
NATIONAL TECHNICAL UNIVERSITY OF ATHENS
School of Mechanical Engineering
Fluids Sector
Laboratory of Thermal Turbomachines
Parallel CFD & Optimization Unit

Contribution to the development of primal and adjoint CFD
solvers for use in aerodynamic shape optimization.

Joint Postgraduate Course
‘‘Computational Mechanics’’

Master Thesis

Danai Chatzinikolaou

Supervisor: Kyriakos C. Giannakoglou, Professor NTUA

Athens, 2022

ii

Abstract

This Master Thesis deals with the development of primal and adjoint solvers for
use in aerodynamic shape optimization. It is divided in two main parts; the first
one was conducted in Rolls-Royce Deutschland based on the in-house CFD
solver HYDRA. It is a 3D steady solver, which solves the RANS equations,
coupled with the Spalart-Almaras turbulence model, on unstructured
body-fitted grids according to the vertex-centered finite-volume method. It is
then coupled with a discrete adjoint solver to perform aerodynamic shape
optimization. The second part is conducted at the National Technical University
of Athens using a 2D steady solver which solves the Navier-Stokes equations on
cartesian grids using the cell-centered finite-volume method and is coupled with
a continuous adjoint solver.
In the first part, a source term is added to the primal 3D equations to alleviate
limit cycle oscillations in case the solution is not stable and then the discrete
adjoint problem is derived based on the new primal equations. The flow in a
compressor vane is simulated with two different angles of attack, in which case
the adjoint computes the sensitivity map.
In the second part, the existing flow solver is modified to handle viscous flows
and assessed by simulating a flow over a flat plate and around a NACA0012
airfoil. The results are compared with literature data. Afterwards, the software is
parallelised and its efficiency is evaluated. At the end, the continuous adjoint
problem to this solver is developed for use in aerodynamic shape optimization.
The equivalent adjoint boundary conditions are derived as imposed on a
cartesian grid. The software is evaluated by optimizing the shape of two airfoils,
the target being to maximize lift.

iii

Acknowledgements

As this might be the last time I am writing acknowledgments, I would like to
make this section as accurate as possible. This thesis has been a long journey
for me, filled with ups and downs and I would like to remember every step and
how much I changed throughout it. It has been written in three countries,
Greece, Italy and Germany and I’m lucky I had amazing people around me
throughout the way.
Starting with my biggest fans, my parents, Mpia and Giorgos. They deserve a
massive thank you for their endless support and love. Everything I have
achieved is because of them.
To continue, I would like to thank my professor Kyriakos Giannakoglou. If I can
summarize our collaboration, I would say that he is constantly putting obstacles
on my way and at the same time helping me overcome them. I’m thankful for
everything he taught me, but I couldn’t be more grateful to him for giving me the
biggest opportunity of my life, which brought me where I am now.
Next, I would like to thank Konstantinos Samouchos for our amazing
collaboration. He is both an excellent mentor and a very good friend.
A big thank you to my next mentor Ilias Vasilopoulos, who has been a huge part
of the second half of the journey of this thesis. I’m grateful for all his patience,
support and guidance, and I know that without him, this thesis wouldn’t have
been as it is.
For the final part I left all of my dearest friends who were always there for me
through thick and thin, making me the best version of myself. To begin, I would
like to thank Maro, Christina, Kyriaki, Dimitris, Ilias and Dimitris, who made my
years as a student memorable. Next, my beloved teammates, Zina, Filio, Danai,
Chrysa, Anais, with whom I’ve shared endless memories of joy and happiness,
and at the same time we have been there for each other through our best and
worst times. To finish, I owe a big thank you to Maria, Kimon and Tasos for
everything we went through during the master program, I wish only the best for
them. And last but not least I would like to thank Moritz, who despite the short
time we’ve known each other, has been an amazing friend.

iv

Abbreviations

CFD Computational Fluid Dynamics

LTT Laboratory of Thermal Turbomachines

NTUA National Technical University of Athens

PCopt Parallel CFD & Optimization unit

RRD Rolls-Royce Deutschland

GC Ghost-Cells

MPI Message Passing Interface

ABC Adjoint Boundary Condition

FAE Field Adjoint Equations

SD Sensitivity Derivatives

OGV Outlet Guide Vane

RANS Reynold-Averaged Navier-Stokes

RMS Root-Mean-Square

RHS Right Hand Side

v

vi

Contents

1 Introduction 1
1.1 CFD-based Optimization within the Industry 2
1.2 Adjoint Optimization . 3
1.3 Thesis Background and Overview 4

2 Steady 3D Navier-Stokes Equations and Adjoint Optimization 7
2.1 General form of the steady 3D Navier-Stokes equations 8

2.1.1 Steady 3D RANS equations & Turbulence modeling 9
2.2 Adjoint Optimization . 11

3 Improvement of Adjoint Convergence Robustness for Steady CFD
Applications 15
3.1 Discretization of the Flow Equations 16

3.1.1 Inviscid Fluxes . 17
3.1.2 Viscous Flux . 18
3.1.3 Boundary Conditions . 18
3.1.4 Implicit Runge-Kutta scheme 20

3.2 Hydra discrete adjoint solver . 21
3.3 Brute Force Method for cases with Limit Cycle Oscillation 23
3.4 Brute Force method assessment . 27

4 Programming and Parallelization of a Flow Solver and the
Continuous Adjoint Method using the Ghost-Cell Method.
Applications in Aerodynamic Shape Optimization. 43
4.1 2D Steady Viscous Flows . 45
4.2 Ghost-Cell Boundary Conditions . 52

4.2.1 Interpolation of flow variables on the solid boundary 55
4.3 2D Steady Viscous Solver Validation 56

4.3.1 Flow over a flat plate . 56
4.3.2 Flow around NACA0012 airfoil 59

4.4 Parallelisation of CFD solver . 62
4.4.1 Communication between processors - MPI Protocol 62
4.4.2 Mesh Partitioning in Parallel Computing 62
4.4.3 Method and Frequency of Communication 63
4.4.4 Parallel Software Applications 64

vii

4.5 The Continuous Adjoint Method for Aerodynamic Shape Optimization 68
4.5.1 Objective Function . 68
4.5.2 Continuous Adjoint Method 68
4.5.3 Sensitivity derivatives (SD) 71
4.5.4 Aerodynamic Shape Optimization 73

5 Summary and Conclusions 79

Bibliography 81

viii

Chapter 1

Introduction

Throughout its history, fluid dynamics has been a field of continuous
development. One of the major steps in the subject was in the 18th century,
when Leonhard Euler introduced the equations of acceleration of a steady,
irrotational flow under gravitational action [13], which set the base of modern
fluid dynamics. To follow, Louis Marie Henri Navier in 1822 [27] made the first
attempt to extend the equations on viscous fluids, which combined with G.G.
Stokes’ study in 1842-1851 [46], formulated the widely known "Navier-Stokes"
equations.

In the years that followed, the Navier-Stokes equations have been studied
thoroughly in order to derive analytical solutions (L. Prandlt [38], H. Blasius [8])
and account for additional physical phenomena (O. Reynolds [39]). The second
breakthrough came around the middle of the 20th century with the development
of high-speed computers and introduced a new scientific field, the
"Computational Fluid Dynamics" (CFD). The computer, combined with the
extensive development of numerical methods to solve physical problems, allowed
for faster and inexpensive analysis of flow fields compared to the limited and
costly experiments performed in the wind tunnel until that time.

In parallel to fluid dynamics, another field which has always attracted the
interest of many scientists, the theory of optimization. Hence, the pursue of a
problem’s (mathematical or not) optimal solution, with respect to specific
criteria. Starting with optimization of dedicated geometrical problems, such as
finding the minimum distance between two points, and continuing with the
development of the theory of Calculus of Variations, a field of mathematical
analysis that uses variations to find minima and maxima of functions. While the
beginning of the subject cannot be precisely dated, scientists like I.Newton,
L.Euler, G.W. von Leibniz, A.L. Cauchy, C.Jacobi and many more showed
immediate interest and developed new principles and theories within the

1

subject. [18] Based on the Calculus of Variations the first optimization
algorithms emerged during the 19th century and, in the 20th century, thanks to
the continuous development of computers, stochastic optimization methods
arise and gradient-based methods prosper.

1.1 CFD-based Optimization within the Industry

Today, optimization tools combined with CFD analysis are widely used in the
industry, in a variety of sectors including automotive, aerospace, chemical and
medical research and have revolutionized the products’ design process. Even
though there are only a few dedicated studies, the introduction of CFD analysis in
the industry has significantly reduced the cost of product development, the need
for experimental analysis, the time of optimization activities and it has helped
to achieve improved, detailed and reliable design of products. One study on
the benefit of CFD application in a chemical and engineered-material company
showed that in a six year period the financial benefit of using CFD has been six
times greater than the amount spent on CFD activities. ([11])

Taking a look at some of today’s biggest companies in the aerospace and
automotive sector, CFD based optimization has become a fundamental design
tool. Rolls-Royce plc has developed an in-house CFD solver, HYDRA [51], to
study flows around complex geometries inside the gas turbine. The tool is
handling unsteady 3D flows in compressor and turbine cascades and is mainly
used to assess the aerodynamic efficiency of turbomachinery components.
Combined with a gradient-based optimization algorithm it has become a
powerful tool for the company’s engine design. General Electric Aviation has also
developed an in-house solver, TACOMA [3], to perform aerodynamic analysis and
shape optimization in turbomachinery blades for jet engines. It is a 3D unsteady
CFD solver using RANS equations and the k − ω turbulence model implemented
in FORTRAN 90. There has been a lot of effort on making the software parallel
using a tri-hybrid parallelization approach, namely, a combination of MPI,
OpenMP and OpenACC. In addition to the in-house solvers, both companies
utilize commercial CFD software for simulating heat transfer, aero-acoustics,
aero-mechanics etc. Coming back in Europe, in 2018 Airbus announced
collaboration with both the german and french aerospace research centers DLR
and ONERA in order to enhance their CFD knowledge and capability on
designing aerodynamically efficient aircrafts [2]. The product of the collaboration
is the high fidelity second order finite volume CFD solver, CODA, developed in
C++ which is aimed to simulate external aerodynamics during the aircraft’s
normal and complex manoeuvres [50]. Within the automotive sector, Tesla
Motors has been using the commercial STAR-CCM+, CFD solver developed by
Siemens, to perform aerodynamic simulations around electric vehicles. The tool

2

has assisted to optimize the energy consumption and the range performance of
the vehicles, which is currently one of the biggest challenges in the sector [45].
However, industry has always been a competitive environment. Different
companies working in the same sector are developing and selling similar
products. For this reason each company has to find the balance between
delivering a product fast and having the highest quality possible. Naturally, as
CFD analysis has become an essential tool in today’s industry, the challenge for
a CFD developer is to create a competitive software to be able to fit in the market;
hence, a software which produces accurate results in the shortest time possible.

