity Analysis Methods in Chaotic Prob-

lems . 2

1.3 The Least Squares Shadowing (LSS) Algorithm 2

1.4 Data Assimilation . 3

1.5 Flow Solution Using Physics-Informed Neural Networks 3

2 Least Squares Shadowing (LSS): Application to the Lorenz ’63

Problem 5

2.1 The Lorenz ’63 Problem . 5

2.2 Continuous Adjoint Sensitivity Analysis 8

2.2.1 Parametric Study on the Step Size ∆t 15

2.3 Finite Differences Sensitivity Analysis 15

2.4 Least Squares Shadowing (LSS) Sensitivity Analysis 19

2.4.1 Shadowing Lemma [3] . 19

2.4.2 Computing the Shadow Trajectory as a Minimization Problem 20

2.4.3 Evaluation of the Sensitivity Derivative 23

2.4.4 The LSS Flowchart . 23

2.4.5 Results from the LSS Method 23

2.4.6 Discretely Consistent LSS (DCLSS) 24

i

3 Application on the Van der Pol Problem 31

3.1 The Van der Pol Problem . 31

3.2 Continuous Adjoint Sensitivity Analysis 33

3.3 Finite Differences Sensitivity Analysis 37

3.4 Sensitivity Analysis with Classic vs Discretely Consistent LSS 39

3.4.1 Consistency of the Solutions of the Boundary Value Problem

using DCLSS . 40

4 Application on the Rössler Problem 41

4.1 The Rössler Problem . 41

4.2 Continuous Adjoint Sensitivity Analysis 43

4.3 Finite Differences Sensitivity Analysis 47

4.4 Sensitivity Analysis with Classic vs Discretely Consistent LSS 48

4.4.1 Consistency of the Solutions of the Boundary Value Problem

using DCLSS . 49

4.5 Conclusions . 51

5 Data Assimilation 53

5.1 Increased Prediction Accuracy with Data Assimilation 53

5.2 Notation and Definitions . 54

5.3 Errors and Auto-Covariances . 55

5.4 The Extended Kalman Filter (EKF) 57

5.5 The Data Assimilation Algorithm . 60

5.6 Demonstration in the Van der Pol System 62

5.7 Demonstration in the Lorenz ’63 System 65

5.8 Demonstration in the Rössler System 69

6 Flow Solution Using Physics-Informed Neural Networks (PINNs) 73

6.1 PINNs as Flow Solvers . 73

6.2 PINN Model Architecture . 74

6.2.1 Quasi-1D Flow Case . 75

ii

6.2.2 2D Viscous Flow Case . 79

7 Conclusion 87

7.1 Overview . 87

7.2 Conclusions . 88

A Development of the LSS Equations For the Lorenz ’63 system 91

A.1 Derivation of the Final Minimization Problem 91

A.2 Derivation and Solution of the Karush-Kuhn-Tucker (KKT) equations 93

A.3 Computation of v⃗ and η from w⃗ . 96

A.4 Evaluation of the Sensitivity Derivative 96

A.5 Derivation of the DCLSS second Order ODE 99

B Derivations in the Van der Pol case 101

B.1 Coefficients of the second Order ODE (LSS) 101

B.2 Coefficients of the second Order ODE (DCLSS) 102

B.3 Sensitivity Derivative . 103

C Derivations in the Rossler case 105

C.1 Coefficients of the second Order ODE (LSS) 105

C.2 Coefficients of the second Order ODE (DCLSS) 106

C.3 Sensitivity Derivative . 107

D Formulas Used in Data Assimilation Derivations 109

D.1 Sample Variance . 109

D.2 Covariance Matrix . 109

D.3 Trace of a Matrix . 110

D.4 Derivation of the Extended Kalmal Filter (EKF) 110

Bibliography 119

iii

iv

Chapter 1

Introduction

1.1 Gradient-Based Sensitivity Analysis

Gradient-based sensitivity analysis is a powerful tool that plays a crucial role in the
design and optimization of complex dynamical systems. This analytical technique
focuses on computing the sensitivities of specific quantities of interest—often referred
to as objective functions—relative to various design parameters. By understanding
how changes in design parameters influence the performance of a system, informed
decisions can be made, that lead to optimized designs.

Two common approaches employed in sensitivity analysis are the Finite Difference
(FD) method and (Continuous or Discrete) Adjoint method. The Finite Difference
method estimates the Sensitivity Derivative (SD) by calculating the difference in the
quantity of interest for an original design parameter value and a slightly perturbed
value. This difference is then divided by the magnitude of the perturbation, yielding
an approximation to the sensitivity. While this method is straightforward and easy
to implement, it may require multiple evaluations of the objective function, which
can be computationally expensive, especially for complex systems.

On the other hand, the Adjoint method is particularly advantageous when dealing
with problems that involve multiple design parameters. This approach formulates
the sensitivity analysis in terms of adjoint equations, allowing for the simultaneous
computation of sensitivities with respect to all design parameters in a single run. As
a result, the Adjoint method is often proven to be more efficient and less demanding
in terms of computational resources compared to the Finite Difference method and
other popular sensitivity analysis techniques. By leveraging the mathematical prop-
erties of adjoint equations, this method not only reduces the computational cost but
also enhances the accuracy of sensitivity predictions, making it the preferred choice

1

in almost all cases.

1.2 Failure of Conventional Sensitivity Analysis

Methods in Chaotic Problems

In cases in which the objective function represents a long-time average of chaotic
problem solutions, the Finite Difference (FD) method becomes impractically costly,
and the Continuous Adjoint (CA) method often fails altogether, resulting in mean-
ingless SD values. This limitation poses significant challenges in real-life applications
that involve physical phenomena exhibiting chaotic dynamics. For instance, in sim-
ulations of chaotic flows, such as those encountered in aerodynamics, the objective
function might be defined as the long-time average of lift or drag forces acting on
an object, such as an airfoil. The inherent chaotic nature of these systems means
that even infinitesimally small changes in initial conditions or design parameters
can lead to dramatically different outcomes. This sensitivity to initial conditions
characteristic of chaos, leads to a tendency of small perturbations to escalate and
amplify, causing the solutions to diverge exponentially over time.

1.3 The Least Squares Shadowing (LSS) Algorithm

In order for sensitivity analysis method to yield valid results, small changes in the
initial conditions and design variables need to amount to small changes in the solu-
tion and consequently the objective function. This necessity is satisfied in the Least
Squares Shadowing (LSS) algorithm, proposed in [5, 33, 34, 26, 4, 10, 6, 7, 3, 19, 32],
which overcomes these problems and produces precise SD values with limited com-
putational cost. It is based on the ergodicity of such systems, a property of most
natural systems, which implies that for a sufficiently large averaging interval, the
objective function is independent of the initial conditions. This allows for the use
of different initial conditions for the solution of the problem with the perturbed
design parameter, evaluated by means of a least-squares minimization problem that
guarantees the proximity of the non-perturbed and perturbed parameter solutions
(trajectories) for the entire time interval. A meaningful comparison of the trajecto-
ries can be made then, a result of which is the correct SD value.

In this thesis, the failure of conventional sensitivity methods to produce accurate SDs
and the success of the LSS method is demonstrated using two small chaotic systems
(Lorenz 1963 and Rössler equations), and another non-chaotic though challenging
system, the Van Der Pol equations. It is shown that the Adjoint method collapses
entirely and the FD method, although it does not collapse, becomes extremely
inefficient and costly, which in larger problems would render it unusable. The LSS

2

algorithm is then used to produce valid SDs at limited cost, and the effect of some
relevant hyper parameters is studied. Also, a Discretely Consistent version of the
LSS algorithm (DCLSS) is developed which is proven to be more accurate in most
test cases. The DCLSS algorithm guarantees that the FD schemes used to discretize
temporal derivatives in the governing equations, are consistent with each other,
which results to increased accuracy and precision.

1.4 Data Assimilation

The potential of data assimilation methods to overcome the issues caused by the
unavoidable uncertainties in models of physical phenomena, is also examined in this
thesis. Complex systems, such as turbulent flow, are especially hard to model as
they are inherently non-linear and extremely sensitive to initial conditions, making
accurate predictions challenging to achieve. Data assimilation aims to improve the
prediction accuracy of such models by integrating measurements or experimental
data into the procedure, by means that utilize the information provided by the
model and observations in a most efficient way. The uncertainty of the model and
the observational data is managed so that the assimilated state that is produced
is more accurate than either of those. The data assimilation process examined in
this diploma thesis is called filtering, and essentially introduces data in the sim-
ulation while the solution is propagated forward in time, in order to correct the
model prediction at run time. The Extended Kalman Filter is applied to the Lorenz
1963, Rössler and Van der Pol systems, and its ability to overcome the model and
observation errors (introduced manually for the purpose of demonstration) is suc-
cessfully showcased. It is worth mentioning that DA is also applicable to chaotic
systems, as shown in the Lorenz 1963 and Rössler cases, and it manages to over-
come their massive unpredictability. Furthermore, parametric studies are preformed
in order to examine the dependency of the assimilated state’s accuracy to several
hyper parameters.

1.5 Flow Solution Using Physics-Informed Neural

Networks

Physics-Informed Neural Networks (PINNs) have emerged as a promising tool for
solving Ordinary Differential Equations (ODEs) and Partial Differential Equations
(PDEs), by embedding physical laws directly into the neural network loss func-
tion [28]. First introduced in [28] (2017-2019), PINNs leverage automatic differen-
tiation to compute derivatives efficiently and enforce governing equations, bound-
ary conditions, and initial conditions during training. Unlike traditional numerical

3

methods, which rely on discretized grids, PINNs provide a grid-less alternative that
can generalize across different problem settings [22]. The application of PINNs to
fluid dynamics and flow-related problems has gained significant attention due to
their ability to handle irregular geometries and provide smooth and continuous so-
lutions [8]. However, challenges such as convergence difficulties, boundary condition
enforcement, and computational cost remain key limitations [29]. Recent advance-
ments, including adaptive learning strategies [24], domain decomposition [15], and
hybrid approaches combining PINNs with numerical solvers [25], have improved their
accuracy and robustness [1, 23, 35, 2, 14]. This thesis explores the use of PINNs for
solving the PDEs governing two types of flow. Firstly, a pseudo-1D, steady, inviscid
flow of an incompressible fluid through an axisymetric duct of varying cross-sectional
area is solved, along with the adjoint equations derived using the continuous adjoint
method within the context of a shape optimization loop. Then, a steady, 2D, lami-
nar flow of an incompressible fluid through a duct of varying cross-sectional area is
solved, and compared to the results from in-house GPU-enabled CFD code PUMA
.

4

Chapter 2

Least Squares Shadowing (LSS):

Application to the Lorenz ’63

Problem

In this chapter, the Least Squares Shadowing (LSS) method for evaluation of the
SDs of long-time averaged quantities w.r.t. a design variable in chaotic problems,
is presented. For clarity, and in order to avoid presenting an abstract mathematical
theory, the Lorenz 1963 system with three ODEs (Eq. 2.1) is used as a working ex-
ample. The chapter includes an assessment of the SDs computed in such a problem,
using the Continuous Adjoint (CA) method [18] and Finite Differences (FD) [18],
and the failure to obtain meaningful derivative values using the adjoint method
along with the costly success of FD are discussed. LSS is then presented, which is
used to successfully compute the SDs.

2.1 The Lorenz ’63 Problem

The Lorenz 1963 system of ODEs is a well-known example [21, 34, 5] of chaotic
systems, comprised of three ODEs in time, and their initial conditions. The system
is of ergodic [3] nature, which means that irrespective of the initial conditions used
to compute the state variables, long-time averaged functions of the state variables
converge to the same value.

This system is a suitable example to demonstrate the failure of adjoint sensitivity
analysis methods to compute meaningful derivatives, and the potential of the LSS

5

algorithm to resolve this issue with acceptable computational cost, contrary to the
FD method, which is prohibitively costly even at small mathematical systems. The
Lorenz ’63 system of equations is given below:

dx

dt
= σ(y − x), x(0) = x0 (2.1a)

dy

dt
= x(ρ− z)− y, y(0) = y0 (2.1b)

dz

dt
= xy − βz, z(0) = z0 (2.1c)

In this diploma thesis, the parameter ρ is seen as the design variable in a hypo-
thetical optimization problem, in which an objective function (to be developed in
a subsequent subsection), cast in the form of a time integral of the state vector
u⃗(t, ρ) = [x(t, ρ), y(t, ρ), z(t, ρ)]T and possibly the design variable ρ itself, should
be minimized. Quantities σ and β are constants, equal to 10 and 8/3 ≊ 2.6667,
respectively.

The behavior of the Lorenz system for values of ρ in the range 0 to 100 is the
following [4]:

1. ρ ∈ [0, 1] : Stable fixed point attractor at u⃗ = (0, 0, 0).

2. ρ ∈ (1, 24.74) : Two stable fixed point attractors at x = y =
√

β(ρ− 1), z =
ρ− 1.

3. ρ ∈ (24.74, 31) : Quasi-hyperbolic strange attractors.

4. ρ ∈ (31, 99.5) : Non-hyperbolic quasi-attractors.

5. ρ ∈ [99.5, 100] : Periodic limit cycle attractors with an infinite series of period
doubling.

Fig. 2.1 shows the solution to the Lorenz ’63 equations for some ρ values in the
aforementioned intervals, using a Runge Kutta 4th order method [17] with N =
50000 and ∆t = 0.001 time unit, thus the integration time is T = N∆t = 50 time
units. The initial conditions are u⃗0 = [x0, y0, z0]

T = [1, 2, 30]T .

Fig. 2.2 illustrates the chaotic behavior of the system by comparing the z component
of two solutions of the Lorenz ’63 problem, for ρ = 28.00, and 28.01, obtained using
the same 4th order Runge-Kutta method. Initially, the two solution trajectories are
very close to each other. After that, however, due to the chaotic nature of the Lorenz
system, they differ greatly.

6

Figure 2.1: Lorenz ’63 Solution for ρ = 10 (in blue), ρ = 28 (in orange), ρ = 60 (in
green) and ρ = 100 (in red), with the constants and initial conditions described in
the text. The initial point (common in all cases) is marked with a black star.

Figure 2.2: Lorenz ’63 Computed time-series z(t) for ρ = 28.00 (in blue) and ρ =
28.01 (in orange), with the constants and initial conditions described in the text.

7

2.2 Continuous Adjoint Sensitivity Analysis

Throughout this analysis, for the purpose of demonstration, the objective function
F is defined as:

F (ρ) =
1

T

∫ T

0

z(t, ρ) dt (2.2)

F is the long-time averaged z, and, as already stated, the design parameter vector
is b⃗ = [b0] , b0 = ρ. In order to formulate the CA method and compute the gradient

of F w.r.t. b⃗, the augmented objective function is defined as:

Faug = F +

∫ T

0

Ψ⃗T R⃗ dt (2.3)

where Ψ⃗ = [Ψx,Ψy,Ψz]
T ∈ R

3 is the adjoint variable vector field and R⃗ ∈ R
3 are

the residuals of the three Lorenz equations:

R⃗ =





dx
dt
− σ(y − x)

dy
dt
− x(ρ− z) + y
dz
dt
− xy + βz



 (2.4)

Eq. 2.3 is then written as:

Faug =
1

T

∫ T

0

z(t) dt+

∫ T

0

Ψx

(

dx

dt
− σ(y − x)

)

dt+

∫ T

0

Ψy

(

dy

dt
− x(ρ− z) + y

)

dt

+

∫ T

0

Ψz

(

dz

dt
− xy + βz

)

dt

(2.5)
Differentiating Eq. 2.5 w.r.t. ρ and since the operators δ

δρ
and d

dt
are interchangeable,

results in:

δFaug

δρ
=

1

T

∫ T

0

δz

δρ
dt+

∫ T

0

Ψx
d

dt

(

δx

δρ

)

dt+

∫ T

0

Ψy
d

dt

(

δy

δρ

)

dt+

∫ T

0

Ψz
d

dt

(

δz

δρ

)

dt

+

∫ T

0

[

Ψxσ

(

δx

δρ
−

δy

δρ

)

+Ψy

(

z
δx

δρ
+ x

δz

δρ
− x− ρ

δx

δρ
+

δy

δρ

)

+Ψz

(

−
δx

δρ
y −

δy

δρ
x+ β

δz

δρ

)]

dt

(2.6)

8

By integrating the time derivative terms by parts, for uk = x, y, z and Ψk =
Ψx,Ψy,Ψz respectively:

∫ T

0

Ψk
d

dt

(

δuk

δρ

)

dt =

[

Ψk
δuk

δρ

]T

0

−

∫ T

0

dΨk

dt

δuk

δρ
dt (2.7)

After factoring out terms δuk

δρ
, Eq. 2.6 results in:

δFaug

δρ
=

∫ T

0

δx

δρ

(

−
dΨx

dt
+Ψxσ +Ψy (z − ρ)−Ψzy

)

dt

+

∫ T

0

δy

δρ

(

−
dΨy

dt
−Ψxσ +Ψy −Ψzx

)

dt

+

∫ T

0

δz

δρ

(

−
dΨz

dt
+Ψyx+ βΨz +

1

T

)

dt

+

[

Ψx
δx

δρ

]T

0

+

[

Ψy
δy

δρ

]T

0

+

[

Ψz
δz

δρ

]T

0

−

∫ T

0

Ψyx dt

(2.8)

The Field Adjoint Equations (FAEs) are determined by setting the multipliers of
δuk

δρ
to zero continuously throughout the interval 0 ≤ t < T . The Adjoint Boundary

Conditions (ABCs) are determined by setting the coefficients of terms δuk

δρ
to zero

at t = T . The FAEs and ABCs are:

dΨx

dt
= Ψxσ +Ψy (z − ρ)−Ψzy (2.9a)

dΨy

dt
= −Ψxσ +Ψy −Ψzx (2.9b)

dΨz

dt
= Ψyx+ βΨz +

1

T
(2.9c)

Ψx(T) = Ψy(T) = Ψz(T) = 0 (2.9d)

which imply that, as is always the case in unsteady adjoint, the adjoint equations
should be integrated backward in time. In vector notation, Eq. 2.9 is written as:

dΨ⃗

dt
=





σ (z − ρ) −y
1 −σ −x
0 x β



 Ψ⃗ +





0
0
1
T



 , Ψ⃗ (T) = 0⃗ (2.10)

9

Figure 2.3: Lorenz ’63 The solution u⃗ = [x, y, z]T for ρ = 28, T = 20 time units,
and the parametric values mentioned in the text.

After eliminating the terms δuk

δρ
by satisfying the FAEs and ABCs, the only remaining

term on the right-hand-side of Eq. 2.8 constitutes the SD:

δF

δρ
= −

∫ T

0

Ψyx dt (2.11)

To solve the FAEs, the same 4th order Runge-Kutta method is used to integrate
Eqs. 2.10 backward in time with, of course, the same time step ∆t = 0.001. After
having computed the adjoint fields, the SD results from the integral of Eq. 2.11.
The objective function for ρ = 28, T = 20 and the parametric values mentioned in
the text, is F = 23.34, and the corresponding SD is δF

δρ
= 341650.3, which absolutely

wrong compared to the known correct value, namely 1.01 [32].

The adjoint vector fields plotted in Fig. 2.4, and the corresponding primal solution
u⃗(t) in Fig. 2.3. Also, in Fig. 2.5, the time series of Ψy(t), x(t) and the negative
of their product −Ψy(t) · x(t), the integral of which constitutes the SD, are plotted
against t. Fig. 2.6 shows the cumulative integral of Eq. 2.11 (−x ·Ψy) as it is
integrated forward from 0 to t′ (blue curve) and backward from T to t′ (red curve),
where 0 ≤ t′ ≤ T .

The value of the objective function F and the absolute value of the SD δF
δρ

was
plotted against different integration times T , in Figs. 2.7 and 2.8 respectively, for

10

Figure 2.4: Lorenz ’63 The adjoint vector field components Ψx,Ψy and Ψz vs. t, for
ρ = 28, T = 20 time units, and the parametric values mentioned in the text. The
three curves were integrated from right to left (backward in time).

Figure 2.5: Lorenz ’63 Time-series of x, Ψy and their negative product (−x ·Ψy)
for ρ = 28, T = 20 time units, and the parametric values mentioned in the text.

11

Figure 2.6: Lorenz ’63 Time series (−x ·Ψy) integrated forward from 0 to t′ and
backward from T to t′, where 0 ≤ t′ ≤ T , for ρ = 28, T = 20 time units, and the
parametric values mentioned in the text. In both cases, regardless of the direction
of integration, the SD is δF

δρ
= 341650.3.

ρ = 28. The values of F do not converge even at very long integration times, but
vary between 23.50 and 23.55. Onm the other hand, the SD cannot converge to a
single value, and it increases up to the limit of what double precision can represent,
for increasing T . The absolute values of the SDs were chosen instead of the signed
values, because the latter were both positive and negative, and the negative values
are undefined on the logarithmic scale.

The value of the objective function F and the SD δF
δρ

can be seen in Figs. 2.9
and 2.10 respectively. For each ρ value, both have been computed for 20 random
initial conditions. The increase of F appears to be linear, with a slope of about 1.0,
with close to no variation for different initial conditions, as it can be seen by the
vertical dots being practically indistinguishable from one another. That is expected
because the Lorenz ’63 system is ergodic. However, the SD values are meaningless
and do not convey the aforementioned linearity, by being approximately 1.01, but
instead they diverge.

12

Figure 2.7: Lorenz ’63 Objective function F values for integration times T from 1
to 2000, for ρ = 28.

Figure 2.8: Lorenz ’63 SD δF
δρ

values computed using the CA method, for integration
times T from 1 to 500, for ρ = 28.

13

Figure 2.9: Lorenz ’63 Objective function F values for ρ from 0 to 100, for 20 random
initial conditions.

Figure 2.10: Lorenz ’63 SD values computed using the CA method, for ρ from 0 to
100, for 20 random initial conditions.

14

2.2.1 Parametric Study on the Step Size ∆t

Three of ∆t were tested in order to determine the grid-size dependence of the primal
and CA solutions of the Lorenz ’63 system. Figs. 2.11 and 2.12 show the x(t) time
series derived from the solution of Eq. 2.1 and the Ψy(t) time series derived from
the solution of Eq. 2.9 for ∆t = 10−3, 10−4 and 10−5, and ρ = 28, T = 20 time
units. The trajectories are practically indistinguishable, meaning that the selection
of ∆t = 10−3 did not affect the quality of the results.

Figure 2.11: Lorenz ’63 x(t) for ∆t =
10−3, 10−4 and 10−5, ρ = 28 and T = 20.

Figure 2.12: Lorenz ’63 Ψy(t) for ∆t =
10−3, 10−4 and 10−5, ρ = 28 and T = 20.

2.3 Finite Differences Sensitivity Analysis

The second method used to compute the SD of Eq. 2.2 is the FD method. The same
range was used for ρ, from 0 to 100, with step equal to ∆ρ = 2. The perturbation
or step of the FD appears to be unexpectedly high but this will be discussed later
on. The formula for the second-order, central FD method is:

δF

δρ
=

F (ρ+∆ρ)− F (ρ−∆ρ)

2∆ρ
(2.12)

In Fig. 2.13, the SD for ρ = 28 was evaluated for different integration times T
ranging from 1 to 2000 time units, with ∆t = 0.001 time units. It should be noted
that the SDs computed are meaningful, unlike the CA method (Fig. 2.10), and are
in fact close to the correct value of around 1.01, and seem to converge to that value
for integration times above T = 1800 time units. As was mentioned previously,
however, integration times that long are extremely costly and impractical for real-
world problems.

15

Figure 2.13: Lorenz ’63 SD computed using FD, for values of integration time
T ranging from 1 to 2000 time units, for ρ = 28, ∆ρ = 2, and the same initial
conditions.

The effect of the perturbation ∆ρ used in Eq. 2.12 on the SD value can be seen
in Fig. 2.14, where the SD was plotted against corresponding values of ∆ρ ranging
from 10−6 to 2.0, for ρ = 28. It is shown that, for values of ∆ρ between 1.0 and 2.0,
the SD value is more or less stable, and close to the reference value of 1.01 [32]. As
a result, the perturbation was chosen to be ∆ρ = 2. Figs. 2.15 and 2.16 show, in
more detail, the SDs at 10−6 ≤ ∆ρ ≤ 10−2 (Fig. 2.15) and 0.5 ≤ ∆ρ ≤ 2.0 (Fig.
2.16), also for ρ = 28.

In Fig. 2.17 the SD is computed using FD for integration time T = 20 time units(in
blue) and T = 2000 time units (in red), for 0 ≤ ρ ≤ 100. At each ρ value, the SD
for 20 random initial conditions was plotted. The SD values of the larger integra-
tion time are obviously more accurate and with minimal deviation, compared to the
smaller integration time, and they are both very close to the previously known cor-
rect value of approximately 1.01 [32]. However, the FD method is computationally
expensive as it requires a very long integration time to compute useful derivatives.
It should be noted that in more complex real applications, namely CFD simulations,
such integration times are prohibitive.

