National Technical University of Athens

School of Mechanical Engineering
Fluids Department
Laboratory of Thermal Turbomachines
Parallel CFD \& Optimization Unit

Non-Intrusive Polynomial Chaos Expansion for Aerodynamic Uncertainty Quantification \& Robust Design with Manufacturing Imperfections

Diploma Thesis
by

Sergios Villette

Advisor:
Kyriakos C. Giannakoglou, Professor NTUA

Acknowledgments

My deepest gratitude goes to my mother Lina and my grandmother Maria for the patience, encouragement and caring they showed for me, throughout the course of my life as a whole. My family has ever been a pillar of trust and support from the start of my education, up until the end of my student years. This work is, primarily, devoted to them, as a subtle show of appreciation for the sacrifices they underwent for me and the shining examples they set for me to follow.

I would, also, like to thank Prof. Kyriakos Giannakoglou for the time and guidance he offered to me, as well as for the trust he bestowed upon me, for the duration of our collaboration. From the time I spent under his tutelage in the various courses he taught at NTUA, up until the completion of this work, I strongly believe that his experience and know-how contributed to the increase of my interest and the deepening of my knowledge in the scientific domain of his work, for which I am grateful.

I should, also, like to express my gratitude to all the members of PCOpt/NTUA who contributed to this thesis, and especially PhD candidate Andreas Margetis for his constant support and reliable suggestions whenever I needed them. Furthermore, I would like to show appreciation for the help provided by Dr. Evaggelos Papoutsis Kiachagias and Dr. Varvara Asouti at certain stages of my work.

Last but not least, I would like to thank my friends and colleagues Dimitris Kalofolias, Fotis Sisanes and Charalampos Kapeleris for being beside me during the years of my studies, while my special appreciation goes to Π for the moments we shared.

Euxapıбтies

National Technical University of Athens
School of Mechanical Engineering
Fluids Department
Laboratory of Thermal Turbomachines
Parallel CFD \& Optimization Unit

Non-Intrusive Polynomial Chaos Expansion for Aerodynamic Uncertainty Quantification \& Robust Design with Manufacturing Imperfections

Diploma Thesis

Sergios Villette
Advisor: Kyriakos C. Giannakoglou, Professor NTUA

Athens, 2022

Abstract

In the field of aerodynamics, the geometrical and flow conditions of a certain shape are usually considered to be constants, while in reality they exhibit some stochasticity, which can have a varying effect on its performance. This thesis, stresses aerodynamic cases in which the geometrical-manufacturing uncertainties of a certain shape are taken into account, by proposing a computational process capable to, firstly, evaluate the stochasticity of their performance (uncertainty quantification) and, secondly, to optimize their stochastic performance (robust design).

Therefore, this thesis presents the development of software, implementing the nonintrusive Polynomial Chaos Expansion and the Karhunen-Loève Transform theories, in order to perform aerodynamic uncertainty quantification and robust design optimization on 2 D shapes with manufacturing uncertainties. The Karhunen-Loève Transform theory is used to simulate the real-time uncertainties that may occur during the manufacturing of aerodynamic shapes. The theory of Polynomial Chaos is based on the use of orthogonal polynomials to model the stochasticity of a certain phenomena, by analyzing its stochastic input and quantifying its stochastic output, though the form of its statistical moments. The Karhunen-Loève Transform software developed as well as the OpenFOAM ${ }^{\circledR}$ Computational Fluid Dynamics solvers are coupled to an in-house non-intrusive Polynomial Chaos Expansion code, so as to quantify the stochastic aerodynamic performance of 2D imperfect geometries. Additionally, robust design is performed on such imperfect geometries, parameterized through Volumetric B-Splines, by optimizing the statistical moments
of their performance, with respect to the design variables controlling the parameterized shape. This is achieved through the incorporation of the continuous adjoint optimization algorithm, developed by PCOpt/NTUA in the OpenFOAM environment, into the aforementioned Karhunen-Loève Transform and non-intrusive Polynomial Chaos coupled algorithm.

The Karhunen-Loève Transform code is designed to recreate imperfect perturbations on any 2D geometry and when combined the generalist nature of the non-intrusive Polynomial Chaos Expansion mathematical tool, it grants the ability to the proposed method to cope with a wide variety of aerodynamic cases with shape uncertainties. Simultaneously, the deterministic adjoint optimization method greatly mitigates the computational cost needed to perform the uncertainty quantification and robust design processes, when compared to other stochastic methods often employed in literature, such as the Evolutionary Algorithms.

М $\eta-\varepsilon \pi \varepsilon \mu \beta \alpha \tau \iota x o ́ ~ A \nu \alpha ́ \pi \tau \cup \gamma \mu \alpha ~ П о \lambda \cup \omega \nu \cup \mu ı x о u ́ ~ X \alpha ́ o u s ~ \gamma ı \alpha ~$ Aєpoठuvaцıxó $\Sigma \tau \iota \beta \alpha \rho o ́ ~ \Sigma \chi \varepsilon \delta \iota \alpha \sigma \mu o ́ ~ \cup \pi о ́ ~$

$\Delta ı \pi \lambda \omega \mu \alpha \tau \iota x \dot{n}$ в $p \gamma \alpha \sigma i \alpha$

इéprıos Bı入入é τ

Аখŋ̀va, Фєßpouápıos 2022

 $\sigma \chi \varepsilon \delta \partial \alpha \sigma \mu \circ ́ \varsigma)$.

 $\alpha \tau \varepsilon ́ \lambda \varepsilon เ \varepsilon \varsigma . ~ О ~ \mu \varepsilon \tau \alpha \sigma \chi \eta \mu \alpha \tau ı \sigma \mu o ́ \varsigma ~ K a r h u n e n-L o e ̀ v e ~ \chi p \eta \sigma \mu о \pi о เ \varepsilon i ́ t \alpha ı ~ \gamma ı \alpha ~ \tau \eta \nu ~ \pi р о \sigma о \mu о i ́ \omega \sigma \eta ~$

 $\chi \omega ́ \delta \iota \varkappa \alpha, \sigma \varepsilon \pi \varepsilon \rho ı \alpha \dot{\lambda} \lambda \lambda о \nu$ OpenFOAM.

Nomenclature

CFD
Computational Fluid Dynamics

CAE
Computer Aided Engineering
NTUA National Technical University of Athens
PCOpt Parallel CFD \& Optimization unit
GBM Gradient Based Method
SOO Single Objective Optimization

MOO Multi Objective Optimization
RDO Robust Design Optimization
UQ Uncertainty Quantification

CPU Central Processing Unit
DNS
Direct Numerical Simulation

NS
Navier-Stokes

RANS Reynolds-Averaged Navier-Stokes

SD
Sensitivity Derivatives

PDE Partial Differential Equation
gdPDE grid displacement Partial Differential Equation
QoI
Quantity of Interest

CP
control point

FAE	Field Adjoint Equations
ABC	Adjoint Boundary Conditions
MC	Monte Carlo
PCE	Polynomial Chaos Expansion
niPCE	non-intrusive Polynomial Chaos Expansion
iPCE	intrusive Polynomial Chaos Expansion
PDF	Probability Density Function
GQ	Gauss Quadrature
GHQ	Karhunen-Loève Transform
KLT	Karhunen-Loève Expansion
KLE	Equivalent Flow Solution
EFS	Right Hand Side
RHS	Left Hand Side
LHS	also known as
a.k.a.	with respect to
w.r.t.	

Contents

Contents i
1 Introduction 1
1.1 Shape Optimization (1)
1.2 Aerodynamic Robust Design 3
1.2.1 Computation of Sensitivity Derivatives 6
1.2.2 Computation of Robustness Metric and its derivatives 9
1.2.3 Design Variable Update Method 10
1.3 Thesis Objectives and Layout 11
2 CFD Analysis and Adjoint Problem Formulation 13
2.1 Primal Problem 13
2.1.1 Flow Field Modeling 13
2.1.2 The Spalart-Allmaras Turbulence Model 15
2.1.3 The Low and High Reynolds Number Models 16
2.1.4 Primal Equations and Boundary Conditions 18
2.2 Adjoint Problem 19
2.2.1 The Three Continuous Adjoint Formulations 20
2.2.2 Differentiation of the Objective Function 25
2.2.3 Differentiation of the Primal Equations 28
2.2.4 Field Adjoint Equations and Adjoint Boundary Conditions 30
2.2.5 Adjoint to the Distance Equation 35
2.2.6 Final Expression of the Sensitivity Derivatives 39
2.3 Mesh Parameterization and Movement 39
2.3.1 Volumetric B-Splines 40
2.4 The SIMPLE Finite Volume Method 41
3 Stochastic Uncertainty Quantification Methods 43
3.1 Monte Carlo 43
3.2 Polynomial Chaos Expansion 44
3.3 1D non-intrusive PCE 45
3.3.1 Orthogonal Polynomials 45
3.3.2 1st and 2nd Statistical Moments 46
3.3.3 Polynomial Chaos Expansion Coefficients 48
3.3.4 Differentiation w.r.t. the Design Variables 49
3.3.5 Gauss Quadrature Integration 49
3.4 Multi-dimensional non-intrusive PCE 53
3.4.1 Multi-dimensional Orthogonal Polynomials 54
3.4.2 1st and 2nd Statistical Moments 56
3.4.3 Polynomial Chaos Expansion Multi-Dimensional Coefficients 58
3.4.4 Differentiation w.r.t. the Design Variables 59
3.4.5 Cubature Integration 60
3.4.6 Smolyak Sparse Grid Integration 63
4 Modeling of Manufacturing Imperfections 67
4.1 Karhunen-Loève Transform 67
4.1.1 Karhunen-Loève Expansion 67
4.1.2 Covariance Kernel 68
4.1.3 Solution of the Integral Equation 70
4.1.4 KLT Algorithmic Formulation 74
4.2 KLT Applications 76
4.2.1 Flat Plate 76
4.2.2 NACA 0012 Airfoil 79
5 Uncertainty Quantification with Manufacturing Imperfections 83
5.1 Integration of KLT software and OpenFOAM solvers into the niPCE software 83
5.2 Uncertainty Quantification: NACA 0012 airfoil 85
5.2.1 Flow Field Initial Conditions and Mesh 85
5.2.2 CFD Results without Uncertainties 87
5.2.3 Chaos Order Parametric Analysis \& Results Validation 89
5.3 Uncertainty Quantification: E387 airfoil 92
5.3.1 CFD Analysis without Uncertainties 92
5.3.2 Derivatives of the Robustness Metric Verification 96
6 Robust Design Optimization with Manufacturing Imperfections 101
6.1 Robust Design: E387 airfoil 101
6.1.1 Single-Objective RDO: Robust Drag 102
6.1.2 Multi-Objective RDO: Weighted Objectives 106
6.2 Robust Design: TU Berlin Compressor Stator 111
6.2.1 Compressor Cascade Initial Conditions and Mesh 111
6.2.2 CFD Analysis without Uncertainties 113
6.2.3 Multi-Objective RDO: Weighted Objectives 115
7 Summary and Suggestions 123
7.1 Summary - Conclusion 123
7.2 Suggestions for Future Research 126
A OpenFOAM CFD Validation 141
B Hermite Polynomials 147
Bibliography 153

Chapter 1

Introduction

In recent years, the ever improving performance of modern computer systems in combination with the enhancement of computational methods has led to an increasing use of Computational Fluid Dynamics (CFD) for the purpose of industrial Computer Aided Engineering (CAE) in applications related to fluid mechanics. Modern CFD software can simulate the flow around or inside the shapes faster and more accurately, making them available for the purpose of shape optimization procedure and aerodynamic robust design. Thus, the number and the cost of the experiments needed to evaluate new engineering designs have been thoroughly decreased.

1.1 Shape Optimization

In general, the goal of the optimization mathematical problem of a certain objective function, is to compute the values of it's variables that maximize or minimize the said function. These variables are referred to as design or optimization variables.

In the case of shape optimization, according to the control theory adapted to CFD-based optimization, the geometry to be optimized is controlled by a number of variables, which consist the design variable vector $\left(\vec{b} \in \mathbb{R}^{N}\right)$ of the optimization process. For instance, these could be the control point coordinates of Bézier-Bernstein polynomials that parameterize the shape under consideration. The quality of the shape to be optimized is evaluated by computing the objective function, which is usually an integral quantity related to the fluid flow field. The objective function can be defined either at (part of) the boundaries, such as the total drag or lift force exerted on a body, or in a volume inside the geometry, such as the noise induced by the turbulent flow.

One way of classifying CFD-based optimization methods w.r.t. the number of objective functions, to: single objective optimization (SOO) and multi objective optimization (MOO) [1]. SOO applies when a single objective function is optimized whereas MOO
applies when more than one objective functions are to be simultaneously optimized.
A second classification for optimization methods, is one that reflects the way the optimal set of design variables is computed: stochastic or deterministic [1]. This diploma thesis focuses exclusively on the latter. On the one hand, the stochastic optimization methods pseudo-randomly generate values for the design variables and heuristic algorithms are implemented in order to faster reach the optimal solution. The optimization process is concluded when either the objective function has converged to its optimal value or the user-defined maximum number of optimization cycles is reached. Examples of such methods would be the evolutionary algorithms. The deterministic or gradient-based optimization methods (GBM) rely on the computation of sensitivity derivatives (SD), which consist the gradient of the objective function w.r.t. the design variables. This allows a controlled convergence towards the optimal solution, faster than the one achieved with stochastic methods.

In deterministic shape optimization cases, the shape in question is updated in the direction dictated by the sensitivity derivatives. To do so, the flow field, the objective function value and the new SD field are computed on the current geometry. This process is repeated until the same criterion, as the one mentioned for stochastic methods, is met. Since the values of the sensitivity derivatives tend to be nullified near local minima, it is possible for this method to get entrapped into a local optimum. As a result, the algorithm may converge to a local rather than the global optimal solution, which is the main disadvantage of a GBM. Such a disadvantage does not occur in stochastic methods, as long as the maximum number of optimization cycles (generations) is not quite low.

The flow-chart for the generalized CFD-based optimization algorithm is presented in Figure 1.1, thus summarizing and visualizing everything that has been stated so far.

Figure 1.1: The generalized CFD-based optimization algorithm flow chart. A stochastic or deterministic method, either coupled or uncoupled to the fluid flow solver, is implemented in order to update the design variable vector $\boldsymbol{b}_{\text {new }}$. Depending on the optimization method, the fluid flow solver can be called either once or more times. This process repeats itself for the updated values of the design variables until a certain convergence criterion is met and only then the design variable vector that optimizes the objective function $\boldsymbol{b}_{\text {opt }}$ can be obtained.

1.2 Aerodynamic Robust Design

In order to fully grasp the difference between the processes of shape optimization and robust design optimization (RDO), an additional classification concerning the input variables to the problem must be introduced. These variables can be grouped into two categories, according to the variation associated with their values. In the first class of variables their variation is assumed to be defined by a certain stochastic distribution and can, therefore, be quantified through the use of statistical measures such as the mean (μ) or the standard deviation (σ) of the input variable in question.

Variables with no stichasticity are already introduced as design variables (\vec{b}), while those that have some degree of variation are known as environmental, robust or uncertain variables $\left(\vec{c} \in \mathbb{R}^{M}\right)$. It must be clear that in real-life scenarios every variable of a problem is governed by a certain degree of uncertainty, therefore in reality, every variable is an uncertain variable. Yet in the world of CAE, which variables of a simulation are considered to be uncertain is a decision made by the user. For instance, one case of airfoil aerodynamic RDO could focus on a robust design w.r.t. the Mach number of the flow, thus considering all other variables, such as the angle of attack or Reynolds number as design variables, with zero variance.

In contrast, a different airfoil RDO w.r.t. the angle of attack, would consider every other variable including the Mach number as design variables. In the scientific literature, such design cases are a.k.a. as design/optimization under uncertainties.

Therefore, a design case of which all variables consist of design variables, can be called a shape optimization (without uncertainties) case and its solution is known as deterministic optimum or optimal design point. In SOO, the deterministic optimum is defined as the point where the objective function displays is global minimum or maximum value, depending if the case in question requires minimization or maximization, respectively. Whereas, a robust design case has both design variables and uncertain variables as inputs $\left(\equiv\left(b_{1}, b_{2}, \ldots, b_{N}, c_{1}, c_{2}, \ldots, c_{M}\right) \in \mathbb{R}^{N+M}\right)$ and the solution of such a case is named robust optimum or robust design point. The robust optimum may not necessarily be the aforesaid optimum, but is defined as the point around which the objective function exhibits extrema for all corresponding values of the uncertain variables within their respective distribution [2]. The optimum and robust design points of a SOO (maximization of the objective function $f(x) \in \mathbb{R}$) is displayed in Figure 1.2.

Figure 1.2: The difference between the optimal design point (blue) and the robust design point (red) of the performance objective function $f(x)$ (black). In this specific case the robust optimum happens to be a local maximum while also displaying lower variation in it's close vicinity, compared to the deterministic optimum, for all the corresponding values of the uncertain variable x.

Specifically, shape optimization cases of aerodynamic bodies opting to posses an optimized aerodynamic performance within a certain range of their respective design variables, can be established as aerodynamic robust design cases. In this category of cases, in order to properly describe the algorithmic steps needed to culminate in a robust design point, the definition of the aerodynamic robustness metric $\left(F_{R}\right)$ must be introduced. This metric that represents the robustness of the original objective function (F) a.k.a. the Quantity of Interest (QoI), is dependent upon the statistical
moments of F, most commonly referring to: the mean $\left(\mu_{F}\right)$ and standard deviation $\left(\sigma_{F}\right)$. In RDO cases, the aerodynamic robustness metric replaces the QoI as the quantity to be optimized by either a stochastic or deterministic optimization process. The value of F_{R} is dependent on the values μ_{F} and σ_{F}, which are computed through the Uncertainty Quantification (UQ) process.

The algorithmic steps needed to implement aerodynamic RDO are the following:

- Definition of the initial values of the design and uncertain variable vectors (b and \mathbf{c} respectively)
- Application of deterministic or stochastic RDO method, utilized to update the design variable vector $\mathbf{b}_{\text {new }}$. Either way the statistical moments of the QoI must be computed through a process of UQ for the design variable vector \mathbf{b} and the uncertain variable vector \mathbf{c}, under consideration. Thus, the process of numerically solving the flow field equations, in order to compute the flow field variables and the QoI, is executed as part of the UQ algorithm. Upon that, the statistical moments of F, computed through the UQ loop, are utilized to compute the aerodynamic robustness metric F_{R}.
- Application of an optimization convergence criterion. If the criterion is met, the process terminates by defining the optimal set of the design variables $\mathbf{b}_{\text {opt }}$ that result to the robust design point. Otherwise, this process repeats itself for the updated design variable vector $\mathbf{b}_{\text {new }}$.

The aforementioned steps of a typical aerodynamic robust design algorithm are, also, visualized through a flow-chart, in Figure 1.3.

More specifically, there is a variety of deterministic methods (e.i. Method of Moments) [3, [4] and stochastic (e.i. Monte Carlo, intrusive or non-intrusive Polynomial Chaos Expansion) [5], [6, [7, 8], (9] available in order to perform the task of UQ. Stochastic UQ methods determine a certain number values of uncertain variables to be evaluated, thus computing the moments μ_{F} and σ_{F}. On the other hand, deterministic UQ methods rely on the formulation of PDEs to be solved, either coupled or uncoupled from the CFD solver, in order to compute the statistical moments of the QoI.

Yet the implementation of the UQ process may still vary on the optimization method used to renew the design variable vector. For stochastic optimization methods the UQ is performed as described above. In contrast, for GBMs the computation of the derivatives of the robustness metric F_{R}, a.k.a. the robust SDs , is needed to renew the design variables. Subsequently the UQ process must also be implemented for the SDs of the QoI, in order to compute the gradients of the statistical moments of the QoI: $\nabla \mu_{F} \in \mathbb{R}^{N}$ and $\nabla \sigma_{F} \in \mathbb{R}^{N}$. The gradient of robustness metric ∇F_{R} is computed using these previously mentioned quantities.

Figure 1.3: The generalized CFD-based RDO algorithm flow-chart.

In this thesis, the UQ and RDO process is performed through stochastic methods. Specifically, Monte Carlo and non-intrusive Polynomial Chaos Expansion are employed for UQ, while only the later are used for RDO. More information about these methods is disclosed in Chapter 3. Furthermore, only deterministic methods are implemented in order to compute and renew the design variables of the case under consideration. Hence, for deterministic RDO the computation of the SDs of the QoI is essential. The uncertain variables w.r.t. which the UQ and RDO is performed are considered to be the shape uncertainties, which are generated through the Karhunen-Loève Transform, further explored in Chapter 4.

1.2.1 Computation of Sensitivity Derivatives

Given that this thesis focuses solely on GBMs, this Subsection is dedicated to the different methods available, in order to compute the SD , mentioned in Section 1.1. This step is also instrumental in deterministic RDO methods, therefore the QoI F is displayed as dependent on both design $b_{n}, n \in[1, N]$ and uncertain variables $c_{i}, i \in[1, M]$. In general, the efficiency of GBMs is highly dependent on how the sensitivity derivatives are computed.

The Finite Differences Method

The most straightforward method of computing the SDs is by using finite differences (FD) [1]. The computation of a first derivative of F w.r.t. the design variable,
then this design variable is perturbated by an infinitesimally small, user-defined quantity, ϵ. Thus, the QoI is re-evaluated for the perturbated design. For instance, a second-order, central difference FD scheme is formulated, as displayed in equation 1.1

$$
\begin{equation*}
\frac{\delta F}{\delta b_{n}}=\frac{F\left(b_{1}, \ldots, b_{n}+\epsilon, \ldots, b_{N}, c_{1}, \ldots, c_{M}\right)-F\left(b_{1}, \ldots, b_{n}-\epsilon, \ldots, b_{N}, c_{1}, \ldots, c_{M}\right)}{2 \epsilon} \tag{1.1}
\end{equation*}
$$

Despite its simple implementation, since it requires only the re-computation of the value of the objective function, this method poses great concerns because of its two main drawbacks. First and foremost, the cost of the FD method scales linearly with the number of the design variables, N, as it requires $2 N$ evaluations of F by solving the flow equations, making it impracticable for optimization problems a large number of design variables. The second downside is the dependence of the computed derivatives from ϵ, the value of which cannot be determined a priori. The use of a too "small" value is not always the answer to the aforementioned problem as it can introduce round-off errors. In addition, for each design variable, the flow equations must be fully converged two additional times in order to compute the perturbated values of F, an event that should not be taken for granted in any CFD case.

The Complex Differences Method

An alternative method for the computation of the SDs is the complex variable (CV) method [1] according to which the computation of the SD is executed as

$$
\begin{equation*}
\frac{\delta F}{\delta b_{n}}=\frac{\operatorname{Im}\left[F\left(b_{1}, \ldots, b_{n}+i \epsilon, \ldots, b_{N}, c_{1}, \ldots, c_{M}\right)\right]}{\epsilon} \tag{1.2}
\end{equation*}
$$

where $I m$ is the imaginary part of the complex function F and $i=\sqrt{-1}$.
From equation 1.2, it can be assumed that the round-off errors cease to exist, since there is no subtraction of two very close values as in the case of FD. Subsequently, this method is independent from the value of ϵ and, thus, there is no need for the flow equations to be fully converged. Nevertheless, the cost of the complex variable method still scales linearly with N, specifically requiring N evaluations of the QoI.

The Direct Differentiation Method

Another alternative, is the direct differentiation (DD) method [1] according to which the flow equations are differentiated w.r.t. the design variables and the N linear systems that arise are solved to define the derivatives of the flow variables w.r.t. to the design variables. Given that the SDs are expressed in terms of these fields, their final computation is straightforward. DD is harder to implement than FD, since a new flow solver has to be developed, increasing its implementation cost.

Moreover, the method's cost still scales with N, making it inadequate for large scale simulations.

The Adjoint Method

The adjoint method of computing the sensitivity derivatives required by GBMs is the alternative that has a cost practically independent from the number of the design variables N [1]. As a result, this method is a perfect choice for large industrial optimization and RDO problems. In order to achieve this independence, an augmented objective function is defined, by adding the volume integrals of the residuals of the flow equation (also referred to as the primal or state equations), multiplied by the adjoint (or co-state or dual) variable fields, to F. Considering that the residuals of the primal equations must be zero, $F \equiv F_{\text {aug }}$. After differentiating the augmented objective function and re-arranging the resulting terms, the system of field adjoint equations (FAE) and adjoint boundary conditions (ABC) is formulated, the numerical solution of which leads to a N -independent computation of the SDs. The numerical solution of the aforementioned system has a computational cost equivalent to the cost of the primal equations' solution.

There are two different approaches [10] on how the aforementioned adjoint method can be applied, that differ from each other in the sequence that the differentiation of the objective function and the discretization of the flow equations happen. In the discrete adjoint approach, the residuals of the primal equations that are added to the objective function are in their discrete form and the resulting system of adjoint equations and adjoint boundary conditions after the differentiation is already discretized and ready to be numerically solved. On the other hand, in the continuous adjoint approach, the residuals of the primal equations that are added to the objective function are in their continuous form and the resulting system of adjoint equations and the boundary conditions have to be discretized, in order to be numerically solved

There is a general consensus, that both discrete and continuous adjoint methods can produce sensitivity derivatives with sufficient accuracy to be used in common optimization problems. Nevertheless, the discrete approach is more accurate in computing the SD especially on coarse meshes, since it takes the primal discretization schemes into consideration, although its implementation can become cumbersome when higher discretization schemes are used. On the other hand, the continuous adjoint outweighs the discrete one in terms of CPU cost and memory requirements per iteration. Continuous approach also leads to better physical understanding of the adjoint system, since closed-form expressions exist for the field adjoint equations, their boundary conditions and the sensitivity derivatives expression.

In this diploma thesis, the continuous adjoint method is applied in aerodynamic
robust design cases so as to compute the SDs of the QoI. The mathematical formulation and software programming of the adjoint solver for incompressible fluid flows has been performed by the PCOpt/NTUA within the OpenFOAM© environment.

1.2.2 Computation of Robustness Metric and its derivatives

Once the UQ process has been completed for the QoI as well as its SDs, the computation of the robustness metric F_{R} follows. The way of defining the robustness metric depends greatly on the stochastic distribution of the uncertain variables.

A common approach to tackle the uncertainty problem is known as Design for Six Sigma (DFSS) [11] [12], which is an engineering design process based on the assumption that every uncertain variable ($c_{i}, i \in[1, M]$) follows a normal distribution around it's mean value μ_{i} and within a certain range of six standard deviations σ_{i} of the respective variable c_{i}. It is a well known fact, according to the mathematical formulation of the normal distribution, that 99.73% of the values of a stochastic variable, following such a distribution, can be found within the interval $[\mu-3 \sigma, \mu+3 \sigma]$ or, in other words, in the six sigma range.

Therefore, a way of defining the robust metric $F_{R} \in \mathbb{R}$ in accordance with the DFSS, is the following

$$
\begin{equation*}
F_{R}=\mu_{F}+\kappa \sigma_{F} \tag{1.3}
\end{equation*}
$$

where the parameter $\kappa \in[-3,+3]$, is user-defined and its algebraic value determines the approach and the goal of the RDO process.

The absolute value of κ, acts as a weight, determining whether the μ_{F} or the σ_{F} is prioritized during the optimization. Meaning that, a small absolute value for κ indicates that an optimized mean value of the objective function is desired, while its variation (quantified through the standard deviation) is of lesser interest. In contrast, a selection of a larger absolute value for κ designates the desire for the robustness metric to display an optimized variation, while it's mean value is being regarded as secondary. Furthermore, the sign of κ indicates whether the designer's approach is pessimistic or optimistic. For example, in a minimization RDO case, a positive sign selection for κ signifies the worst case scenario and, consequently an pessimistic design approach, while a negative sign indicates the opposite.

Likewise, according to the DFSS, the gradient of the robustness metric, a.k.a. the robust sensitivity derivative vector $\nabla F_{R} \in \mathbb{R}^{N}$ is defined as

$$
\begin{equation*}
\nabla F_{R}=\nabla \mu_{F}+\kappa \nabla \sigma_{F} \tag{1.4}
\end{equation*}
$$

1.2.3 Design Variable Update Method

There are various methods available to update the design variables $b_{n}, n \in[1, N]$, always dependent on the computation of either the sensitivity derivatives for optimization problems or the robust sensitivity derivatives for RDO problems. The method used in this thesis and one of the simplest GBMs, implementing 1st order derivatives, is the steepest descent.

A general expression for the renewal of the design variable vector $\vec{b} \in \mathbb{R}^{N}$, in RDO cases, is the following

$$
\begin{equation*}
\vec{b}^{\text {new }}=\vec{b}^{\text {old }}+\eta \vec{p} \tag{1.5}
\end{equation*}
$$

where the definition of \vec{p} distinguishes the different update methods, while η serves to scale the step length of each "descent". The value of η can be determined through the expression

$$
\begin{equation*}
\eta=\frac{\Delta b_{\max }}{\Delta b_{a c t}} \tag{1.6}
\end{equation*}
$$

where $\Delta b_{\max }$ is the user-defined maximum allowed displacement of the design variables b_{i} and $\Delta b_{\text {act }}$ is the maximum displacement of each design variable, as computed by equation (1.5) for $\eta=1$.

Steepest Descent Method

As mentioned, while this method is one of the simplest when it comes to its conception and its implementation, it often lacks efficiency when compared to other 2nd order derivative methods such as the BFGS method. Nevertheless, the steepest descent is considered a consistent benchmark method, essential to test an optimization or robust design process in its preliminary stages. This is the reason this method has been selected to meet the needs of this thesis.

In RDO cases, the vector \vec{p} is defined as the gradient of the robustness metric F_{R} for the old value of the design variables $b_{n}^{o l d}$. As such, \vec{p} is defined as

$$
\begin{equation*}
\vec{p}= \pm \nabla F_{R}^{\text {old }} \tag{1.7}
\end{equation*}
$$

where the sign dictates the direction of the optimization, in other words whether it opts to the maximization or minimization of F_{R}. A positive sign signifies maximization, while a negative implies minimization.

Given that the adjoint solver developed by the PCOpt/NTUA classifies all optimization cases as de facto minimization cases, the incorporated steepest descent scheme takes on the form

$$
\begin{equation*}
\vec{b}^{\text {new }}=\vec{b}^{\text {old }}-\eta \nabla F_{R}^{\text {old }} \tag{1.8}
\end{equation*}
$$

1.3 Thesis Objectives and Layout

The goal of this diploma thesis is the aerodynamic robust design of 2D bodies w.r.t. manufacturing imperfections. To be more specific, a code is developed implementing the Karhunen-Loève Transform, in order to model the imperfections of the geometries in question. This computational tool is then incorporated into the UQ and RDO processes, thus considering the imperfect geometry of the aerodynamic bodies as the only uncertain variables. The process of UQ is performed through the stochastic methods of non-intrusive Polynomial Chaos Expansion and Monte Carlo, by making use of an in-house code including both methods developed and validated by PCOpt/NTUA. Finally, the aerodynamic RDO employs the adjoint method for the computation of the SDs of the QoI, coupled with the niPCE method to compute the robustness metric F_{R} and its gradient ∇F_{R}, in accordance with the DFSS.

Furthermore, the rest of this diploma thesis is structured as follows:

- Chapter 2: The mathematical formulation and the numerical solution of the flow field, a.k.a. the primal equations and their respective adjoint equations is described, for the purpose of computing the SDs of the desired QoI. Additionally, a description of the grid displacement strategy following the displacement of the shape during the process of RDO, is presented.
- Chapter 3: The mathematical theory concerning the stochastic uncertainty quantification methods Monte Carlo and non-intrusive Polynomial Chaos Expansion is introduced and analyzed, for both one and multiple uncertain variables. For the second method, both Full Grid and Smolyak/Sparse Grid integration methods are included.
- Chapter 4: The mathematical formulation of the Karhunen-Loève Transform will be presented. In addition, a description of the algorithmic steps used to guide the development of software implementing the aforementioned transform for the the recreation of manufacturing imperfections in the shape of 2D aerodynamic bodies, will take place. Also, two application of the Karhunen-Loève Transform will be included.
- Chapter 5: The software generating Karhunen-Loève Transform shape uncertainties as well as OpenFOAM grid generators and flow solvers are incorporated in the in-house niPCE code for the purpose of performing UQ on 2D geometries with shape uncertainties. Moreover, the aforementioned coupled algorithm is applied to the NACA 0012 isolated airfoil, thus performing UQ for two QoI: the lift and drag coefficients. Furthermore, UQ is performed on the E387 airfoil with shape uncertainties, in order to compute the robust SDs of the drag coefficient. In both cases, cross-reference between the non-intrusive Polynomial Chaos Expansion and the Monte Carlo computed results take place, so as to validate the method.
- Chapter 6: Integration of the continuous adjoint solver and of a parameterized
mesh movement strategy into the aforementioned coupled algorithm. This all-encompassing code is implemented to perform aerodynamic RDO on the isolated E387 airfoil and the TU Berlin compressor stator cascade [13], considering the recurring KLT-modeled shape imperfections to be the uncertain variables of the problem.

Chapter 2

CFD Analysis and Adjoint Problem Formulation

In this chapter the mathematical formulation of steady state incompressible flow field equations and their respective adjoint field equations, as well as the numerical methods utilized to achieve their solution are thoroughly presented. This part is needed in order to further clarify the process used to compute the QoI and the SDs, for the needs of UQ and RDO, respectively.

2.1 Primal Problem

2.1.1 Flow Field Modeling

All CFD cases dealt with in this thesis, are flows around 2D aerodynamic bodies such as airfoils or turbomachinery blades. Such flows, if not highly turbulent beforehand, then turbulence is most likely to develop close to the solid surfaces and in their wake. Turbulence in a flow is defined by the semi-random development of unsteady pressure and velocity fluctuations, creating coherent vortex structures named eddy vortices.

As a general rule, the Navier-Stokes (NS) equations can fully predict viscous, steady and unsteady flows within a certain domain with defined boundary conditions. Yet the prediction of turbulent flow phenomena in their whole spatial and temporal scale spectrum, an infinitely small cell size during meshing, as well as painstakingly small time domain discretization. Such simulations, called direct numerical simulations, in which the NS are numerically solved without any turbulence modeling, has an unbearable computational and clock-time cost, thus making them unfeasible in most cases with limited computational resources. Specifically for the needs of this diploma thesis, the employment of DNS is unacceptable since the solution of the flow field, a.k.a. primal problem, is part of a larger procedure, either UQ or RDO.

A more widespread approach for the simulation of turbulent flows is the use a method first proposed by Reynolds in 1985, the Reynolds-Averaged Navier-Stokes (RANS) equations [1, 14, 15]. The concept of this method, still valid today, is based on the decomposition of the flow field variables into their mean and their fluctuating components. Thus, the random perturbation of the flow variables caused by the turbulence of the flow is taken into account through the use of turbulence model equation, thus bypassing the costly DNS for turbulent flows. For this thesis, the system of the RANS and turbulence model equations constitute the primal problem.

In accordance with the Einstein convention, for which repeated indices imply summation, the RANS system of equation for incompressible steady flows is presented in equations (2.1), (2.2) in non-conservative form:

- The conservation of mass, a.k.a. continuity equation is

$$
\begin{equation*}
\frac{\partial \bar{v}_{j}}{\partial x_{j}}=0 \tag{2.1}
\end{equation*}
$$

- The conservation of momentum equation is

$$
\begin{equation*}
\bar{v}_{j} \frac{\partial \bar{v}_{i}}{\partial x_{j}}=-\frac{1}{\rho} \frac{\partial \bar{p}}{\partial x_{i}}+\frac{\partial}{\partial x_{j}}\left[\nu\left(\frac{\partial \bar{v}_{i}}{\partial x_{j}}+\frac{\partial \bar{v}_{j}}{\partial x_{i}}\right)\right]+\frac{\partial}{\partial x_{j}}\left(-\overline{v_{i}^{\prime} v_{j}^{\prime}}\right), \quad i=1,2,3 \tag{2.2}
\end{equation*}
$$

where $\overline{v_{i}}$ indicate the mean velocity components, \bar{p} stands for the mean pressure and $\rho=\bar{\rho}$ designates the constant density of the fluid. An overbar "-' symbolizes the mean value, while the "' symbolizes the perturbation of a flow variable. In equation (2.2), the only term including flow variable fluctuations is the Reynolds stress or turbulent shear stress tensor $\tau_{i j}^{\prime} / \rho=-\overline{v_{i}^{\prime} v_{j}^{\prime}}$. In order to fully get rid of velocity fluctuations that appear only in the RANS equations, an expression modeling the Reynolds stresses as variables wholly dependent on the mean velocity components is needed. One way to overcome any reference to the turbulent fluctuations comes through the acceptance of the Boussinesq Hypothesis [14,, [15], suggested by Boussinesq in 1877 and still widely adopted today:

$$
\begin{equation*}
\tau_{i j}^{\prime} / \rho=-\overline{v_{i}^{\prime} v_{j}^{\prime}}=\nu_{t}\left[\left(\frac{\partial \bar{v}_{i}}{\partial x_{j}}+\frac{\partial \bar{v}_{j}}{\partial x_{i}}\right)-\frac{2}{3} k \delta_{i}^{j}\right] \tag{2.3}
\end{equation*}
$$

where δ_{i}^{j} indicates the Kronecker delta, ν_{t} the turbulent kinematic viscosity, a.k.a. eddy viscosity (measured in m^{2} / s) and k the turbulent kinetic energy, defined as

$$
\begin{equation*}
k=\frac{1}{2} \overline{v_{i}^{\prime} v_{i}^{\prime}} \tag{2.4}
\end{equation*}
$$

Hence, after including the Boussinesq hypothesis (2.3) into the momentum equation (2.2), the Reynolds stress tensor is expressed in terms of the turbulent viscosity ν_{t}, as a new unknown field variable. Thus the conservation of momentum equation is expressed by

$$
\begin{equation*}
\bar{v}_{j} \frac{\partial \bar{v}_{i}}{\partial x_{j}}=-\frac{1}{\rho} \frac{\partial \bar{p}}{\partial x_{i}}+\frac{\partial}{\partial x_{j}}\left[\left(\nu+\nu_{t}\right)\left(\frac{\partial \bar{v}_{i}}{\partial x_{j}}+\frac{\partial \bar{v}_{j}}{\partial x_{i}}\right)\right], \quad i=1,2,3 \tag{2.5}
\end{equation*}
$$

The introduction of the aforementioned ν_{t} field causes the need of one more equation, so as to close the system. This closure problem can be treated with the addition of algebraic or differential turbulence models in the system of primal equations [14]. Given that turbulence models do not directly simulate the turbulent fluctuations, they are imbued with decades of experimental data on turbulent flows. Therefore, some models can be more fine-tuned than others for use in certain application fields, i.e. the $k-\epsilon$ model is genrally preferred in heat transfer applications. The turbulence models used to compute the turbulent viscosity, therefore taking the Boussinesq hypothesis, into account, are referred to as eddy viscosity models (EVMs). Such a model is the one used exclusively in this thesis, the Spalart-Allmaras turbulence model [16, presented in Subsection 2.1.2.

2.1.2 The Spalart-Allmaras Turbulence Model

The Spalart-Allmaras is a relatively simple and low cost mixing length model, implementing one transport partial differential equation (PDE) for the computation of the turbulent viscosity ν_{t}. It is calibrated on empirical data from 2D wall-bounded flows such as flat plates, wakes and mixing layers [16]. The model provides satisfactory predictions for boundary layers with severe pressure gradients, as well as fair to good results in aerospace applications, such as airfoils and wings [16]. Its governing PDE is assembled as a function of the Spalart-Allmaras variable $\widetilde{\nu}$ and is defined as

$$
\begin{equation*}
v_{j} \frac{\partial \widetilde{\nu}}{\partial x_{j}}-\frac{\partial}{\partial x_{j}}\left[\left(\nu+\frac{\widetilde{\nu}}{\sigma}\right) \frac{\partial \widetilde{\nu}}{\partial x_{j}}\right]-\frac{c_{b 2}}{\sigma}\left(\frac{\partial \widetilde{\nu}}{\partial x_{j}}\right)^{2}-\widetilde{\nu} P(\widetilde{\nu})+\widetilde{\nu} D(\widetilde{\nu})=0 \tag{2.6}
\end{equation*}
$$

where the first and second terms on the LHS of the PDE (2.6) correspond to the convection and diffusion (bulk and turbulent) terms of $\widetilde{\nu}$, while ν_{t} being the turbulent viscosity, formulated as a function of the later

$$
\begin{equation*}
\nu_{t}=f_{v 1} \widetilde{\nu} \tag{2.7}
\end{equation*}
$$

In addition, the production $P(\widetilde{\nu})$ and dissipation terms are modeled as

$$
\begin{equation*}
P(\widetilde{\nu})=c_{b 1} \widetilde{Y}, \quad D(\widetilde{\nu})=c_{w 1} f_{w}(\widetilde{Y}) \frac{\widetilde{\nu}}{\Delta^{2}} \tag{2.8}
\end{equation*}
$$

where \widetilde{Y} is given by

$$
\begin{equation*}
\widetilde{Y}=Y f_{v_{3}}+\frac{\widetilde{\nu}}{\Delta^{2} \kappa^{2}} f_{v_{2}}, \quad Y=\left|e_{i j k} \frac{\partial v_{k}}{\partial x_{j}}\right| \tag{2.9}
\end{equation*}
$$

with Y standing for the vorticity magnitude and Δ being the distance of cell of vertex centres from the wall boundaries. Given that OpenFOAM uses a finite volume cell-centered discretization of the governing equations [17], Δ represents the respective distance of cell centres.

The model functions read

$$
\begin{align*}
f_{v_{1}} & =\frac{\chi^{3}}{\chi^{3}+c_{v_{1}}^{3}}, \quad f_{v_{2}}=\frac{1}{\left(1+\frac{\chi}{c_{v_{2}}}\right)^{3}} \\
f_{v_{3}} & =\frac{\left(1+\chi f_{v 1}\right)}{c_{v 2}}\left[3\left(1+\frac{\chi}{c_{v 2}}\right)+\left(\frac{\chi}{c_{v 2}}\right)^{2}\right]\left(1+\frac{\chi}{c_{v 2}}\right)^{-3} \\
\chi & =\frac{\widetilde{\nu}}{\nu}, \quad f_{w}=g\left(\frac{1+c_{w_{3}}^{6}}{g^{6}+c_{w_{3}}^{6}}\right)^{1 / 6} \\
g & =r+c_{w_{2}}\left(r^{6}-r\right), \quad r=\frac{\widetilde{\nu}}{\widetilde{Y} \kappa^{2} \Delta^{2}} . \tag{2.10}
\end{align*}
$$

The constants of the model are $c_{b 1}=0.1355, c_{b 2}=0.622, \kappa=0.41, \sigma=2 / 3, c_{w 1}=$ $\frac{c_{b 1}}{\kappa^{2}}+\frac{\left(1+c_{b 2}\right)}{\sigma}, c_{w 2}=0.3, c_{w 3}=2, c_{v 1}=7.1$ and $c_{v 2}=5$. The Levi-Civita symbol, $e_{i j k}$, used in the vorticity magnitude Y, is

$$
e_{i j k}=\left\{\begin{array}{cc}
+1 & (i, j, k) \in(1,2,3),(2,3,1),(3,1,2) \tag{2.11}\\
-1 & (i, j, k) \in(1,3,2),(3,2,1),(2,1,3) \\
0 \quad i=j, j=k, k=i
\end{array}\right.
$$

2.1.3 The Low and High Reynolds Number Models

The Spalart-Allmaras model as described until now, is sufficient in areas of fully developed turbulent flow, far from solid-fluid interaction, where turbulent shear stresses dominate over bulk stresses. Yet, near the solid boundary, where viscous phenomena thrive, specified terms need to be added to the turbulence model, in order to better simulate the effect of such phenomena.

One approach is the Low Reynolds number model, according to which the laminar or viscous sublayer of the boundary layer is resolved numerically by including the effects of bulk viscosity into the formulation of turbulence model in use, in the form of near wall damping additional terms. This method requires very dense grids near the wall to produce adequate results, due to the steep velocity gradients appearing in the viscous sublayer and the buffer zone, as displayed in 2.2. This method though
accurate when properly implemented is quite costly.