1.2 Adjoint Optimization

Due to the big and complex geometries and flowfields that the industrial
applications deal with, CFD analysis can be very expensive and time-consuming.
This is why CFD solvers are in the majority of the times combined with
gradient-based optimization algorithms rather than stochastic ones. One of the
most popular gradient based optimization methods is the adjoint method. In
simple terms, the adjoint method is a method of computing the objective
function sensitivities with respect to the design variables by demanding the
elimination of terms that are expensive to compute (i.e. the derivatives of the
flow quantities w.r.t. the design variables). The method will further be discussed
in the next sections.
The method was first introduced by Pironneau in 1984 [37] for aerodynamic
applications and was further developed by Jameson [19] Giles and
Pierce [15] [36]. Originally, it was used for problems of external aerodynamics,
such as flows around airfoils and wings [6]. Later on, Yang et al. [55] applied the
adjoint method for flows in 2D cascades, governed by the compressible Euler
equations, and Chung et al. [10] performed an adjoint-based inverse design of
the 3D Rotor 37 case. Eventually, there have been several applications on the
shape optimization of single-row turbomachinery using the adjoint method, such
as by Wu et al. [54] and Papadimitriou and Giannakoglou [32] [33]. Adjoint
solvers that supported multi-row applications appeared quite later; prominent
first examples are the contributions of Frey et al. [14] and of Wang and He [53].
The major benefit of the adjoint method is that the cost of computing the
gradient of the objective function is almost equal to the cost of one CFD solver
run, in contrast to other gradient computing methods, such as finite differences,
for which this cost is equal to N CFD solver runs, with N being the number of
design variables. The cost of the adjoint method is proportional to the number of
objective functions F instead, which is beneficial for CFD-based shape
optimization problems, where the design variables significantly outnumber the
objective functions.

3

One of the method’s challenges is that it requires a second mathematical
problem to be derived and solved, which must be consistent with the primal
problem formulation. If the primal problem changes, then the adjoint method
should be re-formulated. The same applies in case of changes to the objective
function; any modification of the function of interest, requires once again
development of the adjoint problem.

1.3 Thesis Background and Overview

This thesis deals with adjoint methods for aerodynamic shape optimization in
industrial and other applications. It is divided in two parts; the first one deals
with cases where the adjoint solver is unable to converge due to instabilities in
the flow solution, and the second part is about developing the continuous adjoint
method of an existing CFD solver which handles cartesian grids and uses the
ghost-cell method to impose boundary conditions.

In particular, the first part of the thesis was conducted in Rolls-Royce
Deutschland, a subsidiary of British aircraft engine maker Rolls-Royce plc,
based in Dahlewitz, Germany. The work has been carried on Rolls-Royce’s CFD
solver, HYDRA. The subject of the analysis is to find a method to make the
adjoint equations converge, in cases which the primal CFD solver is reaching
limit cycle oscillations; an idea developed by Paolo Adami within the Methods
Team of RRD. The first step is to introduce a new source term to the primal
equations in order to make the solver converge to the mean value of the two
extreme states of the limit cycle. In the next step, the source term is modified
accordingly and introduced to the adjoint equations. The purpose is to make the
adjoint problem converge into a steady state solution, to be used to compute the
sensitivity derivatives of the objective function w.r.t the design variables.
Combined with steepest descent, the design solution is changing towards the
direction where the objective function is minimized, until it reaches an optimal
design.

The second part of the thesis was conducted at NTUA using an in-house CFD
solver [44]. In the first part, the existing 2D steady CFD solver is being parallelized
using the MPI protocol. Next, the adjoint CFD solver using the continuous adjoint
method is created based on the primal solver, which uses the immersed boundary
method to solve the primal equations on cartesian grids. One of the biggest
benefits of the immersed boundary methods on cartesian grids can be seen on
applications where the geometry is moving with time. In such cases, with the
traditional body-fitted mesh approach, a new mesh would have to be created at
each timestep. However, the new mesh is not always of a good quality, especially
as the shape gets more complex during optimization. As such, a CFD optimization
tool could possibly produce non-reliable results. For an industrial application,

4

this would mean an unprofitable amount of time spent and that the simulation
would need to be restarted from the beginning. With an immersed boundary
CFD solver such scenarios cannot occur, as the mesh remains almost unchanged
throughout unsteady simulations.

The Master thesis consists of 4 chapters, which are summarized below:

• Chapter 1 - Introduction

• Chapter 2 - 3D Flow Equations. As both CFD solvers described herein are
used for aerodynamic applications, they solve the Navier-Stokes equations
or a form of them. For this reason, the governing equations will be presented
in the beginning in their most general form and later on, on each separate
chapter, the equations will be recast accordingly.

• Chapter 3 - Part 1: Improvement of Adjoint Convergence Robustness for
Steady CFD Applications. In this chapter, the HYDRA steady solver is
outlined together with the discrete adjoint method. The method used to
alleviate limit cycle oscillations is described, and the modifications made to
the primal and adjoint solver are demonstrated. Finally, the results of the
method are presented and analyzed in order to conclude on following steps.

• Chapter 4 - Part 2: Programming and Parallelization of a Flow Solver and
the Continuous Adjoint Method using the Ghost-Cell Method. Applications
in Aerodynamic Shape Optimization. In this chapter, the in-house steady
solver of NTUA is outlined and modified to handle viscous flows. The
software is parallelised using the MPI protocol. Finally, the adjoint system
is derived from the primal equations, using the continuous adjoint method,
and used to perform aerodynamic shape optimization.

• Chapter 5 - Summary and conclusions. A summary and overview of the
methods and results is presented together with conclusions and potential
next steps.

5

6

Chapter 2

Steady 3D Navier-Stokes Equations

and Adjoint Optimization

As stated in the previous section, this thesis deals with two CFD based
optimization tools. Both tools numerically solve the Navier-Stokes equations, in
3D or 2D, by using the adjoint method to compute the sensitivity derivatives of
the objective function w.r.t the design variables.

In this chapter, the general form of the Steady 3D Navier- Stokes equations is
presented in order to establish a reference system for all CFD calculations
performed herein. In the following sections, these equations will be modified
accordingly to adapt to each CFD solver. Furthermore, the general theory of the
adjoint optimization method will be presented, to establish a common
terminology. The adjoint equations will be presented for each software
separately.

At the end of the chapter, the adjoint optimization theory will be outlined. The
method is divided into two main parts, the continous and the discrete approach,
each of them having its benefits and weaknesses. Each of the CFD solvers used
herein, is combined with one of the two methods and for this reason, the methods
will further be analyzed later in the thesis.

7

2.1 General form of the steady 3D Navier-Stokes

equations

Observing an infinitesimally small element fixed in space with compressible fluid
moving through it, the conservation form of the Navier-Stokes is formulated as

∂ρ

∂t
+∇ · (ρυ⃗) = Sc (2.1)

∂(ρυ⃗)

∂t
+∇ · (ρυ⃗ · υ⃗T + p

←→
I −←→τ) = S⃗m (2.2)

∂(ρE)

∂t
+∇ · (ρυ⃗E + pυ⃗ −←→τ · υ⃗ − k∇T) = Se (2.3)

where ρ is the density of the fluid, υ⃗ = [u, v, w]T the Cartesian velocity, p the static
pressure, ←→τ the stress tensor, E the relative total energy per unit mass, T the
static temperature, k the thermal conductivity coefficient,

←→
I the identity matrix

and Sc, S⃗m, Se are source terms for each equation. Throughout this thesis only
steady flows are considered and the equations will be numerically solved using
the time-marching technique. For this reason, t refers to the pseudo-time.

The system is closed by assuming that the thermodynamic properties of the fluid
satisfy the equation of perfect gas

p = ρRT ⇒ c2 = γ
p

ρ
(2.4)

where R is the perfect gas constant, γ the heat capacity ratio and c the speed of
sound. The total energy per unit mass E is given by

E =
1

γ − 1

p

ρ
+

1

2
υ⃗2 (2.5)

Assuming an isotropic Newtonian fluid and Stokes’ hypothesis for the viscosity,
the stress tensor components are given by

τij = µ

[(
∂υi
∂xj

+
∂υj
∂xi

)
− 2

3
δij

∂υk
∂xk

]
(2.6)

8

with µ being the dynamic viscosity and δij the Kronecker delta. Hereafter, twice
repeated indices imply summation over k = 1, 2, 3 (according to the Einstein’s
convention).

The Navier-Stokes equation can be written in vector form as

∂U⃗

∂t
+∇ · F⃗ inv(U⃗) +∇ · F⃗ visc(U⃗) = S⃗ (2.7)

where U⃗ = [ρ, ρu, ρv, ρw, ρE] are the conservative flow variables. The flux vectors
F⃗ inv and F⃗ visc include the inviscid and viscous terms of the Navier-Stokes
equations respectively. In particular

F⃗ inv =


ρυ⃗

ρυ⃗u+ pe⃗x
ρυ⃗v + pe⃗y
ρυ⃗w + pe⃗z
ρυ⃗E + pυ⃗

 , F⃗ visc = −


0
τ⃗1
τ⃗2
τ⃗3

τ⃗kυk + qk

 , S⃗ =


Sc

Sm1

Sm2

Sm3

Se

 (2.8)

where e⃗ = [e⃗x, e⃗y, e⃗z]
T are the unit vector in the x, y, z directions respectively,

τ⃗k = [τk1, τk2, τk3]
T and, from Fourier’s law of heat conduction, q⃗ = k∇T .

2.1.1 Steady 3D RANS equations & Turbulence modeling

For the flow within a jet engine or around a car, the equations should be
modified to account for the presence of turbulence. One of the most common
methods to simulate turbulence was developed by O. Reynolds in 1895 [39] and
is known as the Reynold-Averaged Navier-Stokes equations (RANS). The idea
behind this method is that all the fluctuations of the flow variables, such as
pressure or velocity, happen around a mean value. As a result, the variables are
divided in a time-averaged and a fluctuating quantity which are inserted in the
Navier-Stokes equations. By solving the RANS equations the time-averaged
value of every variable is derived. This method inevitably introduces new
variables to quantify the turbulence in the flow and need to be further modeled.