16

Figure 2.14: Lorenz ’63 SD vs. the corresponding perturbation ∆ρ used in the FD
method, for ρ = 28 and T = 20.

Figure 2.15: Lorenz ’63 SD for 10−6 ≤
∆ρ ≤ 10−2.

Figure 2.16: Lorenz ’63 SD for 0.5 ≤
∆ρ ≤ 2.0.

17

Figure 2.17: Lorenz ’63 SD (vertical axis), using FD with step ∆ρ = 2, for ρ values
ranging from 1 to 100 (horizontal axis). The blue points correspond to integration
time T = 20 and the red ones to T = 2000.

18

2.4 Least Squares Shadowing (LSS) Sensitivity Anal-

ysis

The Least Squares Shadowing (LSS) algorithm [5, 21, 33, 9, 34, 26, 4, 13, 10, 7, 3, 32]
aims at overcoming the difficulties faced by Adjoint methods and produce meaningful
SDs of long time averaged quantities w.r.t. a design parameter. It requires the basic
assumption of ergodicity of the system, meaning that the long time behavior of
the system is independent of the initial conditions. This assumption enables the
“comparison” of two trajectories, one with an unperturbed (ρ) and another with a
perturbed (ρ+δρ) parameter value, with different initial conditions. In this context,
a trajectory refers to u⃗(t), for 0 ≤ t ≤ T , where u⃗(t) = [x(t), y(t), z(t)]T , computed
for some value of ρ. The perturbed parameter trajectory, computed for ρ + ∆ρ, is
its “shadow trajectory”.

This way, a different initial condition and a time transformation τ(t) can be chosen
for the shadow trajectory, so that the two trajectories remain close to each other
throughout 0 ≤ t ≤ T . The reference trajectory u⃗r for design variable value ρ and
the shadow trajectory u⃗ for ρ + δρ, as well as t and τ(t), need to be very close to
each other in order for the LSS method to compute a meaningful SD.

The existence of a shadow trajectory u⃗ and its convergence to the reference trajectory
u⃗r for δρ→ 0 is guarantied by the shadowing lemma [3], which states:

2.4.1 Shadowing Lemma [3]

Consider a reference solution u⃗r to

du⃗r

dt
= f⃗(u⃗r, ρ) (2.13)

If this system has a hyperbolic strange attractor and if some system parameter ρ
is slightly perturbed by some ∆ρ: For any δ > 0 there exists ϵ > 0, such that

for every u⃗r that satisfies ∥du⃗r/dt − f⃗(u⃗r, ρ)∥ < ϵ, there exists a true solution u⃗
and a time transformation τ(t), such that ∥u⃗(τ(t))− u⃗r(t)∥ < δ, |1− dτ/dt| < δ and

du⃗/dτ− f⃗(u⃗, ρ+∆ρ) = 0, where ∥·∥ is the L2 norm in phase space. The trajectories

u⃗ and u⃗r symbolize the perturbed and unperturbed trajectories respectfully.

19

2.4.2 Computing the Shadow Trajectory as a Minimization

Problem

In order to find the shadow trajectory u⃗(t) and a time transformation τ(t) so the
reference and the shadow trajectory remain close to each other, a constrained min-
imization problem is solved:

min
u⃗,η

1

2

∫ T

0

∥u⃗ (τ(t))−u⃗r∥
2+α2

(

1−
dτ

dt

)2

dt, s.t.
du⃗

dτ
= f⃗(u⃗, ρ+δρ), 0 < t < T

(2.14)

where f⃗(u⃗, ρ) denotes the right-hand-sides of Eq. 2.1:

f⃗(u⃗, ρ) = [f1(u⃗, ρ), f2(u⃗, ρ), f3(u⃗, ρ)]
T = [σ(y − x), x(ρ− z)− y, xy − βz]T (2.15)

Eq. 2.14 ensures that the two trajectories u⃗(t) and u⃗r(t), as well as τ(t) and t,
remain as close to each other as possible for all 0 ≤ t ≤ T . The time transformation
is defined as:

τ(t) = (1 + η(t) δρ)t, η(0) = 0 (2.16)

which is also guarantied to be close to t by Eq. 2.14. Parameter α is a weighting

parameter chosen so that the terms ∥u⃗− u⃗r∥
2 and α2

(

1− dτ
dt

)2
are of the same order

of magnitude [13]. In the case of the Lorenz ’63 equations, α = 30.

In order to solve Eq. 2.14, this is processed, as in Appendix A.1. The resulting
minimization problem is:

min
v⃗,η

1

2

∫ T

0

∥v⃗∥2 + α2η2 dt, s.t.
dv⃗

dt
=

∂f⃗

∂u⃗
v⃗ +

∂f⃗

∂ρ
+ ηf⃗ , 0 < t < T (2.17)

or in Einstein notation:

min
v⃗,η

1

2

∫ T

0

v2i + α2η2 dt, s.t.
dvi
dt

=
∂fi
∂uj

vj +
∂fi
∂ρ

+ ηfi, 0 < t < T (2.18)

where vi ≡
∂ui

∂ρ
. The constraints in Eqs. 2.17 and 2.18 correspond to the Direct Dif-

ferentiation (DD; a.k.a. Tangent) equation, which functions as the primal equation
in the above optimization problem.

The Karush-Kuhn-Tucker (KKT) equations that correspond to the minimization

20

problem of Eq. 2.18 are derived in Appendix A.2, and in Einstein notation are:

dvi
dt

=
∂fi
∂uj

vj +
∂fi
∂ρ

+ ηfi (2.19a)

dwi

dt
= −

∂fj
∂ui

wj + vi (2.19b)

η =
1

α2
wifi (2.19c)

wi(0) = wi(T) = 0 (2.19d)

The equivalent of Eq. 2.19 in vector notation is:

dv⃗

dt
=

∂f⃗

∂u⃗
v⃗ +

∂f⃗

∂ρ
+ ηf⃗ (2.20a)

dw⃗

dt
= −

(

∂f⃗

∂u⃗

)T

w⃗ + v⃗ (2.20b)

η =
1

α2
w⃗T f⃗ (2.20c)

w⃗(0) = w⃗(T) = 0 (2.20d)

The problem consists of a system of three equations and an equal number of un-
knowns, u⃗ ∈ R

3 (3 by 1 vector), v⃗ ∈ R
3 and η ∈ R.

It should be noted that the KKT equations admit two Boundary Conditions (BCs)
for w⃗, determining its first and last values, namely w⃗(0) = w⃗(T) = 0. However, Eq.
2.20b is a first degree ODE of w⃗ and Eq. 2.20a is also a first degree ODE of v⃗ and no
BC is directly defined for v⃗. In order to resolve this issue, one could use a shooting
method and impose a BC for v⃗ at t = 0, the value of which would be computed
with trial and error until w⃗ = 0 at t = T . To avoid this impractical procedure, an
idea proposed in [4] is to transform the initial value problem into a boundary value
problem in time, in terms of w⃗, which easily accommodates the two BCs. Thus,
the KKT system becomes well-defined. In order to solve Eqs. 2.20, they are be
combined into a single second order ODE of w⃗, as in Appendix A.2:

d2w⃗

dt2
+





(

∂f⃗

∂u⃗

)T

−
∂f⃗

∂u⃗





dw⃗

dt
+





d

dt

(

∂f⃗

∂u⃗

)T

−
∂f⃗

∂u⃗

(

∂f⃗

∂u⃗

)T

−
1

a2
f⃗ f⃗T



 w⃗ −
∂f⃗

∂ρ
= 0,

w⃗(0) = w⃗(T) = 0
(2.21)

This is a second-order ODE which corresponds to a boundary value problem in
which, the BCs can be properly imposed. As shown in Appendix A.2, Eq. 2.21 can

21

be simplified to:

d2w⃗

dt2
+A

dw⃗

dt
+Bw⃗ −C = 0⃗, w⃗|t=0 = w⃗|t=T = 0

where: A =
∂f⃗

∂u⃗
−

(

∂f⃗

∂u⃗

)T

, B =
d

dt

(

∂f⃗

∂u⃗

)T

−
∂f⃗

∂u⃗

(

∂f⃗

∂u⃗

)T

−
1

α2
f⃗ f⃗T , C⃗ =

∂f⃗

∂ρ

(2.22)

The simplified expressions of the coefficients A, B and C⃗ for the Lorenz ’63 system
are also found in Appendix A.2.

In order for Eq. 2.22 to be solved, it is discretized using 2nd order central FD, for
N timesteps with interval size ∆t. For nodes 0 ≤ i ≤ N − 1:

R⃗i = w⃗i − 0, for i = 0

R⃗i =
w⃗i−1 − 2w⃗i + w⃗i+1

∆t2
+Ai

−0.5w⃗i−1 + 0.5w⃗i+1

∆t
+Biw⃗i − C⃗i, for 1 ≤ i ≤ N − 2

R⃗i = w⃗i − 0, for i = N − 1
(2.23)

which can be written as:

R⃗i = w⃗i, for i = 0

R⃗i = (I − 0.5∆tAi) w⃗i−1 +
(

−2I +∆t2Bi

)

w⃗i−1 + (I + 0.5∆tAi) w⃗i+1 −∆t2C⃗i, for 1 ≤ i ≤ N − 2

R⃗i = w⃗i, for i = N − 1
(2.24)

where I is the 3 by 3 unit matrix.

To solve the discretized system of equation 2.24 the Block TriDiagonal Matrix Al-
gorithm (BTDMA) is employed. The system can be written in the following form:

Mw = G (2.25)

where M is s a N by N tridiagonal block matrix, with block size 3 by 3, w is a N×3
matrix that holds the w⃗ values for each time-step, and G is the right-hand-side term
of the system equation, and is also N × 3, with each row being Gi = ∆t2C⃗i. Matrix
M contains the following elements:

{

Mi,j = I, for i = 0 and i = N − 1

Mi,i−1 = I − 0.5∆tAi, Mi,i = −2I +∆t2Bi, Mi,i+1 = I + 0.5∆tAi, for 1 ≤ i ≤ N − 2

(2.26)

22

2.4.3 Evaluation of the Sensitivity Derivative

After solving Eq. 2.25, time-series v⃗ and η can be computed for each node, as in
Appendix A.3. Afterwards, the following equation is used to evaluate the SD.

δF

δρ
=

1

T

∫ T

0

(vz + ηz) dt−
1

T 2

∫ T

0

η dt

∫ T

0

z dt (2.27)

Eq. 2.27 is derived in Appendix A.4.

2.4.4 The LSS Flowchart

The implementation of the LSS method for the computation of the SD δF
δρ

can be
broken down into the following steps:

1. Solve the Lorenz equations (Eq. 2.1) using a forward-in-time, fourth order

Runge-Kutta scheme, and store the ∂f⃗
∂u⃗

and ∂f⃗
∂ρ

time-series.

2. Solve the boundary value problem of Eq. 2.22 using the BTDMA algorithm,
as in Appendix A2, and store w⃗(t).

3. Evaluate the SD using Eq. 2.27, without needing to store the v⃗(t) and η(t)
time-series, while computing v⃗(t) and η(t) as in Appendix A.3.

2.4.5 Results from the LSS Method

Fig. 2.18 shows the reference and shadow trajectories u⃗r and u⃗ with blue and red
color respectively, for integration time T = 15 time units, ρ = 28 and α = 30.
It can be observed that they remain close to each another for the entire time as
intended, regardless of the chaotic nature of the Lorenz ’63 system. Fig. 2.19
shows component z(t) for the reference and shadow trajectories in blue and black
respectively, which is in stark contrast with Fig. 2.2 which shows the perturbed and
unperturbed trajectories for ρ = 28.01 and ρ = 28.00 respectively, that were not
computed using the LSS method.

The left axis of Fig. 2.21 shows the SD in black, and the right axis shows the ratio
∥u⃗−u⃗r∥2

α2(1− dτ

dt
)
2 in red, for α ranging from 0 to 2000, for ρ = 28, T = 20 and 20 random

initial conditions. It can be observed that the SD fluctuates less for 40 ≤ α ≤ 100,
for detail see Fig. 2.22, and it is approximately 1.01±0.02, in accordance to previous
findings. In this area of α values, the fraction is approximately 1.0, which means that
the numerator and the denominator are of the same order of magnitude, as required
by the LSS theoretical foundation [4]. This suggests that a SD value produced by
LSS is more accurate for ratios closer to 1.0.

23

Fig. 2.23 shows the SD values produced using LSS for 5 ≤ T ≤ 350, for α = 30
and ρ = 28. The SD is less accurate for 5 ≤ T ≤ 15 due to transient effects, as
can be validated by Fig. 2.24 that shows the Lorenz ’63 solution for integration
time 0 ≤ T ≤ 15 (blue part) and 15 ≤ T ≤ 35 (red part). The blue part of the
curve has clearly not reached the right-side attractor, unlike the red part that has
entered the alternating phase between the two attractors every one round, as is
typical for the Lorenz ’63 system at ρ = 28. However, for T ≥ 20, the SD is within
the interval 1.01± 0.01, which is far more accurate than the corresponding CA and
FD cases, see Figs. 2.8 and 2.13 respectively. Similar precision was achieved using
FD for integration time T ≥ 400 (20 times longer than LSS), which is impractically
expensive, as previously emphasized in the text.

Fig. 2.20 shows SD values computed using the LSS method for ρ between 0 and
100 using 20 random initial conditions for each ρ value, for integration time T = 20
time units (blue), and T = 2000 time units (red), and α = 30. It can be deduced
that the SD values for T = 20 are far more precise than those produced at the same
integration times at Figs. 2.10 and 2.17, for the CA and FD methods respectively.
It should be noted that the quality of SD values is better for higher integration times
T .

Figure 2.18: Lorenz ’63 The reference
and shadow trajectories in blue and red
respectively, for ρ = 28, integration time
T = 15 and α = 30.

Figure 2.19: Lorenz ’63 Components
zr(t) and z(t) of the reference and shadow
trajectories in blue and black color re-
spectively, for ρ = 28, integration time
T = 15, and α = 30

2.4.6 Discretely Consistent LSS (DCLSS)

A Discretely Consistent version of the LSS algorithm (DCLSS) was developed to en-
sure the consistency of term dw⃗

dt
originating from Eq. 2.20b and the time-differentiated

24

Figure 2.20: Lorenz ’63 The SD values
for ρ between 0 and 100, with 20 random
initial conditions for each ρ value, com-
puted using the LSS method. The blue
points correspond to integration time
T = 20, and the red ones to T = 2000,
and α = 30

Figure 2.21: Lorenz ’63 Values of SD in

black, and the ratio ∥u⃗−u⃗r∥2

α2(1− dτ

dt
)
2 in red, for

α ranging from 0 to 2000 and for ρ = 28,
T = 20 and 20 random initial conditions,
computed using the LSS method.

Eq. 2.20a. It was derived in order to be used for the tests of the next subsection. In
classic LSS, when deriving Eq. A.18, the coefficients of the terms dw⃗

dt
were factored

out, thus making the assumption that dw⃗
dt

from Eq. 2.20b is identical to the one
from Eq. 2.20a. However, in DCLSS Eq. 2.20a was discretized using backward FD
and Eq. 2.20b using forward FD. So, from a discrete point of view, the terms dw⃗

dt
are

not identical, and the resulting 2nd order ODE is different. The DCLSS algorithm
is presented in Appendix A.5, denoting forward FD using a right-pointed arrow and
backward FD using a left-pointed arrow. Central FD is used only for the discretiza-
tion of the 2nd order term d2w⃗

dt2
and is not denoted with an arrow. The system and

the corresponding 2nd order ODE are:

←−
dv⃗

dt
=

∂f⃗

∂u⃗
v⃗ +

∂f⃗

∂ρ
+

1

α2
f⃗ f⃗T w⃗ (2.28a)

−→
dw⃗

dt
= −

(

∂f⃗

∂u⃗

)T

w⃗ + v⃗ (2.28b)

w⃗(0) = w⃗(T) = 0 (2.28c)

d2w⃗

dt2
+A1

←−
dw⃗

dt
−A2

−→
dw⃗

dt
+Bw⃗ = C⃗ (2.29)

where the coefficients are shown in Appendix A.5. The DCLSS trajectories of v⃗ and
w⃗ are compared with the respective LSS ones on Figs. 2.25 and 2.26. It should be

25

Figure 2.22: Lorenz ’63 Values of SD in

black, and the ratio ∥u⃗−u⃗r∥2

α2(1− dτ

dt
)
2 in red, for

α ranging from 40 to 100 and for ρ = 28,
T = 20 and 20 random initial conditions,
computed using the LSS method.

Figure 2.23: Lorenz ’63 SD values for
5 ≤ T ≤ 350, for α = 30 and ρ = 28,
computed using the LSS method.

Figure 2.24: Lorenz ’63 Solution for integration time 0 ≤ t ≤ 15 (blue part) and
15 ≤ t ≤ 35 (red part), for α = 30 and ρ = 28.

noted that the SD value is very similar. For the classic LSS, SD = 1.00966 and for
DCLSS SD = 0.99961 which are both sufficiently close to 1.01.

Comparison of LSS and DCLSS

In order to examine the effect of α in the precision of the SDs evaluated using DCLSS
compared to classic LSS, the SD for different values of α was plotted in Fig. 2.27 for

26

Figure 2.25: Lorenz ’63 Comparison of
trajectory of v⃗ using LSS and DCLSS, for
a = 1 and parameters found in the text.

Figure 2.26: Lorenz ’63 Comparison of
trajectory of w⃗ using LSS and DCLSS,
for a = 1 and parameters found in the
text.

LSS (in blue) and DCLSS (in red) for T = 20 time units, ρ = 28 and the parameters
found in the text. Although the classic LSS is less sensitive to the choise of different
ICs in this case, it is less accurate for larger values of α and begins to produce
increasingly lower SD values than the reference of 1.01. The majority of the DCLSS
runs however, for each α value are closer to the SD = 1.01 line and show no quality
deterioration in the SD values produced for larger values of α. Fig. 2.28 shows the
SD values for ρ values ranging from 0 to 100, using 20 random initial conditions at
each one, for integration time T = 20 time units (in blue) and T = 2000 time units
(in red).

Consistency of the Solutions of the Boundary Value Problem using DCLSS

In order to examine the consistency of the solutions resulting from Eq. 2.28 com-
pared to those from Eq. 2.29, the time-series w⃗ computed from Eq. 2.29 was used to
evaluate time-series v⃗ from the discretized form of Eq. 2.28a, using the forward and
backward Euler methods. The process is repeated twice, using as initial conditions
for Eq. 2.28a the values v⃗(0) and v⃗(T) (for the forward and backward Euler method
respectively).

Fig. 2.29 compares time-series v⃗ from the Euler method with that of DCLSS, using
forward Euler. It can be observed that further away from the initial conditions, the
trajectory diverges exponentially. However, as can be seen in Fig. 2.30, near the BC
the two trajectories are very close to each other. Similar dynamics can be observed
for the backward Euler method, in Figs. 2.31 and 2.32. Those findings suggest that
regardless of the discretization scheme that is used, it is not feasible to solve Eq.
2.28a forward or backward in time without fixing its first and last values using BCs
at t = 0 and t = T (as is guaranteed by Eq. 2.29), because the chaotic nature

27

Figure 2.27: Lorenz ’63 The SD for vari-
ous α values found using LSS (in blue)
and DCLSS (in red) for T = 20 time
units, ρ = 28 and the parameters found
in the text.

Figure 2.28: Lorenz ’63 The SD values
for ρ values ranging from 0 to 100, using
20 random initial conditions at each one,
for integration time T = 20 time units (in
blue) and T = 2000 time units (in red)
and the parameters found in the text.

of the system renders it very sensitive to error accumulation during the forward or
backward time marching.

Figure 2.29: Lorenz ’63 Comparison of
trajectory v⃗ using forward Euler method
with time-series w⃗ known from DCLSS,
for a = 1 and parameters found in the
text.

Figure 2.30: Lorenz ’63 Detail of the
comparison of trajectory v⃗ using forward
Euler method with time-series w⃗ known
from DCLSS, for a = 1 and parameters
found in the text.

28

Figure 2.31: Lorenz ’63 Comparison
of trajectory v⃗ using backward Euler
method with time-series w⃗ known from
DCLSS, for a = 1 and parameters found
in the text.

Figure 2.32: Lorenz ’63 Detail of the
comparison of trajectory v⃗ using back-
ward Euler method with time-series w⃗
known from DCLSS, for a = 1 and pa-
rameters found in the text.

29

30

Chapter 3

Application on the Van der Pol

Problem

3.1 The Van der Pol Problem

The Van der Pol problem is another suitable example to demonstrate the failure of
the Continuous Adjoint method to provide useful derivatives of long-time averaged
quantities w.r.t. a design variable, and the superiority of the LSS algorithm to
provide correct values, at lower cost compared to the Finite Differences method. It
is chosen because of its challenging-to-capture dynamics, although it is not chaotic
and it converges to a limit cycle, see Fig. 3.1. The problem is described by a single
2nd order ODE that is given below:

d2x

dt2
= −x+ b(1− x2)

dx

dt
(3.1)

Eq. 3.1 can be written as a system, and will be treated as one in this thesis:

dx

dt
= y, x(0) = x0 (3.2a)

dy

dt
= −x+ b(1− x2)y, y(0) = y0 (3.2b)

The design variable is b, which lies within the interval 0.2 ≤ b ≤ 2.0. Fig. 3.1
shows the solution to the Van der Pol Equation for b = 1.2, using a 4th order Runge-
Kutta method with N = 50000 time-steps and ∆t = 0.001 time units. Fig. 3.2

31

illustrates the solutions x(t) and y(t) for b = 2.0, obtained using the same Runge-
Kutta method.

Figure 3.1: Van der Pol Solution for b = 2.0 and initial condition u⃗0 = [x0, y0]
T =

[0.1, 0.1]T , using a 4th order Runge-Kutta method with N = 50000 time-steps and
∆t = 0.001 time units.

32

Figure 3.2: Van der Pol Solutions x(t) (blue) and y(t) (red) of the Van der Pol
system for initial condition u⃗0 = [x0, y0]

T = [0.1, 0.1]T for b = 2.0, using a 4th order
Runge-Kutta method with N = 50000 time-steps and ∆t = 0.001 time units.

3.2 Continuous Adjoint Sensitivity Analysis

Throughout this analysis, for the purpose of demonstration, the objective function
F is defined as:

F (b) =

(

1

T

∫ T

0

(y(t, b))8 dt

)1/8

(3.3)

F is the LP norm, where p = 8, of the long-time averaged 8th power of y, and the
design parameter vector is b⃗ = [b0] , b0 = b. In order to formulate the Continuous

Adjoint method and compute the gradient of F w.r.t. b⃗, the augmented objective
function is defined as:

Faug = F +

∫ T

0

Ψ⃗T R⃗ dt (3.4)

where Ψ⃗ = [Ψx,Ψy]
T ∈ R

2 is the adjoint variable vector field and R⃗ ∈ R
2 are the

residuals of the now two Van der Pol equations:

R⃗ =

(

dx
dt
− y

dy
dt

+ x− b(1− x2)y

)

(3.5)

33

Eq. 2.3 is then written as:

Faug =

(

1

T

∫ T

0

(y(t, b))8 dt

)1/8

+

∫ T

0

Ψx

(

dx

dt
− y

)

dt+

∫ T

0

Ψy

(

dy

dt
+ x− b(1− x2)y

)

dt

(3.6)
Differentiating Eq. 3.6 w.r.t. b and since the operators δ

δb
and d

dt
are interchangeable,

results in:

δFaug

δb
=

δF

δb
+

∫ T

0

Ψx
d

dt

(

δx

δb

)

dt+

∫ T

0

Ψy
d

dt

(

δy

δb

)

dt+

∫ T

0

Ψx (−y) dt+

∫ T

0

Ψy

(

x− b(1− x2)y
)

dt

(3.7)
By integrating the time derivative terms by parts, for uk = x, y and Ψk = Ψx,Ψy

respectively:

∫ T

0

Ψk
d

dt

(

δuk

δb

)

dt =

[

Ψk
δuk

δb

]T

0

−

∫ T

0

dΨk

dt

δuk

δb
dt (3.8)

It is also true that:

δF

δb
=

1

8

(

1

T

∫ T

0

y8 dt

)−7/8(∫ T

0

8y7
δy

δb
dt

)

(3.9)

After factoring out terms δuk

δb
, Eq. 3.7 results in:

δFaug

δb
=

∫ T

0

δx

δb

(

−
dΨx

dt
+Ψy (1 + 2bxy)

)

dt

+

∫ T

0

δy

δb

(

−
dΨy

dt
− b(1− x2)Ψy −Ψx +

1

T
y7
(

1

T

∫ T

0

y8 dt

)−7/8
)

dt

+

[

Ψx
δx

δb

]T

0

+

[

Ψy
δy

δb

]T

0

−

∫ T

0

yΨy

(

1− x2
)

dt

(3.10)
The Field Adjoint Equations (FAEs) are determined by setting the multipliers of
δuk

δb
to zero continuously throughout the interval 0 ≤ t < T . The Adjoint Bound-

ary Conditions (ABCs) that accompany the FAEs are determined by setting the

34

coefficients of terms δuk

δb
to zero at t = T . The FAEs and ABCs are:

dΨx

dt
= Ψy (1 + 2bxy) (3.11a)

dΨy

dt
= −b(1− x2)Ψy −Ψx +

1

T
y7
(

1

T

∫ T

0

y8 dt

)−7/8

(3.11b)

Ψx(T) = Ψy(T) = 0 (3.11c)

which imply that, as is always the case in unsteady adjoint, the adjoint equations
should be integrated backward in time. After eliminating the terms δuk

δb
by satisfying

the FAEs and ABCs, the only remaining term on the right-hand-side of Eq. 3.10
constitutes the Sensitivity Derivative (SD):

δF

δb
= −

∫ T

0

yΨy

(

1− x2
)

dt (3.12)

To solve the FAEs the same 4th order Runge-Kutta method is used to integrate
Eqs. 3.11 backward in time with, of course, the same time step ∆t = 0.001. After
having computed the adjoint fields, the SD results from the integral of Eq. 3.12.
The objective for 0.2 ≤ b ≤ 2.0, T = 50 and the parametric values mentioned in
the text, is seen in Fig. 3.3. Fig. 3.4 shows F for different values of integration
time T and for several values of b. The value of the objective converges at T = 1000
t.u. and remains essentially the same for larger T . The SD for 0.2 ≤ b ≤ 2.0 and
T = 50 is seen in Fig. 3.5. In both figures, for each value of b, 20 random initial
conditions in the interval 0 < x0, y0 < 1 are plotted. The SD values found using the
CA method are meaningless, and follow a pattern of exponential increase similar to
the Lorenz ’63 case. The findings are consistent with those of [34].