Figure 2.1: Comparison of near-wall mesh quality between Low-Re (a) and High-Re number (b) turbulence models.

An alternative solution and the one adopted for the CFD analysis present this thesis, is referred to as High Reynolds number turbulence model. In this method, wall functions, meaning analytical expressions combined with experimental data are introduced for the computation of the mean velocity on the cell centres of the near-wall regions. For this method, the distance of the first cell centre off the wall, should lie in the logarithmic region of the turbulent boundary layer, hence the value of the non-dimensional wall distance y^{+}(defined in (2.12) can be up to 100, in order not to compromise the method's accurately.

$$
\begin{equation*}
y^{+}=\frac{u_{T} y}{\nu}, \quad u_{T}=\sqrt{\frac{\tau_{w}}{\rho}} \tag{2.12}
\end{equation*}
$$

where y is the cell centre from the wall and τ_{w} is the wall stress.
Consequently, given that the laminar sublayer is not resolved, the near-wall meshing does not necessarily need to be as fine as that required in the previously mentioned Low-Re model, as displayed in Figure 2.1. In the Spalart-Allmaras model, the wall functions, used to approximate the value of ν_{t} at the cell closest to the wall, are formulated as $\nu_{t}=\frac{u_{\tau}^{2}}{\partial U / \partial n}$, where u_{τ} is computed based on the y^{+}value. The formulation for the computation of y^{+}, as programmed in OpenFOAM ${ }^{\circledR}$, follows Spalding's Law [18]. This models the inner sublayer and the logarithmic region of the boundary layer with a single equation:

$$
\begin{equation*}
y^{+}=v^{+}+e^{-\kappa B}\left[e^{\kappa v^{+}}-1-\kappa v^{+}-\frac{\left(\kappa v^{+}\right)^{2}}{2}-\frac{\left(\kappa v^{+}\right)^{3}}{6}\right] \tag{2.13}
\end{equation*}
$$

where κ is the von-Karman constant equal to 0.41 and $B \approx 5.5$.
This equation came as a result of best fit between the curve of $y^{+}=u^{+}$which is valid in the viscous sublayer and $u^{+}=E y^{+} / \kappa$ which is valid in the logarithmic

Figure 2.2: The non-dimensional velocity u^{+}profile w.r.t. the non-dimensional wall distance y^{+}spanning form the solid wall to the log-law of a turbulent boundary layer.
region. $E=e^{-\kappa B}$ is an empirical constant equal to 9.793.

2.1.4 Primal Equations and Boundary Conditions

All the previous analysis culminates in the full determination of the primal problem equations used to simulate the a steady-state turbulent flow of an viscous, incompressible fluid, by rearranging equations (2.1), (2.5) and (2.6).

$$
\begin{align*}
& R^{p}=-\frac{\partial v_{j}}{\partial x_{j}}=0 \tag{2.14a}\\
& R_{i}^{v}=v_{j} \frac{\partial v_{i}}{\partial x_{j}}-\frac{\partial}{\partial x_{j}}\left[\left(\nu+\nu_{t}\right)\left(\frac{\partial v_{i}}{\partial x_{j}}+\frac{\partial v_{j}}{\partial x_{i}}\right)\right]+\frac{\partial p}{\partial x_{i}}=0, \quad i=1,2,3 \tag{2.14b}\\
& R^{\widetilde{\nu}}=v_{j} \frac{\partial \widetilde{\nu}}{\partial x_{j}}-\frac{\partial}{\partial x_{j}}\left[\left(\nu+\frac{\widetilde{\nu}}{\sigma}\right) \frac{\partial \widetilde{\nu}}{\partial x_{j}}\right]-\frac{c_{b 2}}{\sigma}\left(\frac{\partial \widetilde{\nu}}{\partial x_{j}}\right)^{2}-\widetilde{\nu} P(\widetilde{\nu})+\widetilde{\nu} D(\widetilde{\nu})=0 \tag{2.14c}
\end{align*}
$$

Last but not least, the boundary conditions needed for the closure of the primal problem are presented, in a generalized formulation for 2D computational meshes exclusively used in the present thesis, as follows:

- Inlet: at the inlet to the computational domain, Dirichlet boundary conditions are imposed on the velocity components v_{i} according to the wanted freestream velocity value and zero-Newmann condition is used on the pressure p. For the Spalart-Allmaras model variable $\widetilde{\nu}$, a Dirichlet condition is imposed.
- Outlet: at the exit boundary of the computational domain, zero-Neumann boundary conditions are imposed on the velocity components v_{i} and the Spalart-Allmaras variable $\widetilde{\nu}$, while zero-Dirichlet conditions are imposed on the pressure p.
- Solid Walls: at the wall boundaries of the domain, zero-Dirichlet, a.k.a. noslip, boundary conditions are imposed for v_{i} and zero-Neumann on p. Finally, a zero-Dirichlet boundary condition is utilized for $\widetilde{\nu}$.

The aforementioned boundaries are visualized for computational meshes around airfoils in Figure 2.3.

Figure 2.3: Generalized 2D boundaries of computational domains around isolated airfoils.

Outside of Figure 2.3, for meshes generated in turbomachinery blade cascades, one more boundary condition must be imposed. In the mesh boundary above and below the blades, periodic conditions are imposed, according to which all the primal problem variables $v_{i}, p, \widetilde{\nu}$ on each and every cell centre are mirrored between these two boundaries.

2.2 Adjoint Problem

As previously mentioned, the continuous adjoint method is used in this thesis for the computation of the SDs of a certain objective function F, referred to as QoI for the purposes of UQ and RDO. These SDs are the derivatives of F w.r.t. the design variables of the shape optimization case in question. This is achieved by adding to F the volume integrals of the primal problem's PDEs multiplied with the adjoint variable fields, thus creating the augmented objective function $F_{\text {aug }}$. The key feature of the adjoint solver, developed by PCOpt/NTUA and utilized in this thesis, is that it does not neglect the variations of the turbulent viscosity ν_{t} as often assumed in literature. This assumption, according to which the only the mean flow quantities are affected by the shape, may lead to inaccurate SDs and seriously affect the optimization process [19]. The adjoint model formulated by taking this assumption into account is referred to as frozen turbulence model and culminates to
system of adjoint equation without the adjoint to the turbulence model PDEs. The more meticulous approach, followed by PCOpt/NTUA, requires the differentiation of the turbulence model PDEs w.r.t. the design variables b_{n}, consequently reaching to the formulation and solution of the adjoint to turbulence model.

2.2.1 The Three Continuous Adjoint Formulations

According to the literature, three distinct approaches are available for the formulation of the continuous adjoint method: the FI, the SI and the E-SI approaches. All approaches culminate to the same expression for the field adjoint equations (FAE) and the adjoint boundary conditions (ABS). Yet, they differ on the final expression for the SDs of F.

The FI method, being the first chronologically to be proposed, includes both boundary and field integrals in the formulation of the SDs, hence the name Field Integrals (FI). It is clearly the most accurate as well as the most costly of the three approaches, due to the integration of the entire field and the need of computing the grid or mesh sensitivities $\delta x_{k} / \delta b_{n}[20]$. The second formulation, known as reduced gradient, takes its name from the fact that only boundary, a.k.a. Surface Intervals (SI approach) are contained in the SD formulation, getting rid of the costly computation of the grid sensitivities. Consequently this approach is characterized by a low computational cost, especially for problems with many design variables, making it an interesting prospect. However this simplification does not guarantee an accurate SD prediction [21], particularly for coarse meshes. Finally, the third approach, the Enhanced Surface Integrals (E-SI), combines the advantages of both previous formulation, producing accurate SDs at a reduced computational cost [21].

For a more detailed analysis on the three aforementioned formulations, the reader is pointed to the bibliography [20] and [21]. Though all adjoint formulations are briefly analyzed, only the E-SI approach is implemented in this thesis, so as to compute the SDs, and thus it is described more thoroughly.

The generalized augmented objective function is defined, according to the Einstein convention, as follows

$$
\begin{equation*}
F_{a u g}=F+\int_{\Omega} \Psi_{i} R_{i} d \Omega \tag{2.15}
\end{equation*}
$$

where $R_{i} \approx 0$ the residuals of the state PDEs, Ψ_{i} their corresponding adjoint variables, $i=1,2, \ldots, E$ with E the number of state equations, while Ω the computational domain. By differentiating w.r.t. the design variable b_{n}, the total derivatives $\delta / \delta b_{n}$ of $F_{\text {aug }}$ appear

$$
\begin{equation*}
\frac{\delta F_{\text {aug }}}{\delta b_{n}}=\frac{\delta F}{\delta b_{n}}+\frac{\delta}{\delta b_{n}} \int_{\Omega} \Psi_{i} R_{i} d \Omega \tag{2.16}
\end{equation*}
$$

The different ways the total derivative of the integral in eq. (2.16) is expanded, cause the distinct FI and SI (enhanced or not) formulations.

The FI Approach

The FI approach dictates the development of the aforementioned term as follows

$$
\begin{equation*}
\frac{\delta}{\delta b_{n}} \int_{\Omega} \Psi_{i} R_{i} d \Omega=\int_{\Omega} \Psi_{i} \frac{\delta R_{i}}{\delta b_{n}} d \Omega+\int_{\Omega} \Psi_{i} R_{i} \frac{\delta(d \Omega)}{\delta b_{n}} \tag{2.17}
\end{equation*}
$$

According to [19], the derivative of $d \Omega$ domain in the RHS of eq. (2.17) assumes the form

$$
\begin{equation*}
\frac{\delta(d \Omega)}{\delta b_{n}}=\frac{\partial}{\partial x_{k}}\left(\frac{\delta x_{k}}{\delta b_{n}}\right) d \Omega \tag{2.18}
\end{equation*}
$$

Therefore, the inclusion of eq. 2.17) and (2.18) in eq. 2.16) yields

$$
\begin{equation*}
\left.\frac{\delta F_{\text {aug }}}{\delta b_{n}}\right|_{F I}=\frac{\delta F}{\delta b_{n}}+\int_{\Omega} \Psi_{i} \frac{\delta R_{i}}{\delta b_{n}} d \Omega+\int_{\Omega} \Psi_{i} R_{i} \frac{\partial}{\partial x_{k}}\left(\frac{\delta x_{k}}{\delta b_{n}}\right) d \Omega \tag{2.19}
\end{equation*}
$$

Eq. (2.19) comprises the basis for the FI adjoint formulation and contains the grid variations of x_{k}. By developing the terms in eq. (2.19) according to the primal problem state equations described in Subsection 2.1.4, the derivative of $F_{\text {aug }}$ is formulated as

$$
\begin{align*}
& \left.\frac{\delta F_{\text {aug }}}{\delta b_{n}}\right|_{F I}=\frac{\delta F}{\delta b_{n}}+\int_{\Omega}\left(u_{i} \frac{\delta R_{i}^{v}}{\delta b_{n}}+q \frac{\delta R^{p}}{\delta b_{n}}+\widetilde{\nu_{a}} \frac{\delta R^{\tilde{\nu}}}{\delta b_{n}}\right) d \Omega+ \tag{2.20}\\
& +\int_{\Omega}\left(u_{i} R_{i}^{v}+q R^{p}+\widetilde{\nu_{a}} R^{\tilde{\nu}}\right) \frac{\partial}{\partial x_{k}}\left(\frac{\delta x_{k}}{\delta b_{n}}\right) d \Omega
\end{align*}
$$

where u_{i} the adjoint velocity components, q the adjoint pressure and $\widetilde{\nu_{a}}$ the adjoint Spalart-Allmaras variable, whereas R_{i}^{v}, R^{q} and $R^{\tilde{\nu}}$ the residuals of the primal problem PDEs, as presented in (2.14).

Since the residuals of the primal equations must be close to zero over the whole domain, $F_{\text {aug }}=F$ and consequently $\frac{\delta F_{\text {aug }}}{\delta b_{n}}=\frac{\delta F}{\delta b_{n}}$. The development of the total derivatives of R_{i}^{v}, R^{q} and $R^{\tilde{\nu}}$ w.r.t. to b_{n} yields the corresponding derivatives of the state variables $v_{i}, p, \tau_{i j}$ (stress tensor components) and $\tilde{\nu}$ as well as their corresponding spatial derivatives [21]. By differentiating the objective function F w.r.t. to b_{n} and by employing the chain rule, the eq. (2.21) proven in [19, as well as the Green-Gauss theorem, integrals of expressions multiplied by $\delta v_{i} / \delta b_{n}, \delta p / \delta b_{n}$ or $\delta \tilde{\nu} / \delta b_{n}$ arise.

$$
\begin{equation*}
\frac{\delta}{\delta b_{n}}\left(\frac{\partial \Phi}{\partial x_{k}}\right)=\frac{\partial}{\partial x_{k}}\left(\frac{\delta \Phi}{\delta b_{n}}\right)-\frac{\partial \Phi}{\partial x_{k}} \frac{\partial}{\partial x_{j}}\left(\frac{\delta x_{k}}{\delta b_{n}}\right) \tag{2.21}
\end{equation*}
$$

The SI Approach

The appearance of the spatial gradients of the grid sensitivities $\frac{\partial}{\partial x_{k}}\left(\frac{\delta x_{k}}{\delta b_{n}}\right)$ is the main drawback of the FI formulation, since their numerical computation by the FD in clock-time expensive for a large number of design variables [22]. The SI method circumvents this drawback by applying the Leibniz theorem for the differentiation of volume integrals with variable boundaries. For a quantity $\Phi \in \Omega$ and controlled boundaries $S=S(\vec{b})=\partial \Omega$, the application of the Leibniz theorem yields

$$
\begin{equation*}
\frac{\delta}{\delta b_{n}} \int_{\Omega} \Phi \delta \Omega=\int_{\Omega} \frac{\partial \Phi}{\partial b_{n}} \delta \Omega+\int_{S} \Phi n_{k} \frac{\delta x_{k}}{\delta b_{n}} \delta S \tag{2.22}
\end{equation*}
$$

With the use of the Leibniz theorem on eq.(2.16), it yields

$$
\begin{equation*}
\left.\frac{\delta F_{\text {aug }}}{\delta b_{n}}\right|_{S I}=\frac{\delta F}{\delta b_{n}}+\int_{\Omega} \Psi_{i} \frac{\delta R_{i}}{\delta b_{n}} d \Omega+\underbrace{\int_{S} \Psi_{i} R_{i} n_{k} \frac{\delta x_{k}}{\delta b_{n}} d S}_{L B-\text { term }} \tag{2.23}
\end{equation*}
$$

Eq. (2.23) constitutes the base of the SI method and in its RHS the last integral is labeled Leibniz (LB) term. In literature [23], the LB-term is often neglected in SI adjoint formulation, assuming that the primal equations are satisfied also close to the moving boundaries of the computational domain. This indeed happens in fine grids, where this assumption may not compromise the accurate computation of the SDs. In contrast, depending on the case or the grid's coarseness along the boundary, the inclusion of the LB-term may be critical for the correct computation of the SDs. An interesting proposition of replacing the LB-term with the expression present in eq. (2.24), is proven in [23]

$$
\begin{align*}
& \int_{S} \Psi_{i} R_{i} n_{k} \frac{\delta x_{k}}{\delta b_{n}} d S=-\int_{\Omega} \frac{\partial}{\partial x_{j}}\left(-u_{i} v_{j} \frac{\partial v_{i}}{\partial x_{k}}-u_{j} \frac{\partial p}{\partial x_{k}}-\right. \tag{2.24}\\
& \left.-\tau_{i j}^{a} \frac{\partial v_{i}}{\partial x_{k}} u_{i} \frac{\partial \tau_{i j}}{\partial x_{k}}+q \frac{\partial v_{j}}{\partial x_{k}}\right) \frac{\delta x_{k}}{\delta b_{n}} \delta \Omega
\end{align*}
$$

where $\tau_{i j}=\nu\left(\frac{\partial v_{i}}{\partial x_{j}} \frac{\partial v_{j}}{\partial x_{i}}\right)$ is the stress tensor and $\tau_{i j}^{a}=\nu\left(\frac{\partial u_{i}}{\partial x_{j}} \frac{\partial u_{j}}{\partial x_{i}}\right)$ is the adjoint stress tensor.

This adaptation of the SI approach can yield adequate results, rivaling those of the FI approach [23]. However, an inclusion of this transformed LB-term a.k.a. the V-term requires the computation of $\partial x_{k} / \partial b_{n}$ in Ω, causing the method's cost to scale linearly with the number of design variables, thus leading to a cost comparable to that of the SI method.

The E-SI Approach

The E-SI formulation aims to abolish the computation the field integrals containing the $\partial x_{k} / \partial b_{n}$ terms, by solving the adjoint to a hypothetical grid displacement PDE [22], [23]. A Laplace equation is assumed to be the grid displacement PDE (gdPDE) for this thesis. This grPDE is formulated as follows

$$
\begin{equation*}
R_{i}^{m}=\frac{\partial^{2} m_{i}}{\partial x_{j}^{2}}=0 \tag{2.25}
\end{equation*}
$$

where m_{i} are the Cartesian displacements of the grid nodes. Along the boundary, m_{i} represents the displacement of the boundary points. Following the adjoint methodology, to derive the adjoint gdPDE, a new term is added to the augmented function of eq. 2.15, containing the field integral of the laplacian grid displacement PDE multiplied by the adjoint to m_{i} variable. The resulting $\delta / \delta b_{n}$ field integrals are expanded using the Leibniz theorem.

The extra field integral of the laplacian grid displacement PDE is also included since the analysis is based on the E-SI continuous adjoint approach.

$$
\begin{equation*}
F_{\text {aug }}=F+\int_{\Omega} u_{i} R_{i}^{v} d \Omega+\int_{\Omega} q R^{p} d \Omega+\int_{\Omega} \widetilde{\nu_{a}} R^{\tilde{\nu}} d \Omega+\int_{\Omega} m_{i}^{a} R_{i}^{m} d \Omega \tag{2.26}
\end{equation*}
$$

where Ω is the computational domain, u_{i} the adjoint velocity, q the adjoint pressure, $\widetilde{\nu_{a}}$ the adjoint turbulence (or adjoint Spalart-Allmaras) variable and m_{i}^{a} the adjoint to m_{i} variable. It should be noted that the third integral of eq. 2.26 would be excluded if the 'frozen turbulence' assumption were made.

By employing the Leibniz and the Green-Gauss theorem we receive

$$
\begin{align*}
\left.\frac{\delta F_{\text {aug }}}{\delta b_{n}}\right|_{E-S I} & =\frac{\delta F}{\delta b_{n}}+\frac{\delta}{\delta b_{n}} \int_{\Omega}\left(u_{i} R_{i}^{v}+q R^{p}+\widetilde{\nu_{a}} R^{\widetilde{\nu}}+m_{i}^{a} R_{i}^{m}\right) d \Omega \tag{2.27}\\
& =\frac{\delta F}{\delta b_{n}}+\int_{\Omega} u_{i} \frac{\partial R_{i}^{v}}{\partial b_{n}} d \Omega+\int_{\Omega} q \frac{\partial R^{p}}{\partial b_{n}} d \Omega+\int_{\Omega} \widetilde{\nu_{a}} \frac{\partial R^{\widetilde{\nu}}}{\partial b_{n}} d \Omega \\
& +\int_{S} m_{i}^{a} n_{j} \frac{\partial}{\partial x_{j}}\left(\frac{\delta x_{i}}{\delta b_{n}}\right) d S-\int_{S_{W}} \frac{\partial m_{i}^{a}}{\partial x_{j}} n_{j} \frac{\delta x_{i}}{\delta b_{n}} d S+\int_{\Omega} \frac{\partial^{2} m_{i}^{a}}{\partial x_{j}^{2}} \frac{\delta x_{i}}{\delta b_{n}} \delta \Omega \\
& +\int_{S}\left(u_{i} R_{i}^{v}+q R^{p}+\widetilde{\nu_{a}} R^{\tilde{\nu}}+m_{i}^{a} R_{i}^{m}\right) n_{k} \frac{\delta x_{k}}{\delta b_{n}} d S \tag{2.28}
\end{align*}
$$

where S is the boundary of the computational domain, $S=S_{I} \cup S_{O} \cup S_{W} \cup S_{W_{P}}$. The boundaries S_{I}, S_{O}, S_{W} and $S_{W_{P}}$ refer to the inlet, outlet, fixed and controlled (thus parameterized) wall boundaries of the domain, respectively. Also, n_{k} stands for the components of the unit outward vector which is normal to the surface. Since the only parameterized boundary is $S_{W_{P}}$ and for the non-controlled boundaries $\delta x_{k} / \delta b_{n}=0$,
we have

$$
\begin{align*}
\left.\frac{\delta F_{\text {aug }}}{\delta b_{n}}\right|_{E-S I} & =\frac{\delta F}{\delta b_{n}}+\int_{\Omega} u_{i} \frac{\partial R_{i}^{v}}{\partial b_{n}} d \Omega+\int_{\Omega} q \frac{\partial R^{p}}{\partial b_{n}} d \Omega+\int_{\Omega} \widetilde{\nu_{a}} \frac{\partial R^{\tilde{\nu}}}{\partial b_{n}} d \Omega \\
& +\int_{S_{W_{P}}} m_{i}^{a} n_{j} \frac{\partial}{\partial x_{j}}\left(\frac{\delta x_{i}}{\delta b_{n}}\right) d S-\int_{S_{W_{P}}} \frac{\partial m_{i}^{a}}{\partial x_{j}} n_{j} \frac{\delta x_{i}}{\delta b_{n}} d S+\int_{\Omega} \frac{\partial^{2} m_{i}^{a}}{\partial x_{j}^{2}} \frac{\delta x_{i}}{\delta b_{n}} \delta \Omega \\
& +\int_{S_{W_{P}}}\left(u_{i} R_{i}^{v}+q R^{p}+\widetilde{\nu_{a}} R^{\widetilde{\nu}}+m_{i}^{a} R_{i}^{m}\right) n_{k} \frac{\delta x_{k}}{\delta b_{n}} d S \tag{2.29}
\end{align*}
$$

The FAE are derived by zeroing the terms that multiplied with the aforementioned state variable derivatives in the volume integrals of eq. 2.20, while the ABC are derived by zeroing these terms that manifest in the respective surface integrals. The remaining terms yield the final formulation for the SDs. For a more generalized expression for the SDs, achieved through the FI formulation, the reader is referred to [21].

At this point, a sharp distinction must be made between symbols $\delta() / \delta b_{n}$ and $\partial() / \partial b_{n}$. $\delta \Phi / \delta b_{n}$ denotes the total (or material) derivative of an arbitrary quantity Φ and represents the total change in Φ by varying b_{n}, whereas $\partial \Phi / \partial b_{n}$ denotes the partial derivative of Φ and represents the variation in Φ due to changes in the flow variables excluding the contributions from the space deformation. $\delta \Phi / \delta b_{n}$ and $\partial \Phi / \partial b_{n}$ are related with the following expression depending if they are computed on the interior of Ω or on the boundary of Ω.

Interior of Ω

$$
\begin{equation*}
\frac{\delta \Phi}{\delta b_{n}}=\frac{\partial \Phi}{\partial b_{n}}+\frac{\partial \Phi}{\partial x_{k}} \frac{\delta x_{k}}{\delta b_{n}} \tag{2.30}
\end{equation*}
$$

Surface - Boundary of Ω

$$
\begin{equation*}
\frac{\delta_{s} \Phi}{\delta b_{n}}=\frac{\partial \Phi}{\partial b_{n}}+\frac{\partial \Phi}{\partial x_{k}} n_{k} \frac{\delta x_{m}}{\delta b_{n}} n_{m} \tag{2.31}
\end{equation*}
$$

Before proceeding with analysing the integrals appearing on the RHS of eq. 2.20) the following observation must be made. Since $\partial() / \partial b_{n}$ takes into account only changes in the flow variables and excludes changes in the shape/volume of the flow domain, spatial differentiation and partial differentiation w.r.t. the design variables can commute, i.e.

$$
\begin{equation*}
\frac{\partial}{\partial b_{n}}\left(\frac{\partial \phi}{\partial x_{j}}\right)=\frac{\partial}{\partial x_{j}}\left(\frac{\partial \phi}{\partial b_{n}}\right) \tag{2.32}
\end{equation*}
$$

In general, this is not valid for the total derivative, i.e.

$$
\begin{equation*}
\frac{\delta}{\delta b_{n}}\left(\frac{\partial \phi}{\partial x_{j}}\right) \neq \frac{\partial}{\partial x_{j}}\left(\frac{\delta \phi}{\delta b_{n}}\right) \tag{2.33}
\end{equation*}
$$

2.2.2 Differentiation of the Objective Function

In this thesis, two different objective functions are used as QoI for the purposes of UQ or RDO. These objective functions are defined either on volume of the computational domain, either specified surfaces of it. Therefore, a generalized objective function F formulation, encompassing both surface and volume integrals, with S and Ω their respective domains, can be defined as

$$
\begin{equation*}
F=\int_{\Omega} F_{\Omega} d \Omega+\int_{S} F_{S_{i}} n_{i} d S \tag{2.34}
\end{equation*}
$$

where n_{i} the unit surface normal vector, while $F_{S_{i}}$ and F_{Ω} the integrands on either a surface or a volume of the domain, respectively. The differentiation of F w.r.t. b_{n} yields

$$
\begin{equation*}
\frac{\delta F}{\delta b_{n}}=\frac{\delta}{\delta b_{n}} \int_{\Omega} F_{\Omega} d \Omega+\frac{\delta}{\delta b_{n}} \int_{S} F_{S_{i}} n_{i} d S \tag{2.35}
\end{equation*}
$$

The differentiation of the surface integral on the RHS of eq. 2.35) can be expanded as follows

$$
\begin{align*}
& \frac{\delta}{\delta b_{n}} \int_{S} F_{S_{i}} n_{i} d S=\int_{S}\left(\frac{\partial F_{S_{i}}}{\partial p} \frac{\partial p}{\partial b_{n}}+\frac{\partial F_{S_{i}}}{\partial v_{k}} \frac{\partial v_{k}}{\partial b_{n}}+\frac{\partial F_{S_{i}}}{\partial \tau_{k j}} \frac{\partial \tau_{k j}}{\partial b_{n}}+\frac{\partial F_{S_{i}}}{\partial \tilde{\nu}} \frac{\partial \tilde{\nu}}{\partial b_{n}}\right) n_{i} d S+ \\
& +\int_{S} n_{i} \frac{\partial F_{S_{i}}}{\partial x_{k}} \frac{\partial x_{k}}{\partial b_{n}} n_{k} d S+\int_{S} F_{S_{i}} \frac{\partial n_{i}}{\partial b_{n}} d S+\int_{S} F_{S_{i}} n_{i} \frac{\delta(d S)}{\delta b_{n}} \tag{2.36}
\end{align*}
$$

Furthermore, by applying the Leibniz integral rule for the differentiation of volume integrals with moving boundaries, the respective integral in eq. (2.35) assumes the form

$$
\begin{equation*}
\frac{\delta}{\delta b_{n}} \int_{\Omega} F_{\Omega} d \Omega=\int_{\Omega} \frac{\partial F_{\Omega}}{\partial b_{n}} d \Omega+\int_{S} F_{\Omega} n_{k} \frac{\delta x_{k}}{\delta b_{n}} d S \tag{2.37}
\end{equation*}
$$

Given the F is dependent upon the state variables of the primal problem, eq. 2.37) can be expanded as follows

$$
\begin{align*}
& \frac{\delta}{\delta b_{n}} \int_{\Omega} F_{\Omega} d \Omega=\int_{\Omega} \dot{F}_{\Omega}^{v_{i}} \frac{\partial v_{i}}{\partial b_{n}} d \Omega+\int_{\Omega} \dot{F}_{\Omega}^{p} \frac{\partial p}{\partial b_{n}} d \Omega+\int_{\Omega} \dot{F}_{\Omega}^{\tilde{\nu}} \frac{\partial \tilde{\nu}}{\partial b_{n}} d \Omega+\int_{S} \dot{F}_{S}^{v_{i}} \frac{\partial v_{i}}{\partial b_{n}} d S+ \\
& +\int_{S} \dot{F}_{S}^{p} \frac{\partial p}{\partial b_{n}} d S+\int_{S} \dot{F}_{S}^{\tilde{\tilde{L}}} \frac{\partial \tilde{\nu}}{\partial b_{n}} d S+\int_{S} F_{\Omega} n_{k} \frac{\delta x_{k}}{\delta b_{n}} d S \tag{2.38}
\end{align*}
$$

where F_{Ω}^{Φ} includes the partial derivative $\partial F / \partial \Phi$ as well as any term resulting the implementeation of the Green-Gauss theorem for integrals of the form $\int_{\Omega} \frac{\partial}{\partial b_{n}}\left(\frac{\partial \Phi}{\partial x_{j}}\right) d \Omega$. Finally, by substituting eq. (2.36) and (2.38) in eq. 2.35), the final expression
for $\delta F / \delta b_{n}$ arises

$$
\begin{align*}
& \frac{\delta F}{\delta b_{n}}=\int_{\Omega} \dot{F}_{\Omega}^{v_{i}} \frac{\partial v_{i}}{\partial b_{n}} d \Omega+\int_{\Omega} \dot{F}_{\Omega}^{p} \frac{\partial p}{\partial b_{n}} d \Omega+\int_{\Omega} \dot{F}_{\Omega}^{\tilde{\nu}} \frac{\partial \tilde{\nu}}{\partial b_{n}} d \Omega+\int_{S}\left(\dot{F}_{S}^{v_{i}}+\frac{\partial F_{S_{k}}}{\partial v_{i}} n_{k}\right) \frac{\partial v_{i}}{\partial b_{n}} d S+ \\
& +\int_{S}\left(\dot{F}_{S}^{p}+\frac{\partial F_{S_{i}}}{\partial p} n_{i}\right) \frac{\partial p}{\partial b_{n}} d S+\int_{S}\left(\dot{F}_{S}^{\tilde{\nu}}+\frac{\partial F_{S_{i}}}{\partial \tilde{\nu}} n_{i}\right) \frac{\partial \tilde{\nu}}{\partial b_{n}} d S+\int_{S} \frac{\partial F_{S_{i}}}{\partial \tau_{k j}} \frac{\partial \tau_{k j}}{\partial b_{n}} n_{i} d S+ \\
& +\int_{S} n_{i} \frac{\partial F_{S_{i}}}{\partial x_{k}} \frac{\partial x_{k}}{\partial b_{n}} n_{k} d S+\int_{S} F_{S_{i}} \frac{\partial n_{i}}{\partial b_{n}} d S+\int_{S} F_{S_{i}} n_{i} \frac{\delta(d S)}{\delta b_{n}}+\int_{S} F_{\Omega} n_{k} \frac{\delta x_{k}}{\delta b_{n}} d S \tag{2.39}
\end{align*}
$$

The generalized expression for $\delta F / \delta b_{n}$ presented in eq. (2.39), includes the partial derivatives of the flow variables w.r.t. the design variables. This expression is later specified for the three different objective functions implemented in this thesis. The numerical computation of such derivatives would require the solution of N systems of equations similar to the primal equations. It is, therefore, clearly stated why methods such as the adjoint differentiation are ought to be employed in shape optimization problems, given that they circumvent the costly direct computation of the derivatives in question by solving the adjoint equations.

Force Coefficient

The objective function used to optimize the total force exerted on a certain solid wall boundary of the computational domain can be formulated as a dimensionless coefficient as follows

$$
\begin{equation*}
C_{F}=\frac{\int_{S_{w}} \rho\left(-\tau_{i j} n_{j}+p n_{i}\right) r_{i} d S}{\frac{1}{2} \rho A_{w} U_{\infty}^{2}} \tag{2.40}
\end{equation*}
$$

where p denotes the mean static pressure, ρ the fluid density, v_{i} the mean velocity vector components, $\tau_{i j}$ the stress tensor components and n_{i} the outward pointing unit normal vector components. In addition, r_{i} is the user-defined direction in which the force vector should be projected (e.g. parallel to the farfield velocity to optimize drag), while S_{w} indicates the aforementioned solid wall boundary and A_{w} its respective surface area.

Given that only incompressible fluid flows ($\rho=$ const.) are simulated in this thesis, eq. (2.40) can be simplified as follows

$$
\begin{equation*}
\left.C_{F}\right|_{\text {incomp. }}=\frac{\int_{S_{w}}\left(-\tau_{i j} n_{j}+p n_{i}\right) r_{i} d S}{\frac{1}{2} A_{w} U_{\infty}^{2}} \tag{2.41}
\end{equation*}
$$

Differentiation of the incompressible force objective function (2.41) w.r.t. the design
variable yields

$$
\begin{align*}
& \left.\frac{\delta C_{F}}{\delta b_{n}}\right|_{\text {incomp. }}=\frac{2}{A_{w} U_{\infty}^{2}}\left[\int_{S_{w}} \frac{\partial}{\partial b_{n}}\left(-\tau_{i j} n_{j}+p n_{i}\right) r_{i} d S+\right. \\
& \left.+\int_{S_{w}}\left(-\tau_{i j} n_{j}+p n_{i}\right) \frac{\partial r_{i}}{\partial b_{n}} d S+\int_{S_{w}}\left(-\tau_{i j} n_{j}+p n_{i}\right) r_{i} \frac{\delta(d S)}{\delta b_{n}}\right] \tag{2.42}
\end{align*}
$$

The force projection vector $\vec{r} \in \mathbb{R}^{3}$ is constant, causing the second integral in the RHS of eq. (2.42) to be to zero, because $\partial r_{i} / \partial b_{n}=0$, and it assumes the final form

$$
\begin{align*}
\left.\frac{\delta C_{F}}{\delta b_{n}}\right|_{\text {incomp. }}= & \frac{2}{A_{w} U_{\infty}^{2}}\left[\int_{S_{w}}\left(-n_{j} \frac{\partial \tau_{i j}}{\partial b_{n}}+-\tau_{i j} \frac{\partial n_{j}}{\partial b_{n}}+n_{i} \frac{\partial p}{\partial b_{n}}+p \frac{\partial n_{i}}{\partial b_{n}}\right) r_{i} d S+\right. \\
& \left.+\int_{S_{w}}\left(-\tau_{i j} n_{j}+p n_{i}\right) r_{i} \frac{\delta(d S)}{\delta b_{n}}\right] \tag{2.43}
\end{align*}
$$

Total Pressure Losses

The objective function used to minimize the total pressure losses between two boundaries of the computational domain is given by the expression

$$
\begin{equation*}
F_{P_{t}}=-\int_{S_{I, O}}\left(p+\frac{v_{i}^{2}}{2}\right) v_{j} n_{j} d S \tag{2.44}
\end{equation*}
$$

where v_{i} indicates the mean velocity vector components, whereas the $S_{I, O}$ indicate the inlet and outlet boundaries of the domain, respectively. The units of $F_{P_{t}}$ as defined in eq. (2.44) are m^{5} / s^{3}, thus signifying power losses per units of density.

Differentiation of this objective function w.r.t. the design variable yields

$$
\begin{align*}
\frac{\delta F_{P_{t}}}{\delta b_{n}}= & -\int_{S_{I, O}} \frac{\partial}{\partial b_{n}}\left(p+\frac{v_{i}^{2}}{2}\right) v_{j} n_{j} d S-\int_{S_{I, O}}\left(p+\frac{v_{i}^{2}}{2}\right) \frac{\partial v_{j}}{\partial b_{n}} n_{j} d S- \\
& -\int_{S_{I, O}}\left(p+\frac{v_{i}^{2}}{2}\right) v_{j} \frac{\delta\left(n_{j} d S\right)}{\delta b_{n}} \tag{2.45}
\end{align*}
$$

Given that the boundaries serving as the domain of all surface integrals in eq. (2.45) constitute immovable, non-controlled boundaries during the omptimization process, the third integral of the RHS in the aforementioned eq. is equal to zero, since $\delta\left(n_{j} d S\right) / \delta b_{n}=0$. Therefore, the final form for $\delta F_{P_{t}} / \delta b_{n}$ arises

$$
\begin{equation*}
\frac{\delta F_{P_{t}}}{\delta b_{n}}=-\int_{S_{I, O}} \frac{\partial p}{\partial b_{n}} v_{j} n_{j} d S-\int_{S_{I, O}}\left(v_{i} v_{j}+p+\frac{v_{i}^{2}}{2}\right) \frac{\partial v_{j}}{\partial b_{n}} n_{j} d S \tag{2.46}
\end{equation*}
$$

Velocity Angle

The objective function used to optimize the angle of the velocity vector of a certain boundary of a 2D computational domain is defined as

$$
\begin{equation*}
\alpha=\operatorname{atan}\left(\frac{\int_{S_{O}} v_{2} d S}{\int_{S_{O}} v_{1} d S}\right) \tag{2.47}
\end{equation*}
$$

where S_{O} indicates the immovable outlet boundary of the domain, as used in later simulations. The units of α as defined in eq. (2.47) are radians.

Differentiation of this objective function w.r.t. the design variable yields

$$
\begin{equation*}
\frac{\delta \alpha}{\delta b_{n}}=\frac{\int_{S_{O}} v_{1} d S \cdot \frac{\delta}{\delta b_{n}}\left(\int_{S_{O}} v_{2} d S\right)+\int_{S_{O}} v_{2} d S \cdot \frac{\delta}{\delta b_{n}}\left(\int_{S_{O}} v_{1} d S\right)}{\left(\int_{S_{O}} v_{1} d S\right)^{2}+\left(\int_{S_{O}} v_{2} d S\right)^{2}} \tag{2.48}
\end{equation*}
$$

The surface integrals domain present in 2.48, is a non-controlled boundary and, therefore, it is not affected by the design variables displacement $\left(\delta(d S) / \delta b_{n}=0\right)$, yielding

$$
\begin{equation*}
\frac{\delta}{\delta b_{n}}\left(\int_{S_{O}} v_{j} d S\right)=\int_{S_{O}} \frac{\delta v_{j}}{\delta b_{n}} d S+\int_{S_{O}} v_{j} \frac{\delta(d S)}{\delta b_{n}}=\int_{S_{O}} \frac{\delta v_{j}}{\delta b_{n}} d S, \quad j=1,2 \tag{2.49}
\end{equation*}
$$

According to (2.49), eq. (2.48) becomes

$$
\begin{equation*}
\frac{\delta \alpha}{\delta b_{n}}=\frac{\int_{S_{O}} v_{1} d S \cdot \int_{S_{O}} \frac{\delta v_{2}}{\delta b_{n}} d S+\int_{S_{O}} v_{2} d S \cdot \int_{S_{O}} \frac{\delta v_{1}}{\delta b_{n}} d S}{\left(\int_{S_{O}} v_{1} d S\right)^{2}+\left(\int_{S_{O}} v_{2} d S\right)^{2}} \tag{2.50}
\end{equation*}
$$

2.2.3 Differentiation of the Primal Equations

Now that the expression for the derivatives of the objective function is defined, the partial derivatives of the primal equation w.r.t. the design variables have to be formulated, as dictated by eq. 2.20).

The differentiation of the continuity eq. (2.14a) yields

$$
\begin{equation*}
\frac{\partial R^{p}}{\partial b_{n}}=-\frac{\partial}{\partial x_{j}}\left(\frac{\partial u_{j}}{\partial b_{n}}\right) \tag{2.51}
\end{equation*}
$$

while the respective partial derivative of the momentum eq. 2.14b) assumes the form

$$
\begin{align*}
\frac{\partial R_{i}^{v}}{\partial b_{n}} & =\frac{\partial v_{j}}{\partial b_{n}} \frac{\partial v_{i}}{\partial x_{j}}+v_{j} \frac{\partial}{\partial x_{j}}\left(\frac{\partial v_{i}}{\partial b_{n}}\right)-\frac{\partial}{\partial x_{j}}\left[\left(\nu+\nu_{t}\right) \frac{\partial}{\partial b_{n}}\left(\frac{\partial v_{i}}{\partial x_{j}}+\frac{\partial v_{j}}{\partial x_{i}}\right)\right]- \tag{2.52}\\
& -\frac{\partial}{\partial x_{j}}\left[\frac{\partial \nu_{t}}{\partial b_{n}}\left(\frac{\partial v_{i}}{\partial x_{j}}+\frac{\partial v_{j}}{\partial x_{i}}\right)\right]+\frac{\partial}{\partial x_{i}}\left(\frac{\partial p}{\partial b_{n}}\right), \quad i=1,2,3
\end{align*}
$$

where $\partial \nu_{t} / \partial b_{n}$ can be computed as follows

$$
\begin{equation*}
\frac{\partial \nu_{t}}{\partial b_{n}}=\frac{\partial \nu_{t}}{\partial \widetilde{\nu}} \frac{\partial \widetilde{\nu}}{\partial b_{n}} \text { with } \frac{\partial \nu_{t}}{\partial \widetilde{\nu}}=f_{v_{1}}+\widetilde{\nu} \frac{\partial f_{v_{1}}}{\partial \widetilde{\nu}}=f_{v_{1}}+\frac{3 c_{v_{1}}^{3} \chi^{3}}{\left(\chi^{3}+c_{v_{1}}^{3}\right)^{2}} \tag{2.53}
\end{equation*}
$$

Moreover, the partial derivative of the Spalart-Allmaras turbulence model eq. (2.14c) is formulated as

$$
\begin{align*}
\frac{\delta R^{\widetilde{\nu}}}{\delta b_{n}} & =\frac{\partial \widetilde{\nu}}{\partial x_{j}} \frac{\partial v_{j}}{\partial b_{n}}+v_{j} \frac{\partial}{\partial x_{j}}\left(\frac{\partial \widetilde{\nu}}{\partial b_{n}}\right)-\frac{\partial}{\partial x_{j}}\left[\left(\nu+\frac{\widetilde{\nu}}{\sigma}\right) \frac{\partial}{\partial x_{j}}\left(\frac{\partial \widetilde{\nu}}{\partial b_{n}}\right)\right] \\
& -\frac{1}{\sigma} \frac{\partial}{\partial x_{j}}\left(\frac{\partial \widetilde{\nu}}{\partial b_{n}} \frac{\partial \widetilde{\nu}}{\partial x_{j}}\right)-2 \frac{c_{b 2}}{\sigma} \frac{\partial \widetilde{\nu}}{\partial x_{j}} \frac{\partial}{\partial x_{j}}\left(\frac{\partial \widetilde{\nu}}{\partial b_{n}}\right) \\
& +\widetilde{\nu}\left(-\frac{\partial P}{\partial b_{n}}+\frac{\partial D}{\partial b_{n}}\right)+(-P+D) \frac{\partial \widetilde{\nu}}{\partial b_{n}} \tag{2.54}
\end{align*}
$$

The differentiation of the production and dissipation terms presented in eq. (2.8), yields

$$
\begin{equation*}
-\frac{\partial P}{\partial b_{n}}+\frac{\partial D}{\partial b_{n}}=\mathcal{C}_{\widetilde{\nu}} \frac{\partial \widetilde{\nu}}{\partial b_{n}}+\mathcal{C}_{\Delta} \frac{\partial \Delta}{\partial b_{n}}+\mathcal{C}_{Y} \frac{1}{Y} e_{m j k} \frac{\partial v_{k}}{\partial x_{j}} e_{m l i} \frac{\partial}{\partial b_{n}}\left(\frac{\partial v_{i}}{\partial x_{l}}\right) \tag{2.55}
\end{equation*}
$$

where

$$
\begin{align*}
\mathcal{C}_{Y} & =\left(-c_{b_{1}}-c_{w_{1}} \mathcal{C} \frac{r}{\widetilde{Y}}\right) f_{v_{3}} \tag{2.56}\\
\mathcal{C}_{\Delta} & =-\frac{2}{\Delta^{3}}\left[c_{w_{1}} r \mathcal{C}\left(\Delta^{2}-\frac{\widetilde{\nu} f_{v_{2}}}{\kappa^{2} \widetilde{Y}}\right)+c_{w_{1}} f_{w} \widetilde{\nu}-c_{b_{1}} \frac{f_{v_{2}}}{\kappa^{2}} \widetilde{\nu}\right] \tag{2.57}\\
\mathcal{C}_{\widetilde{\nu}} & =\left(-c_{b_{1}}-c_{w_{1}} \mathcal{C} \frac{r}{\widetilde{Y}}\right)\left(\frac{\partial f_{v_{3}}}{\partial \widetilde{\nu}} Y+\frac{f_{v_{2}}}{\kappa^{2} \Delta^{2}}+\frac{\partial f_{v_{2}}}{\partial \widetilde{\nu}} \frac{\widetilde{\nu}}{\kappa^{2} \Delta^{2}}\right)+c_{w_{1}} \mathcal{C} \frac{r}{\widetilde{\nu}}+c_{w_{1}} \frac{f_{w}}{\Delta^{2}} \tag{2.58}\\
C & =\frac{c_{w_{1}} \widetilde{\nu}^{2}}{\Delta^{2}}\left[1+c_{w_{2}}\left(6 r^{5}-1\right)\right] \frac{c_{w_{3}}^{6}}{g^{6}+c_{w_{3}}^{6}}\left(\frac{1+c_{w_{3}}^{6}}{g^{6}+c_{w_{3}}^{6}}\right)^{1 / 6} \tag{2.59}\\
\frac{\partial f_{v_{2}}}{\partial \widetilde{\nu}} & =-\frac{3}{\nu c_{v_{2}}}\left(1+\frac{\chi}{c_{v_{2}}}\right)^{-4} \tag{2.60}\\
\frac{\partial f_{v_{3}}}{\partial \widetilde{\nu}} & =\frac{1}{c_{v_{2}}}\left(\frac{f_{v_{1}}}{\nu}+\chi \frac{\partial f_{v_{1}}}{\partial \nu}\right)\left[3\left(1+\frac{\chi}{c_{v_{2}}}\right)+\left(\frac{\chi}{c_{v_{2}}}\right)^{2}\right]\left(1+\frac{\chi}{c_{v_{2}}}\right)^{-3} \\
& +\frac{1}{\nu c_{v_{2}}^{2}}\left(1+\chi f_{v_{1}}\right)\left(3+2 \frac{\chi}{c_{v_{2}}}\right) c_{v_{2}}^{2}\left(1+\frac{\chi}{c_{v_{2}}}\right)^{-3} \\
& -3 \frac{\left(1+\chi f_{v_{1}}\right)}{\nu c_{v_{2}}^{2}}\left[3\left(1+\frac{\chi}{c_{v_{2}}}\right)+\left(\frac{\chi}{c_{v_{2}}}\right)^{2}\right]\left(1+\frac{\chi}{c_{v_{2}}}\right)^{-4} \tag{2.61}
\end{align*}
$$

A more thorough analysis of the continuous adjoint equation to the Spalart-Allmaras model can be found in [19], [24].