The RANS equations have the same form as the 3D Navier-Stokes in equations
(2.1) - (2.3) with the only difference that the flow variables i.e. density, velocity
and pressure are now time-averaged. Turbulence is modeled through the
turbulent viscosity µt, as proposed by Boussinesq, using the hypothesis that
when averaging the NS equations over time, the non-linear term resulting from
turbulent fluctuations in velocity can be written as an additional diffusion
term [9]. Thereby, the turbulent viscosity is introduced in the stress tensor of eq.
(2.9) as

9

τij = (µ+ µt)

[(
∂υi
∂xj

+
∂υj
∂xi

)
− 2

3
δij

∂υk
∂xk

]
(2.9)

The Spalart-Allmaras Turbulence Model

For the applications presented in this thesis, the Spalart-Allmaras (SA) turbulence
modeling is used and the turbulent viscosity is defined as

µt = ρν̃fv1, fv1 =
χ3

χ3 + c3v1
, χ =

ν̃

ν
(2.10)

where ν = µ
ρ

is the kinematic viscosity. The SA variable ν̃ is computed by the
standard form of the model’s equation [4]

∂ν̃

∂t
+

∂(ν̃υk)

∂xk︸ ︷︷ ︸
Conv

=
1

σ

[
∂

∂xk

(
(ν + ν̃)

∂ν̃

∂xk

)
+ cb2

∂ν̃

∂xk

∂ν̃

∂xk

]
︸ ︷︷ ︸

Diff

+ cb1Ω̃ν̃︸ ︷︷ ︸
Prod

− (cw1fw)

(
ν̃

d

)2

︸ ︷︷ ︸
Destr

(2.11)

where term Conv expresses the transport of ν̃, term Diff the molecular and
turbulent diffusion, terms Prod, Destr model the turbulence production and
destruction.

Regarding the rest of the quantities appearing in eq. (2.11), Ω̃ is the modified
vorticity

Ω̃ = Ω +
ν̃

κ2d2
fv2, (2.12)

Ω =

√(
∂w

∂y
− ∂v

∂z

)2

+

(
∂u

∂z
− ∂w

∂x

)2

+

(
∂u

∂y
− ∂v

∂x

)2

, fv2 = 1− χ

1 + χfv1

where Ω is the magnitude of the vorticity and d the distance to the nearest wall.
The function fw is given by

fw = g

(
1 + c6w3

g6 + c6w3

) 1
6

, g = r + cw2(r
6 − r), r =

ν̃

Ω̃κ2d2

10

and the closure constants are

cb1 = 0.1355, cb2 = 0.622, σ =
2

3
, cv1 = 7.1,

cw1 =
cb1
κ2

+
1 + cb2

σ
, cw2 = 0.3, cw3 = 2, κ = 0.41

2.2 Adjoint Optimization

In this section, an introduction of the adjoint optimization method is given. More
detailed analysis as well as the mathematical formulation is given in later
sections. As mentioned before, solving the 3D Steady Navier-Stokes or RANS
equations for industrial applications is time-consuming. For this reason, such
CFD solvers are usually combined with gradient-based optimization methods,
which are significantly faster than stochastic optimization algorithms, in order to
avoid adding further computational cost. This thesis deals with gradient-based
optimization methods, by making use of the adjoint method.

In their general form, adjoint methods are for computing the derivatives of an
objective function, and at the same time ensuring that the problem’s governing
equations are satisfied. The optimization problem is viewed as a constrained
problem; the design variables vector b⃗ that minimizes the objective function F is
sought with the constraint of satisfying the governing equations i.e. the primal
problem, which in the purposes of this thesis, are the Navier-Stokes equations.
The objective function can, in general, be written as

F = F (U⃗ , b⃗) (2.13)

where U⃗ is the vector of the flow variables. For an infinitesimal change δ⃗b in the
design variables’ vector b⃗ the change in the objective function is

δF =
∂F

∂U⃗
δU⃗ +

∂F

∂b⃗
δ⃗b (2.14)

Additionally the governing flow equations can, in general, be written as

R⃗ = R⃗(U⃗ , b⃗) = 0 (2.15)

And again for an infinitesimal change δ⃗b in the design variables’ vector b⃗ the

11

change in the governing equations vector is

δR⃗ =
∂R⃗

∂U⃗
δU⃗ +

∂R⃗

∂b⃗
δ⃗b = 0 (2.16)

The adjoint problem is formulated by introducing an augmented form of the
objective function using a Lagrangian multiplier Ψ⃗T multiplied by the R⃗ vector.

Faug = F + Ψ⃗T R⃗ (2.17)

The augmented function is now differentiated w.r.t the design variables b⃗ using
equations 2.14 and 2.16

δFaug =
∂F

∂U⃗
δU⃗ +

∂F

∂b⃗
δ⃗b− Ψ⃗T

(
∂R⃗

∂U⃗
δU⃗ +

∂R⃗

∂b⃗
δ⃗b

)
(2.18)

and by rearranging the terms

δFaug =

(
∂F

∂U⃗
− Ψ⃗T ∂R⃗

∂U⃗

)
δU⃗ +

(
∂F

∂b⃗
− Ψ⃗T ∂R⃗

∂b⃗

)
δ⃗b (2.19)

By demanding the elimination of the most expensive terms, namely the variation
of the flow variables, the adjoint equations are derived

∂F

∂U⃗
− Ψ⃗T ∂R⃗

∂U⃗
= 0 (2.20)

and by solving 2.20 the derivative of the objective function is computed as

δFaug

δ⃗b
=

∂F

∂b⃗
− Ψ⃗T ∂R⃗

∂b⃗
(2.21)

There are two main categories of adjoint methods in CFD applications, the
continuous and the discrete method. In the continuous adjoint [21], the
governing equations are first differentiated w.r.t. the design variables and then
discretized on the available grid. The reverse process is followed in discrete
adjoint [16] [22], where the flow equations are first discretized and then, their
differentiation leads to the system of adjoint equations already in discrete form.
The advantages and disadvantages of each approach have been extensively

12

discussed in the literature [35] [26], and it is generally agreed that both
approaches are equally efficient on computing gradients in CFD-based
optimization problems. Furthermore, there are many different approaches to
formulating the continuous and discrete adjoint method, and the details of their
implementation result in each having advantages and disadvantages. This thesis
deals with both continuous and discrete adjoint methods. More details about the
theory and formulation of each method will be discussed separately in the later
sections.

13

14

Chapter 3

Improvement of Adjoint

Convergence Robustness for Steady

CFD Applications

The first part of the thesis was conducted in Rolls-Royce Deutschland using the
in-house software, HYDRA [51]. HYDRA is a CFD solver for unsteady 3D flows
used within the turbine and compressor design teams. In this work, the 3D
steady RANS equations are coupled with the Spalart-Allmaras turbulence model
as presented in chapter 2 and are solved iteratively, using a Runge-Kutta
pseudo-time stepping scheme. The software is combined with a discrete adjoint
CFD solver to perform aerodynamic shape optimization. The adjoint system is
solved with a, consistent with the primal, Runge-Kutta solver to derive the
sensitivities of the objective functions [28], [52]. The sensitivity derivatives can
then be inserted in an optimization tool, for example using the steepest descent
method to obtain the new design variables, which define a new geometry, and
the process starts again. After a number of optimization cycles, the new
optimized geometry results.

In this first part of the MSc thesis, a method to alleviate such limit cycle
oscillations is developed in order to allow for further shape optimization process.
In particular, a source term is introduced into the primal equations which aims
to act as an artificial force to the system with the purpose to allow the primal
problem to converge to a mean solution. From a primal stable and converged
solution, the adjoint system can more easily converge and allow for the
computation of the sensitivity derivatives and the optimization.

15

In what follows, an overview of HYDRA will be presented including the primal
and adjoint equations. The primal equations will be first discretized on an
unstructured grid, according to the vertex-centered finite-volume method and
the boundary conditions will be imposed in order to close the system. Then, the
discrete adjoint theory and method will be presented. Further on, the source
term will be introduced together with the modifications in the primal and adjoint
equations. The new system of equations will be used to solve the flow over a
compressor vane to verify the convergence of the primal solution. The resulting
flow field from the primal solver will be used to solve the adjoint problem for the
same case. Finally, the adjoint solution will be used to calculate the sensitivity
derivatives of the objective function, which in this case is the total pressure loss
coefficient over the vane.

3.1 Discretization of the Flow Equations

The primal equations solved within HYDRA are the 3D RANS equations 2.1-2.3
combined with the Spalart-Allmaras model 2.11 as described in Section 2.1.1 The
RANS equations are discretized on an unstructured grid using vertex-centered
control volumes, as illustrated for a 2D case in figure 3.1.

Figure 3.1: Vertex-centered control volume in a 2D unstructured grid [52].

Integrating eq. 2.7 over the control volume Vi and applying the Green-Gauss
theorem gives the RANS equations expression on node i

Vi
∂U⃗

∂Q⃗i

∂Q⃗i

∂t
+ R⃗i = S⃗i (3.1)

where U⃗ is the conservative flow variables vector, Q⃗ is the primitive flow variables

16

vector, t is the pseudo-time R⃗i is the residual at node i and Si are the source
terms.

Ri =
∑
j∈Ei

(
⃗F inv

ij + ⃗F visc
ij

)
· n⃗ij∆sij (3.2)

where Ei is the set of nodes connected to node i via an edge, nij the unit vector
vertical to the edge connecting nodes i and j and ∆sij the area of the face
associated with the same edge. To simplify the notation, the oriented face area is
defined as s⃗ij = n⃗ij∆sij.

3.1.1 Inviscid Fluxes

The inviscid fluxes ⃗F inv
ij across the interface between control volumes Vi, Vj are

computed based on the Roe scheme [42] by a combination of a central difference
term with a numerical dissipation term F⃗ND

ij :

∑
j∈Ei

F⃗ inv
ij · s⃗ij =

∑
j∈Ei

1

2

(
F⃗ I
i + F⃗ I

j

)
· s⃗ij +

∑
j∈Ei

F⃗ND
ij · s⃗ij (3.3)

The addition of the numerical dissipation term F⃗ND
ij ensures numerical stability

of the solver method. Based on Roe’s approximation [42] this term becomes

F⃗ND
ij · s⃗ij = −

1

2

∂U⃗ij

∂Q⃗ij

∣∣ A ij

∣∣∆sij∆Qij (3.4)

where A ij is the primitive flux Jacobian and its absolute value is defined as
T
∣∣Λ∣∣T−1, with

∣∣Λ∣∣ being the diagonal matrix of absolute eigenvalues (of A) and T

the corresponding matrix of right eigenvectors. The term is computed as

A ij =
∂U⃗

∂Q⃗ij

∂
(
F⃗ inv · n⃗

)
∂Q⃗

∣∣∣∣∣∣
ij

(3.5)

where the primitive variables are Qij =
1
2

(
Qi +Qj

)
.