35

Figure 3.3: Van der Pol The objective function value for 0.2 ≤ b ≤ 2.0, T = 50
and the parametric values mentioned in the text. For each b, 20 random initial
conditions are plotted

Figure 3.4: Van der Pol The objective function value for 0.2 ≤ b ≤ 2.0, T = 50
and the parametric values mentioned in the text. For each b, 20 random initial
conditions are plotted

36

Figure 3.5: Van der Pol The SD value for 0.2 ≤ b ≤ 2.0, T = 50 and the parametric
values mentioned in the text, using the CA method. For each b, 20 random initial
conditions are plotted

3.3 Finite Differences Sensitivity Analysis

The second method used to compute the sensitivity derivative of Eq. 3.3 w.r.t. b
is the Finite Differences (FD) method. The same range was used for b, from 0.2
to 2.0, with perturbation ∆b = 0.05. The formula for the second-order, central FD
method is seen in Eq. 2.12.

In Fig. 3.7 the SD is plotted for 0.2 ≤ b ≤ 2.0 and for several values of δb. The
SD values for δb < 0.05 are meaningless, which is consistent to the trend observed
in the Lorenz ’63 case, that in order for the SDs to be accurate, δb has to be very
large compared to what is customarily used. This appears to be the case, because
as the denominator of the right-hand-side of Eq. 2.12 decreases, the numerator does
not also decrease, as it should for the SD value to be correct. This implies that
infinitesimal changes in b do not correspond to infinitesimal changes in the SD, but
rather significant ones, which is attributed to the unpredictable nature (not quite
chaotic though) of the Van der Pol system. In Fig. 3.6 the SD for 0.2 ≤ b ≤ 2.0 is
plotted for integration time of T = 50 (in blue), T = 5000 (in red) time units and
δb = 0.05, using 20 random initial conditions for each value of b. It is obvious that
in order to get accurate SDs, the integration time T has to be impractically large.

37

Figure 3.6: Van der Pol The SD value for 0.2 ≤ b ≤ 2.0, where T = 50 (blue) and
T = 5000 (red), and the parametric values mentioned in the text, using the FD
method. For each b, 20 random initial conditions are plotted.

Figure 3.7: Van der Pol The SD value for 0.2 ≤ b ≤ 2.0, where T = 50, for different
values of δb, and the parametric values mentioned in the text, using the FD method.
For each b, 20 random initial conditions are plotted.

38

3.4 Sensitivity Analysis with Classic vs Discretely

Consistent LSS

In this section, the original version of LSS will be compared to DCLSS in order to
evaluate the SD of Eq. 3.3 w.r.t. b. The analysis and development of equations is
already presented in a generalized manner for the case of the Lorenz ’63 problem.
In the Van der Pol problem, the coefficients of Eqs. A.18 and A.50 are derived in
Appendix B. In Fig. 3.8 the SD for 0.2 ≤ b ≤ 2.0 is evaluated for integration time
T = 50 time units using LSS (in blue) and DCLSS (in red). It is apparent that the
Discretely Consistent version of the LSS algorithm (DCLSS) is much more precise
than classic LSS, and it produces SD values with minimal deviation for different
ICs, which is a very important attribute of the algorithm in terms of avoiding extra
computational cost while achieving very high precision.

Figure 3.8: Van der Pol The SD value for 0.2 ≤ b ≤ 2.0, where T = 50 time units,
and the parametric values mentioned in the text, using LSS (in blue) and DCLSS
(in red). For each b, 20 random initial conditions are plotted.

39

3.4.1 Consistency of the Solutions of the Boundary Value

Problem using DCLSS

A similar analysis to 2.4.6, regarding the consistency of the Solutions of the Bound-
ary Value Problem using DCLSS, is performed for the Van der Pol system. Fig.
3.9 shows the first component vx of the time-series vector v⃗ using DCLSS (in black
dots), and using the forward (in blue) and backward (in red) Euler method. The
time-series are identical with one another, which translates to the 2nd order Eq. 2.29
being consistent with the system of Eq. 2.28. The previous findings indicate that,
contrary to the Lorenz ’63 and Rossler systems, the non-chaotic nature of the Van
der Pol equations allows the system of Eq. 2.28 to be solved forward and backward
in time without the need for the double bounding enforced by Eq. 2.28.

Figure 3.9: Van der Pol Comparison of vx evaluated using DCLSS (in black dots),
forward (in blue) and backward (in red) Euler.

40

Chapter 4

Application on the Rössler

Problem

4.1 The Rössler Problem

The Rössler problem is yet another suitable example to demonstrate the failure of
the Continuous Adjoint method to provide useful derivatives of long-time averaged
quantities w.r.t. a design variable, and the superiority of the LSS algorithm to
provide correct values, at lower cost compared to the Finite Differences method.
The problem is described by a system of three ODEs that is given below:

dx

dt
= −y − z, x(0) = x0 (4.1a)

dy

dt
= x+ ay, y(0) = y0 (4.1b)

dz

dt
= b+ z(x− c), z(0) = z0 (4.1c)

The design variable is a, which lies within the interval 0.1 ≤ a ≤ 0.4. Fig. 4.1 shows
the solution to the Rössler Equation for a = 0.2, using a 4th order Runge-Kutta
method with N = 1000000 time-steps and ∆t = 0.001 time units. The integration
time T = Ndt = 1000 time units is quite large compared to the previous cases. That
is because the Rössler system has larger time-scales (pseudo-period) than the Lorenz
’63 or the Van der Pol systems, and in order to capture the system’s dynamics, the
integration time has to be significantly larger than its largest time-scale. Fig. 4.2
illustrates the chaotic behavior of the system by comparing z(t) for two very similar

41

design variable values a = 0.20 and a = 0.21, obtained using the same Runge-Kutta
method. Initially, the two solution trajectories are very close to each other. After
that, however, due to the chaotic nature of the system, they differ greatly.

The behavior of the Rössler system for different a values is the following:

1. a ∈ (−∞, 0] : Stable fixed point attractor (NOT chaotic).

2. a = 0.1 : Unit cycle of period 1 time unit (NOT chaotic).

3. a ∈ (0.13,∞) : Chaotic, increasingly so for larger a values.

Figure 4.1: Rössler Solution for a = 0.2 and initial condition u⃗0 = [x0y0z0]
T =

[0.10.10.1]T , using a 4th order Runge-Kutta method with N = 300000 time-steps
and ∆t = 0.001 time units.

42

Figure 4.2: Rössler Solution for initial condition u⃗0 = [x0y0z0]
T = [0.10.10.1]T and

for a = 0.20 (red) and a = 0.21 (blue), using a 4th order Runge-Kutta method with
N = 100000 time-steps and ∆t = 0.001 time units. The difference is subtle at first,
but it increases with t, as is expected from the chaotic nature of the system.

4.2 Continuous Adjoint Sensitivity Analysis

Throughout this analysis, for the purpose of demonstration, the objective function
F is defined as:

F (b) =
1

T

∫ T

0

z(t, b) dt (4.2)

F is the long-time averaged z, and the design parameter vector is b⃗ = [b0] , b0 = a.
In order to formulate the Continuous Adjoint method and compute the gradient of
F w.r.t. b⃗, the augmented objective function is defined as:

Faug = F +

∫ T

0

Ψ⃗T R⃗ dt (4.3)

43

where Ψ⃗ = [ΨxΨyΨz]
T ∈ R

3 is the adjoint variable vector field and R⃗ ∈ R
3 are the

residuals of the three Rössler equations:

R⃗ =





dx
dt

+ y + z
dy
dt
− x− ay

dy
dt
− b− z(x− c)



 (4.4)

Eq. 4.3 is then written as:

Faug =
1

T

∫ T

0

z(t, b) dt+

∫ T

0

Ψx

(

dx

dt
+ y + z

)

dt

+

∫ T

0

Ψy

(

dy

dt
− x− ay

)

dt+

∫ T

0

Ψz

(

dz

dt
− b− z(x− c)

)

dt

(4.5)

Differentiating Eq. 4.5 w.r.t. a, and since the operators δ
δa

and d
dt

are interchange-
able, results in:

δFaug

δb
=

δF

δa
+

∫ T

0

Ψx
d

dt

(

δx

δa

)

dt+

∫ T

0

Ψy
d

dt

(

δy

δa

)

dt+

∫ T

0

Ψz
d

dt

(

δz

δa

)

dt

+

∫ T

0

Ψx (y + z) dt+

∫ T

0

Ψy (−x− ay) dt+

∫ T

0

Ψz (−b− z(x− c)) dt

(4.6)
Integrating by parts, for uk = x, y, z and Ψk = Ψx,Ψy,Ψz, yields:

∫ T

0

Ψk
d

dt

(

δuk

δa

)

dt =

[

Ψk
δuk

δa

]T

0

−

∫ T

0

dΨk

dt

δuk

δa
dt (4.7)

After factoring out terms δuk

δa
, Eq. 4.6 results in:

δFaug

δρ
=

∫ T

0

δx

δa

(

−
dΨx

dt
−Ψy −Ψzz

)

dt+

∫ T

0

δy

δa

(

−
dΨy

dt
+Ψx − aΨy

)

dt

+

∫ T

0

δz

δa

(

−
dΨz

dt
Ψx −Ψz(x− c) +

1

T

)

dt+

[

Ψx
δx

δa

]T

0

+

[

Ψy
δy

δa

]T

0

+

[

Ψz
δz

δa

]T

0

−

∫ T

0

Ψyy dt

(4.8)
The Field Adjoint Equations (FAEs) are determined by setting the multipliers of
δuk

δa
to zero continuously throughout the interval 0 ≤ t < T . The Adjoint Bound-

ary Conditions (ABCs) that accompany the FAEs are determined by setting the

44

coefficients of terms δuk

δa
to zero at t = T . The FAEs and ABCs are:

dΨx

dt
= −Ψy −Ψzz (4.9a)

dΨy

dt
= +Ψx − aΨy (4.9b)

dΨy

dt
= Ψx −Ψz(x− c) +

1

T
(4.9c)

Ψx(T) = Ψy(T) = Ψz(T) = 0 (4.9d)

which imply that, as is always the case in unsteady adjoint, the adjoint equations
should be integrated backward in time. After eliminating the terms δuk

δa
by satisfying

the FAEs and ABCs, the only remaining term on the right-hand-side of Eq. 4.8
constitutes the Sensitivity Derivative (SD):

δF

δa
= −

∫ T

0

Ψyy dt (4.10)

To solve the FAEs the same 4th order Runge-Kutta method is used to integrate
Eqs. 4.8 backward in time with, of course, the same time step ∆t = 0.001. After
having computed the adjoint fields, the SD results from the integral of Eq. 4.10.
The objective for 0.1 ≤ b ≤ 0.4, T = 1000 (in blue) and T = 10000 (in red)
and the parametric values mentioned in the text, is seen in Fig. 4.3. The SD for
those values of a and T = 1000 time units is seen in Fig. 4.4. In both figures,
for each value of a, 20 random initial conditions in the interval 0 < x0, y0, z0 < 1
are plotted. The SD values from the CA method for 0.1 ≤ a ≤ 0.13, where the
Rössler system is not chaotic, are meaningful although false, as will be discussed
in section 4.5, where for comparison, they are plotted against those from FD and
LSS. However, for a > 0.13, where the system begins to present rapidly increasing
chaotic behavior, the SD values computed using the CA method are increasingly
meaningless, diverging to infinity, which is a behavior consistent with the previous
cases.

45

Figure 4.3: Rössler F for 0.1 ≤ b ≤ 0.4, T = 1000 (in blue) and T = 10000 (in red)
and the parametric values mentioned in the text.

Figure 4.4: Rössler The SD for 0.1 ≤ a ≤ 0.4 using CA, for the parametric values
mentioned in the text

46

4.3 Finite Differences Sensitivity Analysis

The second method used to compute the sensitivity derivative of Eq. 4.2 w.r.t. a
is the Finite Differences (FD) method. The same range was used for a, from 0.1 to
0.4, with perturbation ∆a = 0.001. The formula for the second-order, central FD
method is seen in Eq. 2.12.

In Fig. 4.5 the SD for 0.1 ≤ a ≤ 0.4 is plotted for integration time of T = 1000
(in blue) and T = 10000 (in red) time units, using 20 random initial conditions
for each value of a. The values produced are meaningful throughout the interval of
0.1 ≤ a ≤ 0.4, but it is obvious that in order to get accurate SDs, the integration
time T has to be impractically large. For larger values of a, there is increased
variation of the SD value, with extreme “hills” and “valleys”. This is attributed to
the rapidly increasing chaotic nature of the system and not to a possible failure of
the FD method, as even with an extremely large integration time (T = 1000 time
units), there is no mitigation of the phenomenon.

Figure 4.5: Rössler The SD value for 0.1 ≤ a ≤ 0.4, where T = 1000 (blue) and
T = 10000 (red), and the parametric values mentioned in the text, using the FD
method. For each a, 20 random initial conditions are plotted.

47

4.4 Sensitivity Analysis with Classic vs Discretely

Consistent LSS

In this section, the original version of LSS will be compared to DCLSS in order to
evaluate the SD of Eq. 4.2 w.r.t. a. The analysis and development of equations is
already presented in a generalized manner for the case of the Lorenz ’63 problem.
In the Rössler problem, the coefficients of Eqs. A.18 and A.50 are derived in Ap-
pendix C. In Fig. 4.6 the SD for 0.1 ≤ a ≤ 0.4 is evaluated for integration time
T = 1000 time units, using LSS (in blue) and DCLSS (in red). For 0.1 ≤ a ≤ 0.13,
where the system is not chaotic, the LSS and DCLSS methods produce meaningless
SD values. However, for larger a values where the Rössler system is chaotic, they
produce meaningful ones. DCLSS has less variation in the SD values due to different
ICs, which means it is more precise than classic LSS. A better comparison between
the two variations of the algorithm is made with a detailed view in Fig. 4.7.

Figure 4.6: Rössler The SD value for 0.1 ≤ a ≤ 0.4, where T = 1000 time units,
and the parametric values mentioned in the text, using LSS (in blue) and DCLSS
(in red). For each a, 20 random initial conditions are plotted.

48

Figure 4.7: Rössler The SD value for 0.1 ≤ a ≤ 0.4, where T = 1000 time units,
and the parametric values mentioned in the text, using LSS (in blue) and DCLSS
(in red). For each a, 20 random initial conditions are plotted.

4.4.1 Consistency of the Solutions of the Boundary Value

Problem using DCLSS

A similar analysis to 2.4.6, regarding the consistency of the Solutions of the Bound-
ary Value Problem using DCLSS, is performed for the Rössler system as well. Fig.
4.8 shows the first component vx of the time-series vector v⃗ using DCLSS (in black)
and forward Euler (in blue). Also, Fig. 4.9 shows the first component vx of the
time-series vector v⃗ using DCLSS (in black) and backward Euler (in blue). In both
figures, it is evident that, due to the extremely chaotic nature of the Rössler system,
it is not feasible to solve Eq. 2.28a forward or backward in time without fixing its
first and last values using BCs at t = 0 and t = T , as is guaranteed by Eq. 2.29.
These findings are consistent with those of the Lorenz ’63 case.

49

Figure 4.8: Rössler Comparison of vx evaluated using DCLSS (in black) and forward
Euler (in blue).

Figure 4.9: Rössler Comparison of vx evaluated using DCLSS (in black) and back-
ward Euler (in blue).

50

4.5 Conclusions

A very important observation that was made is that in the interval 0.1 ≤ a ≤
0.13 where the Rössler system is not chaotic, the CA and FD methods produced
meaningful SD values, and in 0.13 ≤ a ≤ 0.4 where the Rössler system is chaotic,
the CA failed to produce meaningful SD values. However, only the SD values from
FD seem to be correct. On the contrary, the classic and Discretely Consistent LSS
methods presented the exact opposite behavior, meaning that they failed produce
meaningful SD values for 0.1 ≤ a ≤ 0.13, but succeeded for 0.13 ≤ a ≤ 0.4,
and DCLSS even more precisely so. In Fig. 4.10 the SD value was plotted for
0.1 ≤ a ≤ 0.13 using the CA, FD and LSS methods, for T = 1000 time units
and parameter values found in the text. Only the SDs produced using the LSS
method seem to be in accordance with those from FD. Fig. 4.11 shows the SD
value for 0.13 ≤ a ≤ 0.4 where the Rössler system is chaotic, using the FD, LSS
and DCLSS methods, for T = 1000 time units and parameter values found in the
text. The DCLSS method is more accurate and presents the least variation due to
random initial conditions. It should be emphasized that, as can be seen in Figs. 4.10
and 4.11, due to the extreme chaotic nature of the Rössler system, the SD values
produced by all methods are very sensitive to parameter changes.

Figure 4.10: Rössler The SD value for 0.1 ≤ a ≤ 0.13, where T = 1000 time units,
and the parametric values mentioned in the text, using CA (in blue), FD (in red)
and LSS (green). For each a, 20 random initial conditions are plotted.

51

Figure 4.11: Rössler The SD value for 0.13 ≤ a ≤ 0.4, where T = 1000 time units,
and the parametric values mentioned in the text, using FD (in blue), LSS (in red)
and DCLSS (green). For each a, 20 random initial conditions are plotted.

algorithms

52

Chapter 5

Data Assimilation

5.1 Increased Prediction Accuracy with Data As-

similation

Data Assimilation [27, 12, 20, 31, 11] is a technique that combines both observa-
tional (experimental) data and mathematical (theoretical) models to improve the
accuracy and reliability of predictions about a system’s state. In real-world ap-
plications, experimental measurements are often noisy and prone to errors, while
simulations based on mathematical models can be sensitive to assumptions and ap-
proximations that may not fully capture the complexities of the system. Because
of these limitations, relying solely on one source—either the measurements or the
model—can lead to suboptimal results.

Data assimilation works by integrating observational data into the model in a way
that allows both data sources to inform and correct each other. This iterative pro-
cess improves the model’s predictive power and enhances the analysis of the system’s
current and future states. Essentially, data assimilation provides a framework where
observations constrain and correct model predictions, while the model offers struc-
ture and continuity to the often sparse or irregularly spaced data measurements.

This approach is particularly powerful in fields like meteorology, oceanography, and
environmental science, where it’s common to have an underlying set of governing
equations (such as the Navier-Stokes equations in CFD) along with large sets of
observational data. In these fields, data assimilation can be used to refine state
estimates of the atmosphere, ocean, or other complex systems by continuously up-
dating model states with new observations as they become available. In general,
data assimilation is applied to all kinds of physical systems that are imperfectly

53

modeled, both chaotic and non-chaotic, where measurements have the potential to
compensate for that loss of information and contribute to the evaluation of a more
precise estimate of the true state.

One of the key concepts behind data assimilation is that it generates a probabilistic
estimate of the system’s state, often using statistical tools like Bayesian inference
to combine model and data uncertainties. This helps quantify the reliability of
predictions and allows for a best estimate that minimizes error across both sources.

In this thesis, data assimilation will be applied to the Lorenz 1963, Rössler, and Van
der Pol systems. The first two are chaotic systems, while the latter is not. Across
both categories, the effectiveness of data assimilation in addressing errors, regardless
of a system’s complexity, will be demonstrated. These three systems serve as repre-
sentative examples of more complex unsteady phenomena, such as turbulent flows,
highlighting the potential applications of data assimilation techniques in complex
real-world scenarios.

Data assimilation involves two types of computations. Those that aim to compute
the best estimate by assimilating the current measurement into the current model
prediction, and fall within the Static Data Assimilation category, and those that
aim to predict the present state using the best estimate of the previous system
state and its quantified uncertainty. The latter fall within the Dynamical Data
Assimilation category. Specifically, filtering will be used to estimate the present
state of the system, by continuously updating predictions based on new observations
and past data. Both categories will be analyzed thoroughly in the following sections.

5.2 Notation and Definitions

Consider an unsteady system, the true state of which i.e its state variables, at a fixed
point in time, is described by the vector u⃗ t ∈ R

n, where n ∈ N and t stands for true.
For example, in the case of the unsteady flow around an airfoil, the state vector
is u⃗ = (ρ, ρvx, ρvy, E)T ∈ R

n, n = 4. Consider also a model, such as the Navier-
Stokes (N-S) equations, the numerical solution of which approximates the true state
of the system as u⃗m ∈ R

n, where m stands for model, along with measurements
or observations v⃗ ∈ R

M , like those made inside a wind tunnel, M is the number
of quantities measured at each measurement. The true state cannot be calculated.
Instead its best estimate u⃗ a ∈ R

n is computed, where a stands for assimilated, is
the result of a combination of the information contained in the model estimation
(N-S) and the available observations (experimental data). The model equation, that
proceeds from time-step k − 1 to time-step k can be written in the form:

u⃗m
k = M

(

u⃗ a
k−1

)

(5.1)

54

where M(·) is the model operator, which propagates the state forward in time.
Notice how the input to the model at the time-step k is considered to be the assim-
ilated state at this instant. If no data assimilation has taken place at the previous
time-step, the best estimate of the state is:

u⃗m
k = M

(

u⃗m
k−1

)

(5.2)

The model is subject to error, thus the true state of the system at time k can be
expressed as:

u⃗ t
k = M

(

u⃗ t
k−1

)

+ e⃗m
k−1 (5.3)

The observations are given as a function of the true state as:

v⃗ = H
(

u⃗ t
)

+ e⃗ o (5.4)

where e⃗ o is the observation error, and H(·) is the interpolation operator. The latter
has a dual purpose; It performs interpolation from the grid nodes to the observation
sites, and it also might include transformation of the state variables to observations
that might be expressed differently. For example, in case the state variables are
conservative and the observations are non-conservative [31](p.11). In general, the
observation operator, as well as the model, is non-linear, and this will be the case
for this analysis. However, in the simple case where the state is being measured at
grid points, H(·) degenerates to the identity operator, and Eq. 5.4 merely becomes:

v⃗ = u⃗ t + e⃗ o (5.5)

5.3 Errors and Auto-Covariances

The model estimate as well as the assimilated state and the observations are all
subject to errors, that are assumed to follow the normal distribution [20]. This
assumtion is very realistic, as it has been observed that most quantities measured at
experiments follow the normal distribution or approximate it very closely, and even
if the do not, they can undergo a mathematical transformation so that they do [30].
Also, for simplicity, and without loss of generality, it is assumed that all components
of each state and observation vector share the same variance. The relevant errors
are defined as:

Model estimate error: e⃗m = u⃗ t − u⃗m (5.6a)

Assimilation error: e⃗ a = u⃗ t − u⃗ a (5.6b)

Observation error: e⃗ o = v⃗ −H
(

u⃗ t
)

(5.6c)

55

It is assumed that the observation error e⃗ o is random, meaning that the observa-
tions v⃗ are subject to unbiased random error. Thus, its mean or expected value is
zero. The variance of e⃗ o is constant, equal to σo, meaning that all the eii ∈ e⃗ o are
independent from each other. This is equivalent to:

mean(e⃗ o) = E(e⃗ o) = 0⃗ (5.7a)

cov(e⃗ o) = E
(

e⃗ oe⃗ o T
)

= σ2
oI = Co (5.7b)

or: e⃗ o ∼ N
(

0⃗,Co

)

(5.7c)

where Co is the auto-covariance matrix of e⃗ o. Similarly, the model error is assumed
to have zero mean and a diagonal auto-covariance matrix:

mean(e⃗m) = E(e⃗m) = 0⃗ (5.8a)

cov(e⃗m) = E
(

e⃗me⃗m T
)

= σ2
mI = Cm (5.8b)

or: e⃗m ∼ N
(

0⃗,Cm

)

(5.8c)

The assimilated state this analysis aims to compute should be unbiased, therefore
its mean or expected value should be equal to the true state: E(u⃗ a) = u⃗ t, and the
assimilation error should have zero mean. Also, the assimilated states should be
independent of each other , yielding a diagonal auto-covariance matrix.

mean(e⃗ a) = E(e⃗ a) = 0⃗ (5.9a)

cov(e⃗ a) = E
(

e⃗ ae⃗ a T
)

= σ2
aI = Ca (5.9b)

or: e⃗ a ∼ N
(

0⃗,Ca

)

(5.9c)

It should be noted that the Initial Conditions (ICs) are also subject to error, which
is considered to be similar to the observation error, because, in most real world
applications, ICs result from observations. Hence:

mean(e⃗ IC) = E(e⃗ IC) = 0⃗ (5.10a)

cov(e⃗ IC) = E
(

e⃗ IC e⃗ IC T
)

= σ2
oI = Co (5.10b)

or: e⃗ IC ∼ N
(

0⃗,Co

)

(5.10c)

Variance σo is assumed to be known, which is typical procedure followed by exper-
imentalists. On the other hand, σm stands for the model variance and is usually
approximated based on prior empirical information.