2.2.4 Field Adjoint Equations and Adjoint Boundary Conditions

By substituting eqs. $2.51,2.52,2.54$ and (2.39) into eq. 2.29 we receive the final expression of the material derivative of the augmented objective function w.r.t. the design variables.

$$
\begin{align*}
\frac{\delta F_{\text {aug }}}{\delta b_{n}} & =\int_{S} \mathcal{B C}_{i}^{u} \frac{\partial v_{i}}{\partial b_{n}} d S+\int_{S} \mathcal{B C}^{p} \frac{\partial p}{\partial b_{n}} d S+\int_{S} \mathcal{B C}^{\widetilde{\nu_{a}}} \frac{\partial \widetilde{\nu}}{\partial b_{n}} d S+\int_{S} \mathcal{B C}^{m_{a}} \frac{\partial}{\partial x_{j}}\left(\frac{\delta x_{i}}{\delta b_{n}}\right) d S \\
& +\int_{S}\left(-u_{i} n_{j}+\frac{\partial F_{S_{k}}}{\partial \tau_{i j}} n_{k}\right) \frac{\partial \tau_{i j}}{\partial b_{n}} d S-\int_{S} \widetilde{\nu_{a}}\left(\nu+\frac{\widetilde{\nu}}{\sigma}\right) \frac{\partial}{\partial b_{n}}\left(\frac{\partial \widetilde{\nu}}{\partial x_{j}}\right) n_{j} d S \\
& +\int_{\Omega} R_{i}^{u} \frac{\partial v_{i}}{\partial b_{n}} d \Omega+\int_{\Omega} R^{q} \frac{\partial p}{\partial b_{n}} d \Omega+\int_{\Omega} R^{\widetilde{\nu_{a}}} \frac{\partial \widetilde{\nu}}{\partial b_{n}} d \Omega+\int_{\Omega} R_{k}^{m^{a}} \frac{\delta x_{k}}{\delta b_{n}} d \Omega \\
& +\int_{S_{W_{p}}} n_{i} \frac{\partial F_{S_{W_{p}, i}}}{\partial x_{m}} n_{m} \frac{\delta x_{k}}{\delta b_{n}} n_{k} d S+\int_{S_{W_{p}}} F_{S_{W_{p}, i}} \frac{\delta n_{i}}{\delta b_{n}} d S+\int_{S_{W_{p}}}^{F_{S_{p}, i}} n_{i} \frac{\delta(d S)}{\delta b_{n}} \\
& -\int_{S_{W_{P}}} \frac{\partial m_{i}^{a}}{\partial x_{j}} n_{j} \frac{\delta x_{i}}{\delta b_{n}} d S+\int_{\Omega} \widetilde{\nu_{a} \mathcal{C}_{\Delta}} \frac{\partial \Delta}{\partial b_{n}} d \Omega+\int_{S} m_{i}^{a} R_{i}^{m} n_{k} \frac{\delta x_{k}}{\delta b_{n}} d S \tag{2.62}
\end{align*}
$$

where

$$
\begin{align*}
\mathcal{B C}_{i}^{u} & =u_{i} v_{j} n_{j}+\left(\nu+\nu_{t}\right)\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right) n_{j}-q n_{i}+\widetilde{\nu_{a}} \widetilde{\nu} \frac{\mathcal{C}_{Y}}{Y} e_{m j k} \frac{\partial v_{k}}{\partial x_{j}} e_{m l i} n_{l} \\
& +\frac{\partial F_{S_{k}}}{\partial v_{i}} n_{k}+\dot{F}_{S, i}^{v} \tag{2.63}\\
\mathcal{B C}^{p} & =u_{j} n_{j}+\frac{\partial F_{S_{i}}}{\partial p} n_{i}+\dot{F}_{S}^{p} \tag{2.64}\\
\mathcal{B C}^{\widetilde{\nu_{a}}} & =\widetilde{\nu_{a}} v_{j} n_{j}+\left(\nu+\frac{\widetilde{\nu}}{\sigma}\right) \frac{\partial \widetilde{\nu_{a}}}{\partial x_{j}} n_{j}-\frac{\widetilde{\nu_{a}}}{\sigma}\left(1+2 c_{b_{2}}\right) \frac{\partial \widetilde{\nu}}{\partial x_{j}} n_{j}+\frac{\partial F_{S_{k}}}{\partial \widetilde{\nu}} n_{k}+\dot{F}_{S}^{\widetilde{\nu}} \tag{2.65}\\
\mathcal{B C}^{m_{a}} & =m_{i}^{a} n_{j} \tag{2.66}
\end{align*}
$$

After setting the multipliers of $\partial v_{i} / \partial b_{n}, \partial p / \partial b_{n}, \partial \widetilde{\nu} / \partial b_{n}$ and $\delta x_{k} / \delta b_{n}$, in the volume integrals of eq. 2.62 to zero, the field adjoint equations are derived.

$$
\begin{align*}
R^{q} & =-\frac{\partial u_{j}}{\partial x_{j}}+\dot{F}_{\Omega}^{p}=0 \tag{2.67}\\
R_{i}^{u} & =u_{j} \frac{\partial v_{j}}{\partial x_{i}}-\frac{\partial\left(v_{j} u_{i}\right)}{\partial x_{j}}-\frac{\partial}{\partial x_{j}}\left[\left(\nu+\nu_{t}\right)\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)\right]+\frac{\partial q}{\partial x_{i}}+\dot{F}_{\Omega, i}^{v} \\
& +\widetilde{\nu_{a}} \frac{\partial \widetilde{\nu}}{\partial x_{i}}-\frac{\partial}{\partial x_{l}}\left(\widetilde{\nu_{a}} \widetilde{\nu} \frac{\mathcal{C}_{Y}}{Y} e_{m j k} \frac{\partial v_{k}}{\partial x_{j}} e_{m l i}\right)=0, i=1,2,3 \tag{2.68}\\
R^{\widetilde{\nu_{a}}} & =-\frac{\partial\left(v_{j} \widetilde{\nu_{a}}\right)}{\partial x_{j}}-\frac{\partial}{\partial x_{j}}\left[\left(\nu+\frac{\widetilde{\nu}}{\sigma}\right) \frac{\partial \widetilde{\nu_{a}}}{\partial x_{j}}\right]+\frac{1}{\sigma} \frac{\partial \widetilde{\nu_{a}}}{\partial x_{j}} \frac{\partial \widetilde{\nu}}{\partial x_{j}}+2 \frac{c_{b 2}}{\sigma} \frac{\partial}{\partial x_{j}}\left(\widetilde{\nu_{a}} \frac{\partial \widetilde{\nu}}{\partial x_{j}}\right) \\
& +\widetilde{\nu_{a}} \widetilde{\nu} \widetilde{\mathcal{C}}_{\widetilde{\nu}}+\frac{\partial \nu_{t}}{\partial \widetilde{\nu}} \frac{\partial u_{i}}{\partial x_{j}}\left(\frac{\partial v_{i}}{\partial x_{j}}+\frac{\partial v_{j}}{\partial x_{i}}\right)+(-P+D) \widetilde{\nu_{a}}+\hat{F}_{\Omega}^{\tilde{\nu}}=0 \tag{2.69}\\
R_{k}^{m^{a}} & =\frac{\partial^{2} m_{k}^{a}}{\partial x_{j}^{2}}+\frac{\partial}{\partial x_{j}}\left\{u_{i} v_{j} \frac{\partial v_{i}}{\partial x_{k}}+u_{j} \frac{\partial p}{\partial x_{k}}+\tau_{i j}^{a} \frac{\partial u_{i}}{\partial x_{k}}-u_{i} \frac{\partial \tau_{i j}}{\partial x_{k}}-q \frac{\partial v_{j}}{\partial x_{k}}\right\}=0 \tag{2.70}
\end{align*}
$$

After satisfying the field adjoint equations, the remaining terms in eq. 2.62 are

$$
\begin{align*}
\frac{\delta F_{\text {aug }}}{\delta b_{n}} & =\int_{S} \mathcal{B C}_{i}^{u} \frac{\partial v_{i}}{\partial b_{n}} d S+\int_{S} \mathcal{B C}^{p} \frac{\partial p}{\partial b_{n}} d S+\int_{S} \mathcal{B C}^{\widetilde{\nu_{a}}} \frac{\partial \widetilde{\nu}}{\partial b_{n}} d S+\int_{S} \mathcal{B C}^{m_{a}} \frac{\partial}{\partial x_{j}}\left(\frac{\delta x_{i}}{\delta b_{n}}\right) d S \\
& +\int_{S}\left(-u_{i} n_{j}+\frac{\partial F_{S_{k}}}{\partial \tau_{i j}} n_{k}\right) \frac{\partial \tau_{i j}}{\partial b_{n}} d S-\int_{S} \widetilde{\nu_{a}}\left(\nu+\frac{\widetilde{\nu}}{\sigma}\right) \frac{\partial}{\partial b_{n}}\left(\frac{\partial \widetilde{\nu}}{\partial x_{j}}\right) n_{j} d S \\
& +\int_{S_{W_{p}}} n_{i} \frac{\partial F_{S_{W_{p}, i}}}{\partial x_{m}} n_{m} \frac{\delta x_{k}}{\delta b_{n}} n_{k} d S+\int_{S_{W_{p}}} F_{S_{W_{p}, i}} \frac{\delta n_{i}}{\delta b_{n}} d S+\int_{S_{W_{p}}} F_{S_{W_{p}, i}} n_{i} \frac{\delta(d S)}{\delta b_{n}} \\
& -\int_{S_{W_{P}}} \frac{\partial m_{i}^{a}}{\partial x_{j}} n_{j} \frac{\delta x_{i}}{\delta b_{n}} d S+\int_{\Omega} \widetilde{\nu} \widetilde{\nu_{a}} \mathcal{C}_{\Delta} \frac{\partial \Delta}{\partial b_{n}} d \Omega+\int_{S} m_{i}^{a} R_{i}^{m} n_{k} \frac{\delta x_{k}}{\delta b_{n}} d S \tag{2.71}
\end{align*}
$$

The system of the field adjoint PDEs is closed with the adjoint boundary conditions. The ABC are imposed aiming to eliminate the surface integrals that contain the partial derivatives of the state variables w.r.t. the design variables, namely the first six and the last integral of eq. 2.71 which contain the surface integrals of $\partial v_{i} / \partial b_{n}$, $\partial p / \partial b_{n}, \partial v_{i} / \partial b_{n}, \partial \widetilde{\nu} / \partial b_{n}, \partial\left(\delta x_{i} / \delta b_{n}\right) / \partial x_{j}, \partial \tau_{i j} / \partial b_{n}, \partial\left(\partial \widetilde{\nu} / \partial x_{j}\right) / \partial b_{n}$ and $\delta x_{i} / \delta b_{n}$. For the sake of completeness these terms are rewritten as follows.

$$
\begin{align*}
& I_{1}=\int_{S} \mathcal{B C}_{i}^{u} \frac{\partial v_{i}}{\partial b_{n}} d S \tag{2.72}\\
& I_{2}=\int_{S} \mathcal{B C}^{p} \frac{\partial p}{\partial b_{n}} d S \tag{2.73}\\
& I_{3}=\int_{S} \mathcal{B C}^{\widetilde{\nu_{a}}} \frac{\partial \widetilde{\nu}}{\partial b_{n}} d S \tag{2.74}\\
& I_{4}=\int_{S} \mathcal{B C}^{m_{a}} \frac{\partial}{\partial x_{j}}\left(\frac{\delta x_{i}}{\delta b_{n}}\right) d S \tag{2.75}\\
& I_{5}=\int_{S}\left(-u_{i} n_{j}+\frac{\partial F_{S_{k}}}{\partial \tau_{i j}} n_{k}\right) \frac{\partial \tau_{i j}}{\partial b_{n}} d S \tag{2.76}\\
& I_{6}=\int_{S} \widetilde{\nu_{a}}\left(\nu+\frac{\widetilde{\nu}}{\sigma}\right) \frac{\partial}{\partial b_{n}}\left(\frac{\partial \widetilde{\nu}}{\partial x_{j}}\right) n_{j} d S \tag{2.77}\\
& I_{7}=\int_{S} m_{i}^{a} R_{i}^{m} n_{k} \frac{\delta x_{k}}{\delta b_{n}} d S \tag{2.78}
\end{align*}
$$

At this point, the final expressions of the adjoint boundary conditions are presented, whereas their detailed derivation can be found in [19]. The adjoint boundary condition of the adjoint gdPDEs is the same for all boundaries, namely $m_{k}^{a}=0$, so that integral I_{4} is eliminated. Also, since $m_{k}^{a}=0$ along all boundaries, integral I_{7}, which is the equivalent of LBterm discussed in 2.2.1, also vanishes in all boundaries.

Inlet Boundaries S_{I}

At the inlet boundaries since Dirichlet boundary conditions are imposed on v_{i} and $\widetilde{\nu}, \delta v_{i} / \delta b_{n}=0$ and $\delta \widetilde{\nu} / \delta b_{n}=0$. Since S_{I} in a non-controlled boundary, $\delta x_{k} / \delta b_{n}=0$ and taking into consideration eq. 2.31, $\partial v_{i} / \partial b_{n}=0$ and $\partial \widetilde{\nu} / \partial b_{n}=0$. This means that $I_{1}=I_{3}=0$.

Integrals I_{2} and I_{5} are eliminated by demanding

$$
\begin{align*}
& u_{\langle n\rangle}=-\frac{\partial F_{S_{I}, j}}{\partial p} n_{j} \tag{2.79a}\\
& u_{\langle t\rangle}^{I}=\frac{\partial F_{S_{I}, k}}{\partial \tau_{i j}} n_{k} t_{i}^{I} n_{j}+\frac{\partial F_{S_{I}, k}}{\partial \tau_{i j}} n_{k} t_{j}^{I} n_{i} \tag{2.79b}\\
& u_{\langle t\rangle}^{I I}=\frac{\partial F_{S_{I}, k}}{\partial \tau_{i j}} n_{k} t_{i}^{I I} n_{j}+\frac{\partial F_{S_{I}, k}}{\partial \tau_{i j}} n_{k} t_{j}^{I I} n_{i} \tag{2.79c}
\end{align*}
$$

where $t_{i}^{I}, t_{i}^{I I}$ are the components of the tangent to the surface unit vectors. The first tangent vector t_{i}^{I} can be defined as an arbitrary unit vector parallel to S_{I}, whereas $t_{i}^{I I}$ forms an orthogonal system with n and t_{i}^{I}. Quantities $u_{\langle t\rangle}^{I}$ and $u_{\langle t\rangle}^{I I}$ are the components of the adjoint velocity in the $t_{i}^{I}, t_{i}^{I I}$ directions respectively. It
should be noted that if F is not defined at the inlet of the computational domain, the adjoint velocity components are zero along S_{I}. Integral I_{6} is zeroed by imposing a zero Dirichlet condition to $\widetilde{\nu_{a}}$, i.e. $\widetilde{\nu_{a}}=0$.

Finally, since no boundary condition for q results from the elimination of any of the seven boundary integrals already discussed, a zero Neumann boundary condition is employed.

Outlet Boundaries S_{O}

At the outlet boundaries since a Dirichlet boundary condition is imposed on p, $\delta p / \delta b_{n}=0$. Since S_{O} is fixed, $\delta x_{k} / \delta b_{n}=0$ and taking into consideration eq. 2.31, $\partial p / \partial b_{n}=0$. As a result, integral I_{2} vanishes automatically. Due to the distance of the outlet boundary from the controlled area, an almost uniform velocity profile can be assumed along S_{O}, meaning that $\delta \tau_{i j} / \delta b_{n}=0$ along S_{O}. Hence, integral I_{5} can be neglected.

In order to eliminate I_{1}, its integrand quantity is set equal to zero, i.e.

$$
\begin{align*}
\mathcal{B C}_{i}^{u} & =u_{i} v_{j} n_{j}+\left(\nu+\nu_{t}\right)\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right) n_{j}-q n_{i}+\widetilde{\nu_{a}} \widetilde{\nu} \frac{\mathcal{C}_{Y}}{Y} e_{m j k} \frac{\partial v_{k}}{\partial x_{j}} e_{m l i} n_{l} \\
& +\frac{\partial F_{S_{k}}}{\partial v_{i}} n_{k}+\dot{F}_{S, i}^{v}=0 \tag{2.80}
\end{align*}
$$

Eq. 2.80, which can be analysed in three scalar equations, $i=1,2,3$, includes four unknown quantities (the adjoint pressure q and the three components of the adjoint velocity u_{i}). Therefore, one of them may take on an arbitrary value. This is chosen to be the normal component of the adjoint velocity $u_{\langle n\rangle}$, on which a zero Neumann boundary condition is imposed. By multiplying equation 2.80 with n_{i} a Dirichlet condition for the adjoint pressure is derived

$$
\begin{align*}
q & =u_{\langle n\rangle} v_{\langle n\rangle}+2\left(\nu+\nu_{t}\right) \frac{\partial u_{\langle n\rangle}}{\partial n}+\frac{\partial F_{S_{O, k}}}{\partial v_{i}} n_{i} n_{k}+\dot{F}_{S_{O, i}}^{v} n_{i} \\
& +\widetilde{\nu_{a}} \widetilde{\nu} \frac{\mathcal{C}_{Y}}{Y} e_{m j k} \frac{\partial v_{k}}{\partial x_{j}} e_{m l i} n_{l} n_{i}=0 \tag{2.81}
\end{align*}
$$

The outlet adjoint tangential velocity is computed by multiplying eq. 2.80 with the tangent to the surface vectors $t_{i}^{l}, l=1,2$.

$$
\begin{align*}
0 & =v_{\langle t\rangle} u_{\langle t\rangle}^{l}+\left(\nu+\nu_{t}\right)\left(\frac{\partial u_{\langle t\rangle}^{l}}{\partial n}+\frac{\partial u_{\langle n\rangle}}{\partial t^{l}}\right)+\frac{\partial F_{S_{O, k}}}{\partial v_{i}} n_{k} t_{i}^{l}+\dot{F}_{S_{O, i}}^{v} t_{i}^{l} \\
& -\widetilde{\nu_{a}} \widetilde{\mathcal{C}_{Y}} \frac{\partial v_{k}}{Y} e_{m j k} \frac{v_{k}}{\partial x_{j}} e_{m z i} n_{z} t_{i}^{l}, l=1,2 \tag{2.82}
\end{align*}
$$

Finally, a Robin-type boundary condition is imposed on $\widetilde{\nu_{a}}$ in order to eliminate integral I_{3}.

$$
\begin{equation*}
B C^{\widetilde{\nu_{a}}}=\widetilde{\nu_{a}} v_{j} n_{j}+\left(\nu+\frac{\widetilde{\nu}}{\sigma}\right) \frac{\partial \widetilde{\nu_{a}}}{\partial x_{j}} n_{j}+\frac{\partial F_{S_{O, k}}}{\partial \widetilde{\nu}} n_{k}+\dot{F}_{S_{O}}^{\widetilde{\nu}}=0 \tag{2.83}
\end{equation*}
$$

It must be noted that term $\frac{\widetilde{\nu_{a}}}{\sigma}\left(1+2 c_{b_{2}}\right) \frac{\partial \widetilde{v}}{\partial x_{j}} n_{j}$ has been eliminated from eq. 2.83 with regards to eq. 2.65 where $B C^{\widetilde{\nu_{a}}}$ was originally defined, because of the zero Neumann boundary condition imposed on $\widetilde{\nu}$ for the outlet boundaries.

Unparameterized Wall Boundaries S_{W}

Since $\widetilde{\nu}$ is equal to zero on the wall boundaries, integral I_{3} vanishes. However, this is not the case for the gradient of $\widetilde{\nu}$ and in order to eliminate integral I_{6} a zero Dirichlet boundary condition imposed on $\widetilde{\nu_{a}}$. The boundary conditions imposed on the adjoint velocity conditions are derived following the same procedure presented for the inlet boundaries. For the sake of completeness these boundary conditions are

$$
\begin{align*}
u_{\langle n\rangle} & =-\frac{\partial F_{S_{W}, j}}{\partial p} n_{j} \tag{2.84a}\\
u_{\langle t\rangle}^{I} & =\frac{\partial F_{S_{W}, k}}{\partial \tau_{i j}} n_{k} t_{i}^{I} n_{j}+\frac{\partial F_{S_{W}, k}}{\partial \tau_{i j}} n_{k} t_{j}^{I} n_{i} \tag{2.84b}\\
u_{\langle t\rangle}^{I I} & =\frac{\partial F_{S_{W}, k}}{\partial \tau_{i j}} n_{k} t_{i}^{I I} n_{j}+\frac{\partial F_{S_{W}, k}}{\partial \tau_{i j}} n_{k} t_{j}^{I I} n_{i} \tag{2.84c}
\end{align*}
$$

Finally, a zero Neumann boundary condition is imposed on q.

Parameterized Wall Boundaries $S_{W_{P}}$

The main difference between parameterized and non-parameterized wall boundaries is the fact that the parameterized boundaries may change during the optimization. Thus, $\delta x_{k} / \delta b_{n} \neq 0$ and the total and partial derivatives of the flow quantities are different and are linked through eq. 2.31. In addition, the total variations in the normal and tangent surface vectors are not zero, contributing extra terms during the formulation of the adjoint boundary conditions [19].

2.2.5 Adjoint to the Distance Equation

After satisfying the field adjoint equations along with their adjoint boundary conditions, eq. 2.71 takes the form of eq. 2.85. To this equation are included some extra terms that arise from the derivation of the adjoint boundary conditions at the controlled
boundaries [19, 25].

$$
\begin{align*}
\frac{\delta F_{a u g}}{\delta b_{n}} & =T_{S D}^{W F}-\int_{S_{W_{p}}} \mathcal{S D}_{1} \frac{\partial \tau_{i j}}{\partial x_{m}} n_{j} t_{i}^{I} n_{m} n_{k} \frac{\delta x_{k}}{\delta b_{n}} d S-\int_{S_{W_{p}}} \mathcal{S}_{1} \tau_{i j} \frac{\delta\left(n_{j} t_{i}^{I}\right)}{\delta b_{n}} \frac{\delta x_{k}}{\delta b_{n}} d S \\
& +\int_{S_{W_{p}}} \mathcal{S D}_{2, i} v_{\langle t\rangle}^{I} \frac{\delta t_{i}^{I}}{\delta b_{n}} d S-\int_{S_{W_{p}}} \mathcal{S D}_{2, i} \frac{\partial v_{i}}{\partial x_{m}} n_{m} n_{k} \frac{\delta x_{k}}{\delta b_{n}} d S \\
& -\int_{S_{W_{p}}}\left[\left(\nu+\frac{\widetilde{\nu}}{\sigma}\right) \frac{\partial \widetilde{\nu_{a}}}{\partial x_{j}} n_{j}+\frac{\partial F_{S_{z}}}{\partial \widetilde{\nu}} n_{z}+\hat{F}_{S}^{\widetilde{\nu}}\right] \frac{\partial \widetilde{\nu}}{\partial x_{m}} n_{m} n_{k} \frac{\delta x_{k}}{\delta b_{n}} d S \\
& -\int_{S_{W_{p}}}\left(-u_{\langle n\rangle}+\phi_{\langle n\rangle\langle n\rangle}\right)\left(\tau_{i j} \frac{\delta\left(n_{i} n_{j}\right)}{\delta b_{n}}+\frac{\partial \tau_{i j}}{\partial x_{m}} n_{m} \frac{\delta x_{k}}{\delta b_{n}} n_{k} n_{i} n_{j}\right) d S \\
& -\int_{S_{W_{p}}} \phi_{\left\langle t^{I}\right\rangle\left\langle t^{I}\right\rangle}\left(\tau_{i j} \frac{\delta\left(t_{t}^{I} t_{j}^{I}\right)}{\delta b_{n}}+\frac{\partial \tau_{i j}}{\partial x_{m}} n_{m} \frac{\delta x_{k}}{\delta b_{n}} n_{k} t_{i}^{I} t_{j}^{I}\right) d S \\
& \left.-\int_{S_{W_{p}}} \phi_{\left\langle t^{I I}\right\rangle\left\langle t^{I}\right\rangle}+\phi_{\left\langle t^{I}\right\rangle\left\langle t^{I I}\right\rangle}\right)\left(\tau_{i j} \frac{\delta\left(t_{i}^{I I} t_{j}^{I}\right)}{\delta b_{n}}+\frac{\partial \tau_{i j}}{\partial x_{m}} n_{m} \frac{\delta x_{k}}{\delta b_{n}} n_{k} t_{i}^{I I} t_{j}^{I}\right) d S \\
& -\int_{S_{W_{p}}} \phi_{\left\langle t^{I I}\right\rangle\left\langle t^{I I}\right\rangle}\left(\tau_{i j} \frac{\delta\left(t_{i}^{I I} t_{j}^{I I}\right)}{\delta b_{n}}+\frac{\partial \tau_{i j}}{\partial x_{m}} n_{m} \frac{\delta x_{k}}{\delta b_{n}} n_{k} t_{i}^{I I} t_{j}^{I I}\right) d S \\
& +\int_{S_{W_{p}}} n_{i} \frac{\partial F_{S_{W_{p}, i}}}{\partial x_{m}} n_{m} \frac{\delta x_{k}}{\delta b_{n}} n_{k} d S+\int_{S_{W_{p}}} F_{S_{W_{p}, i}} \frac{\delta n_{i}}{\delta b_{n}} d S+\int_{S_{W_{p}}}^{F_{S_{W_{p}, i}} n_{i} \frac{\delta(d S)}{\delta b_{n}}} \\
& -\int_{S_{W_{P}}} \frac{\partial m_{i}^{a}}{\partial x_{j}} n_{j} \frac{\delta x_{i}}{\delta b_{n}} d S+\int_{S_{W_{p}}}^{\mathcal{A}_{\Delta}} \frac{\partial \Delta^{P}}{\partial b_{n}} d S+\int_{S_{W}} \mathcal{A}_{\Delta}^{W F} \frac{\partial \Delta^{P}}{\partial b_{n}} d S \\
& +\int_{\Omega} \widetilde{\nu} \widetilde{\nu}_{a} \mathcal{C}_{\Delta} \frac{\partial \Delta}{\partial b_{n}} d \Omega \tag{2.85}
\end{align*}
$$

where

$$
\begin{align*}
\mathcal{S D}_{1} & =-u_{\langle t\rangle}^{I}+\phi_{\left\langle t^{I}\right\rangle\langle n\rangle}+\phi_{\langle n\rangle\left\langle t{ }^{I}\right\rangle} \tag{2.86}\\
\mathcal{S D}_{2, i} & =\left(\nu+\nu_{t}\right)\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right) n_{j}-q n_{i}+\frac{\partial F_{S_{W_{p}, k}}}{\partial v_{i}} n_{k}+\dot{F}_{S_{W_{p}, i}}^{v} \tag{2.87}\\
\phi_{i j} & =\frac{\partial F_{S_{W_{p}, k}}}{\partial \tau_{i j}} n_{k} \tag{2.88}
\end{align*}
$$

$T_{S D}^{W F}, \int_{S_{W_{P}}} \mathcal{A}_{\Delta}^{W F} \frac{\partial \Delta^{P}}{\partial b_{n}} d S$ and $\int_{S_{W}} \mathcal{A}_{\Delta}^{W F} \frac{\partial \Delta^{P}}{\partial b_{n}} d S$ summarize the contribution of the wall functions differentiation to the sensitivity derivatives [26]. As can be seen, all but the last term of eq. 2.85 are surface integrals, which can be computed at a cost that is, practically, negligible when compared to the solution of the primal or the adjoint equations. However, this is not the case for the last field integral which contains the distance variation for the entire domain w.r.t. the design variables. The simplest way to compute this variation is through finite differences, i.e. by perturbating each of the design variables by an infinitesimally small quantity ϵ in the positive and negative directions and re-computing nodal distances for the entire domain. Then, the total distance variation would be

$$
\begin{equation*}
\frac{\delta \Delta}{\delta b_{n}}=\frac{\Delta\left(b_{n}+\epsilon\right)-\Delta\left(b_{n}-\epsilon\right)}{2 \epsilon} \tag{2.89}
\end{equation*}
$$

Having computed the total distance variation, the partial variation of Δ appearing in the last field integral of 2.85 can be calculated through eq. 2.30 as follows

$$
\frac{\partial \Delta}{\partial b_{n}}=\frac{\delta \Delta}{\delta b_{n}}-\frac{\partial \Delta}{\partial x_{k}} \frac{\delta x_{k}}{\delta b_{n}}
$$

Nevertheless, the finite differences method has the same issues as the ones described in the introduction of this diploma thesis, namely the requirement to make 2 N computations of the distance field (for instance by an exhaustive search of all cell centers with all boundary faces) and the sensitivity of the result from the value of ϵ.

An alternative and more cost-effective way to deal with $\partial \Delta / \partial b_{n}$ is to apply the adjoint methodology in order to eliminate the term containing this variation. There are various PDEs that can be used to compute the distances field Δ. Hamilton-Jacobi equation has shown to produce a very good approximation to the Euclidean distance field and to be numerically robust [19, 27]. Hamilton-Jacobi equation reads

$$
\begin{equation*}
R^{\Delta}=\frac{\partial\left(c_{j} \Delta\right)}{\partial x_{j}}-\Delta \frac{\partial^{2} \Delta}{\partial x_{j}^{2}}-1=0 \tag{2.90}
\end{equation*}
$$

where $c_{j}=\partial \Delta / \partial x_{j}$. The boundary conditions of eq. 2.90 consist of a zero Dirichlet condition for the solid wall boundaries and $\frac{\partial \Delta}{\partial x_{i}} n_{i}=1$ for the rest of the domain boundaries. This equation can be viewed as an additional primal PDE to be solved,
meaning that it should be added to the augmented objective function, eq. 2.26 which now becomes

$$
\begin{equation*}
F_{\text {aug }}=\underbrace{F+\int_{\Omega} u_{i} R_{i}^{v} d \Omega+\int_{\Omega} q R^{p} d \Omega+\int_{\Omega} \widetilde{\nu}_{a} R^{\tilde{\nu}} d \Omega+\int_{\Omega} m_{i}^{a} R_{i}^{m} d \Omega}_{T_{1}}+\underbrace{\int_{\Omega} \Delta_{\alpha} R^{\Delta} d \Omega}_{T_{2}} \tag{2.91}
\end{equation*}
$$

where Δ_{α} is the adjoint to the distance field variable. The differentiation of $F_{\text {aug }}$ follows the same methodology presented in section 2.2.1. We have

$$
\begin{equation*}
\frac{\delta F_{\text {aug }}}{\delta b_{n}}=\frac{\delta T_{1}}{\delta b_{n}}+\frac{\delta T_{2}}{\delta b_{n}} \tag{2.92}
\end{equation*}
$$

The development of $\delta T_{1} / \delta b_{n}$ led to eq. 2.85, $\delta T_{2} / \delta b_{n}$ is developed using the Leibniz theorem, as follows

$$
\begin{equation*}
\frac{\delta T_{2}}{\delta b_{n}}=\frac{\delta}{\delta b_{n}} \int_{\Omega} \Delta_{a} R^{\Delta} d \Omega=\int_{\Omega} \Delta_{a} \frac{\partial R^{\Delta}}{\partial b_{n}} d \Omega+\int_{S_{W_{p}}}^{\Delta_{a}} R^{\Delta} n_{k} \frac{\delta x_{k}}{\delta b_{n}} d S \tag{2.93}
\end{equation*}
$$

After differentiating the Hamilton-Jacobi equation and substituting the result in eq. 2.93, we receive

$$
\begin{equation*}
\frac{\delta T_{2}}{\delta b_{n}}=\int_{S} 2 \Delta_{a} \frac{\partial \Delta}{\partial x_{j}} n_{j} \frac{\partial \Delta}{\partial b_{n}} d S+\int_{S_{W_{p}}} \Delta_{a} R^{\Delta} n_{k} \frac{\delta x_{k}}{\delta b_{n}} d S-\int_{\Omega} 2 \frac{\partial}{\partial x_{j}}\left(\Delta_{a} \frac{\partial \Delta}{\partial x_{j}}\right) \frac{\partial \Delta}{\partial b_{n}} d \Omega \tag{2.94}
\end{equation*}
$$

By integrating eq. 2.94 into 2.85, the expression where the multiplier of $\partial \Delta / \partial b_{n}$ in the resulting volume integrals should be set to zero, is derived. Thus, the adjoint to the distance field equation is derived

$$
\begin{equation*}
R^{\Delta_{\alpha}}=-2 \frac{\partial}{\partial x_{j}}\left(\Delta_{\alpha} \frac{\partial \Delta}{\partial x_{j}}\right)+\widetilde{\nu} \widetilde{\nu}_{a} C_{\Delta}=0 \tag{2.95}
\end{equation*}
$$

where the first of the terms in the RHS of eq. 2.95 is contributed by the differentiation of the Hamilton-Jacobi equation 2.90, whereas the second one from the differentiation of the Spalart-Allmaras equation.

Having satisfied the field adjoint distance equation along with the proper boundary condition [25], the terms that should be added to the sensitivity derivatives expression replacing the last field integral $\int_{\Omega} \widetilde{\nu} \widetilde{\nu}_{a} \mathcal{C}_{\Delta} \frac{\partial \Delta}{\partial b_{n}} d \Omega$ of equation 2.85 are

$$
\begin{equation*}
\int_{\Omega} \widetilde{\nu} \widetilde{\nu}_{a} \mathcal{C}_{\Delta} \frac{\partial \Delta}{\partial b_{n}} d \Omega=\int_{S_{W_{p}}} \Delta_{a} R^{\Delta} n_{k} \frac{\delta x_{k}}{\delta b_{n}} d S-\int_{S_{W_{p}}} 2 \Delta_{a} \frac{\partial \Delta}{\partial x_{j}} n_{j} \frac{\partial \Delta}{\partial x_{m}} n_{m} n_{k} \frac{\delta x_{k}}{\delta b_{n}} d S \tag{2.96}
\end{equation*}
$$

2.2.6 Final Expression of the Sensitivity Derivatives

Taking everything into consideration, the final expression for the sensitivity derivatives reads

$$
\begin{align*}
& \frac{\delta F_{\text {aug }}}{\delta b_{n}}=T_{S D}^{W F}-\int_{S_{W_{p}}} \mathcal{S}_{1} \frac{\partial \tau_{i j}}{\partial x_{m}} n_{j} t_{i}^{I} n_{m} n_{k} \frac{\delta x_{k}}{\delta b_{n}} d S-\int_{S_{W_{p}}} \mathcal{S}_{1} \tau_{i j} \frac{\delta\left(n_{j} t_{i}^{I}\right)}{\delta b_{n}} \frac{\delta x_{k}}{\delta b_{n}} d S \\
& +\int_{S_{W_{p}}} \mathcal{S D}_{2, i} v_{\langle t\rangle}^{I} \frac{\delta t_{i}^{I}}{\delta b_{n}} d S-\int_{S_{W_{p}}} \mathcal{S D}_{2, i} \frac{\partial v_{i}}{\partial x_{m}} n_{m} n_{k} \frac{\delta x_{k}}{\delta b_{n}} d S \\
& -\int_{S_{W_{p}}}\left[\left(\nu+\frac{\widetilde{\nu}}{\sigma}\right) \frac{\partial \widetilde{\nu_{a}}}{\partial x_{j}} n_{j}+\frac{\partial F_{S_{z}}}{\partial \widetilde{\nu}} n_{z}+\dot{F}_{S}\right] \frac{\partial \widetilde{\nu}}{\partial x_{m}} n_{m} n_{k} \frac{\delta x_{k}}{\delta b_{n}} d S \\
& -\int_{S_{W_{p}}}\left(-u_{\langle n\rangle}+\phi_{\langle n\rangle\langle n\rangle}\right)\left(\tau_{i j} \frac{\delta\left(n_{i} n_{j}\right)}{\delta b_{n}}+\frac{\partial \tau_{i j}}{\partial x_{m}} n_{m} \frac{\delta x_{k}}{\delta b_{n}} n_{k} n_{i} n_{j}\right) d S \\
& -\int_{S_{W_{p}}} \phi_{\left\langle t^{I}\right\rangle\left\langle t^{I}\right\rangle}\left(\tau_{i j} \frac{\delta\left(t_{i}^{I} t_{j}^{I}\right)}{\delta b_{n}}+\frac{\partial \tau_{i j}}{\partial x_{m}} n_{m} \frac{\delta x_{k}}{\delta b_{n}} n_{k} t_{i}^{I} I_{j}^{I}\right) d S \\
& -\int_{S_{W_{p}}}\left(\phi_{\left\langle t^{I I}\right\rangle\left\langle t^{I}\right\rangle}+\phi_{\left\langle t^{I}\right\rangle\left\langle t^{I I\rangle}\right\rangle}\right)\left(\tau_{i j} \frac{\delta\left(t_{i}^{I I} t_{j}^{I}\right)}{\delta b_{n}}+\frac{\partial \tau_{i j}}{\partial x_{m}} n_{m} \frac{\delta x_{k}}{\delta b_{n}} n_{k} t_{i}^{I I} t_{j}^{I}\right) d S \\
& -\int_{S_{W_{p}}} \phi_{\left\langle t^{I I}\right\rangle\left\langle t^{I I}\right\rangle}\left(\tau_{i j} \frac{\delta\left(t_{i}^{I I} t_{j}^{I I}\right)}{\delta b_{n}}+\frac{\partial \tau_{i j}}{\partial x_{m}} n_{m} \frac{\delta x_{k}}{\delta b_{n}} n_{k} t_{i}^{I t} t_{j}^{I I}\right) d S \\
& +\int_{S_{W_{p}}} n_{i} \frac{\partial F_{S_{W_{p}, i}}}{\partial x_{m}} n_{m} \frac{\delta x_{k}}{\delta b_{n}} n_{k} d S+\int_{S_{W_{p}}} F_{S_{W_{p}, i}} \frac{\delta n_{i}}{\delta b_{n}} d S+\int_{S_{W_{p}}} F_{S_{W_{p}, i}} n_{i} \frac{\delta(d S)}{\delta b_{n}} \\
& -\int_{S_{W_{P}}} \frac{\partial m_{i}^{a}}{\partial x_{j}} n_{j} \frac{\delta x_{i}}{\delta b_{n}} d S+\int_{S_{W_{p}}} \mathcal{A}_{\Delta}^{W F} \frac{\partial \Delta^{P}}{\partial b_{n}} d S+\int_{S_{W}} \mathcal{A}_{\Delta}^{W F} \frac{\partial \Delta^{P}}{\partial b_{n}} d S \\
& +\int_{S_{W_{p}}}^{\Delta_{a}} R^{\Delta} n_{k} \frac{\delta x_{k}}{\delta b_{n}} d S-\int_{S_{W_{p}}} 2 \Delta_{a} \frac{\partial \Delta}{\partial x_{j}} n_{j} \frac{\partial \Delta}{\partial x_{m}} n_{m} n_{k} \frac{\delta x_{k}}{\delta b_{n}} d S \tag{2.97}
\end{align*}
$$

2.3 Mesh Parameterization and Movement

In GBM shape optimization, once the SDs of a certain objective function are computed and can be utilized to improve the current geometry, so as to improve the performance of the geometry w.r.t. the current objective function. In GBM robust design shape optimization cases, the robust SDs of a certain QoI are computed through either a stochastic or a deterministic uncertainty quantification method and, then, in the same manner, the geometry in question is updated according the robust SDs, leading to a more robust performance w.r.t. to the selected QoI. In order for this process to take place, a mesh movement tool must be employed, with the ability to accurately morph the nodes of the meshed geometry towards the direction dictated by the respective SDs (robust or not). In order to accomplish this task, the computational grid can either be re-meshed according to the updated geometry or
it can be deformed in the area affected by the new geometry. Due to the fact, that later option yields by far a lower computational cost, especially when it comes to complicated 2 D meshes, it is most often preferred.

In this thesis, the only method used both parameterize and to morph the mesh around the to-be optimized shape are the volumetric B-Splines [28], integrated into the OpenFOAM ${ }^{\circledR}$ code in conjunction with the continuous adjoint solver by PCOpt/NTUA.

2.3.1 Volumetric B-Splines

For the parameterization of a specific part of the computational mesh that includes the shape to-be optimized, the user defines a 3D structured control grid a.k.a. control or morphing box. The box is defined by defining the Cartesian coordinates $b_{m}^{i j k}, m \in[1,3], i \in[0, I], j \in[1, J], k \in[1, K]$ of the ijk-th control point, as well as the number I, J, K of control points per grid direction.

The Cartesian coordinates $\vec{x}=\left[x_{1}, x_{2}, x_{3}\right]^{T}=[x, y, z]^{T}$ of the computational mesh points within the aforementioned control box are defined as

$$
\begin{equation*}
x_{m}(u, v, w)=U_{i, p u} V_{j, p v} W_{k, p w} b_{m}^{i j k}, \quad m=1,2,3 \tag{2.98}
\end{equation*}
$$

where U, V, W indicate the B-Splines basis polynomial functions, $p u, p v, p w$ their respective degrees and $\vec{u}=\left[u_{1}, u_{2}, u_{3}\right]^{T}=[u, v, w]^{T}$ the mesh point parametric coordinates.