The formulation of the difference ∆Qij in eq. (3.4) determines the numerical
accuracy of the scheme. For example if ∆Qij = Qj − Qi, the scheme becomes
first-order accurate in space. Herein a non-linear blend between the first-order
upwind and a second-order scheme with third-order numerical dissipation
fluxes is used based on the Jameson-Schmidt-Turkel (JST) scheme [20].

17

3.1.2 Viscous Flux

The viscous flux F⃗ V
ij at the control volume face associated with the edge

connecting nodes i and j, is computed using equation 2.8 combined with the
Spalart-Allmaras turbulence model. The term becomes

F⃗ visc
ij = −



0
τ⃗1,ij
τ⃗2,ij
τ⃗3,ij

(τ⃗kυk)ij +
γ

γ−1

(
µij

Prl
+

µt,ij

Prt

)(
1
ρij
∇pij − pij

ρ2ij
∇ρij

)(
µij +

µt,ij

σϕ

)
∇ϕij


(3.6)

For computing the primitive flow variables, the arithmetic average is used,
whereas for the turbulent viscosity, the geometric average is preferred because of
its exponential growth near viscous walls. Hence:

Qij =
1

2
(Qi +Qj) (3.7)

µij =
1

2

(
µ (Qi) + µ

(
Qj

))
(3.8)

µt,ij =
√
µt (Qi)µt

(
Qj

)
(3.9)

Discretizing the inviscid and viscous flux terms, as discussed in this section, leads
to an overall second-order spatial discretization scheme, which is used throughout
this thesis.

3.1.3 Boundary Conditions

Walls

For the nodes laying along the solid walls, zero mass flux is imposed by setting
the velocity components and the turbulent viscosity to zero. The discrete coupled
RANS equations for the solid wall are

(I −B) r⃗wall = 0

Bu⃗wall = 0
(3.10)

18

where I the identity matrix and r⃗wall the residual vector of the wall nodes. For
the 3D compressible flow the 5-equation system 2.1-2.3 considered, along with a
one-equation turbulence model, and so the B matrix extracts the components of
velocity and turbulent viscosity from wall nodes on which the boundary conditions
are imposed.

B =


0 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1

 (3.11)

The solid wall boundaries are considered adiabatic, so the wall heat flux is set to
zero.

Inlet/Outlet

For the inlet, the total pressure, total temperature, flow angles and the turbulent
viscosity whereas at the exit the static pressure are imposed. These boundary
conditions are weakly imposed using the inviscid boundary flux across the
boundary interface s⃗b in eq. 3.3

F⃗ inv
b s⃗b =

1

2

((
F⃗ inv

(
Q⃗in/out

)
+ F⃗ inv

(
Q⃗b

))
s⃗b −

∂U⃗

∂Q⃗

∣∣Āb

∣∣ (Q⃗b − Q⃗in/out

))
(3.12)

where subscript b denotes the boundary face and Qin/out refers to the
pseudo-nodes outside of the domain, which are used to impose the boundary
conditions. The outlet static pressure is computed at the hub radius and its
radial distribution from hub to tip is derived by solving the radial equilibrium
equation

∂p

∂r
= ρ

v2θ
r

(3.13)

where r is the radius and vθ the circumferential component of the velocity. Within
HYDRA, a target mass flow rate can be chosen as an outlet boundary condition.
Here, the mass flow rate through the outlet cross-section Aout is

ṁ =

∫
Aout

ρudA (3.14)

19

The target mass flow is achieved by updating the outlet static pressure phub at
each iteration as

∆phub = (ṁtar − ṁ)

(
dṁ

dp

)−1

(3.15)

where dṁ
dp

is hand-derived within the code.

3.1.4 Implicit Runge-Kutta scheme

At this point the set of RANS equations 3.1 is re-written here

Vi
∂U⃗

∂Q⃗
i
∂Q⃗i

∂t
+ R⃗i

(
Q⃗
)
= Si (3.16)

Ri

(
Q⃗
)
=
∑
j∈Ei

1

2
F⃗ inv · s⃗ij +

∑
j∈Ei

F⃗ND
ij · s⃗ij +

∑
j∈Ei

F⃗ visc
ij · s⃗ij (3.17)

The implicit RK scheme in Hydra was developed by Misev [24], based on the work
of Swanson et al. [48, 49] and further developed by Vasilopoulos [52]. In the
general form, the scheme can be written as

V

∆t

∂U⃗

∂Q⃗

(
Q⃗n+1 − Q⃗n

)
= −R

(
Q⃗n+1

)
(3.18)

where n denotes the pseudo-time step. After the system is discretized in
pseudo-time is solved iteratively using a time-marching technique for the update
of the primitive variables u. The final form of the implicit RK 3-step scheme
derived from 3.18

Q⃗(n,k) = Q⃗n − αkσ

(
1

σimp

P n + Jn

)−1

R⃗(n,k), k = 1, . . . , s (3.19)

where Jn is the Jacobian matrix, P n the preconditioner, αk the primary RK
coefficients, σimp the implicit CFL number, here σimp = 2 and s the number of RK
steps, here s = 3 [52].

20

By expanding equation 3.19 [52]

Q⃗(n,0) = Q⃗n (3.20)

R⃗D(n,k) = (3.21)βkR⃗
D
(
Q⃗(n,k−1)

)
+ (1− βk)R⃗

D(n,k−1)

Q⃗(n,k) = (3.22)Q⃗n − αkσ
(
Kn
)−1
(
R⃗I
(
Q⃗(n,k−1)

)
+ R⃗D(n,k) − V S⃗

(
Q⃗(n,k−1)

))
Q⃗n+1 = Q⃗(n,s) (3.23)

where k = 1, 2, 3, K is the implicit preconditioner matrix

K =
1

σimp

P + J (3.24)

and RI and RD the inviscid and diffusive components computed using the current
estimate of Q⃗. The source term S will be used to introduce the artificial force to
control the convergence of the primal solver, and will be discussed in the section
3.3.

3.2 Hydra discrete adjoint solver

In this section, the discrete adjoint theory will be presented [15] and applied to
derive a, consistent to the primal, adjoint Runge-Kutta scheme in order to solve
the adjoint equations to further compute the derivatives of the objective function.
The aim of solving the primal equations is to drive the non-linear residual within
each control volume to zero

R⃗(U⃗ , X⃗) = 0 (3.25)

where R⃗ = [R⃗1, ..., R⃗i, ..., R⃗N] is the residual of all nodes 3.2, U⃗ = [U⃗1, ..., U⃗i, ..., U⃗N]

the primitive flow variables and X⃗ = [x⃗1, ..., x⃗i, ..., x⃗N] the coordinates of all (N) grid
nodes within the computational domain. To perform gradient-based optimization
in a problem with an objective function F , the derivative of F w.r.t the design
variables must be computed. This is a function of the flow solution U as well as
the grid coordinates X, which are functions of the design variables b⃗, all of this
leading to the relation

F = F (U⃗(X⃗ (⃗b)), X⃗ (⃗b)) (3.26)

Hence the gradient of the objective function F can be written using the chain rule
as

dF

d⃗b
=

dF

dX⃗

dX⃗

dX⃗s

dX⃗s

d⃗b
(3.27)

21

where Xs are the coordinates of the surface grid nodes. Using the adjoint
method, the term dF

dX⃗
, which stands for the volume sensitivity derivatives or

simply sensitivity derivatives, is calculated. First step of the adjoint method is to
create an augmented objective function

Faug = F − Ψ⃗T R⃗ (3.28)

where Ψ is the adjoint variables vector. The derivative of eq. 3.28 w.r.t X⃗ is now

dFaug

dX⃗
=

dF

dX⃗
− Ψ⃗T

dR

dX⃗
− dΨ⃗T

dX⃗
�
�7
0

R⃗ (3.29)

=
∂F

∂X⃗
+

∂F

∂U⃗

dU⃗

dX⃗
− Ψ⃗T

(
∂R⃗

∂X⃗
+

∂R⃗

∂U⃗

dU⃗

dX⃗

)
(3.30)

=
∂F

∂X⃗
− Ψ⃗T

∂R⃗

∂X⃗
+

(
∂F

∂U⃗
− Ψ⃗T

∂R⃗

∂U⃗

)
dU⃗

dX⃗
(3.31)

The main idea now is to avoid computing the most expensive term dU⃗

dX⃗
, and for

this reason its multiplier is set to zero. This yield to the discrete adjoint equation

[
∂R⃗

∂U⃗

]T
Ψ =

[
∂F

∂U⃗

]T
(3.32)

After the adjoint field is computed, the sensitivity derivatives are computed as

dF

dX⃗
=

∂F

∂X⃗
− Ψ⃗T

∂R⃗

∂X⃗
(3.33)

In general, it is preferred that the adjoint solver converges with the same rate
as the primal, which is called duality preserving [17]. Without going into further
detail, as it is beyond the scope of this thesis, the equivalent to the primal, implicit
Runge-Kutta scheme to solve the adjoint equations used herein [52].

An overview of the implicit adjoint solver algorithm implemented in Hydra is shown
in figure 3.2.

22

Figure 3.2: Overview of Hydra’s implicit adjoint solver algorithm [52].

More detail on how the Runge-Kutta system is derived can be found in [28] [52].

3.3 Brute Force Method for cases with Limit Cycle

Oscillation

Limit-cycle oscillation (LCO) is a fixed-amplitude oscillation appearing in the
convergence diagram of the governing equations due to non-linear phenomena in
the system. The amplitude of the oscillations remains the same regardless of the
initial conditions. One example of LCO behaviour in a converging equation is
shown in figure 3.3. The details of the case will be presented in the next section.

23

Figure 3.3: RMS residual of the primal equations.