56

5.4 The Extended Kalman Filter (EKF)

In data assimilation, the observations usually correspond to a very small subset of
the total grid points and time steps. They need to be dynamically incorporated into
the simulation process and, in this thesis, the selected method to do so, is the filtering
algorithm, specifically the Extended Kalman Filter (EKF) [31]. As the simulation
progresses, the model state and the observations (whenever and wherever they are
available) are combined to produce the assimilated state which replaces the current
state. By keeping track of the accumulated error due to model and observation
uncertainties, thus practically utilizing all observations until that instant, the as-
similation process extracts information from the model and the measurements with
mathematically proven optimality. The assimilated state is assumed to be equal to
the model estimate plus a correction term, weighed by an optimally selected relax-
ation coefficient matrix K a.k.a the Extended Kalman Filter (EKF). The correction
term consists of the difference of the observation and the model prediction, and,
depending on the case, the latter should be brought at the temporal or spatial loca-
tion of the observation, as well as the variable type, using the H(·) operator. This
is expressed as:

u⃗ a = u⃗m +K (v⃗ −H (u⃗m)) (5.11)

The goal of this analysis is to calculate K, so that the following two conditions are
satisfied:

� The assimilated state error e⃗ a is unbiased (meaning that E(u⃗ a) = u⃗ t, or
E (e⃗ a) = 0).

� The assimilated state error variance is the minimum among all other estimates
[11].

The first condition is already satisfied, as is proven below:

E (e⃗ a) = −E (e⃗ a) = E (−e⃗ a)

= E
(

u⃗ a − u⃗ t
)

= E (u⃗m +K (v⃗ −H (u⃗m))− (u⃗m + e⃗m))

= E
(

u⃗m − u⃗ t
)

+KE (v⃗)−KE (H (u⃗m))

= E (e⃗m) +KE
(

e⃗ o +H
(

u⃗ t
)

−KH (u⃗m)

= 0−KH (u⃗m) +KE (e⃗ o) +KE
(

H
(

u⃗ t
))

= −KH (u⃗m) +K0+KE
(

H
(

u⃗ t
))

= KE
(

H
(

u⃗ t
))

−KH (u⃗m)

(5.12)

57

Note that, since the model estimate u⃗m is a deterministic quantity, and H(·) a
deterministic operator, then H (u⃗m) is a deterministic quantity, and:

E (H (u⃗m)) = H (u⃗m) (5.13)

E (u⃗m) = u⃗m (5.14)

To further simplify Eq. 5.12, due to the presence of E (H (u⃗ t)), the nonlinear
operatorH(·) has to be linearized, because the non-linear evolution of the probability
distribution H (u⃗ t) can result in a non-Gaussian output, even though the input is
Gaussian [31]. The non-linear operator H(·) can be linearized around u⃗m as:

H
(

u⃗ t
)

= H (u⃗m) + ∇H|u⃗m

(

u⃗ t − u⃗m
)

+O
(

(

u⃗ t − u⃗m
)2
)

(5.15)

where ∇H|u⃗m is the Jacobian of H(·) evaluated at u⃗m:

∇H|u⃗m =
∂H

∂u⃗

∣

∣

∣

∣

u⃗=u⃗m

(5.16)

Thus, Eq. 5.12 becomes:

E (e⃗ a) = KE
(

H
(

u⃗ t
))

−KH (u⃗m) = KH
(

u⃗ t
)

−KH (u⃗m) = 0⇒

E (e⃗ a) = 0
(5.17)

However, K is still unknown. In order to compute it, one should take into account
the second condition, which states that the assimilated state error e⃗ a needs to have
the minimum variance among all other estimates of the true state. The mathe-
matical equivalent of this, is that the sum of the diagonal elements of the error
auto-covariance matrix Ca, i.e its trace tr (Ca) which consists of the squared sum
of the variances of each element of e⃗ a, needs to be minimized. The derivation of K
can be found in full detail in D.4, but a shorter version of it is also presented in the
following part of the current section. In order to derive Ca, e⃗ a has to be derived
first. For the present state, at time k, it can be shown that:

e⃗ a
k =

(

I−Kk ∇H|u⃗m

k

)(

∇M|u⃗ a

k−1

e⃗ a
k−1 + e⃗m

k−1

)

−Kke⃗
o
k (5.18)

Having derived e⃗ a
k , C

a
k = E

(

e⃗ a
k e⃗

a T
k

)

can also be derived, Kk to minimize ∥e⃗ a
k ∥

2 =
∑

i

(

e⃗ a
k,i

)2
= tr (Ca

k), as mentioned previously. As shown in D.4:

Ca

k
=
(

I−Kk ∇H|u⃗m

k

)

Cm

k

(

I−Kk ∇H|u⃗m

k

)T

+KkC
o

k
KT

k (5.19)

58

Satisfying tr (Ca

k
) = 0 yields:

K = Cm ∇H|Tu⃗m

[

∇H|u⃗m Cm ∇H|Tu⃗m +Co

]−1

(5.20)

All quantities in Eq. 5.20 refer to time-step k, so the corresponding index is omitted.
Therefore, K depends on H(·), Co and Cm, which are known.

In the simple case that H(·) is the identity operator and, as previously explained,
Eq. 5.5 holds, Eq. 5.20 becomes:

K =
σ2
m

σ2
m + σ2

o

I (5.21)

Similarly, Eq. 5.11 becomes:

u⃗ a = u⃗m +K (v⃗ − u⃗m) = u⃗m +
σ2
m

σ2
m + σ2

o

(v⃗ − u⃗m) =
u⃗m/σ2

m + v⃗/σ2
o

1/σ2
m + 1/σ2

o

(5.22)

Eq. 5.22 suggests that the assimilated state u⃗ a is the weighted (by means of the in-
verted squared variance) sum of the model estimate u⃗m and the measurement v⃗. The
assimilated state depends more heavily on the component with lower uncertainty.
For instance, the more uncertain the model estimate, the more the assimilated state
depends on the observation, and vice-versa.

It is also important to keep track of the assimilated state error covariance at each
time-step, so having derived K, Ca can be expressed as a function of the model esti-
mate error auto-covariance matrix Cm and K, as shown in D.4. Since all quantities
correspond to the same time-step, index k is omitted, similar to Eq. 5.20.

Ca = (I−K ∇H|u⃗m)C
m (5.23)

It should be noted that Ca depends on Cm and K, which in turn depends on Cm

and Co. By keeping track of Ca in every time-step, the propagation of the variance
of each component of the assimilated state vector u⃗ a through time is known, which
is critical information that quantifies its precision, necessary in many applications
like robust design.

In the case where Eq. 5.22 holds, Eq. 5.23 can be written as:

Ca = (I−K ∇H|u⃗m)C
m =

(

I−
σ2
m

σ2
m + σ2

o

II

)

σ2
mI⇒ Ca =

σ2
mσ

2
o

σ2
m + σ2

o

I (5.24)

59

5.5 The Data Assimilation Algorithm

Data assimilation consists of two main processes. The static analysis, and the dy-
namic analysis. The static one aims to produce the best estimate of the system state
by combining the model estimate of that state and an observation, all corresponding
to the current moment in simulation time, denoted by the subscript k, hence the
term “static”. The dynamic one aims to compute the estimate of the system state
corresponding to the next moment in simulation time, k + 1, by utilizing the best
estimate of the model state at time k, propagating the state forward in time, hence
the term “dynamic”. The static analysis takes place when there is an available
observation, which are usually much less than the total simulation time steps, and
consequently is less frequent than the dynamic analysis. Also, since the EKF is a
function of the model estimate error auto-covariance, the latter has to be calculated
at each time step, regardless of whether static analysis takes place or not. Moreover,
keeping track of the error auto-covariance provides insight into the model’s accuracy
and the potential build-up of error through simulation time steps, which is invalu-
able information for any engineering application. The data assimilation algorithm
is summarized in Algorithm 1:

60

Algorithm 1 Extended Kalman Filter (EKF)

Initialize: u⃗m
0 , Cm

0
= Cm

0
= CIC

0

for k = 0 to N − 1 do
if v⃗ exists then
Static Analysis:

•Kk = Cm

k
∇H|Tu⃗m

k

[

∇H|u⃗m

k

Cm

k
∇H|Tu⃗m

k

+Co

k

]−1

{Calculate the EKF using Eq. 5.20}

• u⃗ a
k = u⃗m

k +Kk (v⃗k −H (u⃗m
k))

{Compute the assimilated state using Eq. 5.11}

•Ca

k
=
(

I−Kk ∇H|u⃗m

k

)

Cm

k

{Compute the assimilated state auto-covariance matrix using Eq. 5.19}

Dynamic Analysis:

• u⃗m
k+1 = M (u⃗ a

k)
{Calculate the model estimate for the next time step using Eq. D.6}

•Ca

k+1
= ∇M|u⃗ a

k−1

Ca

k
∇M|Tu⃗ a

k−1

+Cm

k

{Estimate the optimal state auto-covariance for the next time step using Eq.

D.21}

else
Dynamic Analysis:

• u⃗m
k+1 = M (u⃗m

k)
{Calculate the model estimate for the next time step using Eq. D.6, where

the current optimal state is u⃗m
k since no assimilation took place at time k}

•Ca

k+1
= ∇M|u⃗ a

k−1

Ca

k
∇M|Tu⃗ a

k−1

+Cm

k

{Estimate the assimilated state auto-covariance for the next time step using

Eq. D.21, where the optimal state at time k is the current model prediction

since no assimilation took place at time k}

end if
end for=0

61

5.6 Demonstration in the Van der Pol System

The data assimilation process is applied to the Van der Pol system using the Ex-
tended Kalman Filter. The governing equations are shown in Eq. 3.2, which is
equivalent to:

du⃗

dt
= f (u⃗) , u⃗(0) = u⃗0 (5.25)

where f(·) is given by Eq. B.1. In order to express Eq. 5.25 in the form of Eq. 5.1,
it will be discretized using the Euler method:

u⃗k+1 = u⃗k + (tk+1 − tk) f (u⃗k) = F (u⃗k) (5.26)

Eq. 5.26 describes the perfect, error free, model of the discretized Van der Pol
system. However, in real world applications, models are subject to error, as previ-
ously explained. In order to simulate this, a Gaussian error e⃗m

k will be artificially
introduced into F (), in the form of Eq. 5.6b, using an RNG based on the Gaussian
(Normal) distribution, with mean value 0 and variance σm. The imperfect model
can be expressed as in Eq. 5.1, where:

M
(

u⃗ t
k

)

= u⃗k + (tk+1 − tk) f (u⃗k) + e⃗m
k (5.27)

The observation equation is given by Eq. 5.4, where e⃗ o is artificially introduced,
similarly to e⃗m

k . In this case, for simplicity’s sake, the observation operator H(·) is
reduced to the identity operator:

H (u⃗) = u⃗, H : R2 → R
2 (5.28)

which means that the observations are directly of the system state itself, and taken
at the simulation nodes, but with Gaussian error, as previously discussed. Hence,
the Jacobian of the interpolation operator is constant and equal to the identity
matrix:

∇H|u⃗m

k

=
∂H

∂u⃗
= I (5.29)

Thus, the EKF is constant too, and is given by Eq. 5.21. The assimilated state and
its error auto-covariance matrix are given by Eqs. 5.22 and 5.23, respectively. The
Jacobian of M evaluated at u⃗ = u⃗ a

k is:

∇M|u⃗ a

k−1

=
∂M

∂u⃗ a
k

=
∂

∂u⃗ a
k

[u⃗ a
k + (tk+1 − tk) f (u⃗ a

k) + e⃗m
k]⇒

∇M|u⃗ a

k−1

= I+ (tk+1 − tk)∇f
(5.30)

62

where ∇f is given by Eq. B.2.

The initial conditions used are u⃗0 = [0.1, 0.1], with N = 50001 time steps, each of
size dt = 0.001 time units, so T = (N − 1)ḋt = 50 time units. Also, b = 2. The
true state was evaluated via the Euler method at all time steps in order to provide
reference and a basis upon which the observation database was assembled. The
latter consists of samples measured every N1 time steps and infused with Gaussian
error whose variance is σo. The model error variance is σm. It should be noted that
the magnitude of the variances should be selected considering the magnitude of the
state.

Fig. 5.1 (Upper) shows the true state (in black), the observation points (in red
dots), and the assimilated state (in blue), for N1 = 100, σm = 0.01 and σo = 0.05.
In order to visualize the observations’ importance in balancing out the model error,
Fig. 5.1 (Lower) shows the true state (in black), the observation points (in red dots)
and the assimilated state (in blue), where the parameters are kept the same except
for σm which was reduced to half of its original value, so σm = 0.005, and data was
used only for the first half of the simulation, i.e for up to 25 time units. After that,
the assimilated state corresponds to the model state. It is clear that without the
observations, the model error leads to a completely erroneous state, showcasing the
importance of data assimilation even with very small model error. It should be noted
that the Van der Pol system is not considered chaotic, but it is strongly non-linear.
This indicates that even in cases where the system is less sensitive to error than a
chaotic one would be, the model error very quickly renders the results unusable, and
data assimilation is vital in order to capture the state precisely enough for any kind
of analysis.

63

Figure 5.1: Van der Pol Upper: The true state (in black), the assimilated state
(in blue) and the observations (in red dots) for the x-component of the Van der Pol
system solution, for four parameter values mentioned in the text. Lower: The true
state (in black), the assimilated state (in blue) and the observations (in red dots) for
the x-component of the Van der Pol system solution, where for time larger than 25
time units, the assimilated state is reduced to the model state, and no observations
are used. The parameters were kept the same except that σm = 0.005.

64

5.7 Demonstration in the Lorenz ’63 System

The data assimilation algorithm using the EKF is also applied to the Lorenz ’63
system, defined as in Eq. 2.1 Similarly to the Van der Pol case study, the ground
truth is given by Eq. 5.26, where f(·) is given by Eq. 2.15. The model operator is
given by Eq. 5.27, and its Jacobian by Eq. 5.30, where∇f is given by Eq. A.19. The
observation operator is the identity operator in this case as well, and the expressions
of the assimilated state, the EKF and the auto-covariant matrices are kept the same
too, with the difference that vectors are now of length 3 instead of 2, and matrices
are of shape 3× 3 instead of 2× 2.

The initial conditions used are u⃗0 = [1, 2, 30], with N = 20001 time steps, each of
size dt = 0.001 time units, so T = (N − 1)ḋt = 20 time units. Also, σ = 10, β =
8/3 ≊ 2.6667, ρ = 28. The true state was evaluated via the Euler method at all time
steps in order to provide reference and a basis upon which the observation database
was assembled. The latter consists of 100 samples measured every N1 time steps and
infused with Gaussian error with variance equal to σo. The model error variance is
σm.

In Fig. 5.4, the true state is plotted along with the assimilated states and the
model state which consists of the (erroneous) model predictions without any data
assimilation. Clearly, the model fails to estimate the true state quite early in terms
of simulation time, while on the other hand, the assimilated state for the most part
succeeds to capture its characteristics (‘peaks’ and ‘valleys’). This showcases the
impact that data assimilation can have in trying to capture complex, sometimes
chaotic, unsteady phenomena.

In Fig. 5.2, the true states were plotted for all time steps (i.e the true trajectory)
in black, and the error variances were given the values σm = 0.1, σo = 0.5. Obser-
vations were used every N1 = 200 time steps. The x-component of the true state
is plotted in black, the assimilated state in blue and the data points are marked
by red dots. The process is repeated for eight different Random Number Generator
(RNG) seeds, while all other parameters are held constant, in order to examine the
effect of randomness on the data assimilation process. The varying precision of the
results is a testament to the dependence of the process on the stochastic factor.

In order to examine the effect of the observation error variance σo on the precision
of the assimilated state, three values were tested, and the results are plotted on Fig.
5.3. Once again, the other parameters are held constant and the assimilated states
are marked by blue, green and magenta for σo = 0.2, 0.5, 0.7 respectively. The blue
line, i.e the assimilated state for σo = 0.2 stands out as the most precise one, as one
can see it has captured the peak at around t = 8 and 16 time units, contrary to
the other two. This is expected, as it shows that the smaller the observation error
covariance, the more precise the assimilated state will be. It should be noted that
at some regions of the trajectory, the other two assimilated states are more precise,

65

Figure 5.2: Lorenz ’63 The true state (in black), the assimilated state (in blue) and
the observations (in red dots) are plotted for eight different RNG seeds, showcasing
the randomness of data assimilation. The parameters used are mentioned in the
text.

like at around t = 11, but this is significantly rarer and is attributed to randomness.

66

Figure 5.3: Lorenz ’63 The true state (in black), the observations and the assimilated
states for σo = 0.2, 0.5, 0.7. The parameters used are mentioned in the text.

67

Figure 5.4: Lorenz ’63 The true state (in black), the model state (in green), the
measurements (in red) and the assimilated state (in blue) for σo = 0.3 and σm = 0.1.
The parameters used are mentioned in the text.

68

5.8 Demonstration in the Rössler System

The data assimilation algorithm using the EKF is also applied to the Rössler system,
defined as in Eq. 4.1 Similarly to the Lorenz ’63 case study, it is expressed as in
Eq. 5.26, where f(·) is given by Eq. C.1. The model operator is also given by Eq.
5.28, and its Jacobian by Eq. C.2. The observation operator is the identity operator
in this case as well, and the expressions of the assimilated state, the EKF and the
auto-covariant matrices are kept the same too.

The initial conditions used are u⃗0 = [5, 5, 5], with N = 30001 time steps, each of
size dt = 0.001 time units, so T = (N − 1)ḋt = 30 time units. Also, a = 0.2, b =
0.2, c = 5.7. The true state was evaluated via the Euler method at all time steps
in order to provide reference and a basis upon which the observation database was
assembled. The latter consists of samples measured every N1 time steps and infused
with Gaussian error whose variance is σo. The model error variance is σm.

In Fig. 5.5, the true state were plotted for all time steps (i.e the true trajectory)
along with the assimilated state. The error variances were set to σm = 0.01, σo = 0.3
and observations were used every N1 = 50 time steps. The z-component of the true
state is plotted in black, the assimilated state in blue and the data points are marked
by red dots. The process is repeated for four different RNG seeds, while all other
parameters are held constant, in order to examine the effect of randomness on the
data assimilation process. Also, the peaks are captured very well, even with limited
data at the region on and around them, which showcases the precision of the data
assimilation process.

Fig. 5.6 (Upper) shows the x-component of true state (in black), the corresponding
assimilated and model states in (in blue and green respectively) and the measure-
ments (in red). The model state completely fails to estimate the true dynamics,
but the assimilated state manages to almost coincide with it. It should be noted
that the Rössler system is significantly more chaotic than the Lorenz ’63 system,
thus more sensitive in discrepancies due to error, so in order for decently accurate
results to be produced, the variances have to be lower and the measurements more
frequent.

In order to examine the effect of the model error variance σm on the assimilated state
accuracy, in Fig. 5.6 (Lower), three different assimilated states can be seen that
correspond to three different values of the model error variance, namely σm = 0.01
in blue, σm = 0.02 in green and σm = 0.03 in magenta, while the other parameters
are held constant and equal to the values mentioned in the previous paragraph. All
three variances in the observation error result to assimilated states very close to the
true state. There are a few mostly imperceptible fluctuations for σm = 0.02 and
0.03 in the assimilated state, however, that are not present for σm = 0.01. This
is natural, since the measurements are very precise in the latter case. It should be
noted that both the Rössler and the Lorenz ’63 systems, being chaotic, are extremely

69

Figure 5.5: Rössler The true state (in black), the assimilated state (in blue) and
the observations (in red dots) for the solution’s z-component, for four different RNG
seeds.

sensitive to initial conditions, and the results of both cases showcase the potential
of data assimilation to capture complicated dynamics with reasonable cost because
due to data collection. Also, the variances selected for the Lorenz 1963 and the
Rössler problems differ by one order of magnitude. The reason for that lies on the
magnitude of the system state, which is approximately one order smaller in the
Rössler system, thus the variance has to be adjusted.

70

Figure 5.6: Rössler Upper: The true state (in black), the assimilated state (in blue),
the model state (in green) and the observations (in red dots) for the solution’s x-
component are plotted for σm = 0.01 and σ0 = 0.3. Lower: The true state (in
black), the assimilated state (in blue) and the observations (in red dots) for the z-
component of the Rössler system solution are plotted for three different observation
error variances, namely σm = 0.01 in blue, σm = 0.02 in green and σm = 0.03 in
magenta.

71

72

Chapter 6

Flow Solution Using

Physics-Informed Neural

Networks (PINNs)

6.1 PINNs as Flow Solvers

Physics Informed Neural Networks or PINNs are a class of neural networks that
solve differential equations by minimizing a loss function that consists of the resid-
uals of those equations and the boundary conditions that accompany them. The
architecture of the PINNs ?? used in this thesis is based on the Deep Neural Network
(DNN) model type, which consists of feed-forward input, hidden and output layers.
Contrary to traditional numerical methods which rely on discrete equations and do-
main, PINNs are analytical models and therefore continuous. This implies that they
can directly output field values at any point within that domain without the need
for interpolation. Moreover, the derivative values that are needed for the residuals’
computation are computed using automatic differentiation, which, as an exact and
continuous process, eradicates the need for discretization schemes. However, PINNs
have certain limitations due to the significant amount of calculations needed ??,
as stability issues that often arise in some cases. In this thesis, PINN solvers are
developed for two applications. The first one is an optimization case, where the pri-
mal problem consists of a steady, quasi-1D, incompressible and inviscid flow through
a duct of varying cross-sectional area. The objective function is minimized when
a given (target) pressure field is achieved, as in an inverse design problem. which
relies on the duct shape that in turn is described by the design vector. In this case,

73

a distinct PINN is developed for each problem: one for the primal and another for
the adjoint problem. The adjoint equations are derived using the continuous adjoint
method, which is necessary, as the adjoint PINN solves continuous equations in a
continuous domain. The desired pressure field is, then obtained successfully at the
end of the process. The second case is a 2D steady, laminar flow of an incompressible
fluid through a duct of varying cross-sectional area. A PINN is developed in order
to solve the Navier-Stokes equations and the accompanying boundary conditions,
and the solution is compared to that produced by in-house GPU-enabled CFD code
PUMA, developed and maintained by the PCOpt/NTUA.

6.2 PINN Model Architecture

The training configuration used in this thesis is shown in Fig. 6.1. The training
dataset simply consists of randomly chosen collocation points inside the domain,
on which the PINN solves the equations. In each training step, only one of these
collocation points, denoted as x⃗, is used as input for the PINN. After the forward
propagation through the hidden layers, the state vector u⃗ (i.e. velocity components
and pressure) at that node is output. Keep in mind that the input layer is depicted as
a single node for simplicity, but it is comprised of as many nodes as the dimension of
the position vector x⃗, i.e. if x⃗ = (x, y)T then the input layer has two nodes. Similarly,
the output layer is also comprised of as many nodes as the dimension of the state
vector u⃗, i.e. if u⃗ = (u, v, p)T then the output layer has three nodes. The derivatives
∂u⃗
∂x⃗

and ∂2u⃗
∂x⃗2 are then computed using automatic differentiation. The loss consists of

the weighted mean squared sum of the governing equations’ residuals evaluated at
all nodes, as well as the boundary conditions. The weights of the loss components
depend on the specific dynamics and are chosen empirically. In this thesis, for
both cases, the equation residuals’ weights are ai = 1, and those of the boundary
conditions (BCs) are ai = 4. The increased weight on the BCs is introduced in order
to tackle the issues caused due to the boundary nodes being a small percentage of
those of the inner domain, causing the information they carry, although crucial for
the problem physics, to be underrepresented, leading to difficulties in convergence.
After computing the loss, automatic differentiation is used to evaluate the gradients
of the loss with respect to all trainable parameters (weights and biases).