Once the parametric coordinates vector \vec{u} are known, the computation of the Cartesian coordinates vector \vec{x} of any parameterized flow field mesh point is effortless and can be conducted at a negligible computational cost. In order to accurately compute the mesh parametric coordinates a mapping form $\mathbb{R}^{3}(x, y, z) \rightarrow \mathbb{R}^{3}(u, v, w)$ is needed, thus allowing the volumetric B-Splines to reproduce any geometry with machine accuracy [28]. Therefore, the parametric coordinates (u, v, w) of a said point with Cartesian coordinates $\vec{r}=\left[x_{r}, y_{r}, z_{r}\right]^{T}$ can be computed by solving the system (2.99), as long as the user-defined control points, knot vectors and basis function degrees are known.

$$
\mathbf{R}(u, v, w)=\left[\begin{array}{l}
x(u, v, m)-x_{r}=0 \tag{2.99}\\
y(u, v, m)-y_{r}=0 \\
z(u, v, m)-z_{r}=0
\end{array}\right]
$$

where $x_{m}(u, v, w)$ are computed by utilizing eq. (2.98), based on the given $b_{m}^{i j k}$ control points coordinates. The 3 x 3 system of eq. 2.99) can be solved independently for each and every parameterized mesh point through the Newton-Raphson method, once the Jacobian matrix $\partial x_{m} / \partial u_{j}, m, j=1,2,3$ is computed and inverted. The Jacobian is computed analytically through a closed form expression resulting by differentiating eq. (2.98) w.r.t. the components of \vec{u}.

The aforementioned process must be performed only once at the beginning of the optimization loop, justifying the name "training phase" of the method. Then, once the displacement of the control points $\partial \vec{b}^{i j k}$ is defined (either through the SDs or the robust SDs), the Cartesian coordinates of each computational mesh point that resides within the morphing box can be inexpensively computed through th use of eq. (2.98).

2.4 The SIMPLE Finite Volume Method

The numerical solution of the primal and the adjoint problem, as thoroughly presented in the respective Subsections 2.1 and 2.2, is performed by employing the SIMPLE pressure based method [29. First proposed by B. Spalding and S. Patankar in the early 1970s, it is nowadays a generalized and widespread finite volume algorithm, finding application in a variety of CFD cases. The algorithm, culminates to a numerical solution for the NS-Spalart-Allmaras equations by iterating the following steps:

1. Initialization of the pressure field p^{*}.
2. Computation of the uncorrected velocity \vec{v}^{*} and Spalart-Allmaras variable fields $\widetilde{\nu}^{*}$ through the solution of the discretized momentum and Spalart-Allmaras equations.
3. Computation of the uncorrected mass fluxes at cell faces.
4. Computation of the pressure-based correction.
5. Computation of the corrected pressure p with the selected under-relaxation factor.
6. Correction of the face mass fluxes.
7. Correction of the velocity \vec{v} and $\widetilde{\nu}$ fields from their uncorrected field values \vec{v}^{*} and $\widetilde{\nu}^{*}$ by implementing the velocity correction formulas.
8. Reiteration of process by assuming the corrected pressure field p to be the new initial pressure field p^{*}.

The same algorithmic steps can be implemented for the solution of the adjoint system, where the aforementioned flow variables are switched to their respective adjoints.

The iterative process comes to end once the predefined convergence criterion is met or when the maximum number of iteration is reached. The convergence criterion, being the residual between the old and renewed value of the flow variable, is to be selected so as not to compromise the final solution's accuracy. For the version of the SIMPLE algorithm available in OpenFOAM ${ }^{\circledR}$ a maximum convergence criterion to
achieve a trustworthy result is equal to 10^{-6}.
The convergence process may be complicated by several factors such as the density of mesh not being sufficient in areas with steep velocity gradients or the discretisation schemes used for the NS equations. Another parameter greatly affecting the convergence are the under-relaxation factors. These are weights used to conduct a linear interpolation between the old and the renewed values of the field variables. Their values practically vary between 0.25 to 0.8 . The greater the under-relaxation factor the quicker the convergence, yet the lesser the error stability. Meaning that a selection of a high relaxation factor may backfire, by causing an instability to occur in some, if not all, of the flow variable's residuals.

An integral part in the SIMPLE algorithm, is the discretization schemes of the primal or adjoint field equations. More about this topic can be found in [29], for it is not covered in this thesis.

Chapter 3

Stochastic Uncertainty Quantification Methods

In this chapter the two stochastic methods of UQ, utilized in this diploma thesis, are presented and explained. The first, Monte Carlo (MC) being the easiest in implementation and yet the most costly, is mostly used to verify the results of the faster and more robust second method, the non-intrusive Polynomial Chaos Expansion (niPCE), in later stages of this thesis. Other deterministic UQ methods, such as the Method of Moments [19], [3], [4] are not explored in the present thesis.

3.1 Monte Carlo

The MC method [5], [6], being the most typical and straightforward stochastic UQ method, is based on the seemingly simple concept that if an exceedingly large variety of inputs values are given to the uncertain variables of a problem then the statistical moments of each exited QoI will converge towards their real statistical moments. Therefore, the larger the stochastic input pool for the uncertain variables, the more accurate the prediction. The values of the input pool are computed through the use of random number generators, following the predetermined distribution if the uncertain variables.

In CFD-based UQ as well as RDO cases, this method is rarely used due to the several thousands of replicates often needed for the method to produce accurate results. Consequently, the employment of such a method nested into a greater optimization loop is mostly considered unacceptable, due to its great computational cost. Especially, for this thesis, the implementation of the MC method nested into an RDO loop, utilizing the adjoint GBM to compute the SDs, signifies that each optimization step requires the numerical solution of the primal and the adjoint (also measured in two EFS) problems multiple thousands of times, thus mitigating the advantage of the adjoint method. This is mainly the reason for which the MC
method is only used for the UQ results verification.

3.2 Polynomial Chaos Expansion

The Polynomial Chaos expansion (PCE) was first proposed by N. Wiener in 1938 [30], then only encompassing uncertain variables following a normal distribution through the use of orthogonal Hermite polynomials. However, D. Xiu and G. E. Karniadakis [7] developed the generalized Polynomial Chaos theory, based on the Wiener-Askey approach [31] on the generalization of the orthogonal polynomials. The method today can be implemented for uncertain variables following any known statistical distribution. Yet, in the current diploma thesis, since the PCE is applied in conjunction with the DFSS approach, thus accepting a normal distribution for the uncertain variables of the RDO problem, only the initial Hermite polynomials are employed.

In general two methods of implementing the PCE exist, the intrusive (iPCE) and non-intrusive methods [8]. For the first, the expansion is applied on the inputs and the outputs of the case in question, thus generating a new set of governing PDEs, an boundary conditions. Therefore, these inputs and outputs are modeled as polynomials of order k. It is clear that this method lacks the ability to be generalized, given that for different cases, chaos order k and uncertain variables the governing equations are altered and with them, their solution approach, be it either analytical or numerical. In contrast, the niPCE methods produce a finite number of sample values for the uncertain variables of the case under consideration for which the case's governing equations should be solved, a process a.k.a. sampling. Consequently, the governing PDEs and governing conditions are treated as a black box. Especially for CFD-based UQ or RDO the NS equations are solved independently, for all the value-sets of the uncertain variables designated by the niPCE method. Nevertheless, it is implied that the computational cost, w.r.t. the clock-time, of niPCE methods scales with the number of sampling flow evaluations, dictated by them.

To conclude, the main drawback of niPCE methods, when compared with the intrusive ones, is their much higher computational cost due to the need for multiple evaluations. Yet, niPCE methods are de facto generalized due to their decoupled nature from the case in question, avoiding the painstaking ad-hoc implementation of their iPCE counterparts. Consequently, the same non-intrusive approach is employed in this thesis, on two different RDO scenarios.

3.3 1D non-intrusive PCE

According to the Polynomial Chaos Expansion theory, a function $F=F(x) \in \mathbb{R}$ (referred to as the QoI of the case under consideration) with $x \in \mathbb{R}$ being an uncertain variable following a specified stochastic distribution, can be expanded through an appropriate series of polynomials. This expansion offers the potential to analytically compute the statistical moments of the QoI F, by selecting a suitable cut-off point for it. The computation of the first and the second statistical moments, a.k.a. the mean value and standard deviation of the QoI are of interest in most cases.

Assuming an uncertain variable x distributed according to a probability density function $w(x)$ and $\mathcal{P}=\left\{p_{0}(x), p_{1}(x), \ldots, p_{i}(x), \ldots\right\}$ a family of polynomials p_{i}, with i the maximum rank of each polynomial, respectively. In accordance with the PCE theory, $F(x)$ can approximated by a different function $f(x)$ with the same stochastic input x, defined as a linear combination of the polynomials belonging in \mathcal{P} :

$$
\begin{equation*}
F(x) \cong f(x):=\sum_{i=0}^{\infty} a_{i} p_{i}(x) \tag{3.1}
\end{equation*}
$$

where $a_{i} \in \mathbb{R}$ and $f: \mathbb{R} \longrightarrow Y \subseteq \mathbb{R}$.
The n-th statistical moment of the set Y can be computed as

$$
\begin{align*}
& \left\langle y^{n}\right\rangle=\int_{D}(f(x))^{n} w(x) d x=\int_{D}\left(\sum_{i=0}^{\infty} a_{i} p_{i}\right)^{n} w(x) d x \tag{3.2}\\
& \Rightarrow\left\langle y^{n}\right\rangle=\sum_{i_{1}=0}^{\infty} \cdots \sum_{i_{n}=0}^{\infty} a_{i_{1}} \cdots a_{i_{n}} \int_{D} p_{i_{1}} \cdots p_{i_{n}} w(x) d x
\end{align*}
$$

The aforementioned integrals, though complex, can be solved analytically due to their polynomial nature. Hence, theoretically every statistical moment of a function F can be calculated. However, equation (3.2) can be simplified by defining \mathcal{P} as a specific family of polynomials, known as orthogonal polynomials [32].

3.3.1 Orthogonal Polynomials

The most important feature of orthogonal polynomials is that the inner product (Galerkin projection) of whichever two polynomials $\left(p_{i}(x)\right)$ of the same family \mathcal{P}, with their corresponding weight function $w(x)$ within their domain D, is equal to zero, unless the two aforementioned polynomials are identical. This property, is depicted as

$$
\begin{equation*}
\left\langle p_{i}(x), p_{j}(x)\right\rangle_{w}=\int_{D} p_{i}(x) p_{j}(x) w(x) d x=\left\langle p_{i}(x), p_{j}(x)\right\rangle_{w} \delta_{i}^{j} \tag{3.3}
\end{equation*}
$$

where δ_{i}^{j} is the Kronecker Delta. The definition (3.3) greatly facilitates the solution of equation (3.2).

In case $i=j$, the inner product (3.3) assumes the form of the w-norm of polynomial $p_{i}(x)$, as depicted below

$$
\begin{equation*}
\left\langle p_{i}(x), p_{j}(x)\right\rangle_{w}=\left\|p_{i}(x)\right\|_{w}^{2}=\gamma_{i} \tag{3.4}
\end{equation*}
$$

where the square root of the new variable $\sqrt{\gamma_{i}}$, signifies the normality metric of the p_{i} polynomial. This parameter is not necessarily equal to 1 though, when it is, the orthogonal polynomial family is defined as canonical.

A common characteristic of all the various stochastic distributions and their corresponding families of orthogonal polynomial p_{n}, is that their first (zero degree) polynomial is $p_{0}(x)=1, \quad \forall w(x)$.

Each stochastic distribution corresponds to a specific family of orthogonal polynomials $p_{n}(x)$, each defined in a certain domain $x \in D$ and with a certain probability density function $w(x)$. For example, the normal distribution, used exclusively in this thesis, is associated with by the Hermite polynomial family $H e_{n}(x)$, defined in the domain $D=(-\infty,+\infty)$. Also, the probability density function of a single uncertain variable following a normal distribution with a mean value μ and a standard deviation σ, is given

$$
\begin{equation*}
\mathcal{N}\left(\mu, \sigma^{2}\right): w(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} \tag{3.5}
\end{equation*}
$$

3.3.2 1st and 2nd Statistical Moments

In order to calculate the first statistical moment, a.k.a. the mean value $\left(\mu_{F}\right)$ or expectation $(\mathbb{E}(F)$), equation (3.2) is displayed for $n=1$

$$
\begin{equation*}
\mu_{F}=\mathbb{E}(F)=\left\langle y^{1}\right\rangle=\sum_{i_{1}=0}^{\infty} a_{i_{1}} \int_{D} p_{i_{1}} w(x) d x=\sum_{i=0}^{\infty} a_{i} \int_{D} p_{i} w(x) d x \tag{3.6}
\end{equation*}
$$

The convenience of orthogonal polynomials stems from the following property, according to which the computation of any statistical moment (3.2), can be greatly simplified $\forall i>0$

$$
\begin{equation*}
\int_{D} p_{i}(x) w(x) d x=\int_{D} p_{i}(x) \cdot 1 \cdot w(x) d x=\left\langle p_{i}(x), p_{0}(x)\right\rangle_{w} \delta_{i}^{0}=0 \tag{3.7}
\end{equation*}
$$

Furthermore, given that $\int_{D} w(x) d x=1$, by taking into account that the total possibility of any distribution is equal to 1 as well as $p_{0}(x)=1$, eq. (3.6) assumes
the form

$$
\begin{equation*}
\mu_{F}=a_{0} \int_{D} p_{0} w(x) d x+\sum_{i=1}^{\infty} a_{i} \int_{D} p_{i} w(x) d x=a_{0} \tag{3.8}
\end{equation*}
$$

The second statistical moment, a.k.a. the variance (var()), can be computed as

$$
\begin{equation*}
\operatorname{var}(F)=\left\langle y^{2}\right\rangle-\mu_{F}^{2} \tag{3.9}
\end{equation*}
$$

while the standard deviation (σ), being the square root of the variance, is defined as

$$
\begin{equation*}
\sigma_{F}=\sqrt{\operatorname{var}(F)}=\sqrt{\left\langle y^{2}\right\rangle-\mu_{F}^{2}} \tag{3.10}
\end{equation*}
$$

According to the PCE theory, $\left\langle y^{2}\right\rangle$ is given by

$$
\begin{equation*}
\left\langle y^{2}\right\rangle=\sum_{i_{1}=0}^{\infty} \sum_{i_{2}=0}^{\infty} a_{i_{1}} a_{i_{2}} \int_{D} p_{i_{1}} p_{i_{2}} w(x) d x \tag{3.11}
\end{equation*}
$$

By using the orthogonality properties described in eqs. (3.3) and (3.4), eq. is simplified as

$$
\left\langle y^{2}\right\rangle=\sum_{i=0}^{\infty} a_{i}^{2} \int_{D} p_{i}^{2} w(x) d x=a_{i}^{2} \gamma_{i}
$$

The γ_{i} parameter can be further simplified through the use of canonical orthogonal polynomial families, a.k.a. ortho-canonical. A way to generate such families comes by dividing the polynomials p_{n} by their normality metric γ_{n}, as displayed

$$
\begin{equation*}
\tilde{p_{n}}(x)=\frac{p_{n}(x)}{\left\|p_{n}(x)\right\|}=\frac{p_{n}(x)}{\gamma_{n}} \tag{3.13}
\end{equation*}
$$

Consequently, $\left\|\tilde{p}_{i}(x)\right\|_{w}=1$, and by using ortho-canonical polynomials, eq. 3.12 becomes

$$
\begin{equation*}
\left\langle y^{2}\right\rangle=\sum_{i=0}^{\infty} a_{i}^{2} \tag{3.14}
\end{equation*}
$$

and the standard deviation from eq. (3.10) becomes

$$
\begin{equation*}
\sigma_{F}=\sqrt{\sum_{i=0}^{\infty} a_{i}^{2}-a_{0}^{2}}=\sqrt{\sum_{i=1}^{\infty} a_{i}^{2}} \tag{3.15}
\end{equation*}
$$

Thus, by knowing the probability distribution the uncertain variable x follows and its corresponding ortho-canonical polynomials, the PCE coefficients a_{i} can be computed. A critical choice is the cut-off points of the series in eqs. (3.8) and (3.15), in order to compute the mean value and standard deviation of F.

3.3.3 Polynomial Chaos Expansion Coefficients

So far, the statistical moments of QoI function $F(x)$ were defined for an infinite number of terms in their respective expansions. Thus, prior to the calculation of the PCE coefficients a_{i}, the cut-off point k, a.k.a. as chaos order of the expansion must be decided. It can be assumed, that the higher the value of k, the higher becomes the accuracy of PCE-computed statistical moments, while simultaneously the computational cost is expected to increase. The importance of the choice of chaos order k, stems from the aforementioned equilibrium between accuracy and cost.

Thus, for a cut-off point k for the expansion, the function F and its mean value μ_{F} and standard deviation σ_{F} can be expanded as

$$
\begin{align*}
F(x) & \approx \sum_{i=0}^{k} a_{i} \tilde{p}_{i}(x) \tag{3.16}\\
\mu_{F} & \cong a_{0} \tag{3.17}\\
\sigma_{F} & \approx \sqrt{\sum_{i=1}^{k} a_{i}^{2}} \tag{3.18}
\end{align*}
$$

Thus, eq. (1.3) for the computation of the robustness metric F_{R} according to the DFSS, assumes the form

$$
\begin{equation*}
F_{R} \approx a_{0}+\kappa \sqrt{\sum_{i=1}^{k} a_{i}^{2}} \tag{3.19}
\end{equation*}
$$

The computation of the $k+1 \mathrm{PCE}$ coefficients a_{i}, the Galerkin projection as well as the ortho-canonical polynomials \tilde{p}_{i} are reused in equation (3.20)

$$
\begin{align*}
& \left\langle f(x), \tilde{p}_{i}(x)\right\rangle_{w}=\left\langle\sum_{j=0}^{k} a_{j} \tilde{p}_{j}(x), \tilde{p}_{i}(x)\right\rangle_{w}=\sum_{j=0}^{k} a_{j} \int_{D} \tilde{p}_{j}(x) \tilde{p}_{i}(x) w(x) d x \tag{3.20}\\
& \Rightarrow\left\langle f(x), \tilde{p}_{i}(x)\right\rangle_{w}=a_{i}\left\|\tilde{p}_{i}(x)\right\|_{w}^{2}=a_{i}, \quad i=0,1, \ldots, k
\end{align*}
$$

In addition, according to eq. (3.1) the QoI function $F(x)$ can be replaced as

$$
\begin{equation*}
\left\langle f(x), \tilde{p}_{i}(x)\right\rangle_{w}=\int_{D} f(x) \tilde{p}_{i}(x) w(x) d x \approx \int_{D} F(x) \tilde{p}_{i}(x) w(x) d x, \quad i=0,1, \ldots, k \tag{3.21}
\end{equation*}
$$

Thus, eqs. (3.20) and (3.21) lead to the final equations for the a_{i} coefficients

$$
\begin{equation*}
a_{i}=\int_{D} F(x) \tilde{p}_{i}(x) w(x) d x, \quad i=0,1, \ldots, k \tag{3.22}
\end{equation*}
$$

In order to successfully compute the PCE coefficients by making use of eq. (3.22), it is essential to assume the chaos order k and the stochastic distribution of the uncertain variables. Therefore, the PDF, weight functions and ortho-canonical polynomial family should, thus, all be known to user.

The integration present in eq. (3.22), when not solved analytically requires the call to the QoI function $F(x)$ a finite number of times. In this diploma thesis, any call to $F(x)$ refers to the solution of the primal problem as described in Section 2.1. Hence, in aerodynamic UQ and RDO cases, the computational cost of methods using PCE coefficients, scales with the number of times the QoI (F) is computed.

3.3.4 Differentiation w.r.t. the Design Variables

Since a gradient based RDO is used in this thesis, the gradients $\left(\nabla \mu_{F}, \nabla \sigma_{F}\right)$ of the 1st and 2nd statistical moments must be computed as mentioned in Subsection 1.2.2. These, can be computed by differentiating the statistical moments w.r.t. the design variables b_{n}, as follows

$$
\begin{gather*}
\frac{\partial \mu_{F}}{\partial b_{n}} \approx \frac{\partial a_{0}}{\partial b_{n}}, n=1,2, \ldots, N \tag{3.23}\\
\frac{\partial \sigma_{F}}{\partial b_{n}} \cong \frac{\sum_{i=1}^{k} a_{i} \frac{\partial a_{i}}{\partial b_{n}}}{\sqrt{\sum_{i=1}^{k} a_{i}^{2}}}=\frac{1}{\sigma_{F}} \sum_{i=1}^{k} a_{i} \frac{\partial a_{i}}{\partial b_{n}}, \quad n=1,2, \ldots, N \tag{3.24}
\end{gather*}
$$

where the derivatives of the PCE coefficients can be computed by directly differentiating eq. (3.22) w.r.t. to the design variables, resulting to

$$
\begin{equation*}
\frac{\partial a_{i}}{\partial b_{n}}=\frac{\partial}{\partial b_{n}}\left(\int_{D} F(x, \vec{b}) \tilde{p}_{i}(x) w(x) d x\right)=\int_{D} \frac{\partial F(x, \vec{b})}{\partial b_{n}} \tilde{p}_{i}(x) w(x) d x, \quad i=0,1, \ldots, k \tag{3.25}
\end{equation*}
$$

given that, according to the previous analysis, the QoI is dependent on a single uncertain variable $x \in \mathbb{R}$ and many design variables comprising the design variable vector $\vec{b} \in \mathbb{R}^{N}$.

Finally, the derivatives of the robust metric F_{R}, a.k.a. the robust SDs , can be formulated by combining eqs. (3.23) and (3.24) with eq. 1.4) of Subsection 1.2.2

$$
\begin{equation*}
\frac{\partial F_{R}}{\partial b_{n}}=\frac{\partial \mu_{F}}{\partial b_{n}}+\kappa \frac{\partial \sigma_{F}}{\partial b_{n}} \approx \frac{\partial a_{0}}{\partial b_{n}}+\kappa \frac{\sum_{i=1}^{k} a_{i} \frac{\partial a_{i}}{\partial b_{n}}}{\sigma_{F}}, \quad n=1,2, \ldots, N \tag{3.26}
\end{equation*}
$$

3.3.5 Gauss Quadrature Integration

Having defined the PCE coefficients analytically in eq. (3.22), a common way of numerically computing them, referred to as Gauss Quadrature (GQ) [32], are
explained.

According to the base GQ integration method, the integral of a function $h(x)$ within a domain D can numerically be computed as the sum of $N_{G Q}$ terms, each term being a product of a weight r_{i} and a value of the function h, computed for specific values of its variable x, referred to as Gauss nodes z_{i}^{\prime}. This definition is formulated as follows

$$
\begin{equation*}
\int_{D} h(x) d x=\sum_{i=1}^{N_{G Q}} r_{i} h\left(z_{i}^{\prime}\right) \tag{3.27}
\end{equation*}
$$

The greater the number of nodes, the higher the method's accuracy and computational cost, given that more calls of the $h(x)$ function are needed.

Let $h(x)=w(x) f(x)$, where $w(x)$ denotes the probability function (defined according to the stochastic distribution of the uncertain variable x) and f the polynomial approximation of the QoI function F from eq. (3.1). The weights and Gauss nodes are re-defined as ω_{i} and z_{i}, respectively, thus converting eq. (3.27) to

$$
\begin{equation*}
\int_{D} h(x) d x=\int_{D} w(x) f(x) d x=\sum_{i=1}^{N_{G Q}} \omega_{i} f\left(z_{i}\right) \tag{3.28}
\end{equation*}
$$

For one uncertain variable, the GQ is a easy to implement and affordable method for the integration of equations $(3.22$ and (3.25), partly due to the fact that ortho-canonical polynomials are for the expansion of $f(x)$. The roots of orthogonal polynomials are all are simple, real and within their respective domain D, while their number is equal to the polynomial's degree. These roots define the Gauss nodes z_{i} and constitute the best possible distribution of nodes for the minimization of the GQ method's error [32]. Therefore, for the selected cut-off point k a.k.a. chaos order, $N_{G Q}=k+1$ Gauss nodes are needed for maximum accuracy and the values of the nodes z_{i} are defined the roots of the polynomial $p_{k+1}(x)$. In the meantime, the weights ω_{i} are defined as

$$
\begin{equation*}
\omega_{i}=\frac{A_{k+1}}{A_{k}} \cdot \frac{\gamma_{k}}{p_{k+1}^{\prime}\left(z_{i}\right) p_{k}\left(z_{i}\right)} \tag{3.29}
\end{equation*}
$$

where A_{k} the coefficient of the x^{k} term of the orthogonal polynomial of degree k and so on.

The probabilists' Hermite polynomial family $H e_{n}(x)$ is implemented for the solution of integrals 3.22 and 3.25 . Thus the integration method takes the name Gauss Hermite Quadrature (GHQ). This orthogonal polynomial family, differing a bit from the physicists' Hermite polynomial family, is thoroughly explored in Appendix B
and simply defined as a recurring formula

$$
\begin{equation*}
H e_{k+1}(x)=x H e_{k}(x)-k H e_{k-1}(x), \quad H e_{0}(x)=1 \text { and } H e_{1}(x)=x \tag{3.30}
\end{equation*}
$$

where the coefficient of the x^{k} term of the polynomial $H e_{k}(x)$ is equal to $A_{k}=1$ and the w-norm of this family is defined as

$$
\begin{equation*}
\left\|H e_{k}(x)\right\|_{w}^{2}=\gamma_{k}=\left\langle H e_{k}(x), H e_{k}(x)\right\rangle_{w}=\int_{-\infty}^{+\infty}\left(H e_{k}(x)\right)^{2} w(x) d x=k! \tag{3.31}
\end{equation*}
$$

The Hermite polynomials presented in eq. (B) correspond to the standardized normal distribution (with $\mu=0$ and $\sigma=1$). Hence, their probability density function, from equation (3.5), assumes the form

$$
\begin{equation*}
w(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} \tag{3.32}
\end{equation*}
$$

According to the eq. (3.13), the probabilists' Hermite polynomials can be converted to an ortho-canonical through this process

$$
\begin{equation*}
\widetilde{H e}_{k}(x)=\frac{H e_{k}(x)}{\left\|H e_{k}(x)\right\|}=\frac{H e_{k}(x)}{\sqrt{k!}} \tag{3.33}
\end{equation*}
$$

and their w-norm is formulated as follows

$$
\begin{equation*}
\left\|\widetilde{H e}_{k}(x)\right\|_{w}^{2}=1, \quad \forall k=1,2, \ldots \tag{3.34}
\end{equation*}
$$

causing $A_{k}=1 / \sqrt{k!}$.
Given that not every normal distribution is standardized, a specific transform must be applied so as to convert the uncertain variable from the standardized normal distribution $z \in \mathcal{N}(0,1)$ to the generalized normal distribution $x \in \mathcal{N}\left(\mu, \sigma^{2}\right)$. This is done through the linear transform

$$
\begin{equation*}
\frac{x-\mu}{\sigma}=z \rightarrow d x=\sigma d z \tag{3.35}
\end{equation*}
$$

Therefore, according to the transform (3.35), the weight function (3.5), eq. (3.22), for $i=0,1, \ldots, k$ assumes the analytical form

$$
\begin{equation*}
a_{i}=\int_{-\infty}^{+\infty} F(x) \widetilde{H e}_{i}\left(\frac{x-\mu}{\sigma}\right) w(x) d x=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} F(\sigma z+\mu) \widetilde{H e}_{i}(z) e^{-\frac{z^{2}}{2}} d z \tag{3.36}
\end{equation*}
$$

and by implementing GHQ to numerically solve the integral (3.36), the final form emerges

$$
\begin{equation*}
a_{i}=\int_{-\infty}^{+\infty} F(x) \widetilde{H} e_{i}\left(\frac{x-\mu}{\sigma}\right) w(x) d x=\sum_{j=1}^{k+1} \omega_{j}^{(k+1)} F\left(\sigma z_{j}^{(k+1)}+\mu\right) \widetilde{H} e_{i}\left(z_{j}^{(k+1)}\right) \tag{3.37}
\end{equation*}
$$

Meanwhile, by employing the GHQ method, the integral for the computation of the derivatives of the PCE coefficients, eq. (3.25), becomes

$$
\begin{align*}
& \frac{\partial a_{i}}{\partial b_{n}}=\frac{\partial}{\partial b_{n}}\left(\int_{-\infty}^{+\infty} F(x) \widetilde{H e}_{i}\left(\frac{x-\mu}{\sigma}\right) w(x) d x\right)= \\
& =\sum_{j=1}^{k+1} \omega_{j}^{(k+1)} \frac{\partial}{\partial b_{n}}\left(F\left(\sigma z_{j}^{(k+1)}+\mu\right)\right) \widetilde{H e}_{i}\left(z_{j}^{(k+1)}\right) \tag{3.38}
\end{align*}
$$

where the $(k+1)$ index on the terms ω_{j} and z_{j} signify that they constitute solutions of the probabilists' Hermite polynomial $H e_{k+1}$, i.e. the one of degree $k+1$, where k the selected chaos order for the niPCE method.

Additionally, the weights ω_{j}, according to equation (3.29), can be computed as

$$
\begin{equation*}
\omega_{j}^{(k+1)}=\frac{A_{k+1}}{A_{k}} \cdot \frac{\gamma_{k}}{\widetilde{H e}_{k+1}^{\prime}\left(z_{j}^{(k+1)}\right) \widetilde{H e}\left(z_{j}^{(k+1)}\right)}=\frac{1}{(k+1) \widetilde{H e}_{k}^{2}\left(z_{j}^{(k+1)}\right)} \tag{3.39}
\end{equation*}
$$

Finally, the niPCE mean value of a QoI function $F(x)$, for x following $\mathcal{N}(\mu, \sigma)$, by implementing the GHQ integration, is formulated as

$$
\begin{equation*}
\mu_{F}=a_{0}=\sum_{j=1}^{k+1} \omega_{j}^{(k+1)} F\left(\sigma z_{j}^{(k+1)}+\mu\right) \widetilde{H} e_{0}\left(z_{j}^{(k+1)}\right)=\sum_{j=1}^{k+1} \omega_{j}^{(k+1)} F\left(\sigma z_{j}^{(k+1)}+\mu\right) \tag{3.40}
\end{equation*}
$$

given that $\widetilde{H e}_{0}=1$, while the respective mean value's gradient (3.23) w.r.t. the design variable b_{n} is computed as

$$
\begin{equation*}
\frac{\partial \mu_{F}}{\partial b_{n}}=\frac{\partial a_{0}}{\partial b_{n}}=\sum_{j=1}^{k+1} \omega_{j}^{(k+1)} \frac{\partial}{\partial b_{n}}\left(F\left(\sigma z_{j}^{(k+1)}+\mu\right)\right) \tag{3.41}
\end{equation*}
$$

Furthermore, the niPCE standard deviation of a QoI function $F(x)$, for x following $\mathcal{N}(\mu, \sigma)$, by implementing the GHQ integration, is formulated as

$$
\begin{equation*}
\sigma_{F}=\sqrt{\sum_{i=1}^{k} a_{i}^{2}}=\sqrt{\sum_{i=1}^{k}\left[\sum_{j=1}^{k+1} \omega_{j}^{(k+1)} F\left(\sigma z_{j}^{(k+1)}+\mu\right) \widetilde{H e_{i}}\left(z_{j}^{(k+1)}\right)\right]^{2}} \tag{3.42}
\end{equation*}
$$

while the corresponding standard deviation's gradient eq. (3.24), w.r.t. the design variable b_{n}, assumes the form

$$
\begin{align*}
& \frac{\partial \sigma_{F}}{\partial b_{n}}=\frac{1}{\sigma_{F}} \sum_{i=1}^{k}\left[\sum_{j=1}^{k+1} \omega_{j}^{(k+1)} F\left(\sigma z_{j}^{(k+1)}+\mu\right) \widetilde{H e}_{i}\left(z_{j}^{(k+1)}\right)\right] . \tag{3.43}\\
& \cdot\left[\sum_{j=1}^{k+1} \omega_{j}^{(k+1)} \frac{\partial}{\partial b_{n}}\left(F\left(\sigma z_{j}^{(k+1)}+\mu\right)\right) \widetilde{H e}_{i}\left(z_{j}^{(k+1)}\right)\right]
\end{align*}
$$

3.4 Multi-dimensional non-intrusive PCE

In this Subsection the niPCE method is generalized for a QoI function $F=F(\vec{x})$ dependent on multiple uncertain variables, constituting the uncertain variable vector $\vec{x}=\left[x_{1}, x_{2}, \ldots, x_{M}\right]^{T} \in \mathbb{R}^{M}$. For $D_{1}, D_{2}, \ldots, D_{M}$ the domain of each of the respective components of \vec{x}, the domain of the QoI function can be defined as

$$
\begin{equation*}
\vec{D}=D_{1} \times D_{2} \times \cdots \times D_{M} \tag{3.44}
\end{equation*}
$$

Given that each uncertain variable x_{n} follows a certain stochastic distribution, with a corresponding probability density function $w_{n}\left(x_{n}\right), n=1,2, \ldots, M$, according to the PCE theory F can be approximated through a linear combination of polynomials being part of the family $\Psi=\left\{\psi_{0}(\vec{x}), \psi_{1}(\vec{x}), \ldots, \psi_{M}(\vec{x}), \ldots\right\}$, as follows

$$
\begin{equation*}
F(\vec{x}) \cong f(\vec{x}):=\sum_{i=0}^{\infty} a_{i} \psi_{i}(\vec{x}) \tag{3.45}
\end{equation*}
$$

where $a_{i} \in \mathbb{R}$ and $f: \vec{D} \subseteq \mathbb{R}^{M} \longrightarrow Y \subseteq \mathbb{R}$.
Let the multidimensional probability density function a.k.a. the product of the aforementioned distributions $w_{j}\left(x_{j}\right)$ be defined as

$$
\begin{equation*}
W(\vec{x})=\prod_{j=1}^{M} w_{j}\left(x_{j}\right)=w_{1}\left(x_{1}\right) w_{2}\left(x_{2}\right) \cdots w_{M}\left(x_{M}\right) \tag{3.46}
\end{equation*}
$$

Therefore, the n-th statistical moment of the set Y is formulated

$$
\begin{align*}
\left\langle y^{n}\right\rangle & =\int_{\vec{D}}(f(\vec{x}))^{n} W(\vec{x}) d \vec{x}=\int_{\vec{D}}\left(\sum_{i=0}^{\infty} a_{i} \psi_{i}(\vec{x})\right)^{n} W(\vec{x}) d \vec{x}= \\
& =\int_{D_{1}} \int_{D_{2}} \cdots \int_{D_{M}} \underbrace{\left(\sum_{i=0}^{\infty} a_{i} \psi_{i}(\vec{x})\right) \cdots\left(\sum_{i=0}^{\infty} a_{i} \psi_{i}(\vec{x})\right)}_{n \text { times }} \prod_{j=1}^{M} w_{j}\left(x_{j}\right) d x_{1} d x_{2} \cdots d x_{M} \tag{3.47}
\end{align*}
$$

And by applying the distributive property, eq. (3.47) becomes

$$
\begin{equation*}
\left\langle y^{n}\right\rangle=\sum_{i_{1}=0}^{\infty} \cdots \sum_{i_{n}=0}^{\infty} a_{i_{1}} \cdots a_{i_{n}} \int_{D_{1}} \cdots \int_{D_{M}} \psi_{i_{1}}(\vec{x}) \cdots \psi_{i_{n}}(\vec{x}) w_{1}\left(x_{1}\right) \cdots w_{M}\left(x_{M}\right) d x_{1} \cdots d x_{M} \tag{3.48}
\end{equation*}
$$

Again, the definition of ψ_{i} as multi-dimensional orthogonal polynomials may greatly simplify the expressions of the statistical moments (3.48).

3.4.1 Multi-dimensional Orthogonal Polynomials

Multi-dimensional orthogonal polynomials possess the same properties with their one-dimensional counterparts described in Subsection 3.3.1, if each polynomial $p s i_{n}$ of order k is defined as a product of one-dimensional orthogonal $p_{i_{l}}$, in such a fashion that the sum of their degrees i_{l} is equal to the desired order k. These polynomials assume the form

$$
\begin{equation*}
\psi_{n}(\vec{x})=\psi_{m_{j}^{k}}(\vec{x})=\prod_{l=1}^{M} p_{i_{l}}\left(x_{l}\right), \quad \sum_{l=1}^{M} i_{l}=k \tag{3.49}
\end{equation*}
$$

The index m_{j}^{k} is included for now and will be explained later. Thus, the simpler n index is used to describe the degree a multi-dimensional polynomial ψ.

According to the definition of polynomials belonging in the Ψ family, given in eq. (3.49), the Galerkin projection (inner product) of any two of these polynomials is equal to zero, except if the two are identical. Two polynomials of the Ψ family are identical only if all consecutive indexes i_{l} of all the polynomials $p_{i} l$ that comprise them are equal. This inner product between two multi-dimensional polynomials, of degrees i and j, yields

$$
\begin{align*}
& \left\langle\psi_{i}(\vec{x}), \psi_{j}(\vec{x})\right\rangle_{W}=\int_{\vec{D}} \psi_{i}(\vec{x}) \psi_{j}(\vec{x}) W(\vec{x}) d \vec{x}= \\
& =\int_{D_{1}} \cdots \int_{D_{M}} \prod_{l=1}^{M} p_{i_{l}}\left(\vec{x}_{l}\right) \prod_{l=1}^{M} p_{j_{l}}\left(\overrightarrow{x_{l}}\right) \prod_{l=1}^{M} w_{l}\left(\overrightarrow{x_{l}}\right) d x_{1} \cdots d x_{M}= \\
& =\prod_{l=1}^{M}\left(\int_{D_{l}} p_{i_{l}}\left(x_{l}\right) p_{j_{l}}\left(x_{l}\right) w_{l}\left(x_{l}\right) d x_{l}\right)=\prod_{l=1}^{M}\left(\delta_{i_{l}}^{j_{l}} \int_{D_{l}} p_{i_{l}}^{2}\left(x_{l}\right) w_{l}\left(x_{l}\right) d x_{l}\right)= \tag{3.50}\\
& =\prod_{l=1}^{M}\left(\delta_{i_{l}}^{j_{l}}\right) \int_{D_{1}} \cdots \int_{D_{M}} \prod_{l=1}^{M}\left[p_{i_{l}}^{2}\left(x_{l}\right) w_{l}\left(x_{l}\right)\right] d x_{1} \cdots d x_{M}= \\
& =\delta_{i}^{j} \int_{\vec{D}} \prod_{l=1}^{M}\left(p_{i_{l}}^{2}\left(x_{l}\right)\right) W(\vec{x}) d \vec{x}=\delta_{i}^{j} \int_{\vec{D}}\left(\psi_{i}(\vec{x})\right)^{2} W(\vec{x}) d \vec{x}
\end{align*}
$$

Therefore, concluding to the expression

$$
\begin{equation*}
\left\langle\psi_{i}(\vec{x}), \psi_{j}(\vec{x})\right\rangle_{W}=\int_{\vec{D}} \psi_{i}(\vec{x}) \psi_{j}(\vec{x}) W(\vec{x}) d \vec{x}=\left\langle\psi_{i}(\vec{x}), \psi_{i}(\vec{x})\right\rangle_{W} \delta_{i}^{j} \tag{3.51}
\end{equation*}
$$

Now, the Galerkin projection of two identical polynomials $(i=j)$ of the Ψ family, is equal to the W -norm of the ψ_{i} polynomial, which is proven by

$$
\begin{align*}
& \left\langle\psi_{i}(\vec{x}), \psi_{i}(\vec{x})\right\rangle_{W}=\int_{\vec{D}} \psi_{i}^{2}(\vec{x}) W(\vec{x}) d \vec{x}= \\
& =\int_{D_{1}} \cdots \int_{D_{M}} \prod_{l=1}^{M} p_{i_{l}}^{2}\left(\overrightarrow{x_{l}}\right) \prod_{l=1}^{M} w_{l}\left(\overrightarrow{x_{l}}\right) d x_{1} \cdots d x_{M}= \\
& =\prod_{l=1}^{M}\left(\int_{D_{l}} p_{i_{l}}^{2}\left(x_{l}\right) w_{l}\left(x_{l}\right) d x_{l}\right)=\prod_{l=1}^{M}\left(\left\|p_{i_{l}}\left(x_{l}\right)\right\|_{w_{l}}^{2}\right)= \tag{3.52}\\
& =\left(\prod_{l=1}^{M}\left\|p_{i_{l}}\left(x_{l}\right)\right\|_{w_{l}}\right)^{2}=\left\|\psi_{i}(\vec{x})\right\|_{W}^{2}
\end{align*}
$$

where the W-norm of ψ_{i} is defined as $\left\|\psi_{i}(\vec{x})\right\|_{W}=\prod_{l=1}^{M}\left\|p_{i_{l}}\left(x_{l}\right)\right\|_{w_{l}}$.
To summarize, eq. (3.52) is simplified to

$$
\begin{equation*}
\left\langle\psi_{n}(\vec{x}), \psi_{n}(\vec{x})\right\rangle_{W}=\left\|\psi_{n}(\vec{x})\right\|_{W}^{2}=\gamma_{n} \tag{3.53}
\end{equation*}
$$

where $\sqrt{\gamma_{n}}$ depicts the normality metric, now defined for multidimensional orthogonal polynomials ψ_{n}. As already stated in Subsection 3.3, if $\gamma_{n}=1$ then the ψ_{n} polynomials are part of the ortho-canonical families, a subset of orthogonal polynomial families. Also, if, in all expression concerning multi-dimensional orthogonal polynomials, the number of uncertain variables is set $M=1$, then the corresponding expressions for 1D polynomials, explored in 3.3, will emerge.

In eq. (3.49) it is stated that a multi-dimensional polynomial ψ of order k, is to a product of $M 1 \mathrm{D}$ polynomials $p_{i_{l}}$, of which the sum of their degrees i_{l} is equal to the initial order k. There is, thus, a need to describe the different combinations of M number of integers in which the integer k can be expanded. According to the mathematical field of set theory and combinatrics, these combinations are referred to as multiset of k and the greater the value of k, the greater the multiset or the number of different combinations of integers. Specifically, number of possible combinations is given by expression (3.54).

$$
\begin{equation*}
\left(\binom{M}{k}\right)=\binom{k+M-1}{k}=\frac{(k+M-1)!}{k!(M-1)!}=\frac{M(M+1)(M+2) \cdots(M+k-1)}{k!} \tag{3.54}
\end{equation*}
$$

Additionally the index j used in eq. 3.49, serves to classify the aforementioned combination as follows

$$
\begin{equation*}
1 \leqslant j \leqslant\binom{ k+M-1}{k} \tag{3.55}
\end{equation*}
$$

This classification is relative and does not take into account the possible combinations of integers with a sum smaller than the respective k.

According to combinatorics, the number of combinations of M integers with a sum lower or equal to $k_{\max }$ is calculated as

$$
\begin{equation*}
\binom{k_{\max }+M}{k_{\max }}=\frac{\left(k_{\max }+M\right)!}{k!M!}=\frac{M(M+1)(M+2) \cdots\left(M+k_{\max }\right)}{k_{\max }!} \tag{3.56}
\end{equation*}
$$

The, aforementioned and previously not explained, index m_{j}^{k} of eq. (3.49), is used to provide an absolute classification for all possible combinations of integers, adding up to $k=0,1,2, \ldots, k_{\max }$. This index scales as follows

$$
\begin{equation*}
0 \leqslant m_{j}^{k} \leqslant \frac{\left(k_{\max }+M\right)!}{k_{\max }!M!}-1 \tag{3.57}
\end{equation*}
$$

This algorithmic method of classification is known as Full Factorial Design is based on the restriction dictating that the sum of the indexes of 1D polynomials $p_{i_{l}}$ (producing the $\psi_{m_{j}^{k}}(\vec{x})$) cannot be greater than the maximum desired chaos order $k_{\text {max }}$. In this manner, the surplus indexes are eliminated and the right number of combinations remain.

3.4.2 1st and 2nd Statistical Moments

At long last, now that multi-dimensional orthogonal polynomials are defined, it is high time to apply their simplifying properties in eq. (3.48) in order to formulate the first and second statistical moments of $F(\vec{x})$, without the application of any cut-off points to the respective series, for now.