The solution of the equation is oscillating between two extreme values. And while
this behaviour could be negligible when it comes to an already converged solution
of the primal (flow) equations, e.g. the two extreme values oscillate between 10−5

and 10−7, it is of utmost importance when it comes to solving the adjoint equations
after that. The convergence of the adjoint problem is extremely sensitive to the
convergence of the primal problem’s solution. For the same case, which exhibited
LCO in the solution of the primal problem, the convergence diagram of the RMS
residual of the adjoint equations. is shown in figure 3.4.

Figure 3.4: RMS residual of the adjoint equations.

24

One can see that the adjoint problem is not converging when the primal problem
is exhibiting oscillations as in figure 3.3.

In order to fix this problem, an idea developed by Paolo Adami within the Methods
Department of RRD is introduced, called Brute Force Method for cases with Limit
Cycle Oscillation convergence. In what follows, the method will be referred to as
"the brute force method". The basic principle is to introduce a term in the primal
equations which will eliminate the oscillations without affecting the final solution
and which, after being differentiated, will make the adjoint problem converge. The
source term introduced in the governing equations is equivalent to a "force" and
will drive the residual of the primal equations to converge into the mean value
of the two extreme states of the limit cycle. The source term is differentiated
accordingly and introduced into the adjoint equations, which will then be used
to compute the sensitivity derivatives of the objective function w.r.t the design
variables.

The first step of the process is to obtain the mean value of the local flow variables,
within N iterations, as shown in figure 3.5, using the equation

ū =

N∑
i=1

vi

N
(3.34)

The choice of N will be made in the next section.

Figure 3.5: Calculation of mean value of flow solution.

25

To avoid saving any additional flow solution other than the last one, the sum
N∑
i=1

vi

is calculated while the solver is running and for the last N iterations. At the end
of the simulation, the sum is divided by N to derive the mean value, which is
calculated only once throughout the simulation.

Now the purpose of the source term is to force the primal solution to converge
fully to a single solution rather than oscillating between two. The solution which
the equations are driven to converge to, is the mean value of the LCO. This means
that the source term should be formulated so that, the areas where the solution
is far away from the mean value, have a bigger source term whereas the areas
where the solution is close to the mean value, have a small value. While there
are other methods and numerical techniques to drive the system to converge to
its mean value and a consequently seeking convergence of the adjoint solver [29],
the brute force method was preferred due to its simplicity both in mathematical
formulation as well as in software developing. The source term is introduced into
the RHS of eq. 2.7 in the form

S⃗f =
1

τ


ρ− ρ̄
u− ū
v − v̄
w − w̄
E − Ē

 (3.35)

where the ’bar’ indicates the mean value of the variable calculated from eq. 3.34
and τ is a parameter with units of time, used in the denominator to scale the
source term to fit in the primal equations. The choice of τ will be made after
parametric study in the next section. The term is discretised and introduced into
the RHS of eq. 3.16 as

Sfi =
ui − ūi

τ
Vi (3.36)

After the discretization of the system, the source term 3.36 is part of the residual
R in equation 3.19. An additional component is added to the diagonal terms of
the Jacobian J of the system, resulting from the term

∂Sfi

∂ui

=
Vi

τ
(3.37)

The same term is added to the adjoint equation 3.32 to derive the adjoint variables.

In the beginning, the user defines an acceptable residual for convergence and a
maximum number of iterations for the solver to run. In cases with LCO, the
residual does not meet the convergence criteria and, therefore, reaches the
maximum iteration limit. However, during the last N iterations, the mean value

26

of the oscillating solution is being computed. Now, instead of stopping the
simulation, the source term, which includes the mean value, is switched on and
the ’new’ governing equations are solved again until the convergence criteria is
reached.

Figure 3.6: Brute Force Method Overview

3.4 Brute Force method assessment

The geometry used to evaluate the aforementioned method, is a compressor stator,
designed in the Technical University of Berlin (TUB) in Germany. The design is
based on a representative outlet guide vane (OGV) of modern jet engines and is
shown in figure 3.7 .

27

Figure 3.7: Compressor OGV designed at the Chair of Aero Engines of TUB.(a) Photo
of rig test (b) 3D shape [52]

.

The computational mesh around the stator was created using the Rolls-Royce
in-house tool PADRAM (PArametric Design and Rapid Meshing [23]. The resulting
body-fitted mesh has around 2 · 106 nodes and is a combination of an O-type grid
around the blade together with four H-type grids for the rest of the domain. A
section of the grid is shown in figure 3.8

Figure 3.8: Mesh around compressor OGV at midspan section. [52]

28

The objective function of interest is the total pressure losses between the inlet and
outlet of the CFD domain, defined by the pressure loss coefficient

ω =
pt,inlet − pt,outlet

pt,inlet
(3.38)

Two cases are simulated using this geometry. The OGV is first subjected to flow
with inlet flow angle of 46o which is 4o greater than its design case. In what
follows, the case will be referred as ’+4o case’. For this flow, the primal problem is
converging normally, without oscillations. The adjoint problem is also converging
and the sensitivity map can be derived. In order to evaluate the brute force
method, a case in which the primal flow exhibits LCO must be tested. One such
case is when the OGV is subjected to flow with inlet flow angle by 5o higher than
its design value. In what follows, the case will be referred as ’+5o case’. Here,
the primal problem is exhibiting LCO and the adjoint problem is thus diverging.
The brute force method is then introduced in the second case to help the adjoint
convergence.

As there are no available data to validate the results of the +5o case, the code is
validated against the +4o case.

29

Study case: +4o off-design

Primal problem

At first the vane was subjected in airflow of 4o higher than its design case. For
this case, both the primal and adjoint problem converge without the need of the
source term. The Root-mean-squared residual (RMS) of the primal and adjoint
equations is shown in figures 3.9 and 3.10 respectively.

Figure 3.9: Case +4. RMS residual of the primal equations without source term.

Figure 3.10: Case +4. RMS residual of the adjoint equations without source term.

The first step of the method is to compute the mean value of an oscillating CFD
solution based on eq. 3.34. Assuming that M is the maximum number of

30

iterations that the solver is running set by the user in the beginning of the
simulation and N is the amount of iterations used to derive the mean flow
solution. For the parametric study, the N value was set to 5%M , which means
that the mean value will be computed for the last 5%M iterations. Next, the
number was increased to 10%, 15%, 20% and 25%M to see how the average mean
solution changes. By increasing the iterations to 25%M , the average mean
solution only changes for about 1% which is considered to be small. For this
reason, the final value of N was set to 20%M , which for this problem is 80
iterations.

N (%max iterations) Delta % from previous
5% -
10% 6.8%
15% 4.3%
20% 2.1%
25% 1.1%

Table 3.1: Change of the mean flow solution with respect to the number of samples-
flow solutions being averaged.

Second step is to derive the parameter τ from the equation 3.36. As stated earlier,
it is a parameter with units of time and its value is derived after a parametric
study, based on how much the RMS residual of the pirmal equations including
the source term, changes. The case used for the parametric study is the +4o

case, where the value of τ was set to 3, 5, 7 and 10. The RMS residual of the
primal equations after several runs, is shown in figure 3.11. The chosen value
for τ is τ = 7, because for numbers higher than 7, the residual doesn’t change
significantly.

Figure 3.11: Parametric study to derive τ constant. RMS residual of primal equations
including the source term. Purple: τ = 3, Green: τ = 5, Blue: τ = 7, Brown: τ = 10

31

After choosing τ = 7 the +4o case is simulated with the new solver. A comparison
of the RMS residual of the primal equations with and without the source term is
shown in figure 3.12.

Figure 3.12: Case +4. Comparison of primal equations’ convergence with and without
source term. Green - without source term. Blue - with source term.

For M = 800 max iterations set by the user, one can see the source term being
switched on after the first 400 iterations. Afterwards, the equations continue to
be solved for another 400. During the first 400 iterations, the residual was having
some small oscillations, although the mean value was reducing with time. After
the introduction of the source term, the oscillations vanish and the equations
converge in a faster rate. It is important to mention that the source term tends to
zero as the simulation goes on, because the solution approaches the mean value.

The final solution of the flow variables is shown in figures 3.13-3.16.

32

Figure 3.13: Case +4. Isoareas of the mean x-velocity field. mid-span section on xy
axis.

Figure 3.14: Case +4. Isoareas of the mean y-velocity field. 2D slice on xy axis.

Figure 3.15: Case +4. Isoareas of the mean z-velocity field. 2D slice on xy axis.

33

Figure 3.16: Case +4. Isoareas of the mean pressure field. 2D slice on xy axis.

The source term at the end of the simulation is close to zero for all equations.
The highest divergence of the term is found in the x-velocity, close to the trailing
edge of the vane where the highest unsteadiness of the flow exists. However the
value is still very low in the order of 10−10. The source term of the x-momentum
equation is shown in figure 3.17.

Figure 3.17: Case +4. Isoareas of the source term by the end of the simulation.

Using this solution of the primal problem, the adjoint system is solved and the
adjoint solution is used to compute the sensitivities of the objective function 3.38.
The sensitivities are computed using the equation 3.33. The source term needs
to be added to the last term ∂R⃗

∂X⃗
of the equation as

∂Si

∂Xi

=
ui − ū

τ

∂Vi

∂Xi

(3.39)

The sensitivity map is shown in figure 3.18

34

Figure 3.18: Case+4 sensitivity derivatives.

The objective function is the total pressure loss coefficient and the map shows
which areas need to be reshaped in order to reduce the pressure losses. Red
colour indicates areas that need to be pushed inwards, while blue areas need to
be pulled outwards.

35

Study case: +5o off-design

Primal problem

As already mentioned in the beginning of this section, the second case to be
studied is the +5o off-design case of the same compressor stator. The results
are compared with the ones for the +4o case in order to assess the brute force
method. In this case, the primal flow solution exhibits limit cycle oscillations
and although the solution doesn’t change significantly when compared to the +4o

case, the adjoint solver is unable to converge. The RMS residual of the primal
flow equations and the adjoint equations, without the source term, are shown in
figures 3.19 and 3.20.

Figure 3.19: Case +5. RMS residual of the primal equations without source term.

36

Figure 3.20: Case +5. RMS residual of the adjoint equations without source term.

In order to evaluate the brute force method, the primal problem is simulated with
the source term switched on. The RMS residual of the primal equations is shown
in figure 3.21.

Figure 3.21: Case +5. Comparison of primal equations’ convergence of the solver with
and without source term. Green - without source term. Blue - with source term.