74

Figure 6.1: A general diagram of the training process of a PINN that solves for the
laminar flow of an incompressible fluid.

6.2.1 Quasi-1D Flow Case

The first application of the PINN as flow solver is the quasi-1D, steady, incompress-
ible and inviscid flow through a duct with varying cross-sectional area (see Fig.6.2),
denoted as S(x), which is given by the following formula:

S(x) = b1
(

x3 − x
)

+ b2
(

x2 − x
)

+ 0.1x+ 0.3 (6.1)

where b⃗ = (b1, b2)
T is a parameter vector to be used as a design vector within an

optimization loop. It should be noted that the parametrization does not affect the
inlet and outlet diameter, which are both constant.

Figure 6.2: The duct used in the quasi-1D flow case.

75

Primal Equations

Since the problem is quasi-1D, x⃗ = x ∈ R
1, 0 ≤ x ≤ 1. The governing equations,

i.e. the continuity equation and the momentum conservation, are:

d(vS)

dx
= 0

ρv
dv

dx
+

dp

dx
= 0

(6.2)

The state vector is u⃗ = (v, p)T ∈ R
2, where v is the velocity and p the pressure.

Since the flow is incompressible, the density remains constant, and for simplicity it
is considered ρ = 1kg/m3. The boundary conditions are:

u(x = 0) = uBC = 1m/s

p(x = 1) = pBC = 0N/m2
(6.3)

where p = 0N/m2 is the reference pressure.

The amount of layers used in the PINN model used to solve Eq. 6.3 was 5, each
containing 64 neurons. The input and output layers contained 1 and 2 neurons re-
spectively. For each of the hidden layers, tanh(·) was used as the activation function,
whereas in the output layer, no activation was used. In total, 5000 epochs were per-
formed, and the training duration was 1.3 min. Exponentially decreasing learning
rate was used, ranging from 0.001 down to 0.0001 withing the first 2000 epochs, after
which it remained constant. The amount of collocation points was 501, and they
were introduced batch-wise to the input layer of the PINN, thus taking advantage
of the optimized TensorFlow operations. The resulting flow field, plotted alongside
a reference field obtained via numerical solution of Eq. 6.3 is shown in Fig.6.3. The
two sets of fields are indistinguishable, showcasing the precision achieved by the
PINN.

76

Figure 6.3: Primal 1D: Velocity (in blue) and pressure (in red) fields obtained
using the PINN (line) compared to numerical solution (dash-dot).

Adjoint Equations

For the optimization that follows in the next subsection, the objective function is
defined as:

F (⃗b) =
1

2

∫ 1

0

(p− ptar)
2 dx (6.4)

where ptar is a target pressure distribution that corresponds to the target design
vector b⃗tar = (0.2, 0.3)T . This was selected in order to have an entirely reproducible
target for reference purposes. According to the continuous adjoint methodology, the
augmented objective function is:

Faug (⃗b) = F
(

b⃗
)

+

∫ 1

0

va

(

d(vS)

dx

)

dx+

∫ 1

0

pa

(

v
dv

dx
+

1

ρ

dp

dx

)

dx (6.5)

where va and pa are the adjoint velocity and adjoint pressure fields respectively.
Differentiating Eq. 6.5 w.r.t. the design vector components bn, n = 1, 2, and since

77

the operators δ
δbn

and d
dx

are interchangeable, results in:

δFaug

δbn
=

∫ 1

0

(p− ptar)
δp

δbn
dx+

∫ 1

0

va
δ

δbn

(

d(vS)

dx

)

dx+

∫ 1

0

pa
δ

δbn

(

v
dv

dx
+

1

ρ

dp

dx

)

dx

=

∫ 1

0

(p− ptar)
δp

δbn
dx+

∫ 1

0

va
d

dx

(

δ(vS)

δbn

)

dx+

∫ 1

0

pa

(

δ

δbn

(

v
dv

dx

)

+
1

ρ

d

dx

(

δp

δbn

))

dx

=

∫ 1

0

(p− ptar)
δp

δbn
dx+

[

va

(

S
δv

δbn
+ v

δS

δbn

)]1

0

−

∫ 1

0

dva
dx

(

S
δv

δbn
+ v

δS

δbn

)

dx

+

∫ 1

0

pa
dv

dx

δv

δbn
dx+

[

pav
δv

δbn

]1

0

−

∫ 1

0

d

dx
(pav)

δv

δbn
dx+

1

ρ

[

pa
δp

δbn

]1

0

−
1

ρ

∫ 1

0

dpa
dx

δp

δbn
dx

=

∫ 1

0

(

−S
dva
dx

+ pa
dv

dx
− v

dpa
dx
− pa

dv

dx

)

δv

δbn
dx+

∫ 1

0

(

−
1

ρ

dpa
dx

+ (p− ptar)

)

δp

δbn
dx

+

[

(vas+ pav)
δv

δbn

]1

0

+

[

vav
δs

δbn

]1

0

+

[

pa
δp

δbn

]1

0

(6.6)
The Field Adjoint Equations (FAEs) are determined by setting the multipliers of δui

δbn
to zero continuously throughout the interval 0 < x < 1, while the Adjoint Boundary
Conditions (ABCs) by setting δui

δbn
to zero at the interval boundaries x = 0 and x = 1.

The FAEs and ABCs are:

v
dpa
dx

+ S
dva
dx

= 0

1

ρ

dpa
dx
− (p− ptar) = 0

va|x=1 =
−pav

S

∣

∣

∣

∣

x=1

, pa|x=0 = 0

(6.7)

After satisfying the FAEs and ABCs, the only remaining terms on the right-hand-
side of Eq. 6.6 constitute the sensitivity derivatives (SDs):

δF

δbn
= −

∫ 1

0

v
dva
dx

δS

δbn
dx+

[

vav
δS

δbn

]1

0

(6.8)

where:
δS

δb1
= x3 − x

δS

δb2
= x2 − x

(6.9)

78

Figure 6.4: The pressure field reached by the optimization process (in blue) vs the
target pressure field (in red dash-dot).

Optimization Process

The optimization problem, with the objective function of Eq. 6.4, aims to reach a
certain pressure distribution that depends on the cross-sectional area of the duct,
which in turn is given by Eq. 6.1 and depends on the design vector b⃗ = (b1, b2)

T . A
simple steepest descent optimizer was used to update the design vector according
to:

bnewn = boldn − η
δF

δbn
, n = 1, 2, η = 0.1 (6.10)

After only 13 cycles, where during each of those the primal and adjoint PINNs were
re-trained, the objective function reached the lower threshold value chosen to be
Fthreshold = 5·10−5 and the optimization process was stopped. The resulting pressure
distribution is shown in Fig. 6.4, where it is determined that the optimization
process was successful.

6.2.2 2D Viscous Flow Case

The second application of the PINN as flow solver is the 2D steady viscous laminar
incompressible flow through a duct of varying cross-sectional area. The governing

79

equations are the incompressible Navier-Stokes equations, and the flow is considered
to be laminar with Re = 120. In vector form they are given by:

∇ · u⃗ = 0

u⃗∇u⃗−
1

Re
∇2u⃗+

1

ρ
∇p = 0

(6.11)

where u⃗ = (u, v)T and in Einstein notation:

∂ui

∂xi

= 0

uj
∂ui

∂xj

−
1

Re

∂

∂xj

(

∂ui

∂xj

)

+
1

ρ

∂p

∂xi

= 0

(6.12)

where:

Re =
ρUL

µ
(6.13)

and ρ = 1 kg/m3 for simplicity, U = 2 m/s is the inlet velocity, µ = 0.01 kg/ms
the dynamic viscosity and L = 0.6m the inlet diameter of the duct. The Boundary
Conditions used were:

1. Inlet: u = 1 and v = 0

2. Outlet: p = 0 (reference pressure) and ∂u
∂x

= ∂v
∂x

= 0

3. Walls: u = v = 0 (no-slip condition)

The hyper-parameters used for the solution using the PINN model, were:

1. 5000 inlet collocation points

2. 5000 outlet collocation points

3. 10000 collocation points for each one of the upper and lower walls

4. 23649 randomly spaced collocation points for the internal region, sampled from
a uniform distribution

5. 7 layers of 128 neurons each

6. tanh(·) activation in all layers, except the output layer which has no activation,
a.k.a. “linear” activation

7. initial learning rate 0.002, exponentially decreasing to a minimum of 0.0001
at 2000 epochs, whereon it remains constant

The duct exhibits axial symmetry, and its main dimensions are shown in Fig. 6.5.
The collocation points at which the PINN was trained, are shown in Fig. 6.6. The

80

Figure 6.5: The duct geometry used in the 2D flow solution via PINN.

collocation points are twice as dense at a region defined as −0.1 < y < 0.1, in
order to allow for the flow to fully develop in this region. Also, as it is shown
in Fig. 6.7, the region 0.0005 m below the top wall and above the bottom wall,
is devoid of any collocation points, the reason being that if there were any, they
would interfere with the collocation points placed exactly on the boundary. This
is because the boundary collocation points are treated differently from the internal
collocation points. Their only contribution to the loss function comes from enforcing
the boundary conditions, whereas the internal collocation points contribute through
the residuals of the Navier-Stokes equations.

After the PINN solution converged, for demonstration and comparison purposes, the
PINN model was called on the points corresponding to a structured H-type grid,
on which the flow was solved using the in-house GPU-enabled CFD code PUMA.
Figs. 6.8, 6.9 and 6.10 show the horizontal velocity, vertical velocity and pressure
fields respectively, visualized using Tecplot 360, with the PINN results on the top,
and those from PUMA on the bottom. Fig. 6.11 shows a detail of the vectorised
velocity field near the wall, where it can be observed that the boundary layer is
very well-formed. In order to further compare the PINN to the PUMA solution,
vorticity is plotted along the upper and lower walls, as shown in 6.12. Vorticity, in
the general, is defined as:

ω⃗ = ∇× u⃗ (6.14)

In this case, the flow is 2D, so vorticity is a scalar:

ω =
∂v

∂x
−

∂u

∂y
(6.15)

Blue dots were used in case of the PINN solution and red dots in case of the PUMA
solution. It can be observed that the two vorticity fields practically coincide. Since
vorticity is a delicate quantity, consisting of derivatives which tend to amplify nu-
merical errors, those results are indicative of the high quality of the PINN solution.

81

Figure 6.6: The collocation points used in training for the 2D duct flow case. The
internal points are marked in black dots, and the boundary points in blue dots.

82

Figure 6.7: Detail near the upper wall, of collocation points used in training for the
2D duct flow case. The internal points are marked in black dots, and the boundary
points in blue dots.

Figure 6.8: Horizontal velocity field of the PINN (upper) and PUMA (lower) solu-
tion.

83

Figure 6.9: Vertical velocity field of the PINN (upper) and PUMA (lower) solution.

Figure 6.10: Pressure field of the PINN (upper) and PUMA (lower) solution.

84

Figure 6.11: Detail of the vectorised boundary layer velocity field of the PINN
(upper) and PUMA (lower) solution.

Figure 6.12: Vorticity field of the PINN (upper) and PUMA (lower) solution.

85

86

Chapter 7

Conclusion

7.1 Overview

In this thesis, the failure of the conventional sensitivity analysis methods to produce
meaningful sensitivity derivative values when applied to chaotic systems is demon-
strated. A solution to this problem is explored, in the form of the Least Squares
Shadowing (LSS) algorithm, proposed by Q.Wang et al. [5, 33, 34, 26, 4, 10, 6, 7,
3, 19, 32]. LSS produces a solution for the chaotic problem that corresponds to a
perturbed parameter value, which is bound by means of a constrained least squares
problem to be close to the trajectory (solution) corresponding to the unperturbed
parameter value, for the entire time interval. This perturbed trajectory is guarantied
to exist according to proven mathematical theory included in the text, and in effect
utilizes the property of ergodicity that characterises many chaotic systems, which
states that long-time averaged quantities of those chaotic systems are independent
of initial conditions. Thus, the perturbed trajectory is legitimately forced by the
minimization problem to accept different initial conditions in order to stay close
to the unperturbed trajectory. The comparison of the perturbed and unperturbed
trajectories then yields the correct sensitivity derivative value. LSS was first applied
on the chaotic system of the Lorenz 1963 equations, and proven to overcome the
difficulties faced by the continuous adjoint and finite differences methods. Several
parametric studies were performed in order to demonstrate the effect of the size of
the time-step, the total integration time and the weight parameter α of the LSS con-
strained minimization problem on the precision of the sensitivity derivatives. Two
other problems were also tested for consistency reasons, the chaotic Rossler system
and the Van Der Pol system. Similar parametric studies were performed for those
as well.

87

7.2 Conclusions

This process showed that the continuous adjoint method failed completely at each
case to produce meaningful derivatives, yielding values that neared the upper limit
of double precision numbers. The finite differences method, although it managed
to produce meaningful but imprecise sensitivity derivatives, required an extremely
large averaging window, which renders it impractical even for small-scale problems
such as those explored in this thesis, let alone for orders-of-magnitude more demand-
ing real-life applications. As far as LSS is concerned, it was demonstrated that far
less integration time that the FD method was sufficient for high-precision SDs, and
the time-step size did not affect the precision of the SD quite as much as in the
FD method. The α hyper-parameter also did not greatly affect SD values. These
observations overall render LSS a very robust method. However, in most cases the
developed DCLSS method appears to yield better results in most cases, requiring
less total integration time than classic LSS and producing more accurate SD values
due to the consistency of the utilized discretization schemes applied for each of the
three LSS equations. Overall, LSS is a robust and reasonably inexpensive method
that succeeds in producing precise sensitivity derivatives where other methods ei-
ther fail altogether or become prohibitively expensive. Additionally, the DCLSS
method developed in this thesis is in most cases an improvement over the classic
LSS algorithm, providing increased precision at lower computational cost.

Additionally, the Extended Kalman Filter (EKF) method for data assimilation was
applied in the Lorenz 1963 and Rossler chaotic systems, as well as the strongly non-
linear but not chaotic Van der Pol system. It successfully managed to overcome
the Gaussian error that was introduced in the model and observations, yielding an
assimilated state that captured the true dynamics very accurately. It was shown that
although the more chaotic a problem is, the less tolerant is the procedure to both
the model and the observations’ error, great results can be achieved with minimal
data, showing potential for larger scale applications such as chaoitic flows.

Finally, Physics-Informed Neural Networks (PINNs) were employed as solvers for
steady incompressible flow problems, demonstrating their capability to model fluid
dynamics without relying on discrete domain numerical methods. Two applications
were explored: a quasi-1D inviscid flow optimization problem and a 2D viscous flow
case. For the first application, PINNs were successfully utilized to solve the primal
and adjoint equations, allowing for the optimization of the duct shape based on
a target pressure field. The second application involved solving the Navier-Stokes
equations for a 2D duct flow, comparing the results against the GPU-enabled CFD
solver PUMA. The findings showed that PINNs effectively capture the flow char-
acteristics and align well with conventional CFD solutions. However, challenges
such as computational cost, training stability, and boundary condition enforcement
remain open research areas. This work highlights the potential of PINNs as alter-
native and/or supportive solvers for fluid flow problems and underscores the need

88

for further improvements in efficiency and robustness for practical applications.

89

90

Appendix A

Development of the LSS Equations For
the Lorenz ’63 system

A.1 Derivation of the Final Minimization Prob-

lem

The minimization problem is defined as:

min
u⃗,η

1

2

∫ T

0

∥u⃗ (τ(t))−u⃗r∥
2+α2

(

1−
dτ

dt

)2

dt, s.t.
du⃗

dτ
= f⃗(u⃗, ρ+δρ), 0 < t < T

(A.1)
Eq. A.1 ensures that u⃗ and u⃗r, as well as τ and t, remain close to each other for all

0 ≤ t ≤ T . Parameter α is selected so that ∥u⃗ (τ(t))− u⃗r∥
2 and α2

(

1− dτ
dt

)2
are of

the same order of magnitude. Using Einstein notation, Eq. A.1 can be written as:

min
u⃗,η

1

2

∫ T

0

(ui − ur,i)
2+α2

(

1−
dτ

dt

)2

dt, s.t.
dur,i

dτ
= fi(u⃗r, ρ+δρ), 0 < t < T

(A.2)
where u⃗r is the solution of:

dui

dt
= fi(u⃗, ρ) (A.3)

and u⃗(t) is the shadow trajectory. The time transformation is defined as:

τ(t) = (1 + η(t) δρ)t, η(0) = 0 (A.4)

91

In order to write Eq. A.1 in terms of ∂ui

∂ρ
≡ vi(t), it is divided by δρ2. Taking the

limit as δρ→ 0, it is:

lim
δρ→0

min
u⃗,η

1

2

∫ T

0

[

(

ui(τ(t))− ur,i(t)

δρ

)2

+ α2η2

]

dt = min
v⃗,η

1

2

∫ T

0

[

v2i + α2η2
]

dt (A.5)

where the following identities were used:

lim
δρ→0

ui(τ(t)) = ur,i(t) lim
δρ→0

ui(τ(t))− ur,i(t)

δρ
=

∂ui

∂ρ
≡ vi(t) (A.6)

The constraint of the minimization problem is derived in a similar fashion:

0 = lim
δρ→0

1

δρ

{(

dui

dt
− fi(u⃗, ρ+ δρ)

)

−

(

dur,i

dt
− fi(u⃗r, ρ)

)}

= lim
δρ→0

{

1

δρ

(

1

1 + δρ η

dui

dt
−

dur,i

dt

)

−

(

fi(u⃗, ρ+ δρ)− fi(u⃗r, ρ)

δρ

)}

= lim
δρ→0

{

1

1 + δρ η

(

d

dt

(

ui − ur,i

δρ

)

− η
dur,i

dt

)}

−
∂fi
∂uj

vj −
∂fi
∂ρ

=
dvi
dt
− η

dui

dt
−

∂fi
∂uj

vj −
∂fi
∂ρ

=
dvi
dt
−

∂fi
∂uj

vj −
∂fi
∂ρ
− ηfi

(A.7)

By combining equations A.5 and A.7, the minimization problem defined in Eq. A.1,
which was cast in terms of u⃗ and constrained by the primal equation, is transformed
to a new minimization problem in terms of ∂ui

∂ρ
≡ vi(t), constrained by the equation

of v⃗. The new minimization problem is essentially the DD equation of u⃗.

min
v⃗,η

1

2

∫ T

0

[

v2i + α2η2
]

dt, s.t.
dvi
dt

=
∂fi
∂uj

vj +
∂fi
∂ρ

+ ηfi, 0 < t < T (A.8)

92

A.2 Derivation and Solution of the Karush-Kuhn-

Tucker (KKT) equations

The Lagrangian for the minimization problem, in Einstein notation, is defined as:

L =

∫ T

0

[

1

2
v2i +

1

2
α2η2 + wi

dvi
dt
− wi

∂fi
∂uj

vj −
∂fi
∂ρ

wi − ηwifi

]

dt

=

∫ T

0

[

1

2
v2i +

1

2
α2η2 − vi

dwi

dt
− wi

∂fi
∂uj

vj −
∂fi
∂ρ

wi − ηwifi

]

dt

+ wivi|T − wivi|0

(A.9)

for which the KKT equations are:











































∂L

∂vi
= 0 =

dwi

dt
+

∂fj
∂ui

wj − vi

∂L

∂wi

= 0 =
dvi
dt
−

∂fi
∂uj

vi −
∂fi
∂ρ
− ηfi

∂L

∂η
= 0 = η −

1

α2
wifi

wi|t=0 = wi|t=T = 0

(A.11)

The equivalent of Eq. A.10 in vector notation is:

∂L

∂v⃗
= 0 =

dw⃗

dt
+

(

∂f⃗

∂u⃗

)T

w⃗ − v⃗

∂L

∂w⃗
= 0 =

dv⃗

dt
−

∂f⃗

∂u⃗
v⃗ −

∂f⃗

∂ρ
− ηf⃗

∂L

∂η
= 0 = η −

1

α2
w⃗T f⃗

w⃗(0) = w⃗(T) = 0

(A.12)

In order for the system of Eq. A.12 to properly admit the two BCs, as explained
in the text, the KKT equations are combined in a single second order ODE of w⃗.
Differentiating Eq. A.10a w.r.t. t gives:

d2wi

dt2
= −

d

dt

(

∂fj
∂ui

)

wj −
∂fi
∂uj

dwi

dt
+

dvi
dt

(A.13)

93

Then, replacing dvi
dt

in Eq. A.13 with Eq. A.10b, gives:

d2wi

dt2
= −

d

dt

∂fj
∂ui

wj −
∂fi
∂uj

dwi

dt
+

∂fi
∂uj

vi +
∂fi
∂ρ

+ ηfi (A.14)

After replacing vi in Eq. A.14 using Eq. A.10a, it becomes:

d2wi

dt2
= −

d

dt

(

∂fj
∂ui

)

wj −
∂fi
∂uj

dwi

dt
+

∂fi
∂uj

[

dwi

dt
+

∂fj
∂ui

wj

]

wi +
∂fi
∂ρ

+ ηfi ⇒

d2wi

dt2
+

[

∂fj
∂ui

−
∂fi
∂uj

]

dwi

dt
+

[

d

dt

(

∂fj
∂ui

)

−
∂fi
∂uj

∂fj
∂ui

−
1

α2
fifj

]

−
∂fi
∂ρ
− ηfi = 0

(A.15)
to be solved with the two already known boundary conditions:

wi

∣

∣

∣

∣

t=0

= wi

∣

∣

∣

∣

t=T

= 0 (A.16)

For simplicity, Eq. A.15 can be written:

d2wi

dt2
+ Ai

dwi

dt
+Biwi − Ci = 0, wi|t=0 = wi|t=T = 0

where: Ai =
∂fj
∂ui

−
∂fi
∂uj

, Bi =
d

dt

∂fj
∂ui

−
∂fi
∂uj

∂fj
∂ui

−
1

α2
fifj, Ci =

∂fi
∂ρ
(A.17)

The equivalent of Eq. A.17 in vector form is:

d2w⃗

dt2
+A

dw⃗

dt
+Bw⃗ − C⃗ = 0⃗, w⃗|t=0 = w⃗|t=T = 0

where: A =

(

∂f⃗

∂u⃗

)T

−
∂f⃗

∂u⃗
, B =

d

dt

(

∂f⃗

∂u⃗

)T

−
∂f⃗

∂u⃗

(

∂f⃗

∂u⃗

)T

−
1

α2
f⃗ f⃗T , C⃗ =

∂f⃗

∂ρ

(A.18)

The coefficientsA, B and C⃗ for the Lorenz ’63 equations can be simplified as follows:
The Jacobian of the right-hand-side of Eq. 2.1 w.r.t. u⃗, in the Lorenz ’63 problem,
is:

∂f⃗

∂u⃗
=







∂f1
∂x

∂f1
∂y

∂f1
∂z

∂f2
∂x

∂f2
∂y

∂f2
∂z

∂f3
∂x

∂f3
∂y

∂f3
∂z






=





−σ σ 0
ρ− z −1 −x
y x −β



 (A.19)

94

Thus, the coefficient A =
(

∂f⃗
∂u⃗

)T

− ∂f⃗
∂u⃗

can be written as:

A =





0 ρ− z − σ y
σ − ρ+ z 0 2x
−y −2x 0



 (A.20)

The time derivative of the transpose of the Jacobian of the right-hand-side of Eq.
2.1 is:

d

dt

(

∂f⃗

∂u⃗

)T

=





0 −dz
dt

dy
dt

0 0 dx
dt

0 −dx
dt

0



 =





0 βz − xy x(ρ− z)− y
0 0 σ(y − x)
0 σ(x− y) 0



 (A.21)

It is also quite simple to show that:

∂f⃗

∂u⃗

(

∂f⃗

∂u⃗

)T

=





2σ2 −σ(ρ− z + 1) σ(x− y)
−σ(ρ− z + 1) (ρ− z)2 + 1 + x2 y(ρ− z) + x(β − 1)

σ(x− y) y(ρ− z) + x(β − 1) y2 + x2 + β2





(A.22)

Matrix − 1
α2 f⃗ f⃗

T can be written as:

−
1

α2
f⃗ f⃗T = −

1

α2





f1
f2
f3





(

f1 f2 f3
)

= −
1

α2





f 2
1 f1f2 f1f3

f1f2 f 2
2 f2f3

f1f3 f2f3 f 2
3



 (A.23)

Thus, by taking into account Eqs. A.21, A.21 and A.21 it is:

B =
d

dt

(

∂f⃗

∂u⃗

)T

−
∂f⃗

∂u⃗

(

∂f⃗

∂u⃗

)T

−
1

α2
f⃗ f⃗T ⇒ (A.24)