According to eq. (3.48) for $n=1$, the first statistical moment, aka the mean value, yields

$$
\begin{equation*}
\mu_{F}=\left\langle y^{1}\right\rangle=\int_{\vec{D}} f(\vec{x}) W(\vec{x}) d \vec{x}=\sum_{i=0}^{\infty} a_{i} \int_{\vec{D}} \psi_{i}(\vec{x}) W(\vec{x}) d \vec{x} \tag{3.58}
\end{equation*}
$$

Given $\int_{D_{i}} w\left(x_{i}\right) d x_{i}=1 \forall i$ (as explained in Subsection 3.3.2, then, regardless of the distribution, the product of them becomes

$$
\begin{equation*}
\int_{\vec{D}} W(\vec{x}) d \vec{x}=\int_{D_{1}} w\left(x_{1}\right) d x_{1} \cdots \int_{D_{M}} w\left(x_{M}\right) d x_{M}=1 \cdot 1 \cdots 1=1 \tag{3.59}
\end{equation*}
$$

thus proving that the total possibility of the appearance of all phenomena is equal to 1 .

In addition, the zero degree polynomial is equal to $\psi_{0}(\vec{x})=1$, given that is a product of 1D unit polynomials, regardless of the stochastic distribution $W(\vec{x})$. Thus this property in conjunction with the definition described in eq. (3.51) gives

$$
\begin{equation*}
\int_{\vec{D}} \psi_{i}(\vec{x}) W(\vec{x}) d \vec{x}=\int_{\vec{D}} \psi_{i}(\vec{x}) \cdot 1 \cdot W(\vec{x}) d \vec{x}=\int_{\vec{D}} \psi_{i}(\vec{x}) \psi_{0}(\vec{x}) W(\vec{x}) d \vec{x}=0 \forall i>0 \tag{3.60}
\end{equation*}
$$

Therefore, by utilizing eq. (3.59) and (3.60), eq. (3.58) assumes the form

$$
\begin{align*}
& \mu_{F}=a_{0} \int_{\vec{D}} \psi_{0}(\vec{x}) W(\vec{x}) d \vec{x}+\sum_{i=1}^{\infty} a_{i} \int_{\vec{D}} \psi_{i}(\vec{x}) W(\vec{x}) d \vec{x}= \tag{3.61}\\
& =a_{0} \int_{\vec{D}} 1 \cdot W(\vec{x}) d \vec{x} \Longrightarrow \mu_{F}=a_{0}
\end{align*}
$$

Furthermore, it is reminded that the second statistical moment is used to compute the variance of of F. The standard deviation of a quantity, according to eq. (3.9) is defined as the square root of its variance. Therefore, the second statistical moment is formulated from eq. (3.48) for $n=2$ as follows

$$
\begin{equation*}
\left\langle y^{2}\right\rangle=\int_{\vec{D}}(f(\vec{x}))^{2} W(\vec{x}) d \vec{x}=\sum_{i_{1}=0}^{\infty} \sum_{i_{2}=0}^{\infty} a_{i_{1}} a_{i_{2}} \int_{\vec{D}} \psi_{i_{1}}(\vec{x}) \psi_{i_{2}}(\vec{x}) W(\vec{x}) d \vec{x} \tag{3.62}
\end{equation*}
$$

By applying the orthogonality property (3.51) and the multi-dimensional W-norm definition (3.53), eq. (3.62) becomes

$$
\begin{equation*}
\left\langle y^{2}\right\rangle=\sum_{i=0}^{\infty} a_{i}^{2} \int_{\vec{D}} \psi_{i}^{2}(\vec{x}) W(\vec{x}) d \vec{x}=\sum_{i=0}^{\infty} a_{i}^{2}\left\|\psi_{i}(\vec{x})\right\|_{W}^{2}=\sum_{i=0}^{\infty} a_{i}^{2} \gamma_{i} \tag{3.63}
\end{equation*}
$$

The use of ortho-canonical polynomials $\widetilde{\psi}_{i}(\vec{x})$ gives $\gamma_{i}=1$. This can be easily done, by dividing the orthogonal polynomials of any family with their respective normality metric, as stated below

$$
\begin{equation*}
\tilde{\psi}_{i}(\vec{x})=\frac{\psi_{i}(\vec{x})}{\left\|\psi_{i}(\vec{x})\right\|}=\frac{\psi_{i}(\vec{x})}{\sqrt{\gamma_{i}}} \tag{3.64}
\end{equation*}
$$

Thus, giving rise to the most simplified formulation for the 2nd moment:

$$
\begin{equation*}
\left\langle y^{2}\right\rangle=\sum_{i=0}^{\infty} a_{i}^{2} \tag{3.65}
\end{equation*}
$$

According to eq. (3.10) and (3.65), the standard deviation of $F(\vec{x})$ assumes the form

$$
\begin{equation*}
\sigma_{F}=\sqrt{\sum_{i=0}^{\infty} a_{i}^{2}-a_{0}^{2}}=\sqrt{\sum_{i=1}^{\infty} a_{i}^{2}} \tag{3.66}
\end{equation*}
$$

3.4.3 Polynomial Chaos Expansion Multi-Dimensional Coefficients

In the same manner as in Subsection 3.3.3, in order to compute the PCE coefficients a_{i} for a finite number of terms, a cut-off point must be set by the user, to the expansion of $f(\vec{x})$ from (3.45). According to the previous analysis, f can be expanded into $N_{\text {cut }}=\binom{k_{\max }+M}{k_{\max }}$ terms, comprising all viable combinations of 1D orthogonal polynomials, with the sum of their degrees being lesser or equal to the desired chaos order k. The expansion of f along with, the mean value and the standard deviation of F assume the forms

$$
\begin{gather*}
F(\vec{x}) \cong f(\vec{x})=\sum_{i=0}^{N_{\text {cut }}} a_{i} \widetilde{\psi}_{i}(\vec{x}) \tag{3.67}\\
\mu_{F} \cong a_{0} \tag{3.68}
\end{gather*}
$$

$$
\begin{equation*}
\sigma_{F} \approx \sqrt{\sum_{i=1}^{N_{c u t}} a_{i}^{2}} \tag{3.69}
\end{equation*}
$$

and the expression for the robustness metric F_{R} for multiple uncertain variables assumes the same form (3.19), with the one presented in Subsection 3.3.3.

The Galerkin projection of f and multi-dimensional ortho-canonical polynomials $\tilde{\psi}$ is expanded in two distinct manners

$$
\begin{gather*}
\left\langle f(\vec{x}), \widetilde{\psi}_{i}(\vec{x})\right\rangle_{W}=\int_{\vec{D}} f(\vec{x}) \widetilde{\psi}_{i}(\vec{x}) W(\vec{x}) d \vec{x} \cong \int_{\vec{D}} F(\vec{x}) \tilde{\psi}_{i}(\vec{x}) W(\vec{x}) d \vec{x} \tag{3.70}\\
\left\langle f(\vec{x}), \widetilde{\psi}_{i}(\vec{x})\right\rangle_{W}=\left\langle\sum_{l=0}^{N} a_{l} \widetilde{\psi}_{l}(\vec{x}), \widetilde{\psi}_{i}(\vec{x})\right\rangle_{W}=a_{i}\left\|\widetilde{\psi}_{i}(\vec{x})\right\|_{W}^{2}=a_{i} \tag{3.71}
\end{gather*}
$$

Eqs. (3.70) and (3.70) are utilized to compute the niPCE coefficients a_{i}, as follows

$$
\begin{equation*}
a_{i} \approx \int_{\vec{D}} F(\vec{x}) \widetilde{\psi}_{i}(\vec{x}) W(\vec{x}) d \vec{x}, \quad i=1,2, \ldots, N \tag{3.72}
\end{equation*}
$$

It is reminded that, in this thesis, all uncertain variables follow normal distributions. Therefore, their corresponding probabilists' Hermite polynomials are implemented,
in their canonical form $(\widetilde{H e})$. Consequently, the approximate polynomial expansion of the QoI function, for M uncertain variables x_{l}, each with their respective mean value μ_{l} and standard deviation σ_{l} for $l=1,2, \ldots, M$, becomes

$$
\begin{equation*}
F(\vec{x}) \approx \sum_{i=0}^{N_{\text {cut }}}\left(a_{i} \prod_{l=1}^{M} \widetilde{H e}_{i_{l}}\left(\frac{x_{l}-\mu_{l}}{\sigma_{l}}\right)\right) \tag{3.73}
\end{equation*}
$$

For M uncertain variables following standardized normal distributions \mathcal{N} (with $\mu=$ 0 and $\sigma=1$), the multidimensional probability density function, according to (3.46) and (3.32), is formulated as

$$
\begin{equation*}
W_{H e}(\vec{x})=\prod_{j=1}^{M} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x_{j}^{2}}{2}}=\frac{1}{(2 \pi)^{\frac{M}{2}}} \cdot e^{-\frac{1}{2} \sum_{j=1}^{M} x_{j}^{2}} \tag{3.74}
\end{equation*}
$$

Additionally, given that the Hermite polynomials' domain is $D=[-\infty,+\infty]$ and that all uncertain variables follow a standardized normal distribution, the analytical expression for the niPCE coefficients a_{i} become

$$
\begin{equation*}
a_{i}=\frac{1}{(2 \pi)^{\frac{M}{2}}} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} F(\vec{x}) \widetilde{\psi}_{i}(\vec{x}) e^{-\frac{\sum_{j=1}^{M} x_{j}^{2}}{2}} d x_{1} d x_{2} \cdots d x_{M} \tag{3.75}
\end{equation*}
$$

On the other hand, according to eq. (3.5), when each of the M uncertain variables follows a generalized normal distribution $\left(x_{j} \in \mathcal{N}\left(\mu_{j}, \sigma_{j}^{2}\right), \quad j=1,2, \ldots, M\right)$, the the generalized analytical expression for the coefficients formulates as

$$
\begin{equation*}
a_{i}=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} F(\vec{x}) \widetilde{\psi}_{i}(\vec{z})\left(\prod_{j=1}^{M} \frac{e^{-\frac{z_{j}^{2}}{2}}}{\sigma_{j} \sqrt{2 \pi}}\right) d x_{1} d x_{2} \cdots d x_{M} \tag{3.76}
\end{equation*}
$$

where each component of the vector $\vec{z} \in \mathbb{R}^{M}$ is defined, in order to denote the linear transform between generalized x_{j} and standardized z_{j} normal distributions, as

$$
\begin{equation*}
z_{j}=\frac{x_{j}-\mu_{j}}{\sigma_{j}}, \quad j=1,2, \ldots, M \tag{3.77}
\end{equation*}
$$

3.4.4 Differentiation w.r.t. the Design Variables

The derivatives of the 1st and 2nd statistical moments w.r.t. the design variables $\left(b_{n}, \quad n=1,2, \ldots, N\right)$, for the multiple uncertain variables $\left(x_{j}, j=1,2, \ldots, M\right)$, are formulated as

$$
\begin{equation*}
\frac{\partial \mu_{F}}{\partial b_{n}} \cong \frac{\partial a_{0}}{\partial b_{n}}, \quad n=1,2, \ldots, N \tag{3.78}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial \sigma_{F}}{\partial b_{n}} \cong \frac{\sum_{i=1}^{N_{\text {cut }}} a_{i} \frac{\partial a_{i}}{\partial b_{n}}}{\sqrt{\sum_{i=1}^{N_{\text {cut }}} a_{i}^{2}}}=\frac{1}{\sigma_{F}} \sum_{i=1}^{N_{\text {cut }}} a_{i} \frac{\partial a_{i}}{\partial b_{n}}, \quad n=1,2, \ldots, N \tag{3.79}
\end{equation*}
$$

Given that the QoI function is also dependent upon the design variables $F=F(\vec{b}, \vec{x})$, the derivatives of the PCE coefficients can be computed by directly differentiating eq. (3.76) w.r.t. to the design variables, resulting to

$$
\begin{align*}
& \frac{\partial a_{i}}{\partial b_{n}}=\frac{\partial}{\partial b_{n}}\left(\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} F(\vec{b}, \vec{x}) \tilde{\psi}_{i}(\vec{z})\left(\prod_{j=1}^{M} \frac{e^{-\frac{z_{j}^{2}}{2}}}{\sigma_{j} \sqrt{2 \pi}}\right) d x_{1} d x_{2} \cdots d x_{M}\right)= \\
& =\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \frac{\partial F(\vec{b}, \vec{x})}{\partial b_{n}} \widetilde{\psi}_{i}(\vec{z})\left(\prod_{j=1}^{M} \frac{e^{-\frac{z_{j}^{2}}{2}}}{\sigma_{j} \sqrt{2 \pi}}\right) d x_{1} d x_{2} \cdots d x_{M}, \quad i=1,2, \ldots, N_{c u t} \tag{3.80}
\end{align*}
$$

The derivatives of the robust metric $F_{R}=F_{R}(\vec{b}, \vec{x})$, a.k.a. the robust SDs, can be formulated by combining eqs. (3.78) and (3.79) with eq. (1.4), as

$$
\begin{equation*}
\frac{\partial F_{R}}{\partial b_{n}}=\frac{\partial \mu_{F}}{\partial b_{n}}+\kappa \frac{\partial \sigma_{F}}{\partial b_{n}} \approx \frac{\partial a_{0}}{\partial b_{n}}+\kappa \frac{\sum_{i=1}^{N_{\text {cut }}} a_{i} \frac{\partial a_{i}}{\partial b_{n}}}{\sigma_{F}}, \quad n=1,2, \ldots, N \tag{3.81}
\end{equation*}
$$

3.4.5 Cubature Integration

The numerical solution of the integrals in eqs. (3.76) and (3.80) is achieved through the Gauss Quadrature, a method a.k.a. Cubature when implemented in multi-dimensional integrals.

This method is defined in a similar manner with the definition used for simple integrals eq. (3.28), in Subection 3.3.5. For a function $h(\vec{x})=W(\vec{x}) f(\vec{x}) \in \mathbb{R}$, its Cubature integration is formulated as

$$
\begin{equation*}
\int_{\vec{D}} h(\vec{x}) d \vec{x}=\int_{\vec{D}} W(\vec{x}) f(\vec{x}) d x=\sum_{j=1}^{N_{G Q}} \Omega_{j} f\left(\vec{z}_{j}\right) \tag{3.82}
\end{equation*}
$$

where $\Omega_{j}=\prod_{l=1}^{M} \omega_{j_{l}}$ indicates the weight product corresponding to a certain Gauss Node combination $\vec{z}_{j}=\left[z_{j_{1}}, z_{j_{2}}, \ldots, z_{j_{M}}\right]$.

The numerical solution of the integral in eq. (3.82), requires all possible Gauss Node combinations in all dimensions present in the \vec{z}_{j} vector. This means that the f function has to be computed for $N_{G Q}$ number of combinations, given that $j \in\left[1, N_{G Q}\right]$, thus directly affecting the method's computational cost. The sum of all Gauss Nodes, for the solution of integral (3.82), is referred to as Full Grid.

In Subsection 3.3.5, it is stated that when implementing the GQ method for the computation of the niPCE coefficients a_{i} and their derivatives, the number of Gauss Nodes needed for the simple integrals is dependent on the chaos order k and is equal to $k+1$. Generalizing the aforementioned statement, for M-dimensional integrals the number of Gauss Nodes as well as the number of the F functions calls in eqs. (3.76) and (3.80) are equal to $(k+1)^{M}$. Therefore, the computational cost of the niPCE method using Full Grid GQ integration scales exponentially with the number M of uncertain variables that are taken into account. The exponential scaling of the number of nodes needed for the numerical solution of an integral, w.r.t. the number of its dimensions, is known as curse of dimensionality. This property of numerical integration has to be taken into account for problems with a large number of uncertain variables, given that a Full Grid integration can lead to a practically unfeasible implementation, due to its great computational and clock-time cost. The way the curse of dimensionality has an impact on the CPU cost of niPCE coefficients computation is displayed in Table 3.1.

	M						
k	1	2	3	4	5	6	
0	1	1	1	1	1	1	
1	2	4	8	16	32	64	
2	3	9	27	81	243	729	
3	4	16	64	256	1024	4096	
4	5	25	125	625	3125	15625	
5	6	36	216	1296	7776	46656	

Table 3.1: QoI function calls for the computation of niPCE coefficients through use of Full Grid $G Q$ numerical integration, for different values of chaos order k and uncertain variables M. The scaling of the function call with the number of uncertain variables, a.k.a. the number of dimensions in the integral, is exponential, following the $(k+1)^{M}$ rule.

Nevertheless, the use of Full Grid GQ integration, alongside with the employment of multi-dimensional canonical Hermite polynomials $\widetilde{\psi}$ for the solution of eqs. (3.76) and (3.80) yields

$$
\begin{equation*}
a_{i}=\sum_{j_{1}=1}^{k+1} \sum_{j_{2}=1}^{k+1} \ldots \sum_{j_{M}=1}^{k+1}\left(\prod_{l=1}^{M} \omega_{j_{l}}\right) F\left(\vec{b}, x_{j_{1}}, x_{j_{2}}, \ldots, x_{j_{M}}\right) \widetilde{\psi}_{i}\left(z_{j_{1}}, z_{j_{2}}, \ldots, z_{j_{M}}\right) \tag{3.83}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial a_{i}}{\partial b_{n}}=\sum_{j_{1}=1}^{k+1} \sum_{j_{2}=1}^{k+1} \cdots \sum_{j_{M}=1}^{k+1}\left(\prod_{l=1}^{M} \omega_{j_{l}}\right) \frac{\partial F\left(\vec{b}, x_{j_{1}}, x_{j_{2}}, \ldots, x_{j_{M}}\right)}{\partial b_{n}} \widetilde{\psi}_{i}\left(z_{j_{1}}, z_{j_{2}}, \ldots, z_{j_{M}}\right) \tag{3.84}
\end{equation*}
$$

where $z_{j_{l}}$ the Gauss Nodes, computed as the roots of the $\widetilde{\psi}_{k+1}$ polynomials, $\omega_{j_{l}}$ their corresponding weights (more data in Appendix \bar{B}) and $z_{j_{l}}$ are defined as

$$
\begin{equation*}
x_{j_{l}}=\sigma_{l} \cdot z_{j_{l}}+\mu_{l}, \quad j_{l}=1,2, \ldots, k+1 \quad \text { and } l=1,2, \ldots, M \tag{3.85}
\end{equation*}
$$

To conclude, through Full Grid GHQ integration, the niPCE mean value of F assumes the form

$$
\begin{equation*}
\mu_{F}=a_{0}=\sum_{j_{1}=1}^{k+1} \sum_{j_{2}=1}^{k+1} \cdots \sum_{j_{M}=1}^{k+1}\left(\prod_{l=1}^{M} \omega_{j_{l}}\right) F\left(\vec{b}, x_{j_{1}}, x_{j_{2}}, \ldots, x_{j_{M}}\right) \widetilde{\psi}_{0}\left(z_{j_{1}}, z_{j_{2}}, \ldots, z_{j_{M}}\right) \tag{3.86}
\end{equation*}
$$

while its derivatives w.r.t. the design variables b_{n} becomes

$$
\begin{equation*}
\frac{\partial \mu_{F}}{\partial b_{n}}=\frac{\partial a_{0}}{\partial b_{n}}=\sum_{j_{1}=1}^{k+1} \sum_{j_{2}=1}^{k+1} \cdots \sum_{j_{M}=1}^{k+1}\left(\prod_{l=1}^{M} \omega_{j_{l}}\right) \frac{\partial F\left(\vec{b}, x_{j_{1}}, x_{j_{2}}, \ldots, x_{j_{M}}\right)}{\partial b_{n}} \tilde{\psi}_{0}\left(z_{j_{1}}, z_{j_{2}}, \ldots, z_{j_{M}}\right) \tag{3.87}
\end{equation*}
$$

Meanwhile, the computation of the niPCE standard deviation of F, by makinguse of the Full Grid GHQ integration, yields

$$
\begin{gather*}
\sigma_{F}=\sqrt{\sum_{i=1}^{N_{c u t}} a_{i}^{2}}= \\
=\sqrt{\sum_{i=1}^{N_{c u t}}\left[\sum_{j_{1}=1}^{k+1} \sum_{j_{2}=1}^{k+1} \cdots \sum_{j_{M}=1}^{k+1}\left(\prod_{l=1}^{M} \omega_{j_{l}}\right) F\left(\vec{b}, x_{j_{1}}, x_{j_{2}}, \ldots, x_{j_{M}}\right) \widetilde{\psi}_{i}\left(z_{j_{1}}, z_{j_{2}}, \ldots, z_{j_{M}}\right)\right]^{2}} \tag{3.88}
\end{gather*}
$$

and its derivatives w.r.t. the design variables are formulated as

$$
\begin{gather*}
\frac{\partial \sigma_{F}}{\partial b_{n}}=\frac{1}{\sigma_{F}} \sum_{i=1}^{N_{\text {cut }}} a_{i} \frac{\partial a_{i}}{\partial b_{n}}= \\
=\frac{1}{\sigma_{F}} \sum_{i=1}^{N_{\text {cut }}}\left[\sum_{j_{1}=1}^{k+1} \sum_{j_{2}=1}^{k+1} \cdots \sum_{j_{M}=1}^{k+1}\left(\prod_{l=1}^{M} \omega_{j_{l}}\right) F\left(\vec{b}, x_{j_{1}}, x_{j_{2}}, \ldots, x_{j_{M}}\right) \widetilde{\psi}_{i}\left(z_{j_{1}}, z_{j_{2}}, \ldots, z_{j_{M}}\right)\right] . \\
\cdot\left[\sum_{j_{1}=1}^{k+1} \sum_{j_{2}=1}^{k+1} \cdots \sum_{j_{M}=1}^{k+1}\left(\prod_{l=1}^{M} \omega_{j_{l}}\right) \frac{\partial F\left(\vec{b}, x_{j_{1}}, x_{j_{2}}, \ldots, x_{j_{M}}\right)}{\partial b_{n}} \widetilde{\psi}_{i}\left(z_{j_{1}}, z_{j_{2}}, \ldots, z_{j_{M}}\right)\right] \tag{3.89}
\end{gather*}
$$

where the number of niPCE coefficients is given by the expression

$$
\begin{equation*}
N_{c u t}=\binom{k+M}{k}=\frac{M(M+1)(M+2) \cdots(M+k)}{k!} \tag{3.90}
\end{equation*}
$$

3.4.6 Smolyak Sparse Grid Integration

In this Subsection, a less costly method under certain circumstances, is introduced, for the numerical computation of the integrals, present in niPCE coefficients and their derivatives (3.76) and (3.80), respectively).

Up until now, these integrals where computed by employing the GHQ method, while using all $(k+1)^{M}$ Gauss Nodes for the integration. These nodes are the roots $z_{j_{l}}$ of the multi-dimensional Hermite polynomials $\psi\left(\vec{z}_{j}\right)$, which are products of 1D Hermite polynomials $H e_{j_{l}}\left(z_{j_{l}}\right)$, of degree j_{l}. The amount of different combinations of degrees, and therefore roots, is equal to $(k+1)^{M}$, given that:

$$
j_{l}=1,2, \ldots, k+1 \quad \forall l=1,2 \ldots, M
$$

This set of nodes used for the GQ method is referred to as Full Grid GQ integration. According to Table 3.1, the curse of dimensionality, makes the implementation of Full Grid integration practically impossible for problems with a large number of uncertain variables ($M \geq 4$).

The Smolyak Sparse Grids [33] first proposed by Smolyak in 1963, so as to circumvent the curse of dimensionality in GQ integration, by requiring a smaller number of Gauss Nodes for the computation of the integral. Consequently, when applied in UQ or RDO problems, less calls to the QoI function F are needed (an action synonymous with the costly solution of either only the primal problem, if UQ is preformed, or also of the adjoint problem, if RDO takes place), leading to a reduced computational cost. The real advantage of the Smolyak Grids lies, especially in problems with a large number of uncertain variables M, given that, with this method, the integrals can be computed with a slightly reduced accuracy, but, on the other hand, with a far lesser number of Gauss Nodes and therefore for an inferior cost.

Nevertheless, the Smolyak Grids are not introduced in this work, so as to totally replace the Full Grid GQ integration. Their use is, mainly, to complete the GQ integration method as a whole, by switching between one method, when the other yields an unfeasible computational cost.

That said, the process needed for the creation of Smolyak Sparse grid for a specific M-dimensional integral, is the following:

1. For the selected chaos order k (the higher its value, the higher the accuracy along with the cost), the possible combinations of polynomial degrees j_{l}, also
culminating to the number $N_{S M}$ of Gauss Nodes of the grid, have to fullfill the criterion

$$
\begin{equation*}
M \leq \sum_{l=1}^{M} j_{l} \leq M+k \tag{3.91}
\end{equation*}
$$

The addition of definitions $|j|=\sum_{l=1}^{M} j_{l}$ and $M+K=q$ to (3.91), yield

$$
\begin{equation*}
M \leq|j| \leq q \tag{3.92}
\end{equation*}
$$

According to criterion (3.92), the span of each of the degrees j_{l} is defined as

$$
\left\{\begin{array}{c}
j_{1}=1, \ldots, d_{1} \tag{3.93}\\
j_{2}=1, \ldots, d_{2} \\
\ldots \\
\ldots \\
\ldots \\
j_{M}=1, \ldots, d_{M}
\end{array}\right\}
$$

where the product of maximum degrees yields the total number of nodes $N_{S M}=\prod_{l=1}^{M} d_{l}=d_{1} d_{2} \cdots d_{M}$.
2. The Full Grid GQ weights $\omega_{j_{l}}$ of the orthogonal polynomials defined in (3.82) of Subsection 3.4.5, are utilized to produce the Smolyak redefined weights $W_{n} \forall n=1,2, \ldots, N_{S M}$, as follows

$$
\begin{equation*}
\Omega_{n}=(-1)^{q-|j|}\binom{M-1}{q-|j|} \prod_{l=1}^{M} \omega_{j_{l}} \tag{3.94}
\end{equation*}
$$

3. The integral is computed with a Sparse Grid of Gauss Nodes as

$$
\begin{gather*}
\int_{\vec{D}} f(\vec{x}) d \vec{x}=\sum_{n=1}^{N_{S M}} \Omega_{n} f\left(\vec{z}_{n}\right)= \\
=\sum_{j_{1}=1}^{d_{1}} \sum_{j_{2}=1}^{d_{2}} \cdots \sum_{j_{M}=1}^{d_{M}}\left[(-1)^{q-|j|}\binom{M-1}{q-|j|} \prod_{l=1}^{M} \omega_{j_{l}}\right] f\left(z_{j_{1}}, z_{j_{2}}, \ldots, z_{j_{M}}\right) \tag{3.95}
\end{gather*}
$$

According to step 2, the amount of nodes used both in Full and Sparse grids are displayed in Table 3.2, on order to fully understand the capabilities and shortcomings of the two methods. It is clear, that the Full Grid has a smaller implementation costand is therefore a better choice for $M=1,2,3 \forall k$. For $M=4$ the cost of the two methods is in the same order of magnitude, giving the ability to both methods interchangeably. On the other hand, for a greater number dimensions, the cost of the Full Grid integration, for any value of $k>1$, is a least an order of magnitude greater than the respective cost of Sparse grid integration.

Full Grid / Smolyak Sparse Grid									
	M							6	6
k	1	2	3	4	$1 / 1$	$1 / 1$			
0	$1 / 1$	$1 / 1$	$1 / 1$	$1 / 1$	$32 / 11$	$64 / 13$			
1	$2 / 3$	$4 / 5$	$8 / 7$	$16 / 9$	$243 / 61$	$729 / 85$			
2	$3 / 5$	$9 / 13$	$27 / 25$	$81 / 41$	$209 / 389$				
3	$4 / 9$	$16 / 29$	$64 / 69$	$256 / 137$	$1024 / 241$	4096			
4	$5 / 17$	$25 / 65$	$125 / 177$	$625 / 401$	$3125 / 801$	$15625 / 1457$			
5	$6 / 33$	$36 / 145$	$216 / 441$	$1296 / 1105$	$7776 / 2433$	$46656 / 4865$			

Table 3.2: Gauss Nodes for the computation of niPCE coefficients through use of Full Grid and Smolyak Sparse grid GQ numerical integration, for different values of chaos order k and uncertain variables M.

Finally, the implementation of Smolyak Sparse grid GHQ integration, for the computation of the niPCE coefficients a_{i} from (3.76), yields

$$
\begin{equation*}
a_{i}=\sum_{j_{1}=1}^{d_{1}} \cdots \sum_{j_{M}=1}^{d_{M}}\left[(-1)^{q-|j|}\binom{M-1}{q-|j|} \prod_{l=1}^{M} \omega_{j_{l}}\right] F\left(\vec{b}, x_{j_{1}}, \ldots, x_{j_{M}}\right) \widetilde{\psi}_{i}\left(z_{j_{1}}, \ldots, z_{j_{M}}\right) \tag{3.96}
\end{equation*}
$$

while for the derivatives of a_{i} w.r.t. the design variables b_{n}

$$
\begin{equation*}
\frac{\partial a_{i}}{\partial b_{n}}=\sum_{j_{1}=1}^{d_{1}} \cdots \sum_{j_{M}=1}^{d_{M}}\left[(-1)^{q-|j|}\binom{M-1}{q-|j|} \prod_{l=1}^{M} \omega_{j_{l}}\right] \frac{\partial F\left(\vec{b}, x_{j_{1}}, \ldots, x_{j_{M}}\right)}{\partial b_{n}} \widetilde{\psi}_{i}\left(z_{j_{1}}, \ldots, z_{j_{M}}\right) \tag{3.97}
\end{equation*}
$$

where $\vec{z}_{j}=\left(z_{j_{1}}, z_{j_{2}}, \ldots, z_{j_{M}}\right)$ the Gauss Nodes, $q=M+k$, while

$$
x_{j_{l}}=\sigma_{l} \cdot z_{j_{l}}+\mu_{l} \quad \text { and }|j|=\sum_{l=1}^{M} j_{l}
$$

Finally, from eqs. (3.96) and (3.97), the mean value and standard deviation of F, as well as their derivatives, are formulated accordingly, using the same strategy as the one followed in Subsection 3.4.5.

Chapter 4

Modeling of Manufacturing Imperfections

The mathematical formulation of the stochastic processes used to model the inevitable shape imperfections generated on mechanical parts during the manufacturing procedure, is presented in this chapter.

4.1 Karhunen-Loève Transform

During the manufacturing of mechanical parts, the occurrence of a certain differentiation between the shapes of the designed and the finished product is generally expected. The stochasticity of the manufacturing process, such as the quality degradation of cutting tools, is largely responsible for such occurrences. This phenomena appears, for example, during the large-scale production of lifting bodies such as aircraft wings, hydrofoils or turbomachinery blades. The shape differentiation of the finished product when compared with the original design must respect the tolerances specified by the manufacturer, otherwise the product is deemed a failure and be disposed. Yet, even if the imperfections do not overstep their specified tolerance boundaries, these have a non-trivial impact on the aerodynamic performance of the manufactured lifting body.

In this diploma thesis, the mathematical tool used to model these imperfections is known as the Karhunen-Loève Transform (KLT) [34, 35, 36, 37, 38]. The KLT comprises a stochastic process used over a finite space or time span.

4.1.1 Karhunen-Loève Expansion

The Karhunen-Loève Expansion (KLE) is used to compute stochastic perturbations on the surface of an imperfect part. This perturbation $E(s)$ is expanded into an
orthogonal set of deterministic functions $f_{n}(s)$ according to the following formula

$$
\begin{equation*}
E(s)=\sum_{n=1}^{\infty} \sqrt{\lambda_{n}} c_{n} f_{n}(s) \tag{4.1}
\end{equation*}
$$

where s indicates the dimensional curvilinear coordinate of the shape in question, c_{n} indicates a set of random variables to be determined and λ_{n} indicates some constants, yet to be defined.

In eq. (4.1), the probabilistic $\sqrt{\lambda_{n}} c_{n}$ and deterministic $f_{n}(s)$ parts of the expansion, must be considered separately.

In order to recreate a randomly generated imperfect shape realization $X(s, \vec{c})$, the perturbation expansion $w(s)$ is superimposed on the nominal shape $\bar{X}(s)$ in the direction of the surface normal vector. Specifically in the case of 2D aerodynamic bodies, such as airfoils, the perturbation is superimposed on the mean nominal airfoil geometry $\bar{X}(s)$ using the following equation

$$
\begin{equation*}
X(s, \vec{c})=\bar{X}(s)+E(s) \vec{n}(s)=\bar{X}(s)+\sum_{n=1}^{\infty} \sqrt{\lambda_{n}} c_{n} f_{n}(s) \vec{n}(s) \tag{4.2}
\end{equation*}
$$

where $s \in\left[0, s_{\max }\right]$ and $s_{\max }$ is defined as the total length of the contour of the shape under consideration (in this case an airfoil), whereas $\vec{n}(s)$ indicates the surface unit normal vector.

4.1.2 Covariance Kernel

It is essential to explain and define the statistical moments that describe the stochastic perturbation process described in eq. (4.1). Evidently, the process has zero mean due to the fact the mean nominal geometry is included in eq. (4.2). However, the variance off all the possible of the expansion $E(s)$, from eq. 4.1), can be modeled through the covariance kernel or covariance function.

By definition of the covariance function is bounded, symmetric and positive definite [35]. Thus, it has the spectral decomposition 37, 38]

$$
\begin{equation*}
C\left(s_{1}, s_{2}\right)=\sum_{n=1}^{\infty} \lambda_{n} f_{n}\left(s_{1}\right) f_{n}\left(s_{2}\right) \tag{4.3}
\end{equation*}
$$

The type of covariance function used in the KLT process greatly impacts the eigenvalues and the mathematical formulation of the eigenfunctions used to describe the stochastic perturbations of eq. (4.2). In this thesis, the covariance kernel used to generate the imperfections of 2D shapes is exponential [34, 35, 36, 37] and is represented by the
formula

$$
\begin{equation*}
C\left(s_{1}, s_{2}\right)=\sigma^{2} e^{-\frac{\left|s_{1}-s_{2}\right|}{l}} \tag{4.4}
\end{equation*}
$$

where $s_{1}, s_{2} \in\left[0, s_{\max }\right]$ represent positions on the airfoil profile and l indicates the correlation length, which in return, describes the frequency of the perturbations. The σ parameter is known as the standard deviation of the perturbations and is a user-defined dimensional parameter that serves to scale the absolute magnitude of the perturbations. The value of this parameter has no physical significance, as the scaling of the perturbations can be achieved also through the range or the statistical moments that define the distribution of the uncertain variables c_{n}. For this thesis, given that the standard deviation of the imperfections is not defined, its value is assumed to be $\sigma=1$ and can, therefore, be practically omitted.

The eigenvalues λ_{n} and the eigenfunctions f_{n} used in the KLE model eq. (4.2), are obtained by solving the following integral equation

$$
\begin{equation*}
\int_{D} C\left(s_{1}, s_{2}\right) f_{n}\left(s_{2}\right) d s_{2}=\lambda_{n} f_{n}\left(s_{1}\right) \tag{4.5}
\end{equation*}
$$

where D indicates the domain where the coordinates s_{1}, s_{2} are defined.
Due to the fact that the covariance kernel has the properties mentioned above, the eigenvalues and eigenfunctions that consist the solution of the integral eq. (4.5) have the following properties [35]:

- The set of eigenfunctions is orthogonal and complete. The eigenfunctions can be normalized in the sense

$$
\begin{equation*}
\int_{D} f_{n}(s) f_{m}(s) d s=\delta_{n}^{m} \tag{4.6}
\end{equation*}
$$

where δ_{n}^{m} is the Kronecker delta.

- Each eigenvalue corresponds to a finite number of linearly independent eigenfunctions, at most. In the present case of exponential kernels, each eigenvalue corresponds to a single eigenfunction.
- There are at most a countably infinite number of eigenvalues.
- All eigenvalues are positive real numbers.
- Every covariance kernel admits to the uniformly convergent expansion of eq. (4.3)

In the case of the exponential kernel (4.4) and of a non-symmetric interval $D=$ $[a, b], a, b \in \mathbb{R}$ for which $s_{1}, s_{2} \in D$, the integral eq. (4.5) takes the following form

$$
\begin{equation*}
\int_{a}^{b} \sigma^{2} e^{-\frac{\left|s_{1}-s_{2}\right|}{l}} f_{n}\left(s_{2}\right) d s_{2}=\lambda_{n} f_{n}\left(s_{1}\right) \tag{4.7}
\end{equation*}
$$

Since the correlation length l, meaning the frequency of the manufacturing imperfections, is a value difficult to define even by the manufacturer, for the purpose of shape imperfections modeling, it is often assumed that $l=|a-b|=b-a$. Especially in the case of aerodynamic bodies, for which the limits of the interval D are often defined as $a=0$ and $b=s_{\max }$, the correlation length is, therefore, defined as $l=s_{\max }$ (with accordance to the previous assumption).

4.1.3 Solution of the Integral Equation

At this point, it would be useful to specify the known and unknown data of the KLT process. Whenever a new nominal geometry is introduced, in order to create an imperfect realisation of it, the contour $s_{\max }$ of the nominal geometry is computed. Thus, the range of the variables s_{1}, s_{2} and, consequently, the interval $D=[a, b]$ of the integral eq. (4.7) can be defined. In addition, if no more empirical data are available, the correlation length l and the standard deviation σ can be defined, respectively, in consonance with the assumptions mentioned in Subsection 4.1.2. Finally, the vector of uncertain variables \vec{c} must be designated either by a random number generator or by a specific process such as niPCE if, for example, UQ must be performed.

Once all the above parameters are known, we can proceed to the analytical solution of eq. (4.7), so as to calculate the needed eigenvalues and eigenfunctions. Equation (4.7) can be written in the following form

$$
\begin{equation*}
\int_{a}^{s_{1}} \sigma^{2} e^{-\frac{s_{1}-s_{2}}{l}} f_{n}\left(s_{2}\right) d s_{2}+\int_{s_{1}}^{b} \sigma^{2} e^{\frac{s_{1}-s_{2}}{l}} f_{n}\left(s_{2}\right) d s_{2}=\lambda_{n} f_{n}\left(s_{1}\right) \tag{4.8}
\end{equation*}
$$

Differentiating eq. (4.8) w.r.t. $s_{1} \in[a, b]$ and applying the Leibniz integral rule gives

$$
\begin{align*}
& -\frac{\sigma^{2}}{l} \int_{a}^{s_{1}} e^{\frac{s_{2}-s_{1}}{l}} f_{n}\left(s_{2}\right) d s_{2}+\frac{\partial s_{1}}{\partial s_{1}} \sigma^{2} f\left(s_{1}\right)+\frac{\sigma^{2}}{l} \int_{s_{1}}^{b} e^{\frac{s_{1}-s_{2}}{l}} f_{n}\left(s_{2}\right) d s_{2}-\frac{\partial s_{1}}{\partial s_{1}} \sigma^{2} f\left(s_{1}\right)=\lambda_{n} \frac{d f_{n}\left(s_{1}\right)}{d s_{1}} \\
& \Rightarrow-\int_{a}^{s_{1}} e^{\frac{s_{2}-s_{1}}{l}} f_{n}\left(s_{2}\right) d s_{2}+\int_{s_{1}}^{b} e^{\frac{s_{1}-s_{2}}{l}} f_{n}\left(s_{2}\right) d s_{2}=\frac{l \lambda_{n}}{\sigma^{2}} \frac{d f_{n}\left(s_{1}\right)}{d s_{1}} \tag{4.9}
\end{align*}
$$

Differentiating eq. 4.9) again w.r.t. s_{1} and using again the Leibniz rule yields

$$
\begin{align*}
& \frac{1}{l} \int_{a}^{s_{1}} e^{\frac{s_{2}-s_{1}}{l}} f_{n}\left(s_{2}\right) d s_{2}-\frac{\partial s_{1}}{\partial s_{1}} f\left(s_{1}\right)+\frac{1}{l} \int_{s_{1}}^{b} e^{\frac{s_{1}-s_{2}}{l}} f_{n}\left(s_{2}\right) d s_{2}-\frac{\partial s_{1}}{\partial s_{1}} f\left(s_{1}\right)=\frac{l \lambda_{n}}{\sigma^{2}} \frac{d f_{n}^{2}\left(s_{1}\right)}{d s_{1}^{2}} \\
& \Rightarrow-\int_{a}^{s_{1}} e^{\frac{s_{2}-s_{1}}{l}} f_{n}\left(s_{2}\right) d s_{2}+\int_{s_{1}}^{b} e^{\frac{s_{1}-s_{2}}{l}} f_{n}\left(s_{2}\right) d s_{2}-2 l f\left(s_{1}\right)=\frac{l^{2} \lambda_{n}}{\sigma^{2}} \frac{d f_{n}^{2}\left(s_{1}\right)}{d s_{1}^{2}} \tag{4.10}
\end{align*}
$$

After rearranging and replacing eq. (4.8) into eq. 4.10, the following differential equation is obtained

$$
\begin{equation*}
\lambda_{n} \frac{d^{2} f_{n}\left(s_{1}\right)}{d s_{1}^{2}}=\left(\frac{-2 \sigma^{2} l+\lambda_{n}}{l^{2}}\right) f_{n}\left(s_{1}\right) \tag{4.11}
\end{equation*}
$$

By defining the new variable ω_{n} as

$$
\begin{equation*}
\omega_{n}=\frac{2 \sigma^{2} l-\lambda_{n}}{l^{2} \lambda_{n}}>0 \tag{4.12}
\end{equation*}
$$

and, hence, the eigenvalues [37] can be calculated by

$$
\begin{equation*}
\lambda_{n}=\sigma^{2} \frac{2 l}{1+\left(\omega_{n} l\right)^{2}}>0 \tag{4.13}
\end{equation*}
$$

By setting $s_{1}=s$, eq. 4.11) assumes the following form

$$
\begin{equation*}
\frac{d^{2} f_{n}(s)}{d s^{2}}+\omega_{n}^{2} f_{n}(s)=0, \quad a \leq s \leq b \tag{4.14}
\end{equation*}
$$

To find the boundary conditions of the differential eqs. (4.14), (4.8) and (4.9) are evaluated at the integral boundaries, at $s=a$ and $s=b$. Therefore, the boundary conditions become

$$
\left\{\begin{array}{r}
f_{n}(a)-l \frac{d f_{n}(a)}{d s}=0 \tag{4.15}\\
f_{n}(b)+l \frac{d f_{n}(b)}{d s}=0
\end{array}\right.
$$

Furthermore, eq. (4.14) has four distinct solution forms [36]:

1. $\lambda_{n}=0$
2. $0<\lambda_{n}<2 \sigma^{2} l$
3. $\lambda_{n}=2 \sigma^{2} l$
4. $\lambda_{n}>2 \sigma^{2} l$

For case (1), if $\lambda_{n}=0$ then, according to eq. 4.12), ω_{n} is ill defined, due to division by zero.

For case (2), if $0<\lambda_{n}<2 \sigma^{2} l$ then

$$
\begin{equation*}
2 \sigma l-\lambda_{n}>0 \Rightarrow \omega_{n}=\frac{2 \sigma^{2} l-\lambda_{n}}{l^{2} \lambda_{n}}>0 \tag{4.16}
\end{equation*}
$$

which respects the definition of ω_{n}, according to eq. 4.12).
For case (3), if $\lambda_{n}=2 \sigma^{2} l$ then $\omega_{n}=0$ which violates the definition of ω_{n}, according to eq. (4.12).