The green line shows the residual without using the source term and the blue
one is after the introduction of the term. At 320 iterations the mean value of the
flow starts to be computed. After 400 iterations, when the solution is already

37

oscillating for about 3 periods, the source term is switched on. The solution
now starts to converge without any oscillations and by the end of the simulation,
the RMS residual of the primal equations has dropped 9 orders of magnitude
and reached a value of about 10−19 compared to the initial equations without the
source term, where the residual dropped only one order of magnitude down to
10−10. The mean value and subsequently the final solution of the flow variables
is shown in figures 3.22-3.25.

Figure 3.22: Case +5. Isoareas of the mean x-velocity field. 2D slice on xy axis.

Figure 3.23: Case +5. Isoareas of the mean y-velocity field. 2D slice on xy axis.

38

Figure 3.24: Case +5. Isoareas of the mean z-velocity field. 2D slice on xy axis.

Figure 3.25: Case +5. Isoareas of the mean pressure field. 2D slice on xy axis.

Isoareas of the source term are shown in figure 3.26.

Figure 3.26: Case +5. Isoareas of the source term.

Again here, the source term is higher on the suction side of the blade, towards the
trailing edge, where the highest unsteadiness of the flow due to separation can be
found.

39

Adjoint Problem and Sensitivity Calculation

After the computation of the primal fields, the adjoint system is solved using the
fully converged primal solution. The RMS residual of the adjoint equations with
the source term is shown in figure 3.27.

Figure 3.27: Case +5o. RMS residual of the adjoint equations with the source term.

One can see that the equations are now converging and after around 70
iterations the RMS residual stabilizes. Comparing the residual with the one in
figure 3.20 it appears that the introduction of the source term has contributed to
the convergence of the adjoint equations even for 2.5 orders of magnitude which
proves how sensitive is the adjoint system to the nature of the primal solution
given.

Going forward, the adjoint solution is used to compute the sensitivities of the
objective function 3.38. The sensitivities are calculated the same way as for the
+4o case. The isoareas of the sensitivities is shown in figure 3.28.

40

Figure 3.28: Case+5 sensitivity derivatives.

As observed, the values of the sensitivities are quite low, very close to zero
throughout the whole domain. One reason why the sensitivities are low is that,
despite the adjoint equations converging, the residual has not achieved deep
convergence. Looking at the stabilized residual one can see that it dropped 2.5
orders of magnitude down to 10−7 which is still higher than the primal residual
which dropped 9 orders of magnitude down to 10−14.

However the most important factor in such a sensitivity map is the sign of the
sensitivities rather than the absolute number. To examine that, a comparison
with the sensitivity map of the +4o, converged case has been done. The
expectation is that the two cases would give similar pattern when it comes to the
sensitivity map. Comparing the map with figure 3.18 one can see that the
direction of the sensitivities on the stator is comparable and for the +5o case the
sensitivities appear to have the expected sign.

In order to validate the method, the next step would be to use the sensitivity
map and perform at least one optimization step. This would show if the objective
function is actually reducing which would mean that the direction of the
sensitivities is correct. However, this is currently out of the scope of this work.
This work has set the ground for further analysis on the adjoint convergence by
introducing and testing the brute force method in two cases.

41

42

Chapter 4

Programming and Parallelization of

a Flow Solver and the Continuous

Adjoint Method using the Ghost-Cell

Method. Applications in

Aerodynamic Shape Optimization.

The second part of the thesis was conducted at the Parallel CFD & Optimization
Unit of the NTUA on an in-house ghost-cell flow solver of inviscid flows, to be
extended to viscous flows. The purpose is to apply methods that improve the
speed of the software and additionally, develop the continuous adjoint method in
order for the software to be further used in aerodynamic shape optimization. It is
a 2D steady CFD solver which uses cartesian grids and the ghost cell method to
apply the boundary conditions on the geometry walls. A cartesian grid consists
of only horizontal and vertical lines as shown in figure 4.1.

43

Figure 4.1: Cartesian grid around an airfoil

One can see that the form of the mesh is independent of the geometry it
surrounds, as the boundary of the geometry intersects with the computational
cells arbitrarily. The biggest benefit of cartesian grids can be seen when
simulating flow around moving geometries. In such cases, if the grid is
body-fitted, then at every time-iteration, while the geometry is moving, a new
mesh must be created in order to follow the moving boundary. However if a
cartesian, non-body-fitted grid is used, then it remains unchanged throughout
the simulation. The main drawback comes form the fact that cartesian grids are
not body-fitted, which means that the grid nodes are not attached to the solid
boundary. In this case, imposing boundary conditions is not a straightforward
process and has to be done carefully, in order not to violate the physical laws.
Throughout the years, a number of techniques has been developed in order to
impose boundary conditions on a non body-fitted mesh. All these methods are
called "Immersed Boundary Methods" (IBM) [40], a term inspired from the fact
that the geometry looks as if it is immersed into the mesh.

Immersed Boundary Methods - IBM

The Immersed Boundary Methods are generally divided in two categories, the
continuous methods and the discrete ones [40]. Their main purpose is to simulate
the effect of the solid boundary on the fluid flow, either by changing the governing
equations directly, or by interfering with the discretization method. In particular,
within the continuous methods, a new term f⃗ is introduced in the equations to
simulate the force exerted from the solid to the fluid. The force becomes bigger
as the flow approaches the boundary and fades out as the flow goes away from it.
For a steady inviscid flow of a compressible fluid around a solid body, the Euler

44

equations of a ompressible fluid apply [13],

∇ · ρu⃗ = 0

∇ · ρu⃗u⃗+∇p = 0
(4.1)

The force term is added to the RHS of the momentum equations as

∇ · ρu⃗u⃗+∇p = f⃗ (4.2)

The equations are then discretized and solved on the nodes or control volumes
of the cartesian grid. The continuous methods are mainly used in biology where
the geometrical boundaries are elastic e.g. the surface of the heart, while they
are not so commonly used for airfoils which have solid boundaries. The first one
to introduce the IBM methods was C. Peskin [34] while studying the blood flow
inside the human heart. One drawback of the continuous methods is that they
demand the equations to be solved within the entire solid geometry, which adds
to the computational cost without providing any additional information, as the
solution inside the solid geometry has no physical meaning.
In the discrete methods, the governing equations are first discretized and then
modified in the neighbourhood of the solid boundary to account for its effect on the
fluid. In contrast to the continuous methods, here the equations are only solved
within the fluid domain [30]. The two main discrete methods are the Cut-Cell
Method and the Ghost-Cell Method; in the first one, the parts of the cell which
are inside the body are trimmed and the equations are solved only within the
fluid portion, while in the second one, an additional equation is introduced and
solved within the solid body to simulate the force on the fluid. This thesis deals
with the Ghost-Cell Method which will further be analyzed in the next section
and from now on will be referred to as GC. The existing software only handles
inviscid flows, so initially, the viscous terms will be added to the equations. To
continue, the software will be parallelised using the MPI protocol. Finally, the
continuous adjoint method will be derived from the primal problem, in order to
perform aerodynamic shape optimization. The optimisation software will be tested
on two airfoils, which will be optimised for maximum lift.

4.1 2D Steady Viscous Flows

In this section, the governing equations used to simulate viscous flows are
presented. As the software was initially developed to handle steady 2D inviscid
flows [12] so the first task is to modify the equations to simulate viscous flows.
At first, the process of developing a cartesian grid is described and afterwards
the 2D Navier - Stokes equations are presented and discretized within the

45

computational domain. The application of the boundary conditions based on the
Ghost-Cell Method is shown. In the next sections, the software is validated
against the analytical solution of the flow over a flat plate and some additional
experimental data on an airfoil.

Cartesian Mesh Generation

The mesh generation process presented here was already part of the software and
was developed by Samouchos [44]. The generation of a cartesian grid starts by
dividing the computational domain in four cells of equal volume, which connect
on the barycenter of the initial domain. Each one of the cells is again divided in
four cells of equal volume and the process continues until the maximum volume
is less than the maximum accepted volume defined by the user [44]. At this stage,
the mesh quality is not good, and so a process of gradual refinement is applied,
in order to achieve higher solution accuracy close to the solid boundary. The
refinement is done based on a sigmoid function 4.2, which defines the volume Vi

of each cell as a function of its distance from the solid boundary.

Figure 4.2: Definition of the volume cell V as a function of the distance from the solid
boundary.

By the end of this process, the mesh is of good quality and can provide the highest
accuracy near the boundary. An example of a cartesian refined mesh around an
airfoil is shown in figure 4.3.

46

Figure 4.3: Refined cartesian grid around an airfoil.

2D Steady Navier-Stokes Equations and

Discretization on Finite Volumes

As mentioned before, the software was only able to simulate inviscid flows, so as
a first step, the viscous terms were added to the equations. Here, the final 2D
Navier-Stokes equations are presented together with their discretization on the
computational domain and afterwards the software is validated.
Based on the analysis made on chapter 2, equation 2.7 for 2D steady viscous flow
of compressible fluids is applied here

∇ · F⃗ inv(U⃗) +∇ · F⃗ visc(U⃗) = 0 (4.3)

where

F⃗ inv =


ρυ⃗

ρυ⃗u+ pe⃗x
ρυ⃗v + pe⃗y
ρυ⃗E + pυ⃗

 , F⃗ visc = −


0
τ⃗1
τ⃗2

τ⃗kυk + qk

 , (4.4)

where τ⃗k = [τk1, τk2, τk3]
T is computed based on eq. 2.6 and from Fourier’s law of

heat conduction q⃗ = k∇T .
Equations 4.3 are discretized in finite volumes and the values of the flow variables
are saved at the center of the volumes (cell-centered method). This means that

47

the finite volumes Ω are the computational cells of the mesh.

∫
Ω

(
∂F inv

ik

∂xk

− ∂F visc
ik

∂xk

)
dΩ = 0 (4.5)

where i = 1, 2, 3, 4 equations and k = 1, 2 directions. Twice repeated indices imply
summation according to Einstein’s convention. Using the Green-Gauss theorem,
the spatial integral becomes surface around the surface S of a cell∫

S

(F inv
ik − F visc

ik)nkdS = 0 (4.6)

where nk is the vector vertical to each edge of the cell. Assuming that the flux
field f⃗ is uniform on every edge, the term is discretized

∫
S

(F inv
ik − F visc

ik)nkdS =
n∑

j=1

(F inv
ik − F visc

ik)nj
k∆sj (4.7)

where n is the number of edges attached to the fluid.