B =







−2σ2 −
f2

1

α2 βz − xy + σ(ρ− z + 1)− f1f2
α2 x(ρz)− y − f1f3

α2

σ(ρ− z + 1)− f1f2
α2 −(ρ− z)2 − 1− x2 −

f2

2

α2 σ(y − x)− y(ρ− z)− x(β − 1)− f2f3
α2

−σ(x− y)− f1f3
α2 σ(y − x)− y(ρ− z)− x(β − 1)− f2f3

α2 −(x2 + y2 + z2)−
f2

3

α2







(A.25)

In this problem, vector C⃗ is:

C⃗ =
∂f⃗

∂ρ
=
(

∂f1
∂ρ

∂f2
∂ρ

∂f3
∂ρ

)T

=
(

0 x 0
)T

(A.26)

95

A.3 Computation of v⃗ and η from w⃗

After having evaluated w⃗ for all nodes, in order to find the time-series v⃗ and η, Eqs.
A.12b and A.12c have to be discretized. For the discretization of the term v⃗, dw⃗

dt

∣

∣

i
in Eq. A.12b, forward or backward finite differences can be used. The general form
of the discretized equation is:

v⃗i =
dw⃗

dt

∣

∣

∣

∣

i

+

(

∂f⃗

∂u⃗

)T
∣

∣

∣

∣

∣

∣

i

w⃗i (A.27)

For forward finite differences, Eq. A.27 is equivalent to:































v⃗i =
w⃗i+1 − w⃗i

∆t
+





−σ ρ− zi yi
σ −1 xi

0 −xi −β



 w⃗i, for i = 0

v⃗i =
w⃗i − w⃗i−1

∆t
+





−σ ρ− zi yi
σ −1 xi

0 −xi −β



 w⃗i, for 1 ≤ i ≤ N − 1

(A.28)

For i = 0 backward finite differences were used. For backward finite differences, Eq.
A.27 is equivalent to:































v⃗i =
w⃗i+1 − w⃗i

∆t
+





−σ ρ− zi yi
σ −1 xi

0 −xi −β



 w⃗i, for 0 ≤ i ≤ N − 2

v⃗i =
w⃗i − w⃗i−1

∆t
+





−σ ρ− zi yi
σ −1 xi

0 −xi −β



 w⃗i, for i = N − 1

(A.29)

For i = N − 1 forward finite differences were used. The discretized form of Eq.
A.12c is:

ηi =
1

α2
w⃗T

i f⃗i (A.30)

A.4 Evaluation of the Sensitivity Derivative

Supposing J = z(t), the objective function F for the reference trajectory can be
written as:

F (ρ) =

(

1

T

∫ T

0

J(u⃗r, ρ) dt

)p

(A.31)

96

where p ∈ I − {0}. then the objective function for the shadow trajectory corre-
sponding to an input parameter perturbed by δρ is:

F (ρ+ δρ) =

(

1

T ′

∫ T ′

0

J(u⃗, ρ+ δρ) dτ

)p

(A.32)

where T ′ is the shadow averaging window:

T ′ = τ(T) = T + δρ ζ, ζ =

∫ T

0

η dt (A.33)

The corresponding perturbation of the objective function can be written as:

∆F = F (ρ+δρ)−F (ρ) =

(

1

T ′

∫ T ′

0

J(u⃗, ρ+ δρ) dτ

)p

−

(

1

T

∫ T

0

J(u⃗, ρ) dt

)p

(A.34)

Assuming δρ≪ 1 and δρp ∼= 0, for p ≥ 2:

∆F =

(

1

T + δρ ζ

∫ T

0

J(u⃗, ρ+ δρ)
dτ

dt
dt

)p

−

(

1

T

∫ T

0

J(u⃗r, ρ) dt

)p

⇒ δF =
1

T p + δρ pζT p−1

{(∫ T

0

J(u⃗, ρ+ δρ) dt

)p

+ δρ p

(∫ T

0

J(u⃗, ρ+ δρ) dt

)p−1(∫ T

0

J(u⃗, ρ+ δρ)η dt

)p

−

(

1 +
δρ pζ

T

)(

1

T

∫ T

0

J(u⃗r, ρ) dt

)p}

(A.35)

Dividing by δρ and taking the limit as δρ→ 0:

δF

δρ
= lim

δρ→0

∆F

δρ
=

1

T p + δρ pζT p−1

{

1

δρ

[(∫ T

0

J(u⃗, ρ+ δρ) dt

)p

−

(∫ T

0

J(u⃗, ρ) dt

)p]

+ p

(∫ T

0

J(u⃗, ρ+ δρ) dt

)p−1(∫ T

0

J(u⃗, ρ+ δρ)η dt

)

− p

(∫ T

0

J(u⃗, ρ+ δρ) dt

)p−1
ζ

T

(∫ T

0

J(u⃗r, ρ) dt

)

}

(A.36)

97

Using the following identities:

lim
δρ→0

u⃗(τ(t)) = ur(t), lim
δρ→0

τ(t) = t (A.37)

and:

lim
δρ→0

J(u⃗, ρ+ δρ)− J(u⃗r, ρ)

δρ
= ⟨

∂J

∂u⃗r

,
∂u⃗r

∂ρ
⟩+

∂J

∂ρ
= ⟨

∂J

∂u⃗r

, v⟩+
∂J

∂ρ
(A.38)

δF

δρ
=

p

T p

(∫ T

0

J(u⃗r, ρ) dt

)p−1{(∫ T

0

〈

∂J

∂u⃗r

, v

〉

dt

)

+

(∫ T

0

J(u⃗r, ρ) η dt

)}

−
1

T

(∫ T

0

η dt

)(∫ T

0

J(u⃗r, ρ) dt

)

+
∂J

∂ρ
(A.39)

In the case of p = 1, Eq. A.39 can be written as:

δF

δρ
=

δJ

δρ
= ⟨

∂J

∂u⃗r

, v⟩+ ηJ − ηJ +
∂J

∂ρ
(A.40)

The overbar is defined as: x = 1
T

∫ T

0
x dt. For J = z(t), the following simplifications

hold:

⟨
∂J

∂u⃗r

, v⟩ =
1

T

∫ T

0

[

∂z

∂x
,
∂z

∂y
,
∂z

∂z

]

v⃗ dt

=
1

T

∫ T

0

[0, 0, 1] [vx, vy, vz]
T dt

=
1

T

∫ T

0

vz dt

(A.41)

∂J

∂ρ
=

∂

∂ρ

(

1

T

∫ T

0

z dt

)

= 0 (A.42)

ηJ =
1

T

∫ T

0

ηz dt (A.43)

J =
1

T

∫ T

0

z dt (A.44)

Thus, Eq. A.40 can be written as:

δF

δρ
=

1

T

∫ T

0

(vz + ηz) dt−
1

T 2

∫ T

0

η dt

∫ T

0

z dt (A.45)

98

A.5 Derivation of the DCLSS second Order ODE

The equivalent form of Eq. 2.20, using right arrows to denote forward differentiation
and left arrows for backward differentiation, is:

←−
dv⃗

dt
=

∂f⃗

∂u⃗
v⃗ +

∂f⃗

∂ρ
+

1

α2
f⃗ f⃗T w⃗

−→
dw⃗

dt
= −

(

∂f⃗

∂u⃗

)T

w⃗ + v⃗

w⃗(0) = w⃗(T) = 0

(A.46)

Differentiating Eq. 2.29b using backward FD results in:

d2w⃗

dt2
= −

←−
d

dt

(

∂f⃗

∂u⃗

)T

w⃗ −
∂f⃗

∂u⃗

←−
dw⃗

dt
+

←−
dv⃗

dt
(A.47)

Substituting
←−
dv⃗
dt

using Eq. 2.29a gives:

d2w⃗

dt2
= −

←−
d

dt

(

∂f⃗

∂u⃗

)T

w⃗ −
∂f⃗

∂u⃗

←−
dw⃗

dt
+

∂f⃗

∂u⃗
v⃗ +

∂f⃗

∂ρ
+

1

α2
f⃗ f⃗T w⃗ (A.48)

which can be written as:

d2w⃗

dt2
+

(

∂f⃗

∂u⃗

)T ←−
dw⃗

dt
−

∂f⃗

∂u⃗

−→
dw⃗

dt
+





←−
d

dt

(

∂f⃗

∂u⃗

)T

−
∂f⃗

∂u⃗

(

∂f⃗

∂u⃗

)T

−
1

α2
f⃗ f⃗T w⃗



 w⃗ =
∂f⃗

∂ρ

(A.49)
which is equivalent to:

d2w⃗

dt2
+A1

←−
dw⃗

dt
−A2

−→
dw⃗

dt
+Bw⃗ = C⃗ (A.50)

99

where:

A1 =

(

∂f⃗

∂u⃗

)T

A2 = −
∂f⃗

∂u⃗

B =

←−
d

dt

(

∂f⃗

∂u⃗

)T

−
∂f⃗

∂u⃗

(

∂f⃗

∂u⃗

)T

−
1

α2
f⃗ f⃗T w⃗

C⃗ =
∂f⃗

∂ρ

(A.51)

and:
d2w⃗

dt2

∣

∣

∣

∣

i

=
w⃗i−1 − 2w⃗i + w⃗i+1

dt2

←−
dw⃗

dt

∣

∣

∣

∣

i

=
w⃗i − w⃗i−1

dt
−→
dw⃗

dt

∣

∣

∣

∣

i

=
w⃗i+1 − w⃗i

dt

(A.52)

100

Appendix B

Derivations in the Van der Pol case

In the Van dre Pol system, the vector of unknowns is bidimentional: u⃗(t) = [x(t)y(t)]T .
The right-hand-side of Eq. 3.2 is:

f⃗ =

(

f1
f2

)

=

(

y
−x+ by(1− x2)

)

(B.1)

The Jacobian of Eq. B.1 is:

∂f⃗

∂u⃗
=

(

∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

)

=

(

0 1
−1− 2bxy b(1− x2)

)

(B.2)

B.1 Coefficients of the second Order ODE (LSS)

By substituting the previous section’s expressions in Eq. A.18, the formula of the
coefficient A is evaluated:

A =

(

∂f⃗

∂u⃗

)T

−
∂f⃗

∂u⃗
=

(

0 −2(1 + bxy)
2(1 + bxy) 0

)

(B.3)

For B, it can be shown that:

B =

(

−1− 1
α2f

2
1 −2b (y2 + (−x+ b ∗ (1− x2) ∗ y) x)− b(1− x2)− 1

α2f1f2
b(1− x2)− 1

α2f2f1 −2bxy − (1 + 2bxy)2 − b2 (1− x2)
2
− 1

α2f
2
2

)

(B.4)

101

Also:
C⃗ =

(

0 (1− x2) y
)T

(B.5)

where dx
dt

and dy
dt

were substituted using the analytical expression of Eq. 3.2. It is

worth noting that the terms d2w⃗
dt2

and dw⃗
dt

were discretized using 2nd order central
finite differences.

B.2 Coefficients of the second Order ODE (DCLSS)

The coefficients A1 and A2 of Eq. A.51 are:

A1 =

(

∂f⃗

∂u⃗

)T

=

(

0 −1− 2bxy
1 b(1− x2)

)

(B.6)

A2 = −
∂f⃗

∂u⃗
= −

(

0 1
−1− 2bxy b(1− x2)

)

(B.7)

It is true that:

←−
d

dt

(

∂f⃗

∂u⃗

)T

=

(

0 −2b
(xi−xi−1

∆t
yi +

yi−yi−1

∆t
xi

)

0 −2bxi

(xi−xi−1

∆t

)

)

(B.8)

−
∂f⃗

∂u⃗

(

∂f⃗

∂u⃗

)T

=

(

−1 −b(1− x2)

b(1− x2) − (1 + 2bxy)2 − b2 (1− x2)
2

)

(B.9)

−
1

α2
f⃗ f⃗T = −

1

α2

(

f 2
1 f1f2

f2f1 f 2
2

)

(B.10)

Thus:

B =

(

−1− 1
α2f

2
1 −2b

(xi−xi−1

∆t
yi +

yi−yi−1

∆t
xi

)

− b(1− x2)− 1
α2f1f2

b(1− x2)− 1
α2f2f1 −2bxi

(xi−xi−1

∆t

)

− (1 + 2bxy)2 − b2 (1− x2)
2
− 1

α2f
2
2

)

(B.11)
and, identical to the previous section:

C⃗ =
(

0 (1− x2)y
)T

(B.12)

102

B.3 Sensitivity Derivative

The Sensitivity Derivative is given by differentiating Eq. 3.3 w.r.t. b. According to
Eq. A.39, for p = 8:

δF

δb
=

1

8

(

1

T

∫ T

0

y8 dt

)−7/8 [

⟨
∂J

∂u⃗
, v⟩+ ηJ − ηJ +

∂J

∂b

]

(B.13)

where J = y8 and J = 1
T

∫ T

0
y8 dt. Also,

∂J

∂u⃗
=

[

∂y8

∂x

∂y8

∂y

]

=
[

08y7
]

(B.14)

⟨
∂J

∂u⃗
, v⟩ =

[

08y7
]

[vxvy]
T = 8y7vy (B.15)

⟨
∂J

∂u⃗
, v⟩ =

1

T

∫ T

0

8y7vy dt (B.16)

∂J

∂b
= 0 (B.17)

103

104

Appendix C

Derivations in the Rossler case

In the Rossler system, the vector of unknowns is: u⃗(t) = [x(t)y(t)z(t)]T . The right-
hand-side of Eq. 4.1 is:

f⃗ =





f1
f2
f3



 =





−y − z
x+ ay

b+ z(x− c)



 (C.1)

The Jacobian of Eq. C.1 is:

∂f⃗

∂u⃗
=







∂f1
∂x

∂f1
∂y

∂f1
∂z

∂f2
∂x

∂f2
∂y

∂f2
∂z

∂f3
∂x

∂f3
∂y

∂f3
∂z






=





0 −1 −1
1 a 0
z 0 x− c



 (C.2)

C.1 Coefficients of the second Order ODE (LSS)

By substituting the previous section’s expressions in Eq. A.18, the formula of the
coefficient A is evaluated:

A =

(

∂f⃗

∂u⃗

)T

−
∂f⃗

∂u⃗
=





0 2 z + 1
−2 0 0
−z − 1 0 0



 (C.3)

105

For B, it can be shown that:

B =





−2− 1
α2f

2
1 a− 1

α2f1f2 b+ (z + 1) ∗ (x− c)− 1
α2f1f3

−a− 1
α2f2f1 −1− a2 − 1

α2f
2
2 −z − 1

α2f2f3
x− c− 1

α2f3f1 −z − 1
α2f3f2 −y − z − z2 − (x− c)2 − 1

α2f
2
3



 (C.4)

Also:
C⃗ = (0 y 0)T (C.5)

where dx
dt
, dy

dt
and dz

dt
were substituted using the analytical expression of Eq. 4.1.

C.2 Coefficients of the second Order ODE (DCLSS)

The coefficients A1 and A2 of Eq. A.51 are:

A1 =

(

∂f⃗

∂u⃗

)T

=





0 1 z
−1 a 0
−1 0 x− c



 (C.6)

A2 = −
∂f⃗

∂u⃗
= −





0 1 1
−1 −a 0
−z 0 c− x



 (C.7)

It is true that:

←−
d

dt

(

∂f⃗

∂u⃗

)T

=





0 0 dz
dt

0 0 0
0 0 dx

dt



 =





0 0 zi−zi−1

dt

0 0 0
0 0 xi−xi−1

dt



 (C.8)

−
∂f⃗

∂u⃗

(

∂f⃗

∂u⃗

)T

=





2 −1 c− x
a 1 + a2 z

c− x z z2 + (c− x)2



 (C.9)

−
1

a2
f⃗ f⃗T = −

1

a2





f 2
1 f1f2 f3

f2f1 f 2
2 f2f3

f3f1 f3f2 f 2
3



 (C.10)

106

Thus:

B =





−2− 1
α2f

2
1 a− 1

α2f1f2
zi−zi−1

dt
+ x− c− 1

α2f1f3
−a− 1

α2f2f1 −1− a2 − 1
α2f

2
2 −z − 1

α2f2f3
x− c− 1

α2f1f3 −z − 1
α2f3f2

xi−xi−1

dt
− z2 − (c− x)2 − 1

α2f
2
3





(C.11)

C⃗ = (0 y 0)T (C.12)

C.3 Sensitivity Derivative

The Sensitivity Derivative is given by differentiating Eq. 4.2 w.r.t. a. The objective
function is identical to the one from the Lorenz ’63 case, and so is the formula for
the SD:

δF

δa
=

1

T

∫ T

0

(vz + ηz) dt−
1

T 2

∫ T

0

η dt

∫ T

0

z dt (C.13)

107

108

Appendix D

Formulas Used in Data Assimilation
Derivations

D.1 Sample Variance

Supposing a set of N samples xi with mean value x =
∑N

i=1 xi, the variance σ2 can
be calculated from:

σ2 = E
[

(x− E [x])2
]

≈ (x− x)2 =
1

N − 1

N
∑

i=1

(xi − x)2 (D.1)

It should be noted that in the denominator of Eq. D.1 N − 1 is used instead of
N . This is called Bessel’s correction, and it aims to correct a bias that arises when
estimating the variance of a population from a sample [12].

D.2 Covariance Matrix

The auto-covariance matrix for a sample x⃗ can be calculated as:

C = E
[

(x⃗− E [x⃗]) (x⃗− E [x⃗])T
]

≈
(

x⃗− x⃗
) (

x⃗− x⃗
)T

=
1

N − 1

N
∑

i=1

(

x⃗− x⃗
) (

x⃗− x⃗
)T

(D.2)
The auto-covariance matrix contains the covariances between each pair of scalar
elements of x⃗ [12]. When two statistical quantities, vector or scalar, are uncorrelated,
their covariance matrix is zero projected on a proper dimension.

109

D.3 Trace of a Matrix

The trace of a (n×n) square matrix A, denoted as tr (A) is the sum of the elements
of its main diagonal:

tr (A) =
n
∑

i=1

aii (D.3)

where aii denotes the entry on the ith row and ith column of A. Some of the basic
properties of the trace of a matrix are shown below [16]. Assuming A, B and X are
matrices of dimensions such that the following expressions are defined, and a and b
are scalars:

� Linearity: tr (aA+ bA) = atr(A) + btr(B)

� Immune to transposition: tr
(

AT
)

= tr (A)

� Immune to rotation: tr (ABX) = tr (BXA) = tr (XAB)

Also, the following identities hold for derivatives of matrices involving traces:

�
∂
∂X

[X] = I

�
∂
∂X

[XA] = AT

�
∂
∂X

[

AXT
]

= A

�
∂
∂X

[

XAXT
]

= X
(

AT +A
)

D.4 Derivation of the Extended Kalmal Filter (EKF)

Having derived the assimilated state as a function of u⃗m, v⃗ and K, the value of
the latter is not yet known, the second condition, which states that the assimilated
state error e⃗ a needs to have the minimum variance among all other estimates of the
true state, has to be utilized. This suggests that the sum of the diagonal elements
of the error auto-covariance matrix Ca, i.e its trace tr (Ca) which consists of the
squared sum of the variances of each element of e⃗ a, needs to be minimized. In order

110

to derive Ca, e⃗ a has to be derived first. For the present state, at time k:

e⃗ a
k = u⃗ t

k − u⃗ a
k

=M
(

u⃗ t
k−1

)

+ e⃗m
k−1 − u⃗m

k −Kk (v⃗k −H (u⃗m
k))

5.1
=M

(

u⃗ t
k−1

)

−M
(

u⃗ a
k−1

)

+ e⃗m
k−1 −Kk

(

H
(

u⃗ t
k

)

+ e⃗ o
k −H (u⃗m

k)
)

D.8
= ∇M|u⃗ a

k−1

e⃗ a
k−1 + e⃗m

k−1 −Kk

(

H
(

u⃗ t
k

)

+ e⃗ o
k −H (u⃗m

k)
)

D.11
= ∇M|u⃗ a

k−1

e⃗ a
k−1 + e⃗m

k−1 −Kk

(

∇H|u⃗m

k

e⃗m
k + e⃗ o

k

)

= ∇M|u⃗ a

k−1

e⃗ a
k−1 + e⃗m

k−1 −Kk ∇H|u⃗m

k

e⃗m
k −Kke⃗

o
k

D.10
= ∇M|u⃗ a

k−1

e⃗ a
k−1 + e⃗m

k−1 −Kk

(

∇H|u⃗m

k

(

∇M|u⃗ a

k−1

e⃗ a
k−1 + e⃗m

k−1

)

+ e⃗ o
k

)

(D.4)

Solving Eq. D.4 for e⃗ a
k gives:

e⃗ a
k =

(

I−Kk ∇H|u⃗m

k

)(

∇M|u⃗ a

k−1

e⃗ a
k−1 + e⃗m

k−1

)

−Kke⃗
o
k (D.5)

In the derivation of Eq. D.4 the following expressions were used:

u⃗m
k = M

(

u⃗ a
k−1

)

(D.6)

By subtracting Eq. 5.1 from Eq. 5.3:

u⃗ t
k − u⃗m

k = M
(

u⃗ t
k−1

)

−M
(

u⃗ a
k−1

)

+ e⃗m
k−1 ⇒

e⃗m
k = M

(

u⃗ t
k−1

)

−M
(

u⃗ a
k−1

)

+ e⃗m
k−1

(D.7)

Similar to H(·), the non-linear operator M(·) can be linearized around u⃗ a
k−1 as:

M
(

u⃗ t
k−1

)

= M
(

u⃗ a
k−1

)

+ ∇M|u⃗ a

k−1

(

u⃗ t
k−1 − u⃗ a

k−1

)

+O
(

(

u⃗ t
k−1 − u⃗m

k−1

)2
)

⇒

M
(

u⃗ t
k−1

)

≈M
(

u⃗ a
k−1

)

+ ∇M|u⃗ a

k−1

(

u⃗ t
k−1 − u⃗ a

k−1

)

⇐⇒

M
(

u⃗ t
k−1

)

≈M
(

u⃗ a
k−1

)

+ ∇M|u⃗ a

k−1

e⃗ a
k−1

(D.8)

where:

∇M|u⃗ a

k−1

=
∂M

∂u⃗

∣

∣

∣

∣

u⃗=u⃗ a

k−1

(D.9)

Thus, Eq. D.7 becomes:

e⃗m
k = ∇M|u⃗ a

k−1

e⃗ a
k−1 + e⃗m

k−1 (D.10)

111

Similarly to Eq. D.8:
H
(

u⃗ t
k

)

≈ H (u⃗m
k) + ∇H|u⃗m

k

e⃗m
k (D.11)

where:

∇H|u⃗m

k

=
∂H

∂u⃗

∣

∣

∣

∣

u⃗=u⃗m

k

(D.12)

Having derived e⃗ a
k , C

a
k = E

(

e⃗ a
k e⃗

a T
k

)

can now also be derived, so that the value

of Kk can be computed such that it minimizes ∥e⃗ a
k ∥

2 =
∑

i

(

e⃗ a
k,i

)2
= tr (Ca

k), as
mentioned previously.

e⃗ a
k e⃗

a T
k =

=
[(

I−Kk ∇H|u⃗m

k

)(

∇M|u⃗ a

k−1

e⃗ a
k−1 + e⃗m

k−1

)

−Kke⃗
o
k

]

[(

I−Kk ∇H|u⃗m

k

)(

∇M|u⃗ a

k−1

e⃗ a
k−1 + e⃗m

k−1

)

−Kke⃗
o
k

]T

=
[(

I−Kk ∇H|u⃗m

k

)(

∇M|u⃗ a

k−1

e⃗ a
k−1 + e⃗m

k−1

)

−Kke⃗
o
k

]

[

(

∇M|u⃗ a

k−1

e⃗ a
k−1 + e⃗m

k−1

)T (

I−Kk ∇H|u⃗m

k

)T

− e⃗ o T
k KT

k

]

= T1+T2+T3+T4

(D.13)

where:

T1 =
(

I−Kk ∇H|u⃗m

k

)(

∇M|u⃗ a

k−1

e⃗ a
k−1 + e⃗m

k−1

)

(

∇M|u⃗ a

k−1

e⃗ a
k−1 + e⃗m

k−1

)T (

I−Kk ∇H|u⃗m

k

)T

T2 = −Kke⃗
o
k

(

∇M|u⃗ a

k−1

e⃗ a
k−1 + e⃗m

k−1

)T (

I−Kk ∇H|u⃗m

k

)T

T3 = −
(

I−Kk ∇H|u⃗m

k

)(

∇M|u⃗ a

k−1

e⃗ a
k−1 + e⃗m

k−1

)

e⃗ o T
k KT

k

T4 = Kke⃗
o
k e⃗

o T
k KT

k

(D.14)

It follows that:

Ca
k = E

(

e⃗ a
k e⃗

a T
k

)

= E (T1) + E (T2) + E (T3) + E (T4) (D.15)

112

The expectation of T1 can be written as:

E (T1) =

= E

(

(

I−Kk ∇H|u⃗m

k

)(

∇M|u⃗ a

k−1

e⃗ a
k−1 + e⃗m

k−1

)(

∇M|u⃗ a

k−1

e⃗ a
k−1 + e⃗m

k−1

)T (

I−Kk ∇H|u⃗m

k

)T
)

= E

(

(

I−Kk ∇H|u⃗m

k

)(

∇M|u⃗ a

k−1

e⃗ a
k−1 + e⃗m

k−1

)(

e⃗ a T
k−1 ∇M|

T
u⃗ a

k−1

+ e⃗m T
k−1

)(

I−Kk ∇H|u⃗m

k

)T
)

=
(

I−Kk ∇H|u⃗m

k

)

E
((

∇M|u⃗ a

k−1

e⃗ a
k−1 + e⃗m

k−1

)(

e⃗ a T
k−1 ∇M|

T
u⃗ a

k−1

+ e⃗m T
k−1

))(

I−Kk ∇H|u⃗m

k

)T

=
(

I−Kk ∇H|u⃗m

k

)

E
(

∇M|u⃗ a

k−1

e⃗ a
k−1e⃗

a T
k−1 ∇M|

T
u⃗ a

k−1

+ ∇M|u⃗ a

k−1

e⃗ a
k−1e⃗

m T
k−1+

e⃗m
k−1e⃗

a T
k−1 ∇M|

T
u⃗ a

k−1

+ e⃗m
k−1e⃗

m T
k−1

)(

I−Kk ∇H|u⃗m

k

)T

=
(

I−Kk ∇H|u⃗m

k

)(

∇M|u⃗ a

k−1

E
(

e⃗ a
k−1e⃗

a T
k−1

)

∇M|Tu⃗ a

k−1

+ 0+ 0+Cm

k−1

)(

I−Kk ∇H|u⃗m

k

)T

=
(

I−Kk ∇H|u⃗m

k

)(

∇M|u⃗ a

k−1

Ca

k−1
∇M|Tu⃗ a

k−1

+Cm

k−1

)(

I−Kk ∇H|u⃗m

k

)T

(D.16)
Keep in mind that, in Eq. D.16, the uncorrelated terms, namely e⃗ a

k−1e⃗
m T
k−1 and

e⃗m
k−1e⃗

a T
k−1, have zero covariance thus they cancel out. This is the case, as the errors

are not directly dependent to one another. The expectation of the second term can
be written as:

E (T2) =

= E

(

−Kke⃗
o
k

(

∇M|u⃗ a

k−1

e⃗ a
k−1 + e⃗m

k−1

)T (

I−Kk ∇H|u⃗m

k

)T
)

= E
(

−Kke⃗
o
k

(

e⃗ a T
k−1 ∇M|

T
u⃗ a

k−1

+ e⃗m T
k−1

))(

I−Kk ∇H|u⃗m

k

)T

= E
(

−Kke⃗
o
k e⃗

a T
k−1 ∇M|

T
u⃗ a

k−1

−Kke⃗
o
k e⃗

a T
k−1e⃗

m T
k−1

)(

I−Kk ∇H|u⃗m

k

)T

=
(

−KkE
(

e⃗ o
k e⃗

a T
k−1

)

∇M|Tu⃗ a

k−1

−KkE
(

e⃗ o
k e⃗

a T
k−1

)

e⃗m T
k−1

)(

I−Kk ∇H|u⃗m

k

)T

=
(

−Kk · 0 ∇M|
T
u⃗ a

k−1

−Kk · 0e⃗
m T
k−1

)(

I−Kk ∇H|u⃗m

k

)T

= 0 ·
(

I−Kk ∇H|u⃗m

k

)T

= 0
(D.17)

113

The expectation of the third term can be written as:

E (T3) =

= E
(

−
(

I−Kk ∇H|u⃗m

k

)(

∇M|u⃗ a

k−1

e⃗ a
k−1 + e⃗m

k−1

)

e⃗ o T
k KT

k

)

= −
(

I−Kk ∇H|u⃗m

k

)

E
(

∇M|u⃗ a

k−1

e⃗ a
k−1e⃗

o T
k KT

k + e⃗m
k−1e⃗

o T
k KT

k

)

= −
(

I−Kk ∇H|u⃗m

k

)(

∇M|u⃗ a

k−1

E
(

e⃗ a
k−1e⃗

o T
k

)

KT
k + E

(

e⃗m
k−1e⃗

o T
k

)

KT
k

)

= −
(

I−Kk ∇H|u⃗m

k

)(

∇M|u⃗ a

k−1

0KT
k + 0KT

k

)

= −
(

I−Kk ∇H|u⃗m

k

)

0

= 0
(D.18)

Finally, the expectation of the third term becomes:

E (T4) =

= E
(

Kke⃗
o
k e⃗

o T
k KT

k

)

= KkE
(

e⃗ o
k e⃗

o T
k

)

KT
k

= KkC
o

k
KT

k

(D.19)

Combining the expectations of the four terms yields Ca

k
:

Ca

k
=
(

I−Kk ∇H|u⃗m

k

)(

∇M|u⃗ a

k−1

Ca

k−1
∇M|Tu⃗ a

k−1

+Cm

k−1

)(

I−Kk ∇H|u⃗m

k

)T

+KkC
o

k
KT

k

(D.20)
In order to further simplify Eq. D.20, it can be proven that:

Cm

k
= ∇M|u⃗ a

k−1

Ca

k−1
∇M|Tu⃗ a

k−1

+Cm

k−1
(D.21)

114

Cm

k
= E

(

e⃗m
k e⃗m T

k

)

=

= E

(

(

∇M|u⃗ a

k−1

e⃗ a
k−1 + e⃗m

k−1

)(

∇M|u⃗ a

k−1

e⃗ a
k−1 + e⃗m

k−1

)T
)

= E
((

∇M|u⃗ a

k−1

e⃗ a
k−1 + e⃗m

k−1

)(

e⃗ a T
k−1 ∇M|

T
u⃗ a

k−1

+ e⃗m T
k−1

))

= E
(

∇M|u⃗ a

k−1

e⃗ a
k−1e⃗

a T
k−1 ∇M|

T
u⃗ a

k−1

+ ∇M|u⃗ a

k−1

e⃗ a
k−1e⃗

m T
k−1 + e⃗m

k−1e⃗
a T
k−1 ∇M|

T
u⃗ a

k−1

+ e⃗m
k−1e⃗

m T
k−1

)

= ∇M|u⃗ a

k−1

E
(

e⃗ a
k−1e⃗

a T
k−1

)

∇M|Tu⃗ a

k−1

+ ∇M|u⃗ a

k−1

E
(

e⃗ a
k−1e⃗

m T
k−1

)

+

E
(

e⃗m
k−1e⃗

a T
k−1

)

∇M|Tu⃗ a

k−1

+ E
(

e⃗m
k−1e⃗

m T
k−1

)

= ∇M|u⃗ a

k−1

Ca

k−1
∇M|Tu⃗ a

k−1

+ ∇M|u⃗ a

k−1

· 0+ 0 · ∇M|Tu⃗ a

k−1

+Cm

k−1

= ∇M|u⃗ a

k−1

Ca

k−1
∇M|Tu⃗ a

k−1

+Cm

k−1

(D.22)
Thus, Eq. D.20 can be written as:

Ca

k
=
(

I−Kk ∇H|u⃗m

k

)

Cm

k

(

I−Kk ∇H|u⃗m

k

)T

+KkC
o

k
KT

k (D.23)

In order to derive tr (Ca

k
), Ca

k
is expanded:

Ca

k
=
(

Cm

k
−Kk ∇H|u⃗m

k

Cm

k

)(

I−Kk ∇H|u⃗m

k

)T

+KkC
o

k
KT

k

=
(

Cm

k
−Kk ∇H|u⃗m

k

Cm

k

)(

I− ∇H|Tu⃗m

k

KT
k

)

+KkC
o

k
KT

k

= Cm

k
−Cm

k
∇H|Tu⃗m

k

KT
k −Kk ∇H|u⃗m

k

Cm

k
+Kk ∇H|u⃗m

k

Cm

k
+

Kk ∇H|u⃗m

k

Cm

k
∇H|Tu⃗m

k

KT
k +KkC

o

k
KT

k

(D.24)

Now that the assimilated state auto-covariance matrixCa

k
is known, its trace tr (Ca

k
),

i.e the squared sums of the assimilated state error vector components, is also known.

In order to determine the value of Kk that minimizes the trace,
∂tr(Ca

k)
∂Kk

is set to zero.

∂tr (Ca

k
)

∂Kk

=−
∂

∂Kk

tr
((

Cm

k
∇H|Tu⃗m

k

)

KT
k

)

−
∂

∂Kk

tr
(

Kk ∇H|u⃗m

k

Cm

k

)

+
∂

∂Kk

tr
(

Kk ∇H|u⃗m

k

Cm

k
∇H|Tu⃗m

k

KT
k

)

+
∂

∂Kk

tr
(

KkC
o

k
KT

k

)

(D.25)

115

The first term is equivalent to:

−
∂

∂Kk

tr
((

Cm

k
∇H|Tu⃗m

k

)

KT
k

)

D.3
= −Cm

k
∇H|Tu⃗m

k

(D.26)

The second term is equivalent to:

−
∂

∂Kk

tr
(

Kk ∇H|u⃗m

k

Cm

k

)

D.3
= −

(

∇H|u⃗m

k

Cm

k

)T

(D.27)

The third term is equivalent to:

∂

∂Kk

tr
(

Kk ∇H|u⃗m

k

Cm

k
∇H|Tu⃗m

k

KT
k

)

D.3
= Kk

[

(

∇H|u⃗m

k

Cm

k
∇H|Tu⃗m

k

)

+
(

∇H|u⃗m

k

Cm

k
∇H|Tu⃗m

k

)T
]

(D.28)
Since ∇H|u⃗m

k

and Cm

k
are both symmetric matrices by definition, meaning that

∇H|u⃗m

k

= ∇H|Tu⃗m

k

and Cm

k
= Cm

k

T , it will be shown that
(

∇H|u⃗m

k

Cm

k
∇H|Tu⃗m

k

)

is

also a symmetric matrix, and thus Eq. D.28 can further be simplified to:

(

∇H|u⃗m

k

Cm

k
∇H|Tu⃗m

k

)T

=
(

∇H|u⃗m

k

(

Cm

k
∇H|Tu⃗m

k

))T

=
(

Cm

k
∇H|Tu⃗m

k

)T

∇H|Tu⃗m

k

= ∇H|u⃗m

k

Cm

k

T ∇H|Tu⃗m

k

= ∇H|u⃗m

k

Cm

k
∇H|Tu⃗m

k

(D.29)

As a result, Eq. D.28 can be expressed as:

∂

∂Kk

tr
(

Kk ∇H|u⃗m

k

Cm

k
∇H|Tu⃗m

k

KT
k

)

= 2Kk

(

∇H|u⃗m

k

Cm

k
∇H|Tu⃗m

k

)

(D.30)

Similarly, since Co

k
is also symmetric by definition, the fourth term is equivalent to:

∂

∂Kk

tr
(

KkC
o

k
KT

k

) D.3
= 2KkC

o

k
(D.31)

Overall, by setting
∂tr(Ca

k)
∂Kk

= 0:

2Kk

[

∇H|u⃗m

k

Cm

k
∇H|Tu⃗m

k

+Co

k

]

=
(

∇H|u⃗m

k

Cm

k

)T

+Cm

k
∇H|Tu⃗m

k

⇒

2Kk

[

∇H|u⃗m

k

Cm

k
∇H|Tu⃗m

k

+Co

k

]

= Cm

k

T ∇H|Tu⃗m

k

++Cm

k
∇H|Tu⃗m

k

symmetry
⇒

2Kk

[

∇H|u⃗m

k

Cm

k
∇H|Tu⃗m

k

+Co

k

]

= 2Cm

k
∇H|Tu⃗m

k

(D.32)

116

And, finally, the Extended Kalman Filter (EKF) K corresponding to time-step k,
where observations are available and data assimilation is performed, is given by:

K = Cm ∇H|Tu⃗m

[

∇H|u⃗m Cm ∇H|Tu⃗m +Co

]−1

(D.33)

All quantities of Eq. 5.20 refer to time-step k, so the corresponding index is omitted.
Therefore, K depends on H(·), Co and Cm. The auto-covariance matrices Co and
Cm are of known value, given by Eq. 5.7 and 5.8 respectively. Also, the assimilated
state error auto-covariance matrix Ca can be derived:

Ca =(I−K ∇H|u⃗m)C
m (I−K ∇H|u⃗m)

T +KCoKT

=(I−K ∇H|u⃗m)C
m

(

I− ∇H|Tu⃗m KT
)

+KCoKT

=(I−K ∇H|u⃗m)C
m − (I−K ∇H|u⃗m)C

m ∇H|Tu⃗m KT +KCoKT

=(I−K ∇H|u⃗m)C
m −

[

(I−K ∇H|u⃗m)C
m ∇H|Tu⃗m −KCo

]

KT

=(I−K ∇H|u⃗m)C
m −

[

Cm ∇H|Tu⃗m −K
(

∇H|u⃗m Cm ∇H|Tu⃗m +Co

)]

KT
k

5.20
= (I−K ∇H|u⃗m)C

m − 0

=(I−K ∇H|u⃗m)C
m

(D.34)
Thus, the assimilated state error auto-covariance matrix is:

Ca = (I−K ∇H|u⃗m)C
m (D.35)

117

118

Bibliography

[1] Aliakbari, M., Mahmoudi, M., Vadasz, P., Arzani, A.: Predicting high-
fidelity multiphysics data from low-fidelity fluid flow and transport solvers using
physics-informed neural networks (2022)

[2] Ang, E., anf B. NG, G.W.: Physics-informed neural networks for low reynolds
number flows over cylinder (2023)

[3] Blonigan, P.J.: New Methods for Sensitivity Analysis of Chaotic Dynamical
Systems. Master’s thesis, Massachusetts Institute of Technology (2013)

[4] Blonigan, P.J.: Least Squares Shadowing for Sensitivity Analysis of Large
Chaotic Systems and Fluid Flows. Ph.D. thesis, Massachusetts Institute of
Technology (June 2016)

[5] Blonigan, P.J.: Adjoint sensitivity analysis of chaotic dynamical systems with
non-intrusive least squares shadowing. Journal of Computational Physics 348,
803–826 (2017)

[6] Blonigan, P.J., Gomez, S.A., Wang, Q.: Least squares shadowing for sensitivity
analysis of turbulent fluid flows. https://arxiv.org/abs/1401.4163 (2014)

[7] Blonigan, P.J., Wang, Q.: Least squares shadowing sensitivity analysis of
chaotic flow around a two-dimensional airfoil. American Institute of Aeronau-
tics and Astronautics 56(2) (February 2018)

[8] Cai, S., Wang, Z., Karniadakis, G.: Physics-informed neural networks for heat
transfer problems (2021)

[9] Chandramoorthy, N., Wang, Z.N., Wang, Q., Tucker, P.: Toward computing
sensitivities of average quantities in turbulent flows. https://arxiv.org/abs/
1902.11112v1 (2018), center for Turbulence Research, Proceedings of the Sum-
mer Program 2018, arXiv:1902.11112 [cs.CE]

[10] Chater, M., Ni, A., Blonigan, P.J., Wang, Q.: Least squares shadowing
method for sensitivity analysis of differential equations. https://arxiv.org/
abs/1509.02882v2 (2017)

[11] G.A.Terejanu: Extended kalman filter tutorial. https://homes.cs.

washington.edu/~todorov/courses/cseP590/readings/tutorialEKF.pdf

119

https://arxiv.org/abs/1401.4163
https://arxiv.org/abs/1902.11112v1
https://arxiv.org/abs/1902.11112v1
https://arxiv.org/abs/1509.02882v2
https://arxiv.org/abs/1509.02882v2
https://homes.cs.washington.edu/~todorov/courses/cseP590/readings/tutorialEKF.pdf
https://homes.cs.washington.edu/~todorov/courses/cseP590/readings/tutorialEKF.pdf

(2014), center for Turbulence Research, Proceedings of the Summer Program
2018, arXiv:1902.11112 [cs.CE]

[12] G.Evensen: Data Assimilation. Springer, Bergen, Norway

[13] Gomez, S.A.: Parallel Multigrid for Large-Scale Least Squares Sensitivity. Mas-
ter’s thesis, Massachusetts Institute of Technology (June 2013)

[14] Jin, X., Cai, S., Karniadakis, G.: Nsfnets (navier-stokes flow nets): Physics-
informed neural networks for the incompressible navier-stokes equations (2021)

[15] Karniadakis, G., Jagtap, A.: Extended physics-informed neural networks
(xpinns): A domain decomposition-based solver for nonlinear partial differ-
ential equations (2020)

[16] K.B.Petersen, M.S.Petersen: http://matrixcookbook.com (2012)

[17] K.C.Giannakoglou: Numerical Analysis for Engineers. Athens, 3rd edn.

[18] K.C.Giannakoglou: Optimization Methods For Engineers. Athens, 4th edn.

[19] Krakos, J.A., Wang, Q., Halland, S.R., Darmofal, D.L.: Sensitivity analysis of
limit cycle oscillations. value 231, 3228–3245 (April 2011)

[20] Law, K., Stuart, A., Zygalakis, K.: Data Assimilation. Springer

[21] Lea, D.J., Allen, M.R., Haine, T.W.: Sensitivity analysis of the climate of a
chaotic system. Tellus 32A, 523–532 (2000)

[22] Lu, L., Meng, X., Mao, Z., Karniadakis, G.: Deepxde: A deep learning library
for solving differential equations (2021)

[23] Mao, Z., Jagtap, A., Karniadakis, G.: Physics-informed neural networks for
high-speed flows (2020)

[24] McClenny, L., Braga-Neto, U.: Self-adaptive physics-informed neural networks
using a soft attention mechanism (2020)

[25] Moseley, B., Markham, A., Nissen-Meyer, T.: Solving the wave equation with
physics-informed deep learning (2021)

[26] Ni, A., Wang, Q.: Sensitivity analysis on chaotic dynamical systems by non-
intrusive least squares shadowing (nilss). Journal of Computational Physics
347, 56–77 (2017)

[27] N.J.Kutz: Data-Driven Modeling Scientific Computation. Oxford University
Press, Great Clarendon Street, Oxford, OX2 6DP, United Kingdom

[28] Raissi, M., Perdicaris, P., Karniadakis, G.: Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations (2019)

120

http://matrixcookbook.com

[29] S. Wang, Y. Teng, P.P.: Understanding and mitigating gradient flow patholo-
gies in physics-informed neural networks (2022)

[30] S.E.Simopoulos: Measurements of Technical Quantities. National Techical Uni-
versity of Athens

[31] S.K.Park, Zupanski, M.: Principles of Data Assimilation. Cambridge University
Press

[32] Wang, Q.: Forward and adjoint sensitivity computation of chaotic dynamical
systems. https://arxiv.org/abs/1202.5229 (2012)

[33] Wang, Q.: Convergence of the least squares shadowing method for computing
derivative of ergodic averages. Society for Industrial and Applied Mathematics
(SIAM) 52, 156–170 (2014)

[34] Wang, Q., Hu, R., Blonigan, P.: Least squares shadowing sensitivity analysis of
chaotic limit cycle oscillations. Journal of Computational Physics 267, 210–224
(2014)

[35] Wei, C., Ooka, R.: Indoor airflow field reconstruction using physics-informed
neural network (2023)

121

https://arxiv.org/abs/1202.5229

Εθνικό Μετσόβιο Πολυτεχνείο
Σχολή Μηχανολόγων Μηχανικών
Τομέας Ρευστών
Μονάδα Παράλληλης Ρευστοδυναμικής &

Βελτιστοποίησης

Προγραμματισμός Λογισμικού για την Ανάλυση
Χαοτικών Συστημάτων με Μεθόδους Σκίασης

Ελαχίστων Τετραγώνων, την Αφομοίωση Δεδομένων
και την Επίλυση των Εξισώσεων Ροής Χωρίς Πλέγματα

με Νευρωνικά Δίκτυα

Διπλωματική Εργασία

Γεώργιος Δ. Βάμβουρας

Επιβλέπων: Κυριάκος Χ. Γιαννάκογλου, Καθηγητής ΕΜΠ

Αθήνα, 2025

ii

Περιεχόμενα

Περιεχόμενα i

1 Εισαγωγή 1

2 Σκίαση Ελαχίστων Τετραγώνων: Εφαρμογή στο Πρόβλημα

Lorenz ’63 3

3 Αφομοίωση Δεδομένων 7

4 Ενημερωμένα από τη Φυσική των Ροών Νευρωνικά Δίκτυα 9

4.1 Ψευδο-1D Ροή . 10

4.2 2D Ροή . 10

Bibliography 13

i

ii

Κεφάλαιο 1

Εισαγωγή

Η διπλωματική εργασία εξετάζει τρεις σύγχρονες υπολογιστικές μεθοδολογίες που α-
ποκτούν αυξανόμενο ενδιαφέρον, στους τομείς της ανάλυσης ευαισθησίας (Sensitivity
Analysis) εφαρμόζοντας τον αλγόριθμο Σκίασης Ελαχίστων Τετραγώνων (Least Squa-
res Shadowing, LSS), την Αφομοίωση Δεδομένων (Data Assimilation, DA) για βελ-
τίωση της ακρίβειας πρόβλεψης μοντέλων, και τα Ενημερωμένα από τη Φυσική των
Ροών Νευρωνικά Δίκτυα (Physics-Informed Neural Networks, PINNs) για προσομοι-
ώσεις ροής χωρίς πλέγμα.

Οι παραδοσιακές μέθοδοι ανάλυσης ευαισθησίας, όπως οι πεπερασμένες διαφορές και οι
συζυγείς μέθοδοι, αποτυγχάνουν σε χαοτικά συστήματα λόγω της εκθετικής απόκλι-
σης των τροχιών με απειροστά διαφορετικές παραμέτρους. Η μέθοδος LSS προσφέρει
μια ευσταθή και οικονομική εναλλακτική, αναδιατυπώνοντας την ανάλυση ευαισθησίας
ως πρόβλημα βελτιστοποίησης υπό περιορισμούς. Επιπλέον, αναπτύσσεται η Διακρι-
τά Συνεπής LSS (Discretely Consistent LSS, DCLSS), που βελτιώνει την αριθμητική
ακρίβεια καθώς εγγυάται συμβατότητα στα σχήματα διακριτοποίησης. Οι δύο παραλ-
λαγές της μεθόδου προγραμματίζονται σε γλώσσα προγραμματισμού C++ και εφαρ-
μόζονται επιτυχώς σε μαθηματικά προβλήματα.

Η εργασία διερευνά επίσης την αφομοίωση δεδομένων για τη βελτίωση των προβλέψεων
σε χρονικά μη-μόνιμες προσομοιώσεις. Χρησιμοποιείται το Εκτεταμένο Φίλτρο Kalman
(Extended Kalman Filter, EKF) για την ενσωμάτωση μετρήσεων με θόρυβο σε αριθ-
μητικά μοντέλα επίσης με θόρυβο, οδηγώντας σε πιο ακριβή αποτελέσματα από ό,τι
οι μετρήσεις ή τα μοντέλα μπορούν ξεχωριστά να προσφέρουν. Προγραμματίζονται σε
γλώσσα προγραμματισμού Python εφαρμογές σε μαθηματικά προβλήματα, μέσω των
οποίων εξετάζεται η αποτελεσματικότητα της μεθόδου.

Τέλος, εξετάζεται η χρήση των PINNs ως επιλυτών ροής χωρίς τη χρήση πλέγματος
ή διακριτοποίησης των εξισώσεων. Τα PINNs ενσωματώνουν τις διαφορικές εξισώσεις
και τις συνοριακές συνθήκες που διέπουν ένα πρόβλημα, στη συνάρτηση απωλειών

1

ενός νευρωνικού δικτύου, χρησιμοποιώντας αυτόματη διαφόριση για τον υπολογισμό
παραγώγων. Προγραμματίζονται σε γλώσσα προγραμματισμού Python PINNs δύο
ροϊκά προβλήματα: μία ψευδο-1D ασυμπίεστη ροή και μία 2D στρωτή ροή σε αγωγό.