For case (4), if $\lambda_{n}>2 \sigma^{2} l>0$ then

$$
\begin{equation*}
2 \sigma^{2} l-\lambda_{n}<0 \Rightarrow \omega_{n}=\frac{2 \sigma^{2} l-\lambda_{n}}{l^{2} \lambda_{n}}<0 \tag{4.17}
\end{equation*}
$$

which again violates the definition of ω_{n}, according to eq. (4.12).
Thus, integral eq. (4.7) cannot be satisfied for the cases (1), (3) and (4).
For $0<\lambda_{n}<2 \sigma^{2} l$, it is assumed that the solution can be given by

$$
\begin{equation*}
f_{n}(s)=c_{1} \cos \left[\omega_{n}\left(s-\frac{a+b}{2}\right)\right]+c_{2} \sin \left[\omega_{n}\left(s-\frac{a+b}{2}\right)\right] \tag{4.18}
\end{equation*}
$$

where $c_{1}, c_{2} \in \mathbb{R}$ to be defined.
By substituting the eq. (4.18) into the boundary conditions (4.15), the following equations are formulated

$$
\left\{\begin{array}{l}
c_{1}\left[1-\omega_{n} l \tan \left(\omega_{n} \frac{b-a}{2}\right)\right]-c_{2}\left[\tan \left(\omega_{n} \frac{b-a}{2}\right)+\omega_{n} l\right]=0 \tag{4.19}\\
c_{1}\left[1-\omega_{n} l \tan \left(\omega_{n} \frac{b-a}{2}\right)\right]+c_{2}\left[\tan \left(\omega_{n} \frac{b-a}{2}\right)+\omega_{n} l\right]=0
\end{array}\right.
$$

Non-trivial solutions can be achieved only when the determinant J of the homogeneous system (4.19) is equal to zero [35]. Meaning that, if $J \neq 0$, then the inevitable solution of eqs. 4.19) is $c_{1}=c_{2}=0$ Thus, J takes the following form

$$
\begin{align*}
& J=2\left[\omega_{n} l+\left(1-\left(\omega_{n} l\right)^{2}\right) \tan \left(\omega_{n} \frac{b-a}{2}\right)-\omega_{n} l \tan ^{2}\left(\omega_{n} \frac{b-a}{2}\right)\right] \Rightarrow \\
& J=2\left[\omega_{n} l+\tan \left(\omega_{n} \frac{b-a}{2}\right)\right]\left[1-\omega_{n} l \tan \left(\omega_{n} \frac{b-a}{2}\right)\right]=0 \tag{4.20}
\end{align*}
$$

By setting the determinant of eq. 4.20), to zero and after rearranging, the following transcendental equations [34] are derived

$$
\left\{\begin{array}{l}
\omega_{n} l+\tan \left(\omega_{n} \frac{b-a}{2}\right)=0 \tag{4.21}\\
1-\omega_{n} l \tan \left(\omega_{n} \frac{b-a}{2}\right)=0
\end{array}\right.
$$

For n being an even number, the value of $\omega_{n}>0$ is given by the ordered solution to the transcendental equation

$$
\begin{equation*}
\omega_{n} l+\tan \left(\omega_{n} \frac{b-a}{2}\right)=0 \tag{4.22}
\end{equation*}
$$

and for n being an odd number, the value of $\omega_{n}>0$ is given by solving the transcendental equation

$$
\begin{equation*}
1-\omega_{n} l \tan \left(\omega_{n} \frac{b-a}{2}\right)=0 \tag{4.23}
\end{equation*}
$$

At this point, the first 20 eigenvalues λ_{n} are computed through the solution of the transcendental equations (4.22), (4.23) by making use of eq. (4.13) and are plotted in Figure 4.1 for different values of input parameters a, b, σ, l.

So, for n even

$$
\begin{equation*}
c_{2}=\frac{\omega_{n} l+\tan \left(\omega_{n} \frac{b-a}{2}\right)}{1-\omega_{n} l \tan \left(\omega_{n} \frac{b-a}{2}\right)} c_{1}=0 \text { and } f_{n}(s)=c_{1} \cos \left(\omega_{n}\left(s-\frac{a+b}{2}\right)\right) \tag{4.24}
\end{equation*}
$$

Also, for n odd

$$
\begin{equation*}
c_{1}=\frac{1-\omega_{n} l \tan \left(\omega_{n} \frac{b-a}{2}\right)}{\omega_{n} l+\tan \left(\omega_{n} \frac{b-a}{2}\right)} c_{2}=0 \text { and } f_{n}(s)=c_{2} \sin \left(\omega_{n}\left(s-\frac{a+b}{2}\right)\right) \tag{4.25}
\end{equation*}
$$

Furthermore, c_{1}, c_{2} can be computed using the orthogonality eq. 4.6) of the eigenfunctions

$$
\begin{align*}
& \text { For } n \text { even : } c_{1}^{2} \int_{a}^{b} \cos ^{2}\left(\omega_{n}\left(s-\frac{a+b}{2}\right)\right) d s=1 \Rightarrow c_{1}=\frac{1}{\sqrt{\frac{b-a}{2}+\frac{\sin \left(\omega_{n}(b-a)\right)}{2 \omega_{n}}}} \tag{4.26}\\
& \text { For } n \text { odd }: c_{2}^{2} \int_{a}^{b} \sin ^{2}\left(\omega_{n}\left(s-\frac{a+b}{2}\right)\right) d s=1 \Rightarrow c_{2}=\frac{1}{\sqrt{\frac{b-a}{2}-\frac{\sin \left(\omega_{n}(b-a)\right)}{2 \omega_{n}}}} \tag{4.27}
\end{align*}
$$

Figure 4.1: KLT eigenvalue decay for the exponential kernel of eq. 4.4 and, also, for $\sigma=1, a=0$ and $b=l=1,2,3$.

To summarize, the eigenfunctions [34] are determined by the following formula

$$
f_{n}(s)= \begin{cases}\frac{\cos \left(\omega_{n}\left(s-\frac{a+b}{2}\right)\right)}{\sqrt{\frac{b-a}{2}+\frac{\sin \left(\omega_{n}(b-a)\right)}{2 \omega_{n}}},}, & \text { for } n \text { even } \tag{4.28}\\ \frac{\sin \left(\omega_{n}\left(s-\frac{a+b}{2}\right)\right)}{\sqrt{\frac{b-a}{2}-\frac{\sin \left(\omega_{n}(b-a)\right)}{2 \omega_{n}}}}, & \text { for } n \text { odd }\end{cases}
$$

By making use of eq. (4.28), the first six eigenfunctions are computed and plotted in Figure 4.2, for $s \in[0,1]$.

4.1.4 KLT Algorithmic Formulation

Now that the mathematical formulation the Karhunen-Loève Transform has been fully defined, it is possible to describe the algorithmic steps needed to compute a random imperfect realization of a 2D geometry.

First and foremost, the nominal 2D geometry must be given in the form of either a number of discrete coordinate points or a function of s. Either way, this input defines the variable $\bar{X}(s)$ in eq. (4.2). Subsequently, the contour $s_{\max }$ of the nominal

Figure 4.2: First six KLT eigenfunctions for the exponential kernel (4.4) and, also, for $s \in[a, b]=[0,1], b=l$ and $\sigma=1$.
geometry and, thus, the interval $D=\left[0, s_{\max }\right]$ of the integral eq. (4.7) is computed, under the assumption that the covariance kernel as the one in (4.4), is employed. If no more data is shared by the designer or the manufacturer of the geometry, then the correlation length can be assumed $l=s_{\max }$ (according to the assumptions made in Subsection 4.1.2).

Once all this is defined, the algorithm, implementing the KLT to generate an imperfect geometry, can be described by the following steps:

1. Analytical or numerical solving of the transcendental equations (4.21) for a vast range of the variable $\omega_{n}>0$, in order to find a finite number of eigenvalues λ_{n}, by making use of eq. 4.13).
2. Specifying the number of the first eigenvalues and their respective eigenfunctions that is included in the KLE of eq. (4.1), according to either a predefined criterion or via other ad-hoc methods.
3. Computation of the surface unit normal vectors \vec{n} via an analytical or a numerical method, depending on the description method for the nominal geometry.
4. Randomizing the values of the KLT uncertain variable vector \vec{c}, by means of
a random number generator. The dimension of \vec{c} was defined in Step 2 and is equal to the number of eigenvalues included in the KLE.
5. Computation of the random geometry perturbation through the KLE formulas and superimposition of this perturbation on the nominal geometry, according to eq. 4.29)

Steps 4 and 5 can be repeated independently within a loop, so as to compute more than one random imperfect 2D geometries.

4.2 KLT Applications

4.2.1 Flat Plate

First, the KLT process is applied on a flat plate, for simplicity reasons, in order to understand the basic functions of the process on a plain 2D geometry. To put it simply, the KLE perturbations are superimposed on the a straight line, in the direction perpendicular to it, hence, creating a number of oscillating continuous lines.

The parameters of the applications are defined simply, by using all assumptions mentioned in Section 4.1. Therefore, for a flat plate of 1 meter in length, with no curvature and parallel to the x-axis of the Cartesian coordinate system the KLT parameters are set as $s \equiv x \in[a, b]=[0,1] m, l=b=1 m$ and $\sigma=1 \mathrm{~m}$. The input file, containing the plate's equally spaced coordinates, is comprised by 100 coordinate points, meaning that the discretization step of the plate is equal to $\Delta s=\Delta x=0.01 \mathrm{~m}$.

For the implementation of KLT on the flat plate, an algorithm that can apply the KLE on a 2D geometry is developed in C++. According to the transform's properties presented in Subsection 4.1.2 the solution of the integral eq. (4.5) can produce at most an infinite number of eigenvalues and their respective eigenfunctions. It is self-evident that an algorithm must use a finite number of eigenvalues in order to compute the KLE of the imperfections (4.1). Thus, the question of how many modes should be used during the KLT process has arisen. Given that, an acceptable number $M \in \mathbb{N}$ (as defined in eq. (4.29)) of eigenvalues and eigenfunctions to be included in the KLE is not pre-determined, a parametric analysis is w.r.t. M taking place. The value of the cut-off point M, simultaneously, determines the dimension of the vector of uncertain variables $c_{n}, n \in[0, M]$ needed for the process. For this application and the next (see in Subsection 4.2.2), the values of the uncertain variables c_{n} are produced by the pseudo random number generator $\operatorname{rand}()$, of $\mathrm{C}++$.

Here, eq. (4.2) is rewritten with defined cut-off point M :

$$
\begin{equation*}
X(s, \vec{c})=\bar{X}(s)+\sum_{n=1}^{M} \sqrt{\lambda_{n}} c_{n} f_{n}(s) \vec{n}(s) \tag{4.29}
\end{equation*}
$$

The purpose of the parametric analysis is to better understand the effect that the value of M has on the shape of the imperfect realizations of the nominal geometry. Seven imperfect realization of the flat plate are generated, each time for 5,10 and 20 modes included in the KLE, thus, M is assuming the values 5, 10, and 20, accordingly.

The maximum magnitude of the perturbations in flat plate KLT imperfect renderings is purposely set as 50% of the initial plate's length, for display reason, given that the complexity of the perturbation's osculation is of interest here and not its magnitude.

The imperfect plates computed by including the 5, 10 and 20 first eigenvalues and their corresponding eigenfunctions in the KLE modeling the perturbations can be found in Figures 4.3, 4.4 and 4.5, respectively.

Figure 4.3: The nominal flat plate (black) and seven imperfect realizations of it (other colors), generated through KLT by including the first 5 modes $(M=5)$ and plotted in scale.

Imperfect 1
Imperfect 2
Imperfect 3
Imperfect 4
Imperfect 5
Imperfect 6
Imperfect 7
Nominal

Figure 4.4: The nominal flat plate (black) and seven imperfect realizations of it (other colors), generated through KLT by including the first 10 modes $(M=10)$ and plotted in scale.

Imperfect 1
Imperfect 2
Imperfect 3
Imperfect 4
Imperfect 5
Imperfect 6
Imperfect 7
Nominal

Figure 4.5: The nominal flat plate (black) and seven imperfect realizations of it (other colors), generated through KLT by including the first 20 modes $(M=20)$ and plotted in scale.

As expected, the random imperfect realizations of the flat plate get more complex as more modes are included in the KLE. This observation contradicts the fact of eigenvalue decay, as stated previously in Figure 4.1. To be more precise and to further strengthen this point, for this application, the sum of the first 5, 10 and 20
eigenvalues are presented as a percentage of the sum of all calculated eigenvalues, in Table 4.1. Yet, as we progress from Figures 4.3 to 4.5 , it is clear that the increase of M causes the imperfect lines to be become more oscillated, given that more and more high frequency eigenfunctions (Figure 4.2) are added to the expansion that simulates the imperfections.

Number of Modes (M)	$\sum_{n=1}^{M} \lambda_{n} / \sum_{n} \lambda_{n}$
5	$\mathbf{9 8 . 1 5} \%$
10	$\mathbf{9 9 . 2 5} \%$
20	$\mathbf{9 9 . 6 8} \%$

Table 4.1: Sum of the first KLT eigenvalues of the flat plate, for $M=5,10,20$.

4.2.2 NACA 0012 Airfoil

The KLT process is, now, applied on a 2D aerodynamic body, such as an airfoil, in order to showcase the capabilities of the process in recreating a number of stochastic imperfect realizations of the said body, thus, simulating the final manufactured product. The KLT is implemented on the NACA 0012 airfoil and, thus, the parameters of the process must be defined.

The domain of the integral eq. (4.5) is defined as $D=\left[0, s_{\max }\right]$, where $s_{\max }=$ 2.03918 m represents the perimeter of a NACA 0012 airfoil with a unit chord. The correlation length of the covariance kernel is set $l=s_{\max }$. In addition, the number d of eigenvalues and corresponding eigenfunctions that are used in the KLE to form the stochastic perturbations must be defined. After some attempts on different airfoils it can be assumed that only the first five eigenvalues and eigenvalues might be sufficient, given that the following criterion is satisfied with 5 modes, in most cases.

$$
\begin{equation*}
\frac{\sum_{n=1}^{M} \lambda_{n}}{\sum_{n} \lambda_{n}} \geq 0.96 \tag{4.30}
\end{equation*}
$$

Specifically, for the NACA 0012 airfoil, the sum of the first five eigenvalues consists the 97.26 \% of the sum of all calculated eigenvalues. Consequently, to define each imperfect airfoil, five uncertain variables c_{n} are needed.

Therefore, for this application, eq. (4.29) assumes the following form

$$
\begin{equation*}
X(s, \vec{c})=\bar{X}(s)+\sum_{n=1}^{M=5} \sqrt{\lambda_{n}} c_{n} f_{n}(s) \vec{n}(s) \tag{4.31}
\end{equation*}
$$

For the implementation of KLT on a specified airfoil, the same software as the one mentioned in Subsection 4.2 .1 is used. A similar algorithm is coupled with the
niPCE in-house code developed by the PCOpt/NTUA in FORTRAN and used in later stages of this diploma thesis, so as to perform UQ [3] and aerodynamic RDO w.r.t. manufacturing imperfections. The input file, that describes the NACA 0012 profile, contains 200 coordinate points.

For this application only, the standard deviation of the perturbations σ of the covariance kernel (4.4) is replaced by a different parameter that serves to define the maximum absolute magnitude of the KLE perturbation (4.1), so as to simulate the equivalent manufacturing tolerance of the lifting body. Thus, this new parameter renders parameter σ obsolete, given its only actual purpose is to scale the KLE perturbations (4.1). Nevertheless, this post-processing is bypassed, in later use of this software (for the purposes of UQ and RDO), considering that the magnitude of the perturbations are dictated by the statistical moments defining the uncertain variables. For this application, the maximum imperfection magnitude is assumed, arbitrarily, to be the 0.3% of the airfoil's chord length.

Additionally, a Hann-like weighted cosine function, such as those used in signal processing, is optionally utilized to damp the KLE perturbation close to the trailing edge of the airfoil. In this application, this post-processing is required to keep the trailing edge coordinates unchanged and always maintain a sharp trailing edge. The formula used for the computation of the weighted Hanning window coefficient $C_{\text {Hann }}$ can be described in eq. 4.32

$$
C_{\text {Hann }}(s)=\left\{\begin{array}{c}
1-\cos \left(\frac{\pi}{2 p} \frac{s}{s_{\max }}\right), \text { for } \frac{s}{s_{\max }}<p \tag{4.32}\\
1, \text { for } p \leqslant \frac{s}{s_{\max }} \leqslant(1-p) \\
1-\cos \left(\frac{\pi}{2 p} \frac{1-s}{s_{\max }}\right), \text { for } \frac{s}{s_{\max }}>1-p
\end{array}\right.
$$

where $p \in[0,1]$ indicates the user-defined percentage of the contour $s_{\max }$ of the airfoil. The coefficient produced from eq. (4.32) is plotted, for different values of p, in Figure 4.6 .

It is assumed that for this particular airfoil, the damping of the perturbations should take place, for each side of the airfoil, at the 8% of it's contour ($p=8 \%$). Thus, the final form of the KLE formula used in this algorithm is given by

$$
\begin{equation*}
X(s, \vec{c})=\bar{X}(s)+C_{\text {Hann }}(s) \sum_{n=1}^{M=5} \sqrt{\lambda_{n}} c_{n} f_{n}(s) \vec{n}(s) \tag{4.33}
\end{equation*}
$$

Finally, by defining the rest of the parameters as described previously, seven random realisations of the NACA 0012 airfoil are being computed and displayed in Figure 4.7.

Figure 4.6: The Hanning Window coefficient $C_{\text {Hann }}$ computed and plotted for $p=$ 10% (blue) and $p=20 \%$ (red).

Figure 4.7: The nominal (black) and seven imperfect (other colors) NACA 0012 airfoils, generated through KLT, not in scale (above) and in scale (below).

Chapter 5

Uncertainty Quantification with Manufacturing Imperfections

In this chapter, a description of the integration of the previously mentioned KLT software (used to compute imperfect 2D geometries) coupled with the OpenFOAM mesh generators and fluid flow solvers into the in-house niPCE software takes place. Also, various simulations concerning the UQ of the aerodynamic performance of 2D bodies with their manufacturing imperfections, are presented.

5.1 Integration of KLT software and OpenFOAM solvers into the niPCE software

The software developed in C++ that implements the KLT onto a 2D geometry, in order to generate an imperfect shape, thus simulating a manufactured final mechanical part, is named foilKLT. As the name reveals, this software specializes into 2D aerodynamic bodies such as isolated or turbomachinery blade airfoils. The core algorithm is vastly based upon the generalized algorithm of KLT application on 2D shapes, as presented in Subsection 4.1.4. Its purpose is to be coupled with a CFD solver, so as to compute the QoI needed for the process of UQ, performed through the non-intrusive Polynomial Chaos Expansion code developed by the PCOpt/NTUA.

The data defining the nominal aerodynamic body is given to foilKLT in the form of discrete points (coordinates) in a date file (set airfoil.dat for now). Then KLT is implemented to create an imperfect realization of the nominal geometry. Another data file, named KLT.ini, is utilized to define the KLT process parameters, the input and output file names, while, also, giving the option whether or not to apply on the final imperfect geometry, the Hanning Window or the absolute KLE perturbations magnitude post-processing subroutines, that were thoroughly described in Subsection 4.2.2. The imperfect body outputted by the program has the same format as the input geometry file and has a variable file name (set impFoil
for this thesis).
The most important difference of foiKLT w.r.t. the aforementioned KLT algorithm, is that the random number generator, mentioned in Step 4 (see Subsection 4.1.4), used to designate the values of the uncertain variables c_{n}, is replaced by an additional input file of variable name. As such, the uncertain variable vector \vec{c} used in the KLE, can be defined through an outside source, in this specific case by the niPCE in-house code through a data file (usually named task.dat).

Because the input and the output files of foilKLT are 2D Cartesian coordinate data files, the problem, of integrating them into the OpenFOAM 3D mesh configuration, arises. The easiest solution to this problem would be to integrate the imperfect 2D geometry coordinates into the input file of the OpenFOAM mesh generator (e.g. blockMeshDict for the blockMesh mesher), used to create the mesh in the first place, thus re-meshing for every call of foilKLT. While practical, this solution is costly, especially in scenarios with complex geometries that require mesh generation of significant computational cost. To avoid this shortcoming, the source OpenFOAM moveDynamicMesh solver can be implemented, so as to only re-mesh the solid boundaries defining the geometry under consideration, as well as the mesh close to them. The moveDynamicMesh can only accept certain triangulated surface file formats (i.e. .stl, .obj, .vtk, .tri etc) as inputs, in order move specific mesh regions. Thus, an additional software is developed in $\mathrm{C}++$, named preSucOBJ, for the purpose of converting the imperfect 2D geometry file into a triangulated 3D surface file, specifically in the .obj file format. In order for the aforementioned process to take place, the to-be imperfect wing length must be specified. Finally, once all the above are executed, the displacement Laplacian solver moveDynamicMesh has renewed the polyMesh directory, re-defining the mesh region of the flow field. Then, the OpenFOAM solver runs, which for this specific chapter is the incompressible flow solver simpleFoam. Once the flow solver has converged to a solution for the flow field variables, one or more QoI (e.g. drag coefficient etc) are computed and written into a final communication file (usually named task.res) which is, then, inputted into the $n i P C E$ software thus closing the process of computing the QoI.

This whole process is called and performed several times when the niPCE code is executed, while it is highly recommended to run the CFD code in parallel execution, in order to dramatically reduce the wall-clock time, a.k.a. response time, of the operation in question. In Figure 5.1, the flow-chart of the QoI computation process is presented.

Figure 5.1: The QoI computation process flow-chart, including the names of the communication/data files of the software used in it. This process is repeated as many times as dictated by the niPCE algorithm, depending mostly on the dimension M of the uncertain variable vector and the order k of the Chaos Expansion polynomials. For simplicity reasons, the niPCE algorithm is displayed as a black box, in order to better focus on the computation of the QoI.

5.2 Uncertainty Quantification: NACA 0012 airfoil

In this section the initial conditions, the mesh, the flow field and the QoI results (without uncertainties) of the NACA 0012 airfoil CFD case are presented. The algorithm described in Section 5.1, is then applied on the case in question, in order to assess the potential of the KLT in UQ with manufacturing uncertainties. UQ results, computed for several values of the chaos order parameter k, are displayed and compared with MC results, due to its simplicity and accuracy [3], if, at least, an adequate number of replicates is used.

5.2.1 Flow Field Initial Conditions and Mesh

The flow field around the airfoil is considered to be steady, incompressible and turbulent. The NACA 0012 chord has been set to 1 meter. The flow initial conditions and properties are displayed in Table 5.1. The flow is solved on a structured, 2D and cell centered C-type grid, consisting of 160×135 quadrilateral elements, generated through blockMesh. The farfield boundaries of the mesh around the airfoil are set to a 10 chord lengths away form it. The mesh in question is

Farfield Velocity Magnitude	U_{∞}	$26 \mathrm{~m} / \mathrm{s}$
Farfield Velocity Angle	α	2.0°
Kinematic Viscocity	ν	$10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
Density	ρ	$1.225 \mathrm{~m}^{3} / \mathrm{kg}$
Reynolds Number	$R e_{c}$	$2.6 \cdot 10^{+6}$

Table 5.1: The constant initial condition of the NACA 0012 CFD-case.
visualized in Figures 5.2 and 5.3 .

Figure 5.2: NACA 0012 airfoil: structured C-type mesh.

Figure 5.3: NACA 0012 airfoil: structured C-type mesh, close up view of the airfoil's leading (above) and trailing edges (below).

The turbulence model used in this CFD case, is the Spalart-Allmaras one [16], while a common assumption in airfoil flow field is used, which dictates that $\tilde{\nu} / \nu=5$, at the inlet boundary. Hence, the initial condition for the turbulence model are: Spalart-Allmaras model variable $\tilde{\nu}=5 \cdot 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$ and turbulent kinematic viscosity $\nu_{t}=1.29 \cdot 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$. The OpenFOAM's nutUSpaldingWallFunction High-Re wall function [18] is utilized to compute the velocity of the near-wall cell centers, that are affected by viscous flow phenomena, further analyzed in Subsection 2.1.3. For this model to have an acceptable accuracy, the first cell center must lie into the log-law region of the boundary layer, meaning that the non-dimensional distance between its cell center and the wall must be $y^{+}<100$. In order to verify the use of

High-Re wall functions for this particular mesh, the distribution of y^{+}is plotted for the pressure and suction sides of the airfoil, in Figure 5.4 .

Figure 5.4: Non-dimensional wall distance y^{+}, plotted for the pressure and the suction side of the mesh around NACA 0012 airfoil.

5.2.2 CFD Results without Uncertainties

The flow field equations system is solved by making use of the SIMPLE finite volume algorithm [29], implemented through OpenFOAM ${ }^{\circledR}$'s executable simpleFoam, as described in Subsection 2.4. $2^{\text {nd }}$ order finite volume schemes are used to discretize the $\operatorname{div}()$ and $\operatorname{grad}()$ operators present into the RANS and Spalart-Allmaras equations. A converged solution is reached in 1400 iterations and the convergence chart of the mean flow variables is presented in Figure 5.5.

The lift $\left(C_{L}\right)$ and drag $\left(C_{D}\right)$ coefficients are used as QoIs in Subsection 5.2.3 and their current values, computed for no uncertainties are displayed in Table 5.2. Furthermore, the velocity magnitude U and the turbulent kinematic viscosity ν_{t} fields, close to the airfoil, are visualized in Figure 5.6.

NACA 0012 Aerodynamic Coefficients	
C_{L}	C_{D}
0.210755	0.011127

Table 5.2: NACA 0012 airfoil: lift and drag coefficients for the constant flow conditions described in Table $5.1\left(\alpha=2^{\circ}, R e_{c}=2,600,000\right)$.

Figure 5.5: NACA 0012 airfoil: convergence plot of the flow field equations. The convergence criterion is set at a residual equal to 10^{-6}.

Figure 5.6: NACA 0012 airfoil: velocity magnitude U (above) and turbulent viscosity ν_{t} (below) contours around the airfoil, computed for the nominal shape.

5.2.3 Chaos Order Parametric Analysis \& Results Validation

The UQ process is performed through niPCE for the flow around an imperfect NACA 0012 airfoil. The imperfections are modeled with the KLT algorithm presented in Section 5.1. The solution of the flow equations is achieved with the configuration thoroughly described in Subsection 5.2.2.

The only input parameter of the case in question that is considered uncertain is the airfoil geometry. Specifically, the NACA 0012 airfoil is assumed to display a variation within its manufacturing tolerances. This uncertainty is quantified through the uncertain variable vector $\vec{c} \in \mathbb{R}^{M}$ of the KLE. The dimension of \vec{c} is set equal to $M=5$, given that it is considered to be a middle ground solution between the complexity of the KLT-generated imperfect geometries and the mitigation of computational cost. The KLE standard deviation is set equal to $\sigma=1$ (so as to simplify this variable, for which no empirical data are given), while the statistical moments of the uncertain variables c_{l}, used to produce the KLT stochastic shape imperfection (eq. (4.29)), are defined as

$$
\begin{equation*}
\mu_{l}=0 m \quad, \quad \sigma_{l}=2 \cdot 10^{-3} m \quad \forall \quad l=1,2, \ldots, 5 \tag{5.1}
\end{equation*}
$$

Another decision taken, so as to reduce the computational cost of the UQ, is the use of Smolyak Sparce grids [33 instead of full grids to define the uncertain variables (further analysis in other Chapters not yet completed). This method greatly reduces the sample points needed for the niPCE, mitigating consequently the computational cost of the GQ integration. Thus, a parametric analysis is held on the order k of the Chaos Expansion polynomials, while MC is used as benchmark method for verifying the computed results [3]. The computational cost of each niPCE run for both the Smolyak and the full grids, measured in Equivalent Flow Solution (EFS) time given that it is equal to the number of Gauss Nodes, is displayed in Table 3.2.

The UQ parametric analysis of the niPCE method (with Smolyak grids), for the QoIs, C_{D} and C_{L}, are computed and displayed in the Figures 5.7 and 5.8, accordingly. The MC-computed UQ, for 5000 sample runs, is also included, for the purposes of result comparison and validation. The same data is also presented, in the aggregate, in Table 5.3, along with the specific error of the niPCE results when compared with the corresponding MC results.

niPCE-Smolyak $(M=5)$				
k	$\mu_{C_{D}}(\% \Delta)$	$\mu_{C_{L}}(\% \Delta)$	$\sigma_{C_{D}}(\% \Delta)$	$\sigma_{C_{L}}(\% \Delta)$
1	$1.125 \cdot 10^{-2}(0.05)$	$2.137 \cdot 10^{-1}(\mathbf{0 . 4 3})$	$9.028 \cdot 10^{-5}(\mathbf{0 . 8 4})$	$1.207 \cdot 10^{-2}(9.60)$
2	$1.124 \cdot 10^{-2}(0.05)$	$2.159 \cdot 10^{-1}(0.61)$	$9.452 \cdot 10^{-5}(5.57)$	$1.479 \cdot 10^{-2}(10.73)$
3	$1.129 \cdot 10^{-2}(0.39)$	$2.133 \cdot 10^{-1}(0.57)$	$9.584 \cdot 10^{-5}(7.05)$	$1.373 \cdot 10^{-2}(\mathbf{2 . 7 9})$
4	$1.124 \cdot 10^{-2}(\mathbf{0 . 0 4})$	$2.157 \cdot 10^{-1}(0.55)$	$9.570 \cdot 10^{-5}(6.89)$	$1.436 \cdot 10^{-2}(4.59)$
$M C$	$1.125 \cdot 10^{-2}$	$2.146 \cdot 10^{-1}$	$8.953 \cdot 10^{-5}$	$1.335 \cdot 10^{-2}$

Table 5.3: $N A C A 0012$ airfoil $U Q$ with manufacturing imperfections. $U Q$ case with $M=5$ and $k=1$ to $k=4$. Mean value and standard deviation of the C_{D} and C_{L} computed through niPCE with Sparse grid GHQ and compared with the outcome of $M C$ with 5000 replicates. For each column, the niPCE result with the lowest relative error is highlighted in bold.

Figure 5.7: NACA 0012 airfoil drag coefficient $U Q$ with manufacturing imperfections. Results computed with MC, for 5000 samples, and with niPCE, for chaos order $k=1$ to $k=4$.

Figure 5.8: NACA 0012 airfoil lift coefficient $U Q$ with manufacturing imperfections. Results computed with MC, for 5000 samples, and with niPCE, for chaos order $k=1$ to $k=4$.

Finally, enough data has been gathered in order to select the optimal value for the chaos order k, so as to continue with the aerodynamic RDO of lifting bodies with manufacturing imperfections. This analysis has took both the increase of CPU cost and the fluctuating accuracy of the niPCE method into account, in response to the increase of k. Therefore, the illustrated of k consists of a MOO optimization problem with two objectives: the minimization of the cost and the error of the UQ results. The average specific error of all niPCE-computed UQ results when compared to the ones computed through the MC method, is plotted w.r.t. their computational cost in Figure 5.9 (according to Tables 3.2 and 5.3).

As illustrated in Figure 5.9, the dominant solutions, defining the Pareto Front of this parametric analysis, are the UQ results for $k=1$ and $k=3$, with mean relative errors of 2.73% and 2.70%, respectively. These two solutions combine the lowest CPU cost and the highest average accuracy. Any of the two dominant solutions for the chaos order is a viable option for the user in this specific application. Yet, the difference in their mean accuracy can be considered unnoticeable, while their respective CPU cost difference is quite vast (by an order of magnitude). Given that both solutions are relatively accurate when it comes to the mean value of the QoIs, the one for $k=1$ computes more accurately the standard deviation of the drag coefficient, while the other for $k=3$ is more accurate for the computation of the standard deviation of the lift coefficient (as assumed form Table 5.3). Yet, this
result may simply be circumstantial and thus no general rule can be deduced from this analysis without further investigation. Anyhow, the lowest chaos order $k=1$ for the niPCE method with Smolyak integration, has proven to be relatively viable in its UQ results, while simultaneously boasting the lower possible clock-time cost. It is the main reason for which it becomes the selected chaos order value for the simulations to come, in this thesis.

Figure 5.9: NACA 0012 airfoil: average specific error and $C P U$ cost of niPCEcomputed $U Q$ results, for $k=1$ to 4 .

5.3 Uncertainty Quantification: E387 airfoil

In this section, the same process is applied for the E387, an airfoil most often used in sailplanes and other low Mach applications. The same initial conditions and flow solver are applied, with the exception that, this time, the MC and niPCE methods are employed for the computation and verification of the derivatives of the statistical moments of a certain QoI w.r.t. to the selected design variables. For this analysis, the algorithm, presented in Section 5.1, is executed with one slight modification: the primal problem solver is followed by the adjoint problem solver, both included in the OpenFOAM ${ }^{\circledR}$ executable adjointOptimisationFoam developed by PCOpt/NTUA, so as to conduct the sampling of the SDs needed to perform the UQ process.

5.3.1 CFD Analysis without Uncertainties

The flow field around the E387 airfoil is, again, considered to be steady, incompressible, viscous and turbulent, while the chord has been set to 1 meter in length. The flow initial conditions and properties are assumed to be identical to those of Subsection 5.2.1, as displayed in Table 5.1.

The computational C-type mesh generated around the E387 has the same exact properties (160×135 quads) with the one described in Subsection 5.2.1, and is presented in Figure 5.10: The incompressible primal and adjoint problems for are

Figure 5.10: $E 387$ airfoil: structured C-type mesh.
both solved through the use of the SIMPLE finite volume algorithm by implementing the same configuration as described in Subsections 5.2.1 and 5.2.2. For a single run without any uncertainties, the primal and adjoint problems reach a converged solution after 1665 and 1854 iterations, respectively. The convergence chart for both problems is presented in Figure 5.11.

Furthermore, the C_{L} and C_{D} coefficients, computed for no uncertainties are displayed in Table 5.4, while only the second is used as a QoI, mainly for the computation of it's derivatives w.r.t. the design variables.

E387 Aerodynamic Coefficients	
C_{L}	$C_{D}($ QoI $)$
0.587956	$\mathbf{0 . 0 1 2 9 8 6}$

Table 5.4: E387 airfoil: lift and drag coefficients for the constant flow conditions described in Table 5.1 ($\alpha=2^{\circ}, R e_{c}=2,600,000$).

Additionally, the static pressure p and the adjoint pressure p_{a}, as well as the $\widetilde{\nu}$ and the $\tilde{\nu}_{a}$ fields, close to the airfoil, are visualized in Figures 5.12 and 5.13, respectively.

Figure 5.11: E387 airfoil: convergence chart for primal (above) and the adjoint (below) problem variables. The convergence criterion is set at a residual equal to 10^{-6} for the primal and 10^{-7} for the adjoint problem.

Figure 5.12: E387 airfoil: static (above) and adjoint pressure (below) contours, close to the airfoil.

Figure 5.13: E387 airfoil: Spalart-Allmaras variable $\widetilde{\nu}$ (above) and adjoint SpalartAllmaras variable $\tilde{\nu}_{a}$ (below) contours, close to the airfoil.

Finally the mesh close the surface of the airfoil is parameterized through the use of Volumetric B-Splines [28]. The control box, a.k.a. the grid of control points dictating the deformation of the airfoil in accordance with the computed sensitivities and the selected update method, is displayed in Figure 5.14.

Figure 5.14: E387 airfoil: Volumetric B-Spline 2D control box for the mesh paramaterization. The blue colored control points are inactive (= immovable), while the magenta colored ones are active, thus constituting the design variables for this problem. The outline of the E387 is colored in black, while the active control points are also enumerated from 1-6.

5.3.2 Derivatives of the Robustness Metric Verification

In order to compute the robust SDs, according to equation (1.4), the derivatives of the mean value and the standard deviation of a QoI w.r.t. the design variables, must be primarily computed. The selected QoI is the drag coefficient C_{D}, while the desired design variables are the active Volumetric B-Splines control points, as presented in Figure 5.14. The aforementioned method for the execution of this task, are the niPCE and MC methods for the computation of the statistical moments' derivatives, sampled through the use of the adjoint method.

So as to culminate to relatively accurate result, the MC method is employed for 1000 replicates, i.e. 2000 EFS given that each run requires the solution of both the primal and the adjoint problems once. Meanwhile, the niPCE method is configured for a chaos order of $k=1$ and for both Full as well as Smolyak Sparse sampling grids. Therefore, according to Table 3.2, the niPCE sampling runs have a CPU cost of $2 \cdot 32=64$ EFS for the Full Grid integration and $2 \cdot 11=22$ EFS for the Smolyak grid integration. The use of higher chaos orders, for the niPCE, could prove costly, especially when included into a RDO algorithm in latter stages of the
thesis. Similarly with Section 5.2, the niPCE and MC result are compared for the purpose of validating the first. The UQ results of $\frac{\partial \mu_{C_{D}}}{\partial b_{n}}$ and $\frac{\partial \sigma_{C_{D}}}{\partial b_{n}}$ are presented in Tables 5.5 and 5.5, respectively.

$\partial \mu_{C_{D}} / \partial b_{n} \quad(M=5)$						
	$x-d i r$			$y-d i r$		
	$n i P C E$	$(k=1)$	$M C$	$n i P C E$	$(k=1)$	$M C$
n	Full Grid	Smol. Grid	1000 sam .	Full Grid	Smol. Grid	1000 sam .
1	$2.529 \cdot 10^{-4}$	$2.862 \cdot 10^{-4}$	$1.916 \cdot 10^{-4}$	$2.539 \cdot 10^{-3}$	$2.521 \cdot 10^{-3}$	$2.606 \cdot 10^{-3}$
2	$3.189 \cdot 10^{-4}$	$3.203 \cdot 10^{-4}$	$3.155 \cdot 10^{-4}$	$3.415 \cdot 10^{-3}$	$3.419 \cdot 10^{-3}$	$3.405 \cdot 10^{-3}$
3	$8.382 \cdot 10^{-4}$	$8.423 \cdot 10^{-4}$	$8.274 \cdot 10^{-4}$	$9.521 \cdot 10^{-3}$	$9.572 \cdot 10^{-3}$	$9.393 \cdot 10^{-3}$
4	$4.469 \cdot 10^{-4}$	$4.834 \cdot 10^{-4}$	$3.769 \cdot 10^{-4}$	$3.176 \cdot 10^{-3}$	$3.146 \cdot 10^{-3}$	$3.270 \cdot 10^{-3}$
5	$4.654 \cdot 10^{-4}$	$4.671 \cdot 10^{-4}$	$4.611 \cdot 10^{-4}$	$4.506 \cdot 10^{-3}$	$4.509 \cdot 10^{-3}$	$4.497 \cdot 10^{-3}$
6	$9.549 \cdot 10^{-4}$	$9.594 \cdot 10^{-4}$	$9.433 \cdot 10^{-4}$	$1.078 \cdot 10^{-2}$	$1.084 \cdot 10^{-2}$	$1.064 \cdot 10^{-2}$

Table 5.5: E387 airfoil UQ with manufacturing imperfections, with $M=5 . C_{D}$ mean value derivatives w.r.t. the design variables b_{n} computed with the niPCE ($k=1$) method for both Full and Smolyak Sparse grids, as well as MC for 1000 sample runs.

$\partial \sigma_{C_{D}} / \partial b_{n} \quad(M=5)$						
	$x-$ dir			$y-\operatorname{dir}$		
	niPCE	$(k=1)$	MC	niPCE	$(k=1)$	MC
n	Full Grid	Smol. Grid	1000 sam.	Full Grid	Smol. Grid	1000 sam.
1	$-8.557 \cdot 10^{-6}$	$-2.693 \cdot 10^{-6}$	$-4.055 \cdot 10^{-6}$	$-3.358 \cdot 10^{-5}$	$-1.923 \cdot 10^{-5}$	$-3.576 \cdot 10^{-5}$
2	$1.273 \cdot 10^{-5}$	$1.209 \cdot 10^{-5}$	$1.332 \cdot 10^{-5}$	$1.043 \cdot 10^{-4}$	$1.037 \cdot 10^{-4}$	$1.056 \cdot 10^{-4}$
3	$5.546 \cdot 10^{-5}$	$5.338 \cdot 10^{-5}$	$5.715 \cdot 10^{-5}$	$4.632 \cdot 10^{-4}$	$4.421 \cdot 10^{-4}$	$4.835 \cdot 10^{-4}$
4	$-2.443 \cdot 10^{-5}$	$-2.010 \cdot 10^{-5}$	$-1.749 \cdot 10^{-5}$	$-4.399 \cdot 10^{-5}$	$-2.368 \cdot 10^{-5}$	$-5.751 \cdot 10^{-5}$
5	$1.491 \cdot 10^{-5}$	$1.417 \cdot 10^{-5}$	$1.581 \cdot 10^{-5}$	$9.420 \cdot 10^{-5}$	$9.428 E-5$	$9.451 \cdot 10^{-5}$
6	$5.813 \cdot 10^{-5}$	$5.609 \cdot 10^{-5}$	$6.034 \cdot 10^{-5}$	$3.573 \cdot 10^{-4}$	$3.357 \cdot 10^{-4}$	$3.814 \cdot 10^{-4}$

Table 5.6: E387 airfoil UQ with manufacturing imperfections, with $M=5 . C_{D}$ standard deviation derivatives w.r.t. the design variables b_{n} computed with the niPCE $(k=1)$ method for both Full and Smolyak Sparse grids, as well as MC for 1000 sample runs.

The conclusion, from Tables 5.5 and 5.6, is that the niPCE statistical moment derivatives are practically accurate. Though the derivatives computed through the different methods are not identical, the corresponding derivatives have comparable magnitudes and the same algebraic sign. Given that, according to the implemented Steepest Descent method mentioned in Subsection 1.2.3, the design variable update is scaled w.r.t. a user defined maximum displacement, it is easy to assume that this
change in the design variables, for all employed UQ methods, may become quite similar. Therefore, this analysis makes it is safe to assume that for these particular 2D airfoil applications the use of the economic niPCE method for the purposes of RDO with manufacturing uncertainties can be conducted with a relatively accurate computation of the 1st degree robust SDs.

When it comes to the values of the derivatives, it is clear that all UQ methods dictate that in order for the airfoil to minimize drag for the specified range of manufacturing imperfection generated through KLT, a displacement of the E387 airfoil's trailing edge is expected. This interpretation can further be backed by Figures 5.15 and 5.16. while cross-referencing with the index of each active control point from Figure 5.14 .

Figure 5.15: E387 airfoil C_{D} mean value derivatives w.r.t. the design variables b_{n} computed with the niPCE method for both Full and Smolyak Sparse grids, as well as MC for 1000 sample runs.

Figure 5.16: E387 airfoil C_{D} standard deviation derivatives w.r.t. the design variables b_{n} computed with the niPCE method for both Full and Smolyak Sparse grids, as well as MC for 1000 sample runs.

Chapter 6

Robust Design Optimization with Manufacturing Imperfections

In this chapter, the RDO with manufacturing uncertainties of two 2D shapes is presented. The manufacturing imperfections are recreated through the KLT software introduced in Chapter 4, while the primal and adjoint problems are solved though OpenFOAM ${ }^{\text {© 's }}$ adjointOptimisationFoam solver. In order to perform the manufacturing imperfections RDO, the algorithm described in Subsection 5.1 is inserted into a loop and with some additions, is repeated as many times as the maximum optimization cycles, selected by the user. In each loop, the following steps are performed:

1. The niPCE algorithm is called, so as to execute UQ on the user-selected QoIs (computed through the solution of the primal problem), as well as their respective SDs (computed through the solution of the adjoint problem).
2. The robust metric (F_{R}) and the robust SDs $\left(\delta F_{R} / \delta b_{n}\right)$ are computed according to the DFSS rule (explained in 1.2.2), for the user-defined constant κ.
3. The parameterized initial geometry of the current loop, is displaced, according to the Steepest Descent method, in the direction dictated by the robust SDs, by moving the control points of the Volumetric B-Splines morphing box (described in Subsection 2.3).

The implementation of the aforementioned algorithmic process, on the E387 airfoil and the TU Berlin TurboLab Stator [13] cascade, embody the two main Sections of the current Chapter.

6.1 Robust Design: E387 airfoil

For the E387 airfoil the primal problem is formulated in the same manner as in Section 5.3, meaning that the same simpleFoam configuration, mesh and boundary conditions are used. Furthermore, the adjoint problem is formulated as described in

Subsection 5.3.2, with the only exception being that a denser control box is used, as displayed in Figure 6.1. For every RDO held of the E387 in this Subsection, the maximum control point displacement is set to $\Delta b_{\max }=0.5 \cdot 10^{-2} \mathrm{~m}$. Finally the configuration of KLT shape imperfection generator is unchanged, while, according to the analysis held in Subsection 5.3.2, the niPCE chaos order is set to $k=1$, for which Smolyak Sparse Grid GHQ integration is used.