The vector F⃗ inv is again computed based on Roe’s scheme [42] as

F⃗ PQi =
1

2
(F⃗ P + F⃗Qi)− 1

2
|Ã|(U⃗L − U⃗R) (4.8)

where F⃗ P is the inviscid flux of the current cell and F⃗Qi is the flux of the i − th
neighbour of the cell as shown in figure 4.4

Figure 4.4: Inviscid fluxes on the common edge between cells P and Q.

Vectors UL, UR are the flow variables of Q and P as shown in figure 4.5

48

Figure 4.5: Flow variables on the common edge between cells P and Q.

The accuracy of the discretization scheme depends on how the flow variables are
interpolated on the common edge. For first-order accuracy, the values are simply
copied on the edge as

UR = UP

UL = UQ

(4.9)

For second order accuracy, the Taylor expansion is used as

UR = UP +

(
∂U

∂x

)
P

∆x+

(
∂U

∂y

)
P

∆y (4.10)

where ∆x = xf − xP and ∆y = yf − yP with f being the barcenter of the common
edge. The vector UL is computed accordingly using the UQ values. The spatial
derivatives ∂U

∂x
,∂U
∂y

of P are computed using the values UQ of all the neighbours of
P as described below. From Taylor expansion

U⃗Q = U⃗P +
∂U⃗P

∂x
∆x+

∂U⃗P

∂y
∆y (4.11)

where ∆x = xQ − xP and ∆y = yQ − yP . Setting ∆U = UQ − UP the equation
becomes

∂U⃗P

∂x
∆x+

∂U⃗P

∂y
∆y −∆U⃗ = 0 (4.12)

There are two cases that might appear; one cell sharing an edge with a cell of the
same size, or sharing an edge with two smaller cells. On the first case, shown in
figure 4.6, the derivatives are computed using central finite difference scheme as(

dU

dx

)
P

=
UQ − UR

2∆x
(4.13)

49

Figure 4.6: Finite difference scheme for cells with the same volume.

On the second case, where the cell shares an edge with two smaller cells as
shown in figure 4.7, the mean value of the flow variables of the smaller cells is
first computed and then the flow variables are transferred to the common edge as(

dU

dx

)
P

=
UQm − UR

0.75∆x
(4.14)

Figure 4.7: Finite difference scheme for cells with different volume.

The matrix |Ã| from Roe’s scheme eq. (4.8) is computed in the same way as

the Jacobian matrix A = (Ax, Ay) = (∂
⃗F inv
x

∂U⃗
,
∂ ⃗F inv

y

∂U⃗
) [43] using the Roe averaged

primitive variables which are [41]:

⃗̃Q =


ρ̃
ũ
ṽ

h̃

 (4.15)

where ρ̃ =
√
(ρLρR) and Q̃2,3,4 =

√
ρLWL

2,3,4+
√

ρRWR
2,3,4√

ρL+
√

ρR
.

50

The stress tensor of eq. 4.4 is calculated based on eq. 2.6 described in Section
2.1.

Flow Solver

Assuming U⃗∗ is the exact flow solution, which satisfies the equations

R⃗(U⃗∗) = 0 (4.16)

where

R⃗ =
∂F inv

ik

∂xk

− ∂F visc
ik

∂xk

(4.17)

and also U⃗ is the current solution. In an iterative method, the solution U⃗ is getting
updated after each iteration until it reaches U⃗∗. This means that U⃗ differs from
U⃗∗ by ∆U⃗ .

U⃗∗ = U⃗ +∆U⃗ (4.18)

Equation (4.16) becomes
R⃗(U⃗ +∆U⃗) = 0⃗ (4.19)

And using Taylor expansion around U⃗ the equation becomes

∂R⃗

∂U⃗
∆U⃗ = −R⃗(U⃗) (4.20)

Equation 4.20 is called delta formulation [7] because in each iteration, instead of
computing the value of the flow variables U⃗ , the solver computes the correction
∆U⃗ . Solving the system using delta formulation makes it in general more stable.

From equations 4.5-4.8, the term R⃗P can be derived as

R⃗P =
nb∑
i=1

[
1

2
(F⃗ P + F⃗Qi − 1

2
|Ã|PQ(U⃗L − U⃗R)

]
ni∆sQi (4.21)

The term ∂R
∂U

consists of the diagonal entries

Dp =
∂RP

∂UP

(4.22)

51

and the off-diagonal entries

ODPQ =
∂RP

∂UQ

(4.23)

from all its neighbours. From eq. 4.21

∂RP

∂UP

=
1

2

nb∑
i=1

(A+ |Ã|)nQi∆sQi (4.24)

∂RP

∂UQi

=
1

2
(A− |Ã|)nQi∆sQi (4.25)

For the rest of the ∂RP

∂UW
, where W are all the cells apart from the neighbours of P ,

the derivative is zero. Finally, for n cells, the system becomes D1 . . . OD1n
...

ODn1 . . . Dn


∆U1

...
∆Un

 = −

R1
...
Rn

 (4.26)

The system (4.26) is solved using the Jacobi method. The correction of the flow
variables is

∆UP = −D−1(R +
nb∑
i=1

(ODQi
∆UQi

)) (4.27)

and the solution after each iteration is updated based on (4.18).

4.2 Ghost-Cell Boundary Conditions

In order to solve the equations, the boundary conditions must be imposed. As
already mentioned in the beginning of the chapter, the boundary conditions on
the solid walls will be imposed using the Ghost-Cell Method. For viscous flow over
the boundary of a static body, the boundary condition to be satisfied is that the
velocity on the wall needs to be zero.

u⃗ = 0 (4.28)

The main idea of the method is to compute values for the flow velocity within
an area of the solid body. The velocity within this area will then counteract the
effect of the fluid velocity, so that finally the velocity right on the boundary will
be zero. The cells within the solid body that get value for the velocity, are called
Ghost-Cells [31]. For the rest of the solid cells, the governing equations are not

52

being solved so the flow variables don’t need to be saved. An example of ghost-cells
inside a cylinder are shown in figure 4.8

Figure 4.8: Ghost-Cells within solid body. Dark blue: Ghost-Cells, Light blue:Solid
cells

The solid body is within the circle, while the fluid is outside. The ghost-cells
are indicated with dark blue colour and this is where the flow velocity should be
computed. In the simplest case, where the solid boundary is right on top of a
mesh line, as shown in figure 4.9, then the velocity at the solid cells is set to be
exactly the opposite of that of the fluid.

Figure 4.9: Flow velocity on solid cells for the ghost-cell method.

53

Initially, the velocity of the fluid cell K is copied to the solid cell P and then is
getting reversed. By doing this, the velocity in the middle of the distance between
K and P i.e. on the boundary, is zero. In the general case, the grid lines line up
with the solid boundary as shown in figure 4.10

Figure 4.10: Grid line that does not line up with the solid boundary.

In order to copy the flow velocity inside the ghost cells, a new differential equation
is solved within the solid cells as described below. The computational cost of
solving one such equation is negligible compared to the solution of the governing
equations. The equation demands that the velocity remains unchanged over the
direction vertical to the solid boundary n⃗ as shown in figure 4.10. The direction
of the vector n⃗ looks from the fluid towards the solid and its magnitude is

n⃗ = (
∂Φ

∂x
,
∂Φ

∂y
) (4.29)

where Φ is the distance of the cells from the boundary i.e. the level-set field, as
shown in figure 4.10. The final equation which transfers the velocity inside the
ghost cells is

∂Ui

∂t
+

∂Ui

∂xk

∂Φ

∂xk

= 0 (4.30)

By solving equation 4.30 the flow variables on the ghost cells are updated after
each iteration from Un

i to Un+1
i .

Un+1
i = Un

i −∆t
∂Un

i

∂xk

∂Φ

∂xk

(4.31)

54

By solving the equation, the flow velocity is copied at the ghost cells and afterwards
is getting reversed. It is proven that the correction on the velocity vector inside
the ghost cells is right even when the equation 4.30 has not fully converged. It
appears that solving equation 4.30 for 15 iterations provides accurate results.
The pseudo-time step is

∆t = min(
∆x

nx

,
∆y

ny

) (4.32)

After the flow variables are copied to the ghost cells, the velocity vector is reversed
as

U⃗S = −U⃗F (4.33)

where F indicates fluid cells and S indicates solid cells.

4.2.1 Interpolation of flow variables on the solid boundary

As the flow variables are not available directly on the solid boundary, it is
sometimes needed to interpolate them there, in order to compute other variables
such as lift coefficient or skin-friction coefficient. In this section, the method to
interpolate variables from the cells surrounding the boundary, on top of the solid
wall is presented.
A variable Φ is interpolated at a geometry node k as

Φk =
nb∑
i=0

Φiwi (4.34)

where nb are the grid nodes in the vicinity of k. Using the Dirac equation Phi is
written as

Φk =

∫
Ω

ΦδdΩ ≈
nb∑
i=0

Φiδ∆Ω (4.35)

And comparing 4.34 and 4.35 the weights are wi = δ∆Ω. For the numerical
approximation of the Dirac function, the following equation is used [44]

δ ≈ 1

2πdr2
e−

1
2

r2

dr2 (4.36)

55

4.3 2D Steady Viscous Solver Validation

4.3.1 Flow over a flat plate

The first case used to validate the software is the flow over a flat plate where
the results can be verified when compared with the analytical solution of the
skin-friction coefficient, developed by Blasius [8]. Figure 4.11 shows the boundary
layer over a flat plate when exposed to a flow with Uo velocity.

Figure 4.11: Boundary layer over a flat plate. [25]

Figure 4.12 shows the cartesian mesh created around the flat plate with negligible
thickness. The mesh consists of 36000 cells.

Figure 4.12: Cartesian mesh around a flat plate.

56

The plate is horizontal and the inlet flow angle is zero. The total pressure at the
inlet of the domain is ptin = 1.03bar and the total temperature Ttin = 300K,while
the static pressure on the outlet is psout = 1.02bar. The Reynolds number of the
flow is Re = 1093, based on the length of the plate, and the Mach number is
Ma = 0.086. On the upper side of the computational domain and far away from
the boundary layer so it doesn’t affect the flow, the Neumann boundary condition
of the velocity is applied

∂u

∂y
= 0 (4.37)

The convergence of the governing equations and the velocity magnitude field is
shown in figures 4.13 - 4.14

Figure 4.13: Flow over a flat plate. Convergence of governing equations.

Figure 4.14: Flow over a flat plate. Velocity Magnitude.