2

Κεφάλαιο 2

Σκίαση Ελαχίστων Τετραγώνων:

Εφαρμογή στο Πρόβλημα Lorenz

’63

Στο κεφάλαιο αυτό παρουσιάζεται η μέθοδος Σκίασης Ελαχίστων Τετραγώνων (Least
Squares Shadowing, LSS) για τον υπολογισμό παραγώγων ευαισθησίας της χρονικής
μέσης τιμής ποσοτήτων, ειλημμένης σε επαρκή χρονικό ορίζοντα. Για την αποφυγή
γενικών μαθηματικών εκφράσεων, γίνεται εφαρμογή πάνω στο πρόβλημα Lorenz 1963,
που εκφράζεται ως:

dx

dt
= σ(y − x), x(0) = x0 (2.1αʹ)

dy

dt
= x(ρ− z)− y, y(0) = y0 (2.1βʹ)

dz

dt
= xy − βz, z(0) = z0 (2.1γʹ)

Η παράμετρος ρ λαμβάνει, σε αυτήν τη διπλωματική, το ρόλο της μεταβλητής σχεδια-
σμού (design variable) σε ένα πρόβλημα βελτιστοποίησης με αντικειμενική συνάρτηση
προς ελαχιστοποίηση την F που είναι η χρονική μέση τιμή του z(t) σε επαρκή χρονικό
ορίζοντα:

F (ρ) =
1

T

∫ T

0

z(t, ρ) dt (2.2)

Οι παράμετροι σ και β είναι σταθερές και ισούνται με 10 και 8/3 ≊ 2.6667 αντι-
στοίχως. Η κατάσταση του συστήματος περιγράφεται από το διάνυσμα u⃗(t, ρ) =

3

[x(t, ρ), y(t, ρ), z(t, ρ)]T . Στο Σχ. 2.1 φαίνεται το z(t) για ρ = 28.00 και ρ = 28.01, με
σκοπό να γίνει έμφαση στο ότι οι δύο τροχιές ξεκινούν από το ίδιο σημείο (ίδιες αρχικές
συνθήκες) και εξαρχής παραμένουν σχετικά όμοιες αλλά σταδιακά διαφοροποιούνται,
ούτως ώστε σε πολύ λίγο χρόνο να είναι τελείως διαφορετικές. Αυτό το φαινόμενο
είναι εκδήλωση της χαοτικής φύσης του προβλήματος. Σύμφωνα με τη βιβλιογραφία, η

Σχήμα 2.1: Lorenz ’63 Η χρονοσειρά z(t) για ρ = 28.00 (σε μπλε) και ρ = 28.01 (σε
πορτοκαλί).

αντικειμενική συνάρτηση είναι προσεγγιστικά γραμμική, επομένως η παράγωγος ευαι-
σθησίας (SD) δF

δρ
θα έπρεπε να είναι περίπου ίση με 1.01 [7]. Χρησιμοποιείται η Συνεχής

Συζυγής Μέθοδος (Continuous Adjoint Method, CA) για την εύρεση της SD, αλλά
αποτυγχάνει να την υπολογίσει εξαιτίας του χαοτικού χαρακτήρα του προβλήματος,
και προκύπτουν οι μη-φυσικές τιμές του Σχ. 2.2. Χρησιμοποιούνται επίσης Πεπερα-
σμένες Διαφορές (Finite Differences, FD) με δύο διαφορετικούς χρονικούς ορίζοντες
ολοκλήρωσης, T = 20 και T = 2000 μονάδες χρόνου, οι οποίες δίνουν ικανοποιητική
ακρίβεια την αναμενόμενη τιμή της SD, αλλά με ασύμφορο υπολογιστικό κόστος, α-
κόμα και σε αυτό το απλό μαθηματικό πρόβλημα. Η μέθοδος της Σκίασης Ελαχίστων
Τετραγώνων (Least Squares Shadowing, LSS) αποσκοπεί να ξεπεράσει τις δυσκολίες
της συζυγών μεθόδων και να παράξει ορθές τιμές παραγώγων ευαισθησίας χρονικά
μέσων τιμών ποσοτήτων ως προς κάποια(ες) μεταβλητή(ες) σχεδιασμού, με λιγότερο
κόστος από τις Πεπερασμένες Διαφορές. Βασική προϋπόθεση είναι το σύστημα να είναι
εργοδικό (ergodic [1]), που σημαίνει πως για αρκετά μεγάλο χρόνο ολοκλήρωσης, η α-
ντικειμενική συνάρτηση να είναι ανεξάρτητη των αρχικών συνθηκών του προβλήματος,
ιδιότητα που χαρακτηρίζει τα περισσότερα φυσικά συστήματα, όπως τυρβώδεις ροές
ρευστών. Αυτή η υπόθεση επιτρέπει τη ‘σύγκριση’ δύο τροχιών, μίας με τιμή μεταβλη-
τής σχεδιασμού ρ (τροχιά αναφοράς u⃗r), και μίας άλλης με ρ+∆ρ (σκιώδης τροχιά u⃗
της πρώτης), που έχουν διαφορετικές αρχικές συνθήκες. Την ύπαρξη σκιώδους τρο-
χιάς για κάθε τιμή του ρ εγγυάται το Λήμμα περί Σκίασης (Shadowing Lemma) [1].
Δύνανται να επιλεγούν αρχικές συνθήκες και ένας χρονικός μετασχηματισμός τ(t),

4

Σχήμα 2.2: Lorenz ’63 Η SD υπολογι-
σμένη με τη Συνεχή Συζηγή Μέθοδο, για
ρ από 0 ως 100, για 20 τυχαίες αρχικές
συνθήκες.

Σχήμα 2.3: Lorenz ’63 Η SD υπολογι-
σμένη με Πεπερασμένες Διαφορές, για ρ
από 0 ως 100, για 20 τυχαίες αρχικές συν-
θήκες. Τα μπλε σημεία αντιστοιχούν σε
χρόνο ολοκλήρωσης T = 20 ενώ τα κόκ-
κινα σε T = 2000 μονάδες χρόνου.

έτσι ώστε οι δύο τροχιές να παραμένουν η μία ‘κοντά’ στην άλλη, για κάθε 0 ≤ t ≤ T ,
επιλύοντας το παρακάτω πρόβλημα βελτιστοποίησης υπό περιορισμούς:

min
u⃗,η

1

2

∫ T

0

∥u⃗ (τ(t))−u⃗r∥
2+α2

(

1−
dτ

dt

)2

dt, s.t.
du⃗

dτ
= f⃗(u⃗, ρ+δρ), 0 < t < T

(2.3)
όπου το f⃗(u⃗, ρ) συμβολίζει το δεξί μέρος της Εξ. 2.1. Η σταθερά α επιλέγεται ώστε
τα δύο μέλη του ολοκληρώματος να είναι κοντινής τάξης μεγέθους. Διαφορίζοντας ως
προς ρ, η Εξ. 2.3 μετασχηματίζεται σε:

min
v⃗,η

1

2

∫ T

0

∥v⃗∥2 + α2η2 dt, s.t.
dv⃗

dt
=

∂f⃗

∂u⃗
v⃗ +

∂f⃗

∂ρ
+ ηf⃗ , 0 < t < T (2.4)

όπου v⃗ ≡ ∂u⃗
∂ρ
. Οι εξισώσεις που προκύπτουν από τις συνθήκες Karush-Kuhn-Tucker

(KKT) είναι:

dv⃗

dt
=

∂f⃗

∂u⃗
v⃗ +

∂f⃗

∂ρ
+ ηf⃗ (2.5αʹ)

dw⃗

dt
= −

(

∂f⃗

∂u⃗

)T

w⃗ + v⃗ (2.5βʹ)

η =
1

α2
w⃗T f⃗ (2.5γʹ)

w⃗(0) = w⃗(T) = 0 (2.5δʹ)

5

Σχήμα 2.4: Lorenz ’63 Οι τιμές των SDs με 20 τυχαίες αρχικές συνθήκες για κάθε
τιμή του ρ, υπολογισμένες με τη μέθοδο LSS. Τα μπλε σημεία αντιστοιχούν σε χρόνο
ολοκλήρωσης T = 20, ενώ τα κόκκινα σε T = 2000.

και συγχωνεύονται σε μία μόνο συνήθη διαφορική δεύτερης τάξης, η οποία ενσωμα-
τώνει τις BCs με φυσικό τρόπο:

d2w⃗

dt2
+





(

∂f⃗

∂u⃗

)T

−
∂f⃗

∂u⃗





dw⃗

dt
+





d

dt

(

∂f⃗

∂u⃗

)T

−
∂f⃗

∂u⃗

(

∂f⃗

∂u⃗

)T

−
1

a2
f⃗ f⃗T



 w⃗ −
∂f⃗

∂ρ
= 0,

w⃗(0) = w⃗(T) = 0
(2.6)

Κατόπιν επίλυσης της Εξ. 2.6, μπορούν να υπολογιστούν για κάθε t τα v⃗ και η. ΄Επειτα,
η Εξ. 2.7 δίνει την παράγωγο ευαισθησίας:

δF

δρ
=

1

T

∫ T

0

(vz + ηz) dt−
1

T 2

∫ T

0

η dt

∫ T

0

z dt (2.7)

Στο πλαίσιο αυτής της διπλωματικής αναπτύχθηκε μία Διακριτά Συμβατή διατύπω-
ση της μεθόδου LSS, Discretely Consistent LSS (DCLSS), η οποία λαμβάνει υπόψη
τη συμβατότητα των σχημάτων διακριτοποίησης των χρονικών παραγώγων που προ-
κύπτουν στη συγχώνευση των Εξ. 2.5 για την παραγωγή της Εξ. 2.6, και παράγει
αποτελέσματα βελτιωμένης ακρίβειας, ή και ορθά εκεί που αποτυγχάνει η LSS.

Το Σχ. 2.4 δείχνει τις SD για ρ από 0 ως 100 και α = 30, με 20 τυχαίες αρχικές
συνθήκες για κάθε τιμή του ρ, που προκύπτουν από τη μέθοδο LSS. Είναι προφανές
πως η LSS επιτυγχάνει να υπολογίσει τις σωστές SDs με μεγαλύτερη ακρίβεια από τις
αντίστοιχες των Πεπερασμένων Διαφορών.

6

Κεφάλαιο 3

Αφομοίωση Δεδομένων

Η Αφομοίωση Δεδομένων (Data Assimilation, DA) [5, 3, 4, 6, 2] είναι μία οικογένεια
μεθόδων που συνδυάζουν την πληροφορία από πειραματικά δεδομένα και μοντέλα που
περιέχουν σφάλμα, ώστε να παράξουν αποτελέσματα με μαθηματικά αποδεδειγμένη
υψηλότερη ακρίβεια, από εκείνη κάθε πηγής ξεχωριστά. Χρησιμοποιείται ευρέως σε
τομείς όπως η μετεωρολογία και η ωκεανογραφία. Εδώ χρησιμοποιείται η μέθοδος του
Εκτεταμένου Φίλτρου Kalman (Extended Kalman Filter, EKF) η οποία ενσωματώνει
πειραματικά δεδομένα με σφάλμα κατά τη διάρκεια χρονικά μη-μόνιμης προσομοίωσης,
βασισμένης σε μοντέλο το οποίο αναπόφευκτα εμπεριέχει σφάλμα, υπολογίζοντας μία
κατάσταση συστήματος βελτιωμένης ακρίβειας.

Το μοντέλοM λαμβάνει ως είσοδο την κατάσταση u⃗ του συστήματος στο χρονικό βήμα
k − 1, είτε είναι η αφομοιωμένη (δείκτης a) είτε προέρχεται από το μοντέλο (δείκτης
m) στο προηγούμενο βήμα, και παράγει την κατάσταση στο τρέχον βήμα k. Εκείνη
είτε θα χρησιμοποιηθεί αυτούσια στο επόμενο βήμα, είτε θα συνδυαστεί με πειραματικά
δεδομένα (παρατηρήσεις, observations) v⃗ για να παραχθεί η αφομοιωμένη κατάσταση.
Το μοντέλο περιγράφεται από την Εξ. 3.1:

u⃗m
k = M

(

u⃗ a
k−1

)

(3.1)

Οι παρατηρήσεις v⃗ δίνονται από την Εξ. 3.2, ως συνάρτηση της πραγματικής κατάστα-
σης του συστήματος u⃗ t (η οποία είναι πάντοτε άγνωστη), με τη βοήθεια ενός τελεστή
H, που είναι υπεύθυνος για την πραγματοποίηση παρεμβολής ή μετασχηματισμού.

v⃗ = H
(

u⃗ t
)

+ e⃗ o (3.2)

όπου e⃗ o το σφάλμα που συνοδεύει την παρατήρηση των πειραματικών δεδομένων. Το
μοντέλο επίσης υπόκειται σε σφάλμα, το οποίο περιγράφεται από τη σχέση:

u⃗ t
k = M

(

u⃗ t
k−1

)

+ e⃗m
k−1

(3.3)

Για ευκολία, χωρίς απώλεια της γενικότητας, τα σφάλματα που παρουσιάζονται σε

7

αυτήν την ανάλυση θεωρούνται πως ακολουθούν κανονική κατανομή με μέση τιμή
μηδέν. Η αφομοιωμένη κατάσταση (assimilated state, δείκτης a), δίνεται από την Εξ.
3.4, ως συνάρτηση της παρατήρησης και της εξόδου του μοντέλου:

u⃗ a = u⃗m +K (v⃗ −H (u⃗m)) (3.4)

όπου K είναι το EKF. Ο υπολογισμός του EKF αποτελεί τον στόχο αυτής της ανάλυ-
σης, και γίνεται με βάση δύο παραδοχές [2]. Πρώτον, πως η αφομοιωμένη κατάσταση
έχει μέση τιμή την άγνωστη πραγματική κατάσταση, επομένως έχει τυχαίο σφάλμα με
μέση τιμή μηδέν, και δεύτερον πως η διασπορά (variance) του σφάλματος είναι η ελάχι-
στη από κάθε άλλο συνδυασμό της κατάστασης του μοντέλου και των παρατηρήσεων,
καθιστώντας εκείνη τη βέλτιστη. Το EKF δίνεται από την Εξ. 3.5:

K = Cm ∇H|Tu⃗m

[

∇H|u⃗m Cm ∇H|Tu⃗m +Co

]

−1

(3.5)

όπου Cm και Co η (γνωστή) διασπορά του σφάλματος του μοντέλου και των παρατη-
ρήσεων, αντιστοίχως. Στο Σχ. 3.1 παρατηρείται εφαρμογή της μεθόδου για το χαοτικό
σύστημα του Rössler:

dx

dt
= −y − z, x(0) = x0 (3.6αʹ)

dy

dt
= x+ ay, y(0) = y0 (3.6βʹ)

dz

dt
= b+ z(x− c), z(0) = z0 (3.6γʹ)

όπου φαίνεται με πράσινο η κατάσταση που επιστρέφει το μοντέλο για 0 ≤ t ≤ 30 χωρίς
κάποια διόρθωση, με μαύρο η πραγματική κατάσταση του συστήματος, με κόκκινες
κουκίδες οι πειραματικές μετρήσεις στις χρονικές στιγμές που είναι διαθέσιμες, ενώ
με μπλε φαίνεται η αφομοιωμένη κατάσταση. Μπορεί κανείς να παρατηρήσει πως το
μοντέλο μόνο του αρχίζει πολύ γρήγορα να συσσωρεύει μη-αποδεκτό σφάλμα, και
αποτυγχάνει να περιγράψει το σύστημα. Αντιθέτως, η αφομοιωμένη κατάσταση σχεδόν
ταυτίζεται με την πραγματική, περιγράφοντας με υψηλή ακρίβεια το σύστημα

Σχήμα 3.1: Rössler : Η πραγματική (μαύρο), η αφομοιωμένη (μπλε), η κατάσταση του
μοντέλου (πράσινο) και οι παρατηρήσεις για την x συνιστώσα του συστήματος.

8

Κεφάλαιο 4

Ενημερωμένα από τη Φυσική των

Ροών Νευρωνικά Δίκτυα

Τα Ενημερωμένα από τη Φυσική των Ροών Νευρωνικά Δίκτυα (Physics-Informed
Neural Networks, PINNs) είναι νευρωνικά δίκτυα που λύνουν διαφορικές εξισώσεις
ελαχιστοποιώντας μια συνάρτηση απωλειών που περιλαμβάνει τα υπόλοιπα των εξι-
σώσεων και τις συνοριακές ή/και αρχικές συνθήκες. Σε αυτή τη διπλωματική εργασία
βασίζονται στην αρχιτεκτονική των Βαθέων Νευρωνικών Δικτύων (Deep Neural Ne-
tworks, DNNs). Σε αντίθεση με τις συμβατικές αριθμητικές μεθόδους, οι λύσεις που
προσφέρουν τα PINNs είναι αναλυτικές, καθιστώντας μη-αναγκαία κάθε παρεμβολή. Οι
παράγωγοι που χρησιμοποιούνται στα υπόλοιπα, υπολογίζονται μέσω αυτόματης δια-
φόρισης αποφεύγοντας τη χρήση σχημάτων διακριτοποίησης. Παρ΄όλα αυτά, τα PINNs
απαιτούν πολλές πράξεις, με αποτέλεσμα να αυξάνεται ο χρόνος επίλυσης σε σχέση με
τις συμβατικές μεθόδους.

Εξετάζονται δύο εφαρμογές: πρώτον, η βελτιστοποίηση ψευδο-1D ροής μέσω ξεχω-
ριστών PINNs που επιλύουν το πρωτεύον και το συζυγές πρόβλημα, που χρησιμο-
ποιούνται σε πρόβλημα αντίστροφου σχεδιασμού. Δεύτερον, η λύση των εξισώσεων
Navier-Stokes για 2D στρωτή, ασυμπίεστη ροή σε αγωγό μεταβαλλόμενης διατομής,
όπου τα αποτελέσματα συγκρίνονται με τον GPU-επιταχυνόμενο CFD κώδικα PUMA
του PCOpt/NTUA. Ο αλγόριθμος εκπαίδευσης που χρησιμοποιείται φαίνεται στο Σχ.
4.1, εφαρμοσμένος στο 2D πρόβλημα της δεύτερης εφαρμογής.

9

Σχήμα 4.1: Διάγραμμα της διαδικασίας εκπαίδευσης του PINN που λύνει για στρωτή
ασυμπίεση 2D ροή.

4.1 Ψευδο-1D Ροή

Στην πρώτη εφαρμογή πραγματοποιείται επίλυση του ευθέος και συζυγούς προβλήμα-
τος ψευδο-1D, ασυμπίεστης μόνιμης ροής μέσω αγωγού μεταβλητής διατομής, και ε-
πιλύεται πρόβλημα αντίστροφου σχεδιασμού που αποσκοπεί στην απόκτηση καθορι-
σμένης κατανομής πίεσης

d(vS)

dx
= 0, u(x = 0) = uBC = 1m/s

ρv
dv

dx
+

dp

dx
= 0, p(x = 1) = pBC = 0N/m2

(4.1)

Οι συζυγείς εξισώσεις βρέθηκαν με τη Συνεχή Συζυγή Μέθοδο (Continuous Adjoint
Method), έτσι ώστε να είναι εφαρμόσιμες στο συνεχές PINN. Στο Σχ. 4.2 φαίνεται η
σύγκριση της κατανομής πίεσης που βρέθηκε με τη βελτιστοποίηση, με την κατανομή-
στόχο (μπλε και κόκκινη γραμμή αντίστοιχα). Είναι εμφανές πως η βελτιστοποίηση
ήταν επιτυχής, καθώς οι γραμμές σχεδόν ταυτίζονται.

4.2 2D Ροή

Στη δεύτερη εφαρμογή επιλύεται μόνιμη, 2D, στρωτή ροή ασυμπίεστου ρευστού μέσω
αγωγού μεταβλητής διατομής, που διέπεται από τις εξισώσεις Navier-Stokes, με Re =
120:

∇ · u⃗ = 0

u⃗∇u⃗−
1

Re
∇2u⃗+

1

ρ
∇p = 0

(4.2)

10

Σχήμα 4.2: Η κατανομή πίεσης από το πρόβλημα βελτιστοποίησης (μπλε) σε σύγκριση
με την κατανομή-στόχο (κόκκινο).

Οι οριακές συνθήκες που χρησιμοποιήθηκαν είναι:

1. Είσοδος: u = 1 και v = 0

2. ΄Εξοδος: p = 0 (πίεση αναφοράς) και ∂u
∂x

= ∂v
∂x

= 0

3. Στερεά σύνορα: u = v = 0 (συνθήκη μη-ολίσθησης)

Στα Σχ. 4.3, 4.4 και 4.5 φαίνονται τα πεδία οριζόντιας ταχύτητας, κατακόρυφης τα-
χύτητας και πίεσης που προέκυψαν από τη λύση του PINN (πάνω εικόνες), σε σύγκριση
με τη λύση του PUMA. Είναι εμφανές πως το PINN κατάφερε να λύσει με ικανοποιη-
τική ακρίβεια τη ροή.

11

Σχήμα 4.3: Οριζόντια ταχύτητα της λύσης του PINN (πάνω) και του PUMA (κάτω).

Σχήμα 4.4: Κατακόρυφη ταχύτητα της
λύσης του PINN (πάνω) και του PUMA
(κάτω).

Σχήμα 4.5: Πίεση της λύσης του PINN
(πάνω) και του PUMA (κάτω).

12

Bibliography

[1] Blonigan, P.J.: New Methods for Sensitivity Analysis of Chaotic Dynamical
Systems. Master’s thesis, Massachusetts Institute of Technology (2013)

[2] G.A.Terejanu: Extended kalman filter tutorial. https://homes.cs.

washington.edu/~todorov/courses/cseP590/readings/tutorialEKF.pdf

(2014), center for Turbulence Research, Proceedings of the Summer Program
2018, arXiv:1902.11112 [cs.CE]

[3] G.Evensen: Data Assimilation. Springer, Bergen, Norway

[4] Law, K., Stuart, A., Zygalakis, K.: Data Assimilation. Springer

[5] N.J.Kutz: Data-Driven Modeling Scientific Computation. Oxford University
Press, Great Clarendon Street, Oxford, OX2 6DP, United Kingdom

[6] S.K.Park, Zupanski, M.: Principles of Data Assimilation. Cambridge University
Press

[7] Wang, Q.: Forward and adjoint sensitivity computation of chaotic dynamical
systems. https://arxiv.org/abs/1202.5229 (2012)

13

https://homes.cs.washington.edu/~todorov/courses/cseP590/readings/tutorialEKF.pdf
https://homes.cs.washington.edu/~todorov/courses/cseP590/readings/tutorialEKF.pdf
https://arxiv.org/abs/1202.5229

	Contents
	Introduction
	Gradient-Based Sensitivity Analysis
	Failure of Conventional Sensitivity Analysis Methods in Chaotic Problems
	The Least Squares Shadowing (LSS) Algorithm
	Data Assimilation
	Flow Solution Using Physics-Informed Neural Networks

	Least Squares Shadowing (LSS): Application to the Lorenz '63 Problem
	The Lorenz '63 Problem
	Continuous Adjoint Sensitivity Analysis
	Parametric Study on the Step Size t

	Finite Differences Sensitivity Analysis
	Least Squares Shadowing (LSS) Sensitivity Analysis
	Shadowing Lemma newmethods
	Computing the Shadow Trajectory as a Minimization Problem
	Evaluation of the Sensitivity Derivative
	The LSS Flowchart
	Results from the LSS Method
	Discretely Consistent LSS (DCLSS)

	Application on the Van der Pol Problem
	The Van der Pol Problem
	Continuous Adjoint Sensitivity Analysis
	Finite Differences Sensitivity Analysis
	Sensitivity Analysis with Classic vs Discretely Consistent LSS
	Consistency of the Solutions of the Boundary Value Problem using DCLSS

	Application on the Rössler Problem
	The Rössler Problem
	Continuous Adjoint Sensitivity Analysis
	Finite Differences Sensitivity Analysis
	Sensitivity Analysis with Classic vs Discretely Consistent LSS
	Consistency of the Solutions of the Boundary Value Problem using DCLSS

	Conclusions

	Data Assimilation
	Increased Prediction Accuracy with Data Assimilation
	Notation and Definitions
	Errors and Auto-Covariances
	The Extended Kalman Filter (EKF)
	The Data Assimilation Algorithm
	Demonstration in the Van der Pol System
	Demonstration in the Lorenz '63 System
	Demonstration in the Rössler System

	Flow Solution Using Physics-Informed Neural Networks (PINNs)
	PINNs as Flow Solvers
	PINN Model Architecture
	Quasi-1D Flow Case
	2D Viscous Flow Case

	Conclusion
	Overview
	Conclusions

	Development of the LSS Equations For the Lorenz '63 system
	Derivation of the Final Minimization Problem
	Derivation and Solution of the Karush-Kuhn-Tucker (KKT) equations
	Computation of and from
	Evaluation of the Sensitivity Derivative
	Derivation of the DCLSS second Order ODE

	Derivations in the Van der Pol case
	Coefficients of the second Order ODE (LSS)
	Coefficients of the second Order ODE (DCLSS)
	Sensitivity Derivative

	Derivations in the Rossler case
	Coefficients of the second Order ODE (LSS)
	Coefficients of the second Order ODE (DCLSS)
	Sensitivity Derivative

	Formulas Used in Data Assimilation Derivations
	Sample Variance
	Covariance Matrix
	Trace of a Matrix
	Derivation of the Extended Kalmal Filter (EKF)

	Bibliography
	Περιεχόμενα
	Εισαγωγή
	Σκίαση Ελαχίστων Τετραγώνων: Εφαρμογή στο Πρόβλημα Lorenz '63
	Αφομοίωση Δεδομένων
	Ενημερωμένα από τη Φυσική των Ροών Νευρωνικά Δίκτυα
	Ψευδο-1D Ροή
	2D Ροή

	Bibliography