Figure 6.1: E387 airfoil: Volumetric B-Spline 2D control box for the mesh paramaterization for the purpose of RDO. The blue colored control points are inactive, while the magenta colored ones are active, thus constituting the design variables for this problem. Consequently, a 9×6 overall control mesh is used, of which all boundary control points are set as inactive.

6.1.1 Single-Objective RDO: Robust Drag

Firstly, the E387 airfoil is subjected to single-objective RDO with manufacturing uncertainties while the selected QoI are the drag coefficient C_{D}, so as to achieve a minimized drag performance within the user-defined shape imperfection spectrum. As set in Subsection 4.2.2, the KLT-modes, i.e. the shape uncertain variables, used are $M=5$, while their mean value and standard deviation are defined as

$$
\mu_{l}=0, \quad \sigma_{l}=2 c \cdot 10^{-3}=2 \cdot 10^{-3} m \quad \forall l=1,2, \ldots, 5
$$

where $c=1$ denotes the airfoil chord.
For $M=5, k=1$ and Sparse Grid integration, according to Table 3.2, in each optimization cycle the primal and adjoint problems are solved 11 times. Therefore, the computational cost of each cycle amounts to $2 \times 11=22 E F S$.

In addition, the robustness metric, for this specific QoI, is also referred to as robust C_{D} and is formulated as follows

$$
\begin{equation*}
C_{D}^{(\text {robust })}=\mu_{C_{D}}+\kappa \sigma_{C_{D}} \tag{6.1}
\end{equation*}
$$

where κ indicates the DFSS coefficients, defined in Subsection 1.2.2.
Accordingly, the robust SDs, according to which the controlled surfaced is displaced, assume the form

$$
\begin{equation*}
\frac{\partial}{\partial b_{n}} C_{D}^{(\text {robust })}=\frac{\partial \mu_{C_{D}}}{\partial b_{n}}+\kappa \frac{\partial \sigma_{C_{D}}}{\partial b_{n}} \tag{6.2}
\end{equation*}
$$

Finally, in order to fully monitor the aerodynamic performance of the to-be optimized airfoil, in each RDO loop, UQ is also be performed on the lift coefficient, yielding the robust C_{L}, as follows

$$
\begin{equation*}
C_{L}^{(\text {robust })}=\mu_{C_{L}}+\kappa \sigma_{C_{L}} \tag{6.3}
\end{equation*}
$$

The RDO process is, therefore, executed for five optimization cycles, for three different values of the DFSS coefficient: $\kappa=-2,0,+2$. Therefore, three different robust airfoils are yielded, each with a different prioritization over the $\sigma_{C_{D}}$ as well as the design approach (pessimistic for $\kappa>0$ or optimistic for $\kappa<0$, for minimization problems). In Tables 6.1, 6.2, as well as Figure 6.2, the mean value and the standard deviation of C_{D} and C_{L}, respectively, are presented, for the different values of κ, for each of the five optimization cycles.

	$\kappa=+2$		$\kappa=0$		$\kappa=-2$	
Cycle	$\mu_{C_{D}}$	$\mu_{C_{L}}$	$\mu_{C_{D}}$	$\mu_{C_{L}}$	$\mu_{C_{D}}$	$\mu_{C_{L}}$
1	$1.300 \cdot 10^{-2}$	$5.881 \cdot 10^{-1}$	$1.300 \cdot 10^{-2}$	$5.881 \cdot 10^{-1}$	$1.300 \cdot 10^{-2}$	$5.8814 \cdot 10^{-1}$
2	$1.227 \cdot 10^{-2}$	$5.102 \cdot 10^{-1}$	$1.226 \cdot 10^{-2}$	$5.099 \cdot 10^{-1}$	$1.226 \cdot 10^{-2}$	$5.093 \cdot 10^{-1}$
3	$1.179 \cdot 10^{-2}$	$4.490 \cdot 10^{-1}$	$1.179 \cdot 10^{-2}$	$4.496 \cdot 10^{-1}$	$1.179 \cdot 10^{-2}$	$4.502 \cdot 10^{-1}$
4	$1.147 \cdot 10^{-2}$	$4.006 \cdot 10^{-1}$	$1.147 \cdot 10^{-2}$	$4.027 \cdot 10^{-1}$	$1.148 \cdot 10^{-2}$	$4.048 \cdot 10^{-1}$
5	$1.124 \cdot 10^{-2}$	$3.619 \cdot 10^{-1}$	$1.125 \cdot 10^{-2}$	$3.654 \cdot 10^{-1}$	$1.126 \cdot 10^{-2}$	$3.686 \cdot 10^{-1}$

Table 6.1: E387 airfoil RDO with manufacturing imperfections: mean values of C_{D} and C_{L} for 5 optimization cycles and $\kappa=-2,0,+2$.

It is clear that for the the varying values of κ, the final aerodynamic coefficients have minor differences. For all cycles and for both the mean value and standard deviation, the three κ values yield practically the same result. The cause can be found in Subsection 5.3.2, where it can be observed that the SD standard deviation $\left(\partial \sigma_{F} / \partial b_{n}\right)$ is a least an order of magnitude lower than the SD mean values $\left(\partial / \partial b_{n}\right)$, for the same CP. The same takes place for the current control grid (Figure 6.1), making the subtraction or the addition of $\partial \sigma_{F} / \partial b_{n}$ in eq. (6.2), to cause a nearly insignificant

	$\kappa=+2$		$\kappa=0$		$\kappa=-2$	
Cycle	$\sigma_{C_{D}}$	$\sigma_{C_{L}}$	$\sigma_{C_{D}}$	$\sigma_{C_{L}}$	$\sigma_{C_{D}}$	$\sigma_{C_{L}}$
1	$2.035 \cdot 10^{-4}$	$1.697 \cdot 10^{-2}$	$2.035 \cdot 10^{-4}$	$1.697 E-2$	$2.035 \cdot 10^{-4}$	$1.697 \cdot 10^{-2}$
2	$1.774 \cdot 10^{-4}$	$1.695 \cdot 10^{-2}$	$1.766 \cdot 10^{-4}$	$1.696 E-2$	$1.765 \cdot 10^{-4}$	$1.695 \cdot 10^{-2}$
3	$1.581 \cdot 10^{-4}$	$1.686 \cdot 10^{-2}$	$1.587 \cdot 10^{-4}$	$1.686 E-2$	$1.589 \cdot 10^{-4}$	$1.686 \cdot 10^{-2}$
4	$1.431 \cdot 10^{-4}$	$1.677 \cdot 10^{-2}$	$1.439 \cdot 10^{-4}$	$1.678 E-2$	$1.449 \cdot 10^{-4}$	$1.678 \cdot 10^{-2}$
5	$1.314 \cdot 10^{-4}$	$1.672 \cdot 10^{-2}$	$1.326 \cdot 10^{-4}$	$1.672 E-2$	$1.339 \cdot 10^{-4}$	$1.673 \cdot 10^{-2}$

Table 6.2: E387 airfoil RDO with manufacturing imperfections: standard deviation of C_{D} and C_{L} for 5 optimization cycles and $\kappa=-2,0,+2$.

Figure 6.2: E387 airfoil RDO with manufacturing imperfections:mean value and standard deviation of C_{D} and C_{L}, respectively, for 5 optimization cycles and $\kappa=$ $-2,0,+2$.
change to the final values of the robust $\operatorname{SDs}\left(\partial F_{R} / \partial b_{n}\right)$. Hence, the generated robust airfoils as well as their aerodynamic performance is virtually indifferent, yet this must not be considered a generality in RDO. Yet in this case, greater values of κ should be used in order to see significant changes. The final robust airfoils are displayed in Figure 6.3.

Nevertheless, the goal of this RDO analysis, to minimize the mean value as well
as the spread (standard deviation) of the airfoil's drag is achieved. For all values of κ, the $\mu_{C_{D}}$ and $\sigma_{C_{D}}$ are reduced by approximately 13.5% and 35%, respectively. Naturally, the robust geometries generate lower lift average and variation, due to the inverse flap-like shape generated in all robust airfoils' trailing edge that changes the airfoil's camber (as observed in Figure 6.3). The $\mu_{C_{L}}$ and $\sigma_{C_{L}}$ are reduced by approximately 38% and 1.5%, respectively. The seemingly small reduction in $\sigma_{C_{L}}$ is expected, given that the RDO algorithm is set to minimize the statistical moments of drag, not lift.

Figure 6.3: E387 airfoil RDO with manufacturing imperfections: three robust airfoil geometries after 5 optimization cycles, each for a different value of $\kappa=-2,0,+2$. The robust airfoils are visually compared with the initial airfoil, displayed in black, both not in scale (A) and in scale (B).

The relative deviation of the aerodynamic coefficients is defined the relative difference between each coefficient and their respective mean values, as computed for the 11 KLT imperfect airfoils, generated for the 11 Gauss Nodes of the Smolyak Grid GHQ integration. These values, are presented in Figure 6.4, for the tree final robust airfoils and for the initial E387 airfoil. This is done in order to properly visualize the dispersion of the aerodynamic coefficients, caused by the KLT-generated shape uncertainty, as well as to see, to what extent, this variation is mitigated for the robust drag airfoils.

To conclude, the maximum relative deviation of C_{D} is reduced by approximately
39.6% for all robust airfoils, while the maximum relative deviation of C_{L} is increased by approximately 1%, which is anticipated given that $\sigma_{C_{L}}$ is reduced by a relatively small amount. Overall, the conclusion drawn from these results is that the RDO with shape uncertainties, designed and executed for this thesis, can successfully optimize the stochastic performance of a force objective (i.e. drag). The reduction in the dispersion and, therefore, the standard deviation of a force objective is achievable, by a significant amount, even though the KLT shape imperfections have a minor impact on the lift and drag forces exerted on an airfoil, exhibiting maximum relative variations lower than 3%.

Figure 6.4: E387 airfoil RDO with manufacturing imperfections: relative deviation $\Delta C_{L}, \Delta C_{D}$ for the three robust airfoil, as well as for the initial E387 airfoil.

6.1.2 Multi-Objective RDO: Weighted Objectives

Now the E387 airfoil is subjected to multi-objective RDO with manufacturing uncertainties. For this process to take place, the $\mathrm{QoI}(F)$ is defined as a weighted sum of the aerodynamic coefficients, thus requiring one adjoint solver instead of two, as formulated in (6.4). The weights (w) serve to quantify the importance of each of the coefficients. The goal of this method is mainly to display the ability to perform RDO with shape uncertainties, in order to achieve a robust drag performance while still being able to contain the lift reduction.

$$
\begin{equation*}
F=w_{D} C_{D}+w_{L} C_{L}=w_{D} C_{D}-\left(1-w_{D}\right) C_{L} \tag{6.4}
\end{equation*}
$$

where $w_{D} \in[0,1]$, while the lift weight is set to $w_{L}=-\left(1-w_{D}\right) \in[-1,0]$, so as to have only one weight to denote the lift-drag prioritization.

Additionally, the lift weight is defined as $w_{L} \leq 0$, to indicate the intention to maximize the lift exerted on the airfoil, given that PCOpt/NTUA's adjoint solver is a de facto minimization algorithm. Consequently, only one objective function is formulated and therefore one adjoint solver is needed, leading to a lower computational cost.

The mean value of this weighted QoI yields

$$
\begin{equation*}
\mu_{F}=w_{D} \mu_{C_{D}}-\left(1-w_{D}\right) \mu_{C_{L}} \tag{6.5}
\end{equation*}
$$

while its standard deviation yields

$$
\begin{equation*}
\sigma_{F}=w_{D} \sigma_{C_{D}}-\left(1-w_{D}\right) \sigma_{C_{L}} \tag{6.6}
\end{equation*}
$$

Thus, the robustness metric assumes the form

$$
\begin{align*}
F_{R} & =\mu_{F}+\kappa \sigma_{F}=w_{D} \mu_{C_{D}}-\left(1-w_{D}\right) \mu_{C_{L}}+\kappa\left[w_{D} \sigma_{C_{D}}-\left(1-w_{D}\right) \sigma_{C_{L}}\right]= \tag{6.7}\\
& =w_{D}\left(\mu_{C_{D}}+\kappa \sigma_{C_{D}}\right)-\left(1-w_{D}\right)\left(\mu_{C_{L}}+\kappa \sigma_{C_{L}}\right)
\end{align*}
$$

And by including eqs. (6.1) and (6.3) into eq. (6.7), it can be rewritten as

$$
\begin{equation*}
F_{R}=w_{D} C_{D}^{(\text {robust })}-\left(1-w_{D}\right) C_{L}^{(\text {robust })} \tag{6.8}
\end{equation*}
$$

Correspondingly, the derivatives of the statistical moments are formulated as

$$
\begin{align*}
& \frac{\partial \mu_{F}}{\partial b_{n}}=w_{D} \frac{\partial \mu_{C_{D}}}{\partial b_{n}}-\left(1-w_{D}\right) \frac{\partial \mu_{C_{L}}}{\partial b_{n}} \tag{6.9}\\
& \frac{\partial \sigma_{F}}{\partial b_{n}}=w_{D} \frac{\partial \sigma_{C_{D}}}{\partial b_{n}}-\left(1-w_{D}\right) \frac{\partial \sigma_{C_{L}}}{\partial b_{n}} \tag{6.10}
\end{align*}
$$

Thus, according to eqs. (6.2), the derivative of the robustness metric a.k.a. the robust SD assumes the form

$$
\begin{gather*}
\frac{\partial F_{R}}{\partial b_{n}}=\frac{\partial \mu_{F}}{\partial b_{n}}+\kappa \frac{\partial \sigma_{F}}{\partial b_{n}}= \\
=w_{D}\left(\frac{\partial \mu_{C_{D}}}{\partial b_{n}}+\kappa \frac{\partial \sigma_{C_{D}}}{\partial b_{n}}\right)-\left(1-w_{D}\right)\left(\frac{\partial \mu_{C_{L}}}{\partial b_{n}}+\kappa \frac{\partial \sigma_{C_{L}}}{\partial b_{n}}\right) \Longrightarrow \tag{6.11}\\
\Longrightarrow \frac{\partial F_{R}}{\partial b_{n}}=w_{D} \frac{\partial}{\partial b_{n}} C_{D}^{(\text {robust })}-\left(1-w_{D}\right) \frac{\partial}{\partial b_{n}} C_{L}^{(\text {robust })}
\end{gather*}
$$

where $C_{L}{ }^{\text {(robust) }}$, similar to its drag counterpart defined as

$$
\begin{equation*}
\frac{\partial}{\partial b_{n}} C_{L}^{(\text {robust })}=\frac{\partial \mu_{C_{L}}}{\partial b_{n}}+\kappa \frac{\partial \sigma_{C_{L}}}{\partial b_{n}} \tag{6.12}
\end{equation*}
$$

The RDO process is, again, executed for five optimization cycles, for $\kappa=+2$ and three different weights: $w_{D}=100,99.35,99.25 \%$. Clearly, for $w_{D}=100 \%$ the lift terms are removed from eqs. (6.8) and (6.11), thus, swifting to the single-objective RDO expressions of Subsection 6.1.1. In addition, the lift weights $\left(\left|w_{L}\right|<0.01\right)$ are set to be at least two orders of magnitude lower than the drag weights, because such is the difference between the robust SDs of the two QoI. Lift weights with a greater absolute values, would lead to robust lift being prioritized over robust drag optimization.

Ultimately, three different robust airfoils are designed, each with a different prioritization over the lift stochastic distribution. For the different values of w_{D}, the robust C_{D} and C_{L} (as formulated in eqs. (6.1) and (6.3), respectively) are presented in Table 6.3 and Figure 6.5, for each of the five optimization cycles.

	$w_{D}=100.00 \%$		$w_{D}=99.35 \%$		$w_{D}=99.25 \%$	
Cycle	$C_{D}^{(\text {robust })}(\% \Delta)$	$C_{L}^{(\text {robust })}(\% \Delta)$	$C_{D}^{(\text {robust })}(\% \Delta)$	$C_{L}^{(\text {robust })}(\% \Delta)$	$C_{D}^{(\text {robust })}(\% \Delta)$	$C_{L}^{(\text {robust })}(\% \Delta)$
1	$1.341 \cdot 10^{-2}(0.0)$	$5.542 \cdot 10^{-1}(0.0)$	$1.341 \cdot 10^{-2}(0.0)$	$5.542 \cdot 10^{-1}(0.0)$	$1.341 \cdot 10^{-2}(0.0)$	$5.542 \cdot 10^{-1}(0.0)$
2	$1.263 \cdot 10^{-2}(5.8)$	$4.764 \cdot 10^{-1}(14.0)$	$1.260 \cdot 10^{-2}(6.0)$	$4.745 \cdot 10^{-1}(14.4)$	$1.259 \cdot 10^{-2}(6.1)$	$4.731 \cdot 10^{-1}(14.6)$
3	$1.211 \cdot 10^{-2}(9.7)$	$4.152 \cdot 10^{-1}(25.1)$	$1.233 \cdot 10^{-2}(8.0)$	$4.454 \cdot 10^{-1}(19.6)$	$1.251 \cdot 10^{-2}(6.7)$	$4.673 \cdot 10^{-1}(15.7)$
4	$1.175 \cdot 10^{-2}(12.4)$	$3.671 \cdot 10^{-1}(33.8)$	$1.220 \cdot 10^{-2}(9.0)$	$4.315 \cdot 10^{-1}(22.2)$	$1.241 \cdot 10^{-2}(7.4)$	$4.580 \cdot 10^{-1}(17.4)$
5	$1.150 \cdot 10^{-2}(\mathbf{1 4 . 2 2})$	$3.285 \cdot 10^{-1}(40.7)$	$1.211 \cdot 10^{-2}(9.7)$	$4.224 \cdot 10^{-1}(23.8)$	$1.233 \cdot 10^{-2}(8.0)$	$4.503 \cdot 10^{-1}(\mathbf{1 8 . 7})$

Table 6.3: E387 airfoil RDO with manufacturing imperfections: $C_{D}^{(\text {robust })}$ and $C_{L}^{(r o b u s t)}$ values, for 5 optimization cycles, $\kappa=+2$ and three different objective weights. The relative divergence ($\% \Delta$) from the initial value is also included.

The corresponding final robust airfoils produced for the different values of w_{D} are displayed in Figure 6.6, and compared with the initial E387 airfoil.

It can be stated that, the goal of this RDO process is met, given that the implementation of weighted objectives, can halt the ever decreasing values of the robust C_{L}. Yet a robust airfoil exhibiting both a lower robust drag and a greater lift than the initial airfoil is not achieved. This is generally expected, given that these two objectives are incompatible and, thus "conflicting". Therefore, as observed in Figure 6.6, any change in the airfoil's camber generating a lower drag, simultaneously results to a lower lift force excreted on the airfoil and vice-versa. Thus, the greatest robust drag reduction is achieved for $w_{D}=100 \%$, by 14.2%, while the lowest robust lift reduction is achieved for $w_{D}=99.25 \%$, by 18.7%.

Finally, the relative deviation of the aerodynamic coefficients $\left(C_{L}, C_{D}\right)$, as computed for the 11 KLT-generated imperfect airfoils, are presented in Figure 6.7, for the three final robust airfoils, as well as for the initial E387 airfoil. As anticipated, the high w_{D} values lead to a relatively unaffected maximum C_{L} deviation, while the maximum deviation of C_{D} increases, when the w_{D} value decreases.

Figure 6.5: E387 airfoil RDO with manufacturing imperfections: $C_{D}^{(\text {robust })}$ and $C_{L}^{\text {(robust) }}$ values, for 5 optimization cycles, $\kappa=+2$ and three different objective weights.

Figure 6.6: E387 airfoil RDO with manufacturing imperfections: three robust airfoils after 5 optimization cycles, each for a different value of $w_{D}=100,99.35,99.25 \%$ and for $\kappa=+2$. The robust airfoils are visually compared with the initial airfoil, displayed in black, both not in scale (A) and in scale (B).

Figure 6.7: E387 airfoil RDO with manufacturing imperfections: relative divergence $\Delta C_{L}, \Delta C_{D}$ for the three robust airfoil for the three drag weights, as well as for the initial E387 airfoil.

6.2 Robust Design: TU Berlin Compressor Stator

In this section, a CFD analysis of the Test Case 3: TU Berlin Turbolab Stator cascade [13], is held. Generally a compressor cascade is a simplified 2D model of real axial compressor stator blade. The boundary conditions, the computational mesh as well as the solution for the primal problem, without uncertainties, are presented.

Thereafter, the stator is subjected to multi-objective RDO with manufacturing imperfection, for two QoI: the total pressure losses $\left(F_{P_{t}}\right)$ between the inlet and outlet boundaries and the velocity or flow angle (α) of the outlet boundary (as described in Subsection 2.2.2). The KLT software generating the shape uncertainties is configured for $M=5$ modes, while the Hanning window post-processing function is enabled. The mean value and standard deviation of the KLT uncertain variables (modes) are defined as follows

$$
\begin{equation*}
\mu_{l}=0 \mathrm{~m}, \quad \sigma_{l}=7 \cdot 10^{-4} \mathrm{~m} \quad \forall \quad l=1,2, \ldots, M \tag{6.13}
\end{equation*}
$$

6.2.1 Compressor Cascade Initial Conditions and Mesh

The flow around the stator is considered to be steady, incompressible and turbulent. The blade's chord is equal to 0.1876 meters. A representation of the blade's intersection, as well and some geometrical properties are displayed in Figure 6.8, taken form [13].

Figure 6.8: TU Berlin compressor stator intersection.

The flow initial conditions and properties are assumed to be constant and their values are presented in Table 6.4.

Inlet Velocity	U_{∞}	$48 \mathrm{~m} / \mathrm{s}$
Inlet Velocity Angle	α_{1}	-42°
Kinematic Viscocity	ν	$1.339 \cdot 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
Reynolds Number	$R e_{c}$	$6.72 \cdot 10^{5}$

Table 6.4: The constant initial condition of the TU Belrin compressor stator.

The cascade flow is solved on a hybrid, 2D and cell-centered mesh, consisting of 80039 quadrilateral and 189 triangular elements, generated through the OpenFOAM ${ }^{\odot}$ meshers blockMesh and snappyHexMesh. The mesh is visualized in Figures 6.9 and 6.10.

Figure 6.9: TU Berlin compressor cascade: computational mesh.

Figure 6.10: TU Berlin compressor cascade: computational mesh, close up view of the blade's leading (left) and trailing edges (right).

The turbulence model used in this CFD case, is once more, the Spalart-Allmaras model. The initial conditions for the turbulence model eqs. are: Spalart-Allmaras kinematic viscocity $\tilde{\nu}=2.793 \cdot 10^{-4} \mathrm{~m}^{2} / \mathrm{s}$ and turbulent kinematic viscosity $\nu_{t}=$ $2.678 \cdot 10^{-4} \mathrm{~m}^{2} / \mathrm{s}$. OpenFOAM's nutUSpaldingWallFunction High-Re wall function [18] is utilized as wall treatment, given that for all first cell centers off the solid wall, the non-dimensional wall distance amounts to $y^{+}<100$. This claim is verified in Figure 6.11, where the y^{+}distributions are plotted.

Figure 6.11: Non-dimensional wall distance y^{+}, plotted for the pressure and the suction side of the mesh around TU Berlin compressor stator blade.

6.2.2 CFD Analysis without Uncertainties

The primal equations is solved through use of the executable simpleFoam, discretized with $2^{\text {nd }}$ order finite volume schemes. A converged solution is reached in 1469 iterations and the convergence chart of the mean flow variables is presented in Figure 6.12.

Figure 6.12: TU Berlin stator cascade: convergence plot of the flow variables. The convergence criterion is set at a residual equal to 10^{-6}, so as not to compromise the solution's accuracy.

The total pressure losses $\left(F_{P_{t}}\right)$ and the outlet velocity angle $\left(\alpha_{2}\right)$, computed for no uncertainties are displayed in Table 6.5. Furthermore, the static pressure p and the turbulent kinematic viscosity ν_{t} contours, close to the blade, are visualized in Figure 6.13. Additionally, the velocity magnitude U close to the trailing and leading edges are displayed in Figure 6.14.

TU Berlin Compressor Stator Cascade	
$F_{P_{t}}$	$0.109231 \mathrm{~m}^{5} / \mathrm{s}^{3}$
α_{2}	-2.206°

Table 6.5: TU Berlin compressor cascade: total pressure losses and the velocity angle for the flow conditions described in Table $6.4\left(\alpha_{1}=-42^{\circ}, R e_{c}=672,000\right)$.

Figure 6.13: TU Berlin compressor cascade: static pressure p (above) and turbulent kinematic viscosity ν_{t} contours (below), for the flow conditions described in Table 6.4.

Figure 6.14: $T U$ Berlin compressor cascade: velocity magnitude U, close up view of the blade's leading (above) and trailing edges (below), with the streamlines also present.

6.2.3 Multi-Objective RDO: Weighted Objectives

For the purpose of multi-objective RDO with shape imperfections, the $\mathrm{QoI}(F)$ is defined as a weighted sum of the pressure losses and the outlet velocity angle, as formulated in (6.14).

$$
\begin{equation*}
F=w_{p} F_{p_{t}}+w_{\alpha} \alpha_{2}=w_{p} F_{p_{t}}-\left(1-w_{p}\right) \alpha_{2} \tag{6.14}
\end{equation*}
$$

where $w_{p} \in[0,1]$ the total pressure loss weight, while the outlet velocity angle weight is set to $w_{\alpha}=-\left(1-w_{p}\right) \in[-1,0]$.

Generally, some the key purposes of stator blade is to achieve a high flow turning, while keeping the total pressure losses as low as possible. These two functions are quantified though the flow deviation angle, formulated as $\theta=\alpha_{1}-\alpha_{2}$ [39], as well as the total pressure losses $F_{p_{t}}$. The increase of the flow turn, is accomplished through the maximization of the absolute value of θ. For this specific case, given that $\alpha_{1}=-42^{\circ}$ and $|\theta|=\left|\alpha_{1}-\alpha_{2}\right|=\alpha_{2}+42^{\circ}$, the maximization of $|\theta|$ is equivalent with the maximization of α_{2}. Therefore, the outlet velocity angle weight is defined as a negative value, so as to denote the desired maximization of it's stochastic distribution.

In a manner similar to the formulation used in Subsection 6.1.2, the mean value
and standard deviation of F, assume the form

$$
\begin{align*}
& \mu_{F}=w_{p} \mu_{F_{P t}}-\left(1-w_{p}\right) \mu_{\alpha_{2}} \tag{6.15}\\
& \sigma_{F}=w_{p} \sigma_{F_{P t}}-\left(1-w_{p}\right) \sigma_{\alpha_{2}} \tag{6.16}
\end{align*}
$$

Furthermore, the robustness metric is defined as

$$
\begin{equation*}
F_{R}=\mu_{F}+\kappa \sigma_{F}=w_{p} F_{p_{t}}^{(\text {robust })}-\left(1-w_{p}\right) \alpha_{2}^{(\text {robust })} \tag{6.17}
\end{equation*}
$$

where the robust pressure losses $\left(F_{p_{t}}{ }^{(\text {robust })}\right)$ and outlet velocity angle $\left(\alpha_{2}{ }^{(\text {robust })}\right)$ are formulated as

$$
\begin{gather*}
F_{p_{t}}^{(\text {robust })}=\mu_{F_{P t}}+\kappa \sigma_{F_{P t}} \tag{6.18}\\
\alpha_{2}^{(\text {robust })}=\mu_{\alpha_{2}}+\kappa \sigma_{\alpha_{2}} \tag{6.19}
\end{gather*}
$$

Accordingly, the derivatives of the mean vale and standard deviation of F w.r.t. the design variables become

$$
\begin{align*}
& \frac{\partial \mu_{F}}{\partial b_{n}}=w_{p} \frac{\partial \mu_{F_{P t}}}{\partial b_{n}}-\left(1-w_{p}\right) \frac{\partial \mu_{\alpha_{2}}}{\partial b_{n}} \tag{6.20}\\
& \frac{\partial \sigma_{F}}{\partial b_{n}}=w_{p} \frac{\partial \sigma_{F_{P t}}}{\partial b_{n}}-\left(1-w_{p}\right) \frac{\partial \sigma_{\alpha_{2}}}{\partial b_{n}} \tag{6.21}
\end{align*}
$$

Finally, the robust SDs are defined as

$$
\begin{equation*}
\frac{\partial F_{R}}{\partial b_{n}}=\frac{\partial \mu_{F}}{\partial b_{n}}+\kappa \frac{\partial \sigma_{F}}{\partial b_{n}}=w_{p} \frac{\partial}{\partial b_{n}} F_{p_{t}}{ }^{(\text {robust })}-\left(1-w_{p}\right) \frac{\partial}{\partial b_{n}} \alpha_{2}^{(\text {robust })} \tag{6.22}
\end{equation*}
$$

where the derivatives of $F_{p_{t}}{ }^{(\text {robust })}$ and $\alpha_{2}^{(r o b u s t)}$ assume the form

$$
\begin{align*}
\frac{\partial}{\partial b_{n}} F_{p_{t}}^{(\text {robust })} & =\frac{\partial \mu_{F_{P t}}}{\partial b_{n}}+\kappa \frac{\partial \sigma_{F_{P t}}}{\partial b_{n}} \tag{6.23}\\
\frac{\partial}{\partial b_{n}} \alpha_{2}^{(\text {robust })} & =\frac{\partial \mu_{\alpha_{2}}}{\partial b_{n}}+\kappa \frac{\partial \sigma_{\alpha_{2}}}{\partial b_{n}} \tag{6.24}
\end{align*}
$$

RDO is preformed for $\kappa=+1$ and six different weights: $w_{p}=100,95,90,75,50,0 \%$, in order to produce a variety of robust stator airfoils, with a wide spectrum of different $F_{p_{t}}$ to a_{2} prioritization. Once again the optimization runs for 5 cycles. For the different values of w_{p} and for each cycle the robust $F_{p_{t}}$ and a_{2}, as well as their relative difference $(\% \Delta)$, are presented in Tables 6.6 and 6.7 , respectively, while also in Figures 6.15 and 6.16.

$F_{p_{t}}{ }^{\text {robust })}\left[\mathrm{m}^{5} / \mathrm{s}^{3}\right]$						
Cycle	$w_{p}=100 \%$	$w_{p}=95 \%$	$w_{p}=90 \%$	$w_{p}=75 \%$	$w_{p}=50 \%$	$w_{p}=0 \%$
1	$0.109838(0.00)$	$0.109838(0.00)$	$0.109838(0.00)$	$0.109838(0.00)$	$0.109838(0.00)$	$0.109838(0.00)$
2	$0.108591(1.14)$	$0.108457(1.26)$	$0.108677(1.06)$	$0.109157(0.62)$	$0.109373(0.42)$	$0.109500(0.31)$
3	$0.107736(1.91)$	$0.107527(2.10)$	$0.107819(1.84)$	$0.108612(1.12)$	$0.109025(0.74)$	$0.109270(0.52)$
4	$0.107113(2.48)$	$0.106854(2.72)$	$0.107230(2.37)$	$0.108178(1.51)$	$0.108769(0.97)$	$0.109129(0.65)$
5	$0.106672(2.88)$	$0.106403(\mathbf{3 . 1 3})$	$0.106780(2.78)$	$0.107888(1.78)$	$0.108609(1.12)$	$0.109085(0.69)$

Table 6.6: TU Berlin stator airfoil RDO with manufacturing imperfections: $F_{p_{t}}{ }^{\text {robust })}$ values for 5 optimization cycles, $\kappa=+1$ and six different weights.

$\alpha_{2}^{\text {(robust })}[\mathrm{deg}](\% \Delta)$						
Cycle	$w_{p}=100 \%$	$w_{p}=95 \%$	$w_{p}=90 \%$	$w_{p}=75 \%$	$w_{p}=50 \%$	$w_{p}=0 \%$
1	$-1.29(0.0)$	$-1.29(0.0)$	$-1.29(0.0)$	$-1.29(0.0)$	$-1.29(0.0)$	$-1.29(0.0)$
2	$-1.00(22.0)$	$-0.71(44.8)$	$-0.62(51.8)$	$-0.63(50.6)$	$-0.64(50.1)$	$-0.65(49.8)$
3	$-0.76(40.8)$	$-0.20(84.2)$	$-0.02(98.7)$	$-0.02(98.7)$	$-0.02(98.6)$	$-0.02(98.5)$
4	$-0.54(58.0)$	$0.25(119.5)$	$0.55(142.6)$	$0.58(144.9)$	$0.59(145.8)$	$0.60(146.3)$
5	$-0.34(73.8)$	$0.66(151.4)$	$1.06(182.5)$	$1.14(188.6)$	$1.17(191.4)$	$1.19(\mathbf{1 9 2 . 9)}$

Table 6.7: TU Berlin stator airfoil RDO with manufacturing imperfections: $\alpha_{2}{ }^{\text {(robust) }}$ values for 5 optimization cycles, $\kappa=+1$ and six different weights.

Figure 6.15: TU Berlin stator airfoil RDO with manufacturing imperfections: $F_{p_{t}}{ }^{(r o b u s t)}$ and $\alpha_{2}^{(r o b u s t)}$ values plotted for 5 optimization cycles, $\kappa=+1$ and six different weights.

It is clear that, in contrast to Section 6.1, the selected objectives can be "combined", through the use of the weighted robustness metric function (eq. 6.17)), producing

Figure 6.16: TU Berlin stator airfoil RDO with manufacturing imperfections: $F_{p_{t}}{ }^{\text {robust })}-\alpha_{2}^{(\text {robust })}$ plot for six different weights. All final robust solutions, except the one for $w_{p}=100 \%$, are dominant upon all others, constituting the Pareto front for this RDO case.
robust "hybrid" stators that display enhanced results in both objectives. Specifically, for weights $w_{p}=95,90,75,50 \%$, the final geometries display simultaneously the highly cambered trailing edge (which leads to the increase of α_{2}) as well as the reduced thickness (which lowers the total pressure losses). This is further supported, by the fact that the $w_{p}=95 \%$ final robust blade sports the lowest robust pressure loss of all other robust blades, minimizing its value by 3.13%, thus overcoming even the $\Delta F_{p_{t}}=2.88 \%$ of the $w_{p}=100 \%$ robust blade. The hybrid performance of the final robust blades can be observed in Figure 6.17, where the blade's contours are displayed for the different values of w_{p}. The airfoils produced for weights $50 \% \leq$ $w_{p} \leq 95 \%$, display both a reduced thickness, which lowers the pressure losses, as well as as greater camber near the trailing edge, which leads to a greater outlet flow angle. Besides, as detected in Figure 6.16, the final solution for the weights $w_{p}=95,90,75,50,0 \%$, generate robust $F_{p_{t}}$ and a_{2} that are dominant upon all other solutions, hence representing the Pareto front of this RDO case, w.r.t. the robust objectives.

Additionally, the mean value of $F_{p_{t}}$ and α_{2} are presented in Tables 6.8 and 6.9. respectively, while their standard deviation is displayed Tables 6.10 and 6.11 .

Figure 6.17: TU Berlin stator airfoil RDO with manufacturing imperfections: the initial (black) and six robust stator blades after 5 optimization cycles, each for a different value of w_{p} and for $\kappa=+1$, visualized both not in scale (A) and in scale (B).

$\mu_{F_{P t}}\left[\mathrm{~m}^{5} / \mathrm{s}^{3}\right]$							
Cycle	$w_{p}=100 \%$	$w_{p}=95 \%$	$w_{p}=90 \%$	$w_{p}=75 \%$	$w_{p}=50 \%$	$w_{p}=0 \%$	
1	0.109338	0.109338	0.109338	0.109338	0.109338	0.109338	
2	0.108207	0.108115	0.108336	0.108777	0.108977	0.109095	
3	0.107422	0.107288	0.107585	0.108337	0.108721	0.108947	
4	0.106862	0.106712	0.107091	0.107996	0.108552	0.108884	
5	0.106447	0.106301	0.106721	0.107772	0.108458	0.108899	

Table 6.8: TU Berlin stator airfoil RDO with manufacturing imperfections: mean value of $F_{p_{t}}$ for 5 optimization cycles, $\kappa=+1$ and six different weights.

$\mu_{a_{2}}[\mathrm{deg}]$							
Cycle	$w_{p}=100 \%$	$w_{p}=95 \%$	$w_{p}=90 \%$	$w_{p}=75 \%$	$w_{p}=50 \%$	$w_{p}=0 \%$	
1	-2.21	-2.21	-2.21	-2.21	-2.21	-2.21	
2	-1.93	-1.63	-1.54	-1.56	-1.57	-1.57	
3	-1.69	-1.13	-0.94	-0.94	-0.94	-0.94	
4	-1.46	-0.67	-0.37	-0.34	-0.33	-0.32	
5	-1.26	-0.26	0.14	0.22	0.26	0.28	

Table 6.9: TU Berlin stator airfoil RDO with manufacturing imperfections: mean value of α_{2} for 5 optimization cycles, $\kappa=+1$ and six different weights.

$\sigma_{F_{P t}}\left[\mathrm{~m}^{5} / \mathrm{s}^{3}\right]$						
Cycle	$w_{p}=100 \%$	$w_{p}=95 \%$	$w_{p}=90 \%$	$w_{p}=75 \%$	$w_{p}=50 \%$	$w_{p}=0 \%$
1	$5.006 \cdot 10^{-4}$					
2	$3.842 \cdot 10^{-4}$	$3.427 \cdot 10^{-4}$	$3.421 \cdot 10^{-4}$	$3.809 \cdot 10^{-4}$	$3.963 \cdot 10^{-4}$	$4.048 \cdot 10^{-4}$
3	$3.146 \cdot 10^{-4}$	$2.399 \cdot 10^{-4}$	$2.347 \cdot 10^{-4}$	$2.745 \cdot 10^{-4}$	$3.051 \cdot 10^{-4}$	$3.235 \cdot 10^{-4}$
4	$2.510 \cdot 10^{-4}$	$1.422 \cdot 10^{-4}$	$1.388 \cdot 10^{-4}$	$1.822 \cdot 10^{-4}$	$2.176 \cdot 10^{-4}$	$2.453 \cdot 10^{-4}$
5	$2.261 \cdot 10^{-4}$	$1.026 \cdot 10^{-4}$	$5.972 \cdot 10^{-5}$	$1.168 \cdot 10^{-4}$	$1.514 \cdot 10^{-4}$	$1.857 \cdot 10^{-4}$

Table 6.10: TU Berlin stator airfoil RDO with manufacturing imperfections: standard deviation of $F_{p_{t}}$ for 5 optimization cycles, $\kappa=+1$ and six different weights.

$\sigma_{a_{2}}[\mathrm{deg}]$							
Cycle	$w_{p}=100 \%$	$w_{p}=95 \%$	$w_{p}=90 \%$	$w_{p}=75 \%$	$w_{p}=50 \%$	$w_{p}=0 \%$	
1	0.92122	0.92122	0.92122	0.92122	0.92122	0.92122	
2	0.92517	0.92465	0.92425	0.92442	0.92435	0.92441	
3	0.92499	0.92343	0.92277	0.92252	0.92267	0.92264	
4	0.92429	0.92155	0.92029	0.91964	0.91931	0.91923	
5	0.92387	0.92026	0.91776	0.91673	0.91627	0.91607	

Table 6.11: TU Berlin stator airfoil RDO with manufacturing imperfections: standard deviation of α_{2} for 5 optimization cycles, $\kappa=+1$ and six different weights.

In Tables 6.6 and 6.7, it is already established that the overall reduction of the robust pressure losses are relatively small when compared to the reduction of the robust outlet flow angle, given that for $w_{p}=0 \%$ it is increased by a tremendous 2.5° after five cycles. Accordingly, for the other weights similar, yet lower, relative differences can be found. At first glance, this reveals that the outlet velocity angle is greatly affected by geometry changes.

The contents of Tables 6.8, 6.9, 6.10 and 6.11 are visualized, in total, in Figure 6.18. The data in Figure 6.18 provides even further insight in this matter. It can be deduced that the great increase of $a_{2}{ }^{\text {(robust })}$ is mainly due to the increase of the mean value of a_{2}, by a maximum of 2.5°, approximately, for $w_{p}=0 \%$. Furthermore, the reduction of $\sigma_{a_{2}}$, if achieved, is seemingly small, with the maximum decrease being approximately 0.005°, again, for $w_{p}=0 \%$. This signifies that while the maximization of the mean value of a_{2} yields a significant increase, the decrease in its standard deviation is minute, even for w_{p}.

On the contrary, the reduction in the mean pressure losses generally small, following the same pattern with the respective robust value. Its highest reduction is 2.78% achieved for $w_{p}=95 \%$. Still, the standard deviation of the total pressure losses, is greatly mitigated for every weight value, with the highest being 88.1% for $w_{p}=90 \%$.

Finally, in Figure 6.19 the relative deviation of $F_{p_{t}}$ and the absolute deviation of α_{2} are presented, for 32 KLT-generated imperfect renderings of the six final robust blades as well as for the initial. In Figure 6.19, one can distinguish that the outlet velocity a_{2} displays a apparently high deviation. The maximum value of this absolute deviation is approximately $\Delta a_{2}= \pm 1.5^{\circ}$, which is seemingly unchanged for different weight values. The maximum absolute deviation is 1.58° and corresponds to the initial blade, while its value decreases with the decrease of w_{p}, with the lowest maximum absolute deviation being 1.53° (1.6% reduction) for $w_{p}=0 \%$. The relatively high deviation is expected, given that $\sigma_{a_{2}}$ has, for the most part, the same order of magnitude with its respective mean value, as observed form Tables 6.11 and 6.9. This, also, denotes that the outlet flow angle is greatly affected by the manufacturing imperfection created though KLT. Moreover, the small reduction of the relative deviation of a_{2} is also anticipated, due to the, aforementioned, low reduction of $\sigma_{a_{2}}$. On the other hand, when it comes to the total pressure losses $F_{p_{t}}$, a high decrease in its maximum relative deviation is expected, because of the high reduction of $\sigma_{F p_{t}}$, previously, documented. The highest $F_{p_{t}}$ maximum relative deviation is equal to 1.07% can be found for the initial TU Berlin blade, while the lowest is equal to 0.32% (70.4% reduction) produced for $w_{p}=90 \%$, as expected. Otherwise, the overall influence of the KLT shape imperfections on the total pressure losses is relatively small, which is also concluded by the fact that the standard deviation of $F_{p_{t}}$ is two orders of magnitude lower that its respective mean value, as displayed in Tables 6.10 and 6.8 .

$$
\begin{aligned}
& w_{p}=75 \% \backsim \Delta \quad w_{p}=0 \% \\
& w_{p}=50 \%-\varrho
\end{aligned}
$$

Figure 6.18: TU Berlin stator airfoil RDO with manufacturing imperfections: mean value and standard deviation of $F_{p_{t}}$ and α_{2} plotted for six different weights.

Figure 6.19: TU Berlin stator airfoil RDO with manufacturing imperfections: absolute deviation $\Delta \alpha_{2}$ and relative deviation $\Delta F_{p_{t}}$ for the six final robust blades and initial stator blade.

Chapter 7

Summary and Suggestions

7.1 Summary - Conclusion

In this diploma thesis, a KLT-implementing software is developed, in order to generate imperfect renderings of 2D geometries. This software alongside with OpenFOAM's simpleFoam and adjointOptimisationFoam solvers are integrated into an in-house code employing the niPCE method, so as to perform aerodynamic UQ and deterministic RDO, respectively, on 2D bodies with shape imperfections.

The niPCE theory, implemented into the according niPCE in-house software, is formulated in order to perform single and multi-dimensional UQ w.r.t. the user-defined QoI, for problems with stochastic input variables following normal distributions. Therefore, for the computation of the mean value and standard deviation of the selected QoI, GQ numerical integration with Hermite orthogonal polynomial is employed. Both Full and Smolyak Sparse grids of Gauss Nodes needed for the integration can be selected, the later proving especially useful for mitigating the method's computational cost of problems with a large number of uncertain variables $(M \geq 4)$. Additionally, the niPCE code is, also, adjusted to conduct gradient-based RDO, by performing UQ to the SDs (computed though the adjoint solver), in order to produce the derivatives of the aforementioned statistical moments w.r.t. the design variables a.k.a. the robust SDs. Thus, the computation the robustness metric and its derivatives, a.k.a. the robust SD (in accordance with the DFSS approach), can be achieved.

The continuous adjoint method, developed by PCOpt/NTUA and employed in this thesis, is used to compute the SDs needed for the computation of the robust SDs. The Enhanced-SI formulation is used, which yields an accurate prediction of the SDs for a relatively lower computational cost, when compared with the alternative FI approach.

The KLT software is designed to generate stochastic perturbations on any 2D surface of any length and geometry, thus providing the ability to render imperfect recreations of a wide variety of shapes, such as airfoils or turbumachinery blades. The user can define the number M, as well as the mean value and standard deviation of the KLT uncertain variables, thus regulating the oscillation and the range of the KLT-generated stochastic perturbations, respectively. Moreover, after an application on a flat surface, it is observed the greater the number of M, the more oscillating are the yielded perturbations. From the application of the KLT software, on the NACA 0012 airfoil it is deduced that a middle ground solution for the number of uncertain variables, exhibiting both enough KLT imperfection complexity and a sustainable computational cost is $M=5$.

Once the aforementioned integration is complete, the coupled software is, firstly, utilized to perform UQ on a NACA 0012 airfoil with manufacturing imperfections, regarding its aerodynamic coefficients $\left(C_{L}, C_{D}\right)$. Five KLT shape uncertain variables ($M=5$) and Smolyak Sparse grid GHQ integration are used, while a parametric analysis is held w.r.t. the chaos order k used, while all results are compared with corresponding results produced through the MC method for 5000 samples. From this analysis, it is concluded that the precision of niPCE-computed UQ for geometries with stochastic imperfections, is acceptable (mean relative error lower than 3%) for lower chaos order values $(k \leq 3)$, while the higher orders yield an unacceptable computational cost, even for Sparse niPCE integration grids. Secondly, UQ is executed on the E387 airfoil with manufacturing uncertainties, for the computation of the robust SDs, through the MC and niPCE methods, the later by utilizing both Full as well as Sparse grid integration. Both niPCE results for the robust SD are seemingly accurate, justifying the adoption of the Smolyak grid integration for the following RDO, given that it yields a reduced cost and practically the same accuracy when compared with the Full grid results.

Furthermore, in order to accomplish deterministic shape RDO, certain mesh displacement strategy must be employed and for that a the Volumentic B-Spline mesh paramaterization subroutine of PCOpt/NTUA's code adjointOptimisationFoam, is isolated and integrated into the niPCE-KLT-Adjoint coupled software. This way, after each optimization cycle, the pararemeterized mesh region is displaced according to the previously computed robust SDs and according to the Steepest Descent design variable renewal method.

The KLT-niPCE-Adjoint coupled software is then executed on the E387 airfoil and the TU Berlin compressor stator cascade, so as to perform RDO with shape uncertainties. The E387 airfoil, is subjected, initially, to single-objective robust drag minimization, i.e. the minimization of its drag stochastic performance. This RDO analysis is held for different values of the DFSS parameter κ. A conclusions drawn from this analysis, is that, after 5 RDO cycles, the mean value and standard deviation of the exerted drag can be reduced by 14% and 35%, respectively. Also,
it is deduced that the results for the three values of κ are virtually indistinguishable, due to the fact that the derivatives of the standard deviation of the drag coefficient are negligible, when compared to its respective mean value. In addition, the airfoil is subjected to multi-objective RDO, namely through the minimization of a weighted objective function containing both the drag and lift coefficients. The analysis is held for three different sets of weights, each signifying a different lift to drag prioritization. The RDO process is successful in producing more balanced robust airfoils, with optimized results in both robust drag and lift objectives. Overall, though, it is perceived that the minimization of the stochastic variation of an airfoil's force coefficient is achievable, even though the KLT-modeled manufacturing uncertainties have a minor influence on the forces exerted on a airfoil, given that their respective maximum relative deviation is lower that 3%.

Finally, multi-objective RDO with manufacturing uncertainties is held on the TU Berlin compressor stator cascade, w.r.t. to the total pressure losses and the outlet velocity angle. The two quantities are again arranged into a weighted objective function, opting to minimize the mean value of the pressure losses, maximizing the mean value of the outlet flow angle, while minimizing the standard deviation of both objectives. The RDO analysis is performed for six different weight values and the two objectives are proven to be compatible, yielding "hybrid" results sporting both the reduced thickness and highly cambered trailing edge of their respective single-objective final robust geometries. Ultimately, from this analysis, it is concluded that the outlet flow angle is greatly affected by the shape changes and therefore produces a relatively high standard deviation, with volatile responses to the KLTgenerated uncertainties, which cannot be significantly reduced by the proposed RDO method. Therefore, while the maximization of its mean value is achievable by a maximum of approximately 2.5°, the greatest reduction of its standard deviation achieved is 0.005°. On the other hand, the total pressure losses exhibit a minor sensitivity to the shape uncertainties, similarly to the force coefficients, but their standard deviation can be significantly reduced by approximately 90%, while their respective mean value is decreased by a maximum of approximately 3%.

Overall, the proposed method yields the expected results concerning the execution of aerodynamic UQ and RDO of 2D geometries with shape uncertainties. The method has been verified on two isolated airfoils and a compressor stator cascade, for three distinct objective functions. Its computational cost is significant and it scales with the number of RDO cycles needed, but it is still lower than the expected cost (lower number of cycles and less evaluations per cycle) of other such methods, which employ stochastic RDO, i.e. Evolutionary Algorithms.

7.2 Suggestions for Future Research

The following proposition are made to fuel ideas for the further development of the this work, in the future:

1. In this work, only geometrical uncertain variables following normal stochastic distributions are taken into account and, thus, only their corresponding Hermite family of orthogonal polynomials are used for the numerical GQ integration of the niPCE coefficients. The generalized Polynomial Chaos theory, that can be found in [9], is suggested in order to widen the spectrum of different stochastic distributions that can be used as inputs.
2. The KLT-niPCE-Adjoint algorithm could be used to perform aerodynamic UQ and RDO with, both, flow and shape uncertainties. Such a computational process could evaluate and optimize the aerodynamic stochastic performance of geometries for any, user-defined, stochastic input.
3. The KLT shape imperfection model can further be expanded, in order to encompass also 3D geometries. According to the KLT theory, the generation of 3D stochastic perturbations, is feasible and this way the evaluation of manufacturing imperfections can be performed on complex 3D geometries.
4. The only design variable method, implemented in this thesis, is the Steepest Descent method. The reason behind this, is that this method provides a fairly easy formulation, requiring only 1st order sensitivity derivatives (robust or not) for the update of the design variables. Additionally this method can only cope with optimization with unconstrained objectives. It is suggested that the niPCE code, should be improved so as to to receive both 2 nd order sensitivity derivatives as well as objective constraints and compute robust 2nd order derivatives and robust constraints, giving it thus the ability to work in conjunction with other design variables update methods, such as the $B F G S$ or the Constraint Projection methods. Especially the BFGS method, with its high efficiency, could work perfectly alongside the coupled niPCE-KLT-Adjoint algorithm, for robust design, given that it often reaches an optimal solution a lot faster than other methods, when it is already established that each RDO cycle is quite costly.
5. Other UQ methods could be employed other than the niPCE, for the evaluation of stochastic QoI as well as their derivatives w.r.t. the design variables. Without changing the gradient-based method of optimization, in this case the continuous adjoint method, it is proposed to adopt another stochastic, e.g. the intrusive PCE method or the deterministic Method of Moments [19], 3], 4] could be implemented for the formulation of the statistical moments of the aerodynamic performance of a shape with KLT-produced geometrical uncertainties. Though the iPCE method lacks the generality of the niPCE, it makes up in higher accuracy and lower computational cost. Additionally, the Method of Moments could be utilized for UQ or RDO with KLT shape uncertainties, given that
this method would greatly reduce the computational cost, while it could be successfully coupled with 2nd order Quasi-Newton design variables update methods, such as the aforementioned BFGS, due the higher order derivatives formulation yielded from this method. Finally other niPCE variants found in [3] such as the niPCE-Regression or the niPCE-Regression-Adjoint could be utilized alongside the KLT model, for reasons of cost mitigation, especially given that elevated numbers M are employed.

E१vıxó Meтбóßıo По入uтeұveio $\Sigma_{\chi о \lambda \dot{\prime}} \mathrm{M} \eta \chi \propto \nu о \lambda o ́ \gamma \omega \nu \mathrm{M} \eta \chi \alpha \nu \iota x \dot{\omega}$
Touéas Pevã＇́v

 \＆Be入tьттoлoínons

 K $\alpha \tau \alpha \sigma \varkappa \varepsilon \cup \alpha \sigma \tau \iota \varkappa$ és $\mathrm{A} \tau \dot{\text { éneısऽ }}$

Sépүıos Bı入入éт

Ет $\beta \lambda \overline{\text { ér }} \pi \omega \nu$

A७ท́va，Фєßpouápıos 2022

Eı $\sigma \alpha \gamma \omega \gamma \dot{\eta}$

 $\tau \omega \nu \mu \varepsilon \tau \alpha \beta \lambda \eta \tau \dot{\omega} \nu \sigma \chi \varepsilon \delta \iota \alpha \sigma \mu \circ \dot{\prime}\left(b_{n}, \quad n=1,2, \ldots, N\right)$ о́бо $\chi \alpha \iota \tau \omega \nu \alpha \beta \hat{\beta} \beta \alpha \omega \omega \nu \mu \varepsilon \tau \alpha \beta \eta \tau \tau \dot{\omega}$

 $\mu \varepsilon ́ v o u ~ \pi \lambda \varepsilon ́ \gamma \mu \alpha \tau о \varsigma ~ \mu \varepsilon ́ \sigma \omega ~ V o l u m e t r i c ~ B-S p l i n e s . ~ T e ́ \lambda o s ~ \eta ~ \mu \varepsilon ́ v o \delta o s ~ \pi o u ~ v ⿺ o \vartheta \varepsilon \tau \varepsilon i ́ \tau \alpha l ~ \gamma ı \alpha ~$

 тоиs ($\pi . \chi$. हлเъ

$$
\begin{gather*}
\int_{D} C\left(s_{1}, s_{2}\right) f_{n}\left(s_{2}\right) d s_{2}=\lambda_{n} f_{n}\left(s_{1}\right) \tag{7.1}\\
C\left(s_{1}, s_{2}\right)=\sigma^{2} e^{-\frac{\left|s_{1}-s_{2}\right|}{l}} \tag{7.2}
\end{gather*}
$$

$\pi \cup \rho \dot{\eta} v \alpha \pi \alpha \rho \alpha \tau i \vartheta \varepsilon \nu \tau \alpha l$ бто $\Sigma \chi \dot{\eta} \mu \alpha 7.1$.

 $s \in=[0,1], l=1$ каı $\sigma=1$.

 $\varepsilon \xi \dot{n} \varsigma:$

$$
\begin{equation*}
X(s, \vec{c})=\bar{X}(s)+C_{H a n n}(s) \sum_{n=1}^{M} \sqrt{\lambda_{n}} c_{n} f_{n}(s) \vec{n}(s) \tag{7.3}
\end{equation*}
$$

 каı $\sigma \epsilon \mu \eta \pi \rho а ү \mu а т ı к \grave{~ к \lambda і ́ \mu а к а ~(к а ́ \tau \omega) . ~}$

 $\lambda \cup v \dot{\mu} \mu \omega \nu \widetilde{\psi}, \omega \varsigma \varepsilon \xi \dot{n} \varsigma:$

$$
\begin{equation*}
F(\vec{b}, \vec{c}) \approx \sum_{i=0}^{N_{\text {cut }}} a_{i} \widetilde{\psi}_{i}(\vec{c}), \quad N_{\text {cut }}=\binom{k_{\max }+M}{k_{\max }}=\frac{(k+M)!}{k!M!} \tag{7.4}
\end{equation*}
$$

$$
\begin{equation*}
\mu_{F} \cong a_{0} \& \sigma_{F} \cong \sqrt{\sum_{i=1}^{N_{\text {cut }}} a_{i}^{2}} \tag{7.5}
\end{equation*}
$$

 $\beta \lambda \eta \tau \omega \dot{\omega}$.

$$
\begin{equation*}
F_{R}=\mu_{F}+\kappa \sigma_{F} \Rightarrow \frac{\partial F_{R}}{\partial b_{n}}=\frac{\partial \mu_{F}}{\partial b_{n}}+\kappa \frac{\partial \sigma_{F}}{\partial b_{n}} \tag{7.6}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial \mu_{F}}{\partial b_{n}} \approx \frac{\partial a_{0}}{\partial b_{n}} \& \frac{\partial \sigma_{F}}{\partial b_{n}} \approx \frac{\sum_{i=1}^{N_{\text {cut }}} a_{i} \frac{\partial a_{i}}{\partial b_{n}}}{\sqrt{\sum_{i=1}^{N_{\text {cut }}} a_{i}^{2}}}=\frac{1}{\sigma_{F}} \sum_{i=1}^{N_{\text {cut }}} a_{i} \frac{\partial a_{i}}{\partial b_{n}} \tag{7.7}
\end{equation*}
$$

 $(\mathrm{PDF}) w\left(c_{l}\right)=\frac{1}{\sigma_{l} \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{c_{l}-\mu_{l}}{\sigma_{l}}\right)^{2}}$.

$$
\begin{equation*}
a_{i}=\int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} F\left(\vec{b}, c_{1}, \ldots, c_{M}\right) \tilde{\psi}_{i}\left(z_{1}, \ldots, z_{M}\right) W\left(c_{1}, \ldots, c_{M}\right) d c_{1} \cdots d c_{M} \tag{7.8}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial a_{i}}{\partial b_{n}}=\int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \frac{\partial}{\partial b_{n}} F\left(\vec{b}, c_{1}, \ldots, c_{M}\right) \tilde{\psi}_{i}\left(z_{1}, \ldots, z_{M}\right) W\left(c_{1}, \ldots, c_{M}\right) d c_{1} \cdots d c_{M} \tag{7.9}
\end{equation*}
$$

 троß入и́иатоз.

	M					
k	1	2	3	4	5	6
0	$1 / 1$	1/1	1/1	1/1	1/1	1/1
1	2/3	4/5	8/7	16/9	32/11	64/13
2	$3 / 5$	9/13	27/25	81/41	243/61	729/85
3	4/9	16/29	64/69	256/137	1024/241	4096/389
4	5/17	25/65	125/177	625/401	3125/801	15625/1457
5	6/33	36/145	216/441	1296/1105	7776/2433	46656/4865

О хढ́ठठıx

 $\Sigma \chi \dot{n} \mu \alpha 7.4$.

 $\sigma \chi \varepsilon \delta \iota \iota \sigma \mu o ́$ טло́ $\chi \alpha \tau \alpha \sigma x \varepsilon \cup \alpha \sigma เ x \varepsilon ́ \varsigma ~ \alpha \tau \varepsilon ́ \lambda \varepsilon เ \varepsilon \varsigma . ~$

$\Sigma \chi \varepsilon \delta \iota \alpha \sigma \mu o ́ s ~ \sigma \tau \eta \nu \pi \varepsilon \rho i ́ \pi \tau \omega \sigma \eta \mathrm{~K} \alpha \tau \alpha \sigma \varkappa \varepsilon \cup \alpha \sigma \tau \iota \varkappa \omega \dot{\nu} \mathrm{~A} \tau \varepsilon \lambda \varepsilon \iota \omega \dot{\nu}$

 $C_{L}^{(\text {robust })}=\mu_{C_{L}}+\kappa \sigma_{C_{L}}$.

 варбө.

 C_{D}, C_{L} ađó $\tau \eta \nu$ à $\tau i ́ \sigma \tau o \imath \chi \eta ~ \mu \epsilon ́ \sigma \eta ~ \tau ı \mu \grave{\prime}(\delta \epsilon \xi i a ́) . ~$

 $\mu \varepsilon \tau \alpha \beta \lambda \eta \tau \omega ́ \omega \nu$ tou μ оvté̀ ou KLT opíלovtaı $\mu_{l}=0, \sigma_{l}=2 \cdot 10^{-3} m \forall l=1,2, \ldots, 5$.

 $\beta \dot{\alpha} p \eta w_{p}=95,90,75,50 ; \%$.

 $\nu \alpha$ เбои́t $\alpha \iota \mu \varepsilon 70.4 \% \gamma \iota \alpha w_{p}=90 \%$.

$\Sigma \cup \mu \pi \varepsilon \rho \alpha \dot{\sigma} \mu \alpha \tau \alpha$

Appendix A

OpenFOAM CFD Validation

In this section of the Appendix, the validation of the CFD method used to numerically solve the primal problem, as presented in Section 2.1, takes place. Meaning, that the the results produced by the CFD analysis, through OpenFOAM are compared with corresponding experimental results found in literature.

In this thesis, three distinct primal problems are solved, both with and without the inclusion of KLT-generated manufacturing imperfections (explored thoroughly in Chapter 4), the later integrated within UQ and RDO loops (more information in Section 5.1). These three CFD cases are mainly distinguished by their varying initial shape, two of them being airfoils: the symmetric NACA 0012 (Subsection 5.2 .2) as well as the E387 (Subsection 5.3.1) and the third being the TU Berlin compressor stator cascade (Subsection 6.2.2). Nevertheless, only the first two airfoil cases are verified, given that they have been extensively subjected to wind tunnel testing and their aerodynamic performance is well documented through the years. The compressors cascade is a simplified 2D model of the TU Berlin axial compressor stator blade. The 3D CFD simulation of the stator has been executed and verified in 40. The cascade has been extracted from these 3D simulations, so as to be used as a simplified model for the purposes of this work. Up until now, no experimental data for this specific cascade are found in literature.

Airfoil: NACA 0012

The NACA 0012 airfoil experimental data used to validate the accuracy of the OpenFOAM fluid solver can be found in [41, and for now on is referred to as Landson et al. experiments, for short. The flow solver configurations, computational mesh, turbulence model and boundary conditions are exactly the same with the ones described in Subsection 5.2.1, only changing the far-field velocity to $U_{\infty}=$ $60 \mathrm{~m} / \mathrm{s}$, in order to achieve the flow conditions used in the wind tunnel experiments: Mach $=0.15$ and $R e_{c}=6 \cdot 10^{6}$.

For these flow conditions the OpenFOAM's simpleFoam incompressible flow solver is used, to compute the flow field around the airfoil for three of the same far-field velocity angles of attack (AoA) used by Landson et al.: AoA $=[0.01,2.15,4.11]$ degrees. The reason for which these AoA are selected is to validate the solver's accuracy close to the $\mathrm{AoA}=2$ deg used in the UQ analysis that takes place in Subsection 5.2.3.

The C_{D} and C_{L} coefficients as computed both through OpenFOAM and the Landson et al. experiments, for the aforementioned AoA, are displayed in Table A. 1.

	Landson et al.		OpenFOAM	
AoA $[\mathrm{deg}]$	C_{L}	C_{D}	C_{L}	C_{D}
-0.01	-0.0122	0.00804	-0.012716	0.007876
2.15	0.2236	0.00823	0.228503	0.008392
4.11	0.4397	0.00879	0.435971	0.009771

Table A.1: NACA 0012 airfoil: aerodynamic coefficients for $R e_{c}=6,000,000$. Comparison between the OpenFOAM-computed and Landson et al. experimental results.

The same comparison is also visualized through the Figure A.1, where the polar and $C_{L}-A o A$ diagrams for the NACA 0012 airfoil. Meanwhile the relative error of the CFD results when compared to the corresponding experimental results are displayed in Figure A. 2.

Overall, the results of the OpenFOAM's solver configurations produce valid results, especially in for AoA close to zero. As expected the C_{L} results are fairly precise, given that the pressure field is more or less easily computed accurately for all AoA, keeping in mind the dominant component of the lift force exerted on an airfoil is caused by the pressure difference between its suction and pressure sides. This result also backed by the CFD-computed pressure coefficient $\left(C_{p}\right)$ distribution on to the airfoil's surface is relatively accurate as well when compared with the corresponding experimental distribution, as plotted in Figure A.3.

Nevertheless, even the more complex, due to the its viscous component, C_{D}, requiring proper treatment (as featured in Subsection 2.1.3) and denser meshing near the airfoil surface, is computed with relative accuracy. According to Figure A.2, the lowest relative error is identified for $\mathrm{AoA}=2.15 \mathrm{deg}$, justifying the 2 deg AoA used in the $C_{L}, C_{D} \mathrm{UQ}$ analysis, executed in Subsection 5.2.1, for the same airfoil. The slightly higher relative error appearing for $\mathrm{AoA}=4.11 \mathrm{deg}$, indicates that a denser mesh might be required, given that greater velocity gradients as well as some unsteady phenomena may start to appear.

Figure A.1: NACA 0012 airfoil: $C_{L}-C_{D}$ polar diagram and $C_{L}-$ AoA diagram for $R e_{c}=6,000,000$. The Ladson et al. results are included for all AoA used in the experiments.

Figure A.2: NACA 0012 airfoil: relative error of the OpenFOAM-generated aerodynamic coefficients w.r.t. the results of the Ladson et al. experiments for $R e_{c}=$ 6,000, 000 .

Figure A.3: NACA 0012 airfoil: pressure coefficient distribution for $A o A=0$ deg and $R e_{c}=6,000,000$ from both the OpenFOAM analysis and the Ladson et al. experiments.

Airfoil: E387

The experimental data of the aerodynamic performance of the E387 airfoil are extracted from the [42]. Specifically the Spring 1997, J.Robertson data set are used and are referred to as Robertson experimental results. The same simpleFoam solver configuration and mesh are implemented as those mentioned in Subsection 5.3.1. Only the far-field velocity is modified to $U_{\infty}=2 \mathrm{~m} / \mathrm{s}$, to attain the Reynolds number $R e_{c}=200,000$ of the Robertson experiments.

The flow field around the airfoil is computed for five different $\mathrm{AoA}=[0,1,2,3,4]$ degs and the results are given in Table A.2, in comparison to the Robertson results.

The same comparison is also visualized through Figure A.4, where the polar and $C_{L}-A o A$ diagrams for the E387 airfoil and through Figure A.5, where the relative error of the CFD results, when compared to the corresponding experimental results, are displayed.

	Robertson		OpenFOAM	
AoA $[\mathrm{deg}]$	C_{L}	C_{D}	C_{L}	C_{D}
0	0.371	0.0110	0.372208	0.011169
1	0.477	0.0118	0.479919	0.011952
2	0.585	0.0128	0.587641	0.012983
3	0.703	0.0139	0.694792	0.014277
4	0.799	0.0148	0.801176	0.015822

Table A.2: E387 airfoil: aerodynamic coefficients for $\operatorname{Re}_{c}=200,000$. Comparison between the OpenFOAM-computed and Robertson experimental results.

Figure A.4: E387 airfoil: $C_{L}-C_{D}$ polar diagram and $C_{L}-A o A$ diagram for $R e_{c}=200,000$ from both the OpenFOAM analysis and the Robertson experiments.

The conclusions drawn from the comparison of the results are very similar to those described in Subsection A of the Appendix. The CFD accuracy is greater the for AoA close to zero, while the lowest error for the drag coefficient is found for $\mathrm{AoA}=1$ deg. Generally, the C_{L} CFD-generated prediction is more precise, while for $\mathrm{AoA}=4$ deg the C_{D} error is the highest, indicating the need for a denser mesh near the airfoil. Overall, the OpenFOAM solver configuration is proven to produce relatively valid results, justifying its integration in UQ and RDO loops, as in Subsection 5.3 .2 and Section 6.1, respectively.

Figure A.5: E387 airfoil: relative error of the OpenFOAM-generated aerodynamic coefficients w.r.t. the results of the Robertson experiments for $R_{c}=200,000$.

Unfortunately, no C_{p} distributions can be found in [42], in order for such a comparison to be held.

Appendix B

Hermite Polynomials

The Hermite orthogonal polynomials are used for the niPCE method for uncertain variables following normal distributions. Two different categories of Hermite polynomials exist: the probabilists' Hermite polynomials $H e_{n}$ used in statistics and the physicists' Hermite polynomials H_{n} more often employed in different scientific domains related to physics. The main difference between the two is based on the formulation of their respective weight function. Yet both are defined into the same domain $D=[-\infty,+\infty]$.

The generalized formula for generating Hermite polynomials of degree n, is formulated as

$$
\begin{equation*}
H_{n}(x)=(-1)^{n} w^{-1}(x) \frac{d^{n} w(x)}{d x^{n}} \tag{B.1}
\end{equation*}
$$

where $w(x)$ the weight function.

Weight Functions

The probabilists' polynomials weight function is defined as

$$
\begin{equation*}
w_{H e}(x)=e^{-\frac{x^{2}}{2}} \tag{B.2}
\end{equation*}
$$

while the physicists' polynomials weight function is defined as

$$
\begin{equation*}
w_{H}(x)=e^{-x^{2}} \tag{B.3}
\end{equation*}
$$

Polynomial Formula

By integrating the weight function from eqs. ($\overline{\mathrm{B} .2}$) and ($(\overline{\mathrm{B} .3})$ into the generalized formula in eq. (B.1), the formulas for each of the two categories, respectively, is produced.

A probabilists' polynomial of n degree is generated by

$$
\begin{equation*}
H e_{n}(x)=(-1)^{n} e^{\frac{x^{2}}{2}} \frac{d^{n} e^{-\frac{x^{2}}{2}}}{d x^{n}}=\left(x-\frac{d}{d x}()\right)^{n} \cdot 1 \tag{B.4}
\end{equation*}
$$

while physicists' polynomials of n degree are generated by

$$
\begin{equation*}
H_{n}(x)=(-1)^{n} e^{x^{2}} \frac{d^{n} e^{-x^{2}}}{d x^{n}}=\left(2 x-\frac{d}{d x}()\right)^{n} \cdot 1 \tag{B.5}
\end{equation*}
$$

The two definitions are not identical. This is backed by the fact that the first can be produced through the latter (as well as the opposite), by making use of the transform

$$
\begin{equation*}
H e_{n}(x)=2^{-\frac{n}{2}} H_{n}\left(\frac{x}{\sqrt{2}}\right) \Longleftrightarrow H_{n}(x)=2^{\frac{n}{2}} H e_{n}(x \sqrt{2}) \tag{B.6}
\end{equation*}
$$

Recurring Formula

Similarly, from definitions in eqs. ($\overline{\text { B.4 }}$) and ($\overline{\text { B.5 }}$), respectively, the recurring formulas for the polynomials is defined as

$$
\begin{gather*}
H e_{n+1}(x)=x H e_{n}(x)-n H e_{n-1}(x) \tag{B.7}\\
H_{n+1}(x)=2 x H_{n}(x)-2 n H_{n-1}(x) \tag{B.8}
\end{gather*}
$$

while their respective recurring derivatives w.r.t. to $x \in[-\infty,+\infty]$

$$
\begin{align*}
H e_{n}^{\prime}(x) & =\frac{d H e_{n}(x)}{d x}=n H e_{n-1}(x) \tag{B.9}\\
H_{n}^{\prime}(x) & =\frac{d H_{n}(x)}{d x}=2 n H_{n-1}(x) \tag{B.10}
\end{align*}
$$

In addition, in a Hermite polynomial of n degree, the coefficient A_{n} of the term to the power of n is defined, though the use of the recurring formulas, as follows

$$
\begin{equation*}
A_{n}^{(H e)}(x)=1 \quad, \quad A_{n}^{(H)}(x)=2^{n} \tag{B.11}
\end{equation*}
$$

Orthogonality

Both of the two categories of Hermite polynomials are orthogonal w.r.t. their corresponding weight function $w(x)$, as follows

$$
\begin{equation*}
\left\langle H e_{n}(x), H e_{m}(x)\right\rangle_{w}=\int_{-\infty}^{+\infty} H e_{n}(x) H e_{m}(x) e^{-\frac{x^{2}}{2}} d x=n!\sqrt{2 \pi} \delta_{n}^{m} \tag{B.12}
\end{equation*}
$$

$$
\begin{equation*}
\left\langle H_{n}(x), H_{m}(x)\right\rangle_{w}=\int_{-\infty}^{+\infty} H_{n}(x) H_{m}(x) e^{-x^{2}} d x=2^{n} n!\sqrt{\pi} \delta_{n}^{m} \tag{B.13}
\end{equation*}
$$

where δ_{n}^{m} the Kronecker Delta.
From eqs. (B.12) and (B.13) the w-norms, for the two categories, are formulated

$$
\begin{equation*}
\left\langle H e_{n}^{2}(x)\right\rangle_{w}=\left\|H e_{n}\right\|_{w}^{2}=\gamma_{n}^{(H e)}=n!\sqrt{2 \pi}, \quad\left\langle H_{n}^{2}(x)\right\rangle_{w}=\left\|H_{n}\right\|_{w}^{2}=\gamma_{n}^{(H)}=2^{n} n!\sqrt{\pi} \tag{B.14}
\end{equation*}
$$

Gauss Hermite Quadrature weights

The weights used in GQ integration are generally defined by the expression

$$
\begin{equation*}
\omega_{j}=-\frac{A_{n+1}}{A_{n}} \cdot \frac{\gamma_{n}}{\phi_{n+1}\left(x_{j}\right) \phi_{n}^{\prime}\left(x_{j}\right)} \tag{B.15}
\end{equation*}
$$

where ϕ_{n} a n degree polynomial belonging to a certain orthogonal family and x_{j} the roots of the aforementioned polynomial.

Meanwhile, the transform between the orthogonal polynomials ϕ of degrees $n+1$ and n is defined as

$$
\begin{equation*}
\phi_{n+1}\left(x_{j}\right)=-\frac{A_{n+1} A_{n-1}}{A_{n}^{2}} \cdot \frac{\gamma_{n}}{\gamma_{n-1}} \cdot \phi_{n-1}\left(x_{j}\right) \tag{B.16}
\end{equation*}
$$

By including eq. (B.16) in eq. (B.15), the weights are formulated as

$$
\begin{equation*}
\omega_{j}=-\frac{A_{n}}{A_{n-1}} \cdot \frac{\gamma_{n-1}}{\phi_{n-1}\left(x_{j}\right) \phi_{n}^{\prime}\left(x_{j}\right)} \tag{B.17}
\end{equation*}
$$

When implementing the Gauss Hermite Quadrature, the weights are defined with Hermite polynomials, coefficient and w-norms. Therefore, when probabilists' Hermite polynomials are used, according to eqs. (B.4), (B.9), (B.11) and (B.14), the weights from eq. B.17) become

$$
\begin{equation*}
\omega_{j}=\frac{(n-1)!\sqrt{2 \pi}}{H e_{n-1}\left(x_{j}\right) H e_{n}^{\prime}\left(x_{j}\right)}=\frac{n!\sqrt{2 \pi}}{n^{2} H e_{n-1}^{2}\left(x_{j}\right)} \tag{B.18}
\end{equation*}
$$

If physicists' Hermite polynomials are utilized, eq. (B.17) alongside with eqs. (B.5), (B.10), (B.11) and (B.14) yields

$$
\begin{equation*}
\omega_{j}=\frac{2^{n}(n-1)!\sqrt{\pi}}{H_{n-1}\left(x_{j}\right) H_{n}^{\prime}\left(x_{j}\right)}=\frac{2^{n-1} n!\sqrt{\pi}}{n^{2} H_{n-1}^{2}\left(x_{j}\right)} \tag{B.19}
\end{equation*}
$$

To conclude, during the application of GHQ for the numerical integration of the niPCE coefficients, in this thesis, the symbol n designating the polynomial degree
is replaced by $k+1$ (given that $n=k+1$), where k the niPCE chaos order.

Polynomial examples

According to the polynomials' formula in eqs. (B.4) and (B.5), respectively, the ten first Hermite polynomials are produced and displayed.

Probabilists' Hermite polynomial examples:

$$
\begin{aligned}
& H e_{0}(x)=1 \\
& H e_{1}(x)=x \\
& H e_{2}(x)=x^{2}-1 \\
& H e_{3}(x)=x^{3}-3 x \\
& H e_{4}(x)=x^{4}-6 x^{2}+3 \\
& H e_{5}(x)=x^{5}-10 x^{3}+15 x \\
& H e_{6}(x)=x^{6}-15 x^{4}+45 x^{2}-15 \\
& H e_{7}(x)=x^{7}-21 x^{5}+105 x^{3}-105 x \\
& H e_{8}(x)=x^{8}-28 x^{6}+210 x^{4}-420 x^{2}+105 \\
& H e_{9}(x)=x^{9}-36 x^{7}+378 x^{5}-1260 x^{3}+945 x
\end{aligned}
$$

Physicists' Hermite polynomial examples:

$$
\begin{aligned}
& H_{0}(x)=1 \\
& H_{1}(x)=2 x \\
& H_{2}(x)=4 x^{2}-4 \\
& H_{3}(x)=8 x^{3}-12 x \\
& H_{4}(x)=16 x^{4}-48 x^{2}+12 \\
& H_{5}(x)=32 x^{5}-160 x^{3}+120 x \\
& H_{6}(x)=64 x^{6}-480 x^{4}+720 x^{2}-120 \\
& H_{7}(x)=128 x^{7}-1344 x^{5}+3360 x^{3}-1680 x \\
& H_{8}(x)=256 x^{8}-3584 x^{6}+13440 x^{4}-13440 x^{2}+1680 \\
& H_{9}(x)=512 x^{9}-9216 x^{7}+48384 x^{5}-80640 x^{3}+30240 x
\end{aligned}
$$

GHQ roots and weights

The Gauss Hermite Quadrature integration (explored in Subesections 3.3.5 and 3.4.5), used in this thesis for the computation of the niPCE coefficients a_{i}, requires the roots and the weights of Hermite polynomials. In this thesis, only canonical probabilists' polynomials $\widetilde{H e}$ (as formulated in (3.33)) are employed for the GHQ integration. Yet, for showcasing reasons, the weights and roots of both default and canonical probabilists' Hermite polynomials are presented in Table B.1.

	$H e_{n}(x)$		$\widetilde{H e}_{n}(x)$	
n	Roots x_{j}	Weights ω_{j}	Roots x_{j}	Weights ω_{j}
1	0	2.506628275	0	1
2	1	1.25331414	1	0.5
	-1	1.25331414	-1	0.5
3	1.732050808	0.417771379	1.732050808	0.1666666667
	0	1.671085516	0	0.6666666667
	-1.732050808	0.417771379	-1.732050808	0.1666666667
	2.334414218	0.11499371	2.334414218	0.04587585477
	0.7419637843	1.13832042	0.7419637843	0.4541241452
	-0.7419637843	1.13832042	-0.7419637843	0.4541241452
	-2.334414218	0.11499371	-2.334414218	0.04587585477
5	2.856970014	0.028218146	2.856970014	0.01125741133
	1.35562618	0.55666179	1.35562618	0.222075922
	0	1.336868413	0	0.5333333333
	-1.35562618	0.55666179	-1.35562618	0.222075922
	-2.856970014	0.028218146	-2.856970014	0.01125741133
6	3.324257434	0.0064064014	3.324257434	0.002555784402
	1.889175878	0.22212673	1.889175878	0.08861574604
	0.6167065902	1.02478100	0.6167065902	0.4088284696
	-0.6167065902	1.02478100	-0.6167065902	0.4088284696
	-1.889175878	0.22212673	-1.889175878	0.08861574604
	-3.324257434	0.0064064014	-3.324257434	0.002555784402

Table B.1: $G H Q$ Integration: Roots and weights of probabilists' $H e_{n}(x)$ as well as canonical probabilists' polynomials $\widetilde{H e}_{n}(x)$ for their degrees n spaning from 1 to 6 .

Bibliography

 $\mu \iota \alpha \varepsilon \varepsilon ́ \varsigma ~ E \chi \delta o ́ \sigma \varepsilon ı \varsigma ~ E . М . П ., ~ А \vartheta ŋ ́ v \alpha, ~ 2006 . ~$
[2] K. C. Giannakoglou, D. I. Papadimitriou, E. M. Papoutsis-Kiachagias, and C. Othmer: Adjoint methods in CFD-based optimization - Gradient computation \mathcal{G} beyond. ECCOMAS 2012-European Congress on Computational Methods in Applied Sciences and Engineering, 2012.
[3] E. M. Papoutsis-Kiachagias, V. G. Asouti, and K. C. Giannakoglou: Assessment of variants of the Method of Moments and Polynomial Chaos approaches to aerodynamic Uncertainty Quantification. UNCECOMP 2021, 4th ECCOMAS Thematic Conference on Uncertainty Quantification in Computational Sciences and Engineering, 2021.
[4] K. B. Fragkos, E. M. Papoutsis-Kiachagias, and K. C. Giannakoglou: pFOSM: An efficient algorithm for aerodynamic robust design based on continuous adjoint and matrix-vector products. Computers \& Fluids, 181:57-66, 2019.
[5] M. Martinelli and D.I. Duvigneau: Comparison of second-order derivatives and metamodel-based Monte-Carlo approaches to estimate statistics for robust design of a transonic wing. 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2008.
[6] A. B. Owen: Monte Carlo theory, methods and examples. Stanford University, 2013.
[7] D. Xiu and G. E. Karniadakis: The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM Journal on Scientific Computing, 24(4):619-644, 2002.
[8] S. Shankaran and A. Jameson: Robust optimal control using polynomial chaos and adjoints for systems with uncertain inputs. 20th AIAA Computational Fluid Dynamics Conference, 2011.
[9] D. Xiu and G. E. Karniadakis: Modeling uncertainty in flow simulations via generalized polynomial chaos. Journal of Computational Physics, 187:137-167, 2003.
[10] S. K. Nadarajah and A. Jameson: A comparison of the continuous and discrete adjoint approach to automatic aerodynamic optimization. AIAA Paper 2000-0667, AIAA 38th. Aerospace Sciences Meeting and Exhibit, Reno, NV, 2000.
[11] K. Shimoyama, A. Oyama, and K. Fujii: Development of Multi-Objective Six Sigma Approach for Robust Design Optimization. Journal of Aerospace Computing, Information, and Communication, 5(8):215-233, 2008.
[12] G. Tenant: Six Sigma: SPC and TQM in Manufacturing and Services. Gower Publishing, Farnham, UK, 2001.
[13] Test Case 3: TU Berlin TurboLab Stator. https://aboutflow.sems.qmul. ac.uk/events/munich2016/benchmark/testcase3/.
 Ехठ́óбєıц Е.М.П., А७̛ท́va, 2006.

[16] P. Spalart and S. Allmaras: A one-equation turbulence model for aerodynamic flows. AIAA Paper 1992-439, 30th Aerospace Sciences Meeting and Exhibit, Reno, Nevada, USA, January 6-9 1992.
[17] F. Moukalled, M. Darwish, and L. Mangani: The Finite Volume Method in Computational Fluid Dynamics. An Advanced Introduction with OpenFOAMand MATLAB. Springer, 2016.
[18] D. B. Spalding: A single formula for the law of the wall. Journal of Applied Mechanics, 28:455-457, 1961.
[19] E. M. Papoutsis-Kiachagias: Adjoint methods for turbulent flows, applied to shape and topology optimization and robust design. PhD thesis, Lab. of Thermal Turbomachines, N.T.U.A., Athens, 2013.
[20] K. C. Giannakoglou, E. M. Papoutsis-Kiachagias, and I. S. Kavvadias: On the proper treatment of grid sensitivities in continuous adjoint methods for shape optimization. Journal of Computational Physics, volume 301 p. 1-18, 2015.
[21] K. C. Giannakoglou, E. M. Papoutsis-Kiachagias, I. S. Kavvadias, and K. T. Gkaragkounis: Continuous Adjoint in Shape \& Topology Optimization - Recent Developments $\xi^{\mathcal{J}}$ Applications. Conference: Seminar on Adjoint CFD Methods in Industry and Research, At Wiesbaden, Germany, 2016.
[22] K. C. Giannakoglou, E. M. Papoutsis-Kiachagias, I. S. Kavvadias, and K. Th. Gkaragkounis: Continuous Adjoint in Shape 83 Topology Optimization - Recent Developments $\mathcal{E}^{\mathcal{G}}$ Applications. Conference: Seminar on Adjoint CFD Methods in Industry and Research, At Wiesbaden, Germany, 2016.
[23] I. S. Kavvadias, E. M. Papoutsis-Kiachagias, and K. C. Giannakoglou: On the proper treatment of grid sensitivities in continuous adjoint methods for shape optimization, volume 301. Journal of Computational Physics, 2015.
[24] A. S. Zymaris, D. I. Papadimitriou, K. C. Giannakoglou, and C. Othmer: Continuous adjoint approach to the Spalart-Allmaras turbulence model for incompressible flows. Computers \& Fluids, 38(8):1528-1538, 2009.
[25] E. M. Papoutsis-Kiachagias and K. C. Giannakoglou: Continuous adjoint methods for turbulent flows, applied to shape and topology optimization: Industrial applications. Springer, 2014.
[26] A. S. Zymaris, D. I. Papadimitriou, K. C. Giannakoglou, and C. Othmer: Adjoint wall-functions: A new concept for use in aerodynamic shape optimization. Journal of Computational Physics, 229(13):5228-5245, 2010.
[27] E.M. Papoutsis-Kiachagias, V.G. Asouti, K.C. Giannakoglou, K. Gkagkas, S. Shimokawa, and E. Itakura: Multi-point Aerodynamic Shape Optimization of Cars Based On Continuous Adjoint. Structural and Multidisciplinary Optimization, 59(2):675-694, 2019.
[28] E. M. Papoutsis-Kiachagias and K. C. Giannakoglou: A parameterization and mesh movement strategy based on volumetric B-splines. Applications to shape optimization. NTUA/PCOpt/2015/01 REPORT, 2015.
[29] S. V. Patankar: Numerical Heat Transfer and Fluid Flow. McGraw-Hill Book Company, New York, USA, 1980.
[30] W. Wiener: The homogeneous chaos. American Journal of Mathematics, 60(4):897-926, 1938.
[31] W. Askey and J. Wilson: Memoirs of the American Mathematical Society: Some basic hypergeometric polynomials that generalize Jacobi polynomials, volume 54. AMS, Providense, Rhode Island, USA, March 2001.

[33] K. L. Judd, L. Maliar, S. Maliar, and R. Valero: Smolyak method for solving dynamic economic models: Lagrange interpolation, anisotropic grid and adaptive domain. Journal of Economic Dynamics \& Control, pages 44-92 and 123, 2004.
[34] D. R. Burt: Spectral Methods in Gaussian Process Approximations. Master's Dissertation. Department of Engineering, University of Cambridge, 2018.
[35] R. G. Ghanem and P. D. Spanos: Stochastic Finite Elements: A Spectral Approach. Springer-Verlag, 1991.
[36] H. L. Van Trees: Detection, Estimation and Modulation Theory: Part I. Detection, Estimation and Linear Modulation Theory. John Wiley \& Sons, 2001.
[37] O. P. Le Maitre and O. M. Knio: Spectral Methods for Uncertainty Quantification With Applications to Computational Fluid Dynamics, volume 718. Springer, 2010.
[38] W. Verwoerd and D.Kulasiri: Solving the Eigenvalue Problem for a Covariance Kernel with Variable Correlation Length. Centre for Computing and Biometrics Research Report, pages 1-12, 1999.

[40] I. C. Vasilopoulos: CAD-based and CAD-free Aerodynamic Shape Optimization of Turbomachinery Blade Rows using the Adjoint Method. PhD thesis, Lab. of Thermal Turbomachines, N.T.U.A., Athens, 2020.
[41] A. S. Ladson, C. L. Hill and W. G. Johnson Jr.: Pressure distributions from high reynolds number transonic tests of an naca 0012 airfoil in the langley 0.3-meter transonic cryogenic tunnel. NASA Technical Memorandum, 100526, December 1987.
[42] C. A. Lyon, A. P. Broeren, P. Giguère, A. Gopalarathnam, and M. S. Selig: Summary of Low-Speed Airfoil Data, volume 3. SoarTech Publications, Virginia Beach, Virginia 23451, USA, 1997.