57

To avoid the inlet boundary conditions interacting with the boundary conditions
on the solid boundary, the plate is considered to start from the position x =
0.3 and not from the beginning of the domain. To validate the solution, the
skin-friction coefficient of the plate is calculated as

Cf =
µ
(

du
dy

)
w

1
2
ρU2

∞
(4.38)

As there are no values for the flow variables on the boundary of the plate, the term
du
dy

needs to be interpolated to the geometry nodes.The interpolation of the flow
variables at the solid boundary is described on Section 4.2.1. In this case, the
flow can be considered incompressible (Mach = 0.086) so the Blasius analytical
expression for the skin-friction coefficient can be used for comparison

Cf =
0.664√
Rex

(4.39)

Figure 4.15 shows the analytical and computed Cf distribution w.r.t. Rex.

Figure 4.15: Flow over a flat plate. Skin friction coefficient and comparison with the
analytical solution.

One can see that the CFD solution is aligned with the analytical one and the
biggest difference between the two is less than 0.05.

58

4.3.2 Flow around NACA0012 airfoil

The second application to verify the software is the flow around a NACA0012 airfoil
with a chord line of c = 1m. The infinite conditions of the flow have Reynolds
number of Re = 1000, Ma = 0.5 and with zero angle of attack. The mesh around
the airfoil consists of about 70000 cells, shown in figure 4.16

Figure 4.16: Flow around NACA0012 airfoil. Part of the cartesian mesh.

The convergence of the continuity, x-momentum, y-momentum and energy
equations, as well as the velocity magnitude are shown in figures 4.17-4.19

Figure 4.17: Flow around NACA0012 airfoil. Convergence of the flow equations.

59

Figure 4.18: Flow around NACA0012 airfoil. Velocity magnitude.

Figure 4.19: Flow around NACA0012 airfoil. Velocity vector inside and outside of the
fluid.

Near the boundary and inside the solid geometry one can see the ghost cells having

60

a non-zero velocity value. To evaluate the solution, the pressure coefficient of the
airfoil is calculated and compared with data from the literature [47]. Again the
method described in subsection 4.3.1.1 is used to interpolate the flow pressure
on the boundary. Figure 4.20 compares the two values for the pressure coefficient

Figure 4.20: Flow around NACA0012 airfoil. Calculated pressure coefficient (purple
line) compared with literature data (blue line).

The two curves appear to have a slight difference possibly because of the
interpolation of the pressure on the boundary. The results are still valid though
and prove that the solver is working correctly.

61

4.4 Parallelisation of CFD solver

In this section of the thesis, the process of making the software parallel is
described. Simulating a flow and solving the governing equations can be a time
consuming process. Especially if the computational domain is 3D and includes a
complex geometry, such a simulation could need days or even weeks to be
finished. For this reason, parallel software which runs simultaneously in various
cores is becoming more and more popular within the CFD community.
For the purposes of this thesis, the distributed memory system (cluster) of the
Parallel CFD & Optimization Unit of NTUA was used. Within a cluster there are
different computational nodes connected to each other, and their function is
controlled by a specific software. Every node has its own memory, which is
shared by all its processors. This means that the system has distributed
memory for each node, but shared memory for each local processor.

4.4.1 Communication between processors - MPI Protocol

The idea of parallel computing is that the processors are working and executing
tasks independently. However, at times during the process, they need to
communicate in order to exchange information. For this reason, for
programming on shared and distributed memory systems, there are special
software developed to control and coordinate the tasks on each processor.
Herein, the MPI protocol is used.
MPI works based on the idea of Master & Workers. From the available
processors, one is considered to be the master and is responsible for distributing
tasks and information. Usually the Master doesn’t execute any computations.
The MPI protocol allows point-to-point and multipoint communications.
Point-to-point communications are exclusively between two processors. This is
achieved with two basic commands MPI_SEND and MPI_RECV . The
message which is to be send has a unique identifier, known by both the sender
and the receiver. Multipoint communication, on the other hand, is when a
processor needs to send the same message to all the other processors. This is
achieved by the command MPI_BCAST .

4.4.2 Mesh Partitioning in Parallel Computing

The generation of the computational mesh is executed only on a single processor,
to be referred to as the Master. After the mesh is finished, the mesh nodes are
distributed to the Workers, where the flow equations will be solved. Each Worker
is responsible for only a part of the mesh, and the parts are interconnected. An
example of how the mesh is divided in four processors is shown in figure 4.21.

62

Figure 4.21: Division of the mesh in four processors.

The partitioning of the mesh in smaller parts is not an easy process. To make it
as efficient as possible, each part of the mesh needs to contain the same amount
of cells, which means that the processors are responsible for the same amount of
tasks to execute. Second requirement is that the processors need to
communicate the least possible times. Communication is time consuming and if
they are too many, it could take more time to communicate than actually solving
the equations. Herein, for the partitioning of the mesh the open software
METIS [1] is used. At the end, each processor is assigned to one partition,
where it will solve the flow equations.

4.4.3 Method and Frequency of Communication

As already described in chapter 4.1, in order to solve the equations at a cell, the
values of the flow variables at all neighbouring cells are needed. However, as one
processor only sees a part of the mesh, for the outer cells there is no information

63

about the flow variables of the neighbours, as they belong to a different partition.
For this reason, communication zones are created as shown in figure 4.22

Figure 4.22: Communication zones between processors.

Each processor is solving the flow equations within one partition and gets
information for the flow variables of the cells within the communication zone.
After every solving iteration, each processor communicates with its neighbouring
processor to exchange information about the cells in the communication zone.
This kind of communication is done using the commands MPI_SEND and
MPI_RECV .

4.4.4 Parallel Software Applications

The software is tested using different numbers of processors. For the assessment
of the benefit of the parallelisation, two metrics were used; the parallel speed-up
and the efficiency.
Parallel speed-up shows how much faster the software becomes with respect to
the time of the serial execution and is given by

S =
TS

TP

(4.40)

64

where TS is the time of a serial execution and TP the time of a parallel execution.
The efficiency of the software shows how much does one processor contribute to
the reduction of the overall execution time. The following equation is used for the
calculation

E = S/p (4.41)

where p is the number of processors used. Based on Amdahl’s law [5], the parallel
acceleration increases as the available processors increase, but it is always limited
from the part of the software that cannot be parallelised. In the ideal case, where
the whole software can be parallelised, the decrease in computational time would
be proportional to the increase in the number of processors, i.e. for n processors
the execution time would be n times smaller than the serial execution.
Here, for the assessment of the software, a simple case of a horizontal flow around
an airfoil is used with three different sizes of the mesh. The first mesh consists of
30000 cells, the second one of 60000 cells and the last one of 100000 cells. An
example of the coarser mesh is shown in figure 4.23

Figure 4.23: Mesh of 30000 cells around an airfoil for the assessment of the parallel
software.

The flow is solved using an increasing number of processors and afterwards the
speed-up and the efficiency are computed. Figure 4.24 shows the execution time
w.r.t the number of processors.

65

Figure 4.24: Execution time w.r.t. number of processors.

As the number increases, the benefit in execution time becomes smaller. This is
because from one point on, the communications between the partitions become
too many, and the addition of more processors adds to the communication burden.
Figures 4.25 and 4.26 show the speed-up and the efficiency accordingly.

Figure 4.25: Speed-up of the software for increasing number of processors.

66

Figure 4.26: Efficiency of the software from the addition of extra processors.

One can see that with the addition of extra processors, the variables diverge from
the ideal curve. However, by using a finer mesh, the parallel speed-up approaches
the ideal curve. This is because in a finer mesh, the percentage of the cells in the
communication zones is lower compared to a coarser mesh.

67

4.5 The Continuous Adjoint Method for

Aerodynamic Shape Optimization

In this section, the continuous adjoint method is developed for the 2D steady
inviscid flow. The primal equations are the Euler equations, i.e. equations 4.3
without the viscous terms. The adjoint method is implemented in the software in
order to perform aerodynamic shape optimization. At first, the adjoint problem is
derived from the primal equations and the ghost cell equation is also modified in
order to apply the adjoint boundary conditions. Finally, the software is used to
perform shape optimization of two airfoils with the objective to maximize the lift
force exerted on them using different angles of attack.
The shape of the airfoils is derived using the Bezier curves and the coordinates
of the Bezier points are the design variables of the optimization problem. The
derivative of the objective function w.r.t the design variables is derived using the
adjoint method, and afterwards, the steepest descent method is used to perform
the optimization cycles.

4.5.1 Objective Function

The objective function for the optimization problems throughout this part of the
thesis is the lift force over an airfoil,

F =

∫
Sw

pnkrkdS (4.42)

where SW the surface of the airfoil, p the static pressure, r⃗ the unit vector in the
direction of the lift and n⃗ the unit vector vertical to the airfoil showing outwards.
The design variables are updated using the steepest descent method

bnewn = boldn − η
δF

δbn
(4.43)

where η is a coefficient which defines the step of the method.

4.5.2 Continuous Adjoint Method

To formulate the adjoint method, an augmented function is defined

Faug = F +

∫
Ω

ΨiRidΩ (4.44)

68

The derivative of this function w.r.t the design variables is the same as the
derivative of F , as the additional term is zero.

δFaug

δbn
=

δF

δbn
+

δ

δbn

∫
Ω

ΨiRidΩ (4.45)

and using the Leibnitz theorem the equation becomes

δFaug

δbn
=

δF

δbn
+

∫
Ω

∂ (ΨiRi)

∂bn
dΩ +

∫
S

ΨiRi
δxk

δbn
n̂kdS (4.46)

Each term of eq. (4.46) will be analysed separately

T1 =
δF

δbn
=

∫
Sw

δp

δbn
nkrkdS︸ ︷︷ ︸

ABC

+

∫
Sw

p
δ

δbn
(nkrkdS)︸ ︷︷ ︸

SD

The first term refers to the variation of the flow variables on the boundary of
the airfoil and contributes to the adjoint boundary conditions. The second term
includes the variation of the geometric characteristics of the solid w.r.t the design
variables and contributes to the sensitivity derivatives. At this point is important
to note again that the flow variables are not available on the boundary, so in
order to calculate the surface integrals, interpolation of the values should be
performed, as described in section 4.3.1.1. The variables to be interpolated are
the conservative flow variables and their spatial derivatives. The derivatives of the
geometric parameters is calculated analytically from the Bezier curve. The second
integral of equation 4.46 becomes

T2 =

∫
Ω

∂ (ΨiRi)

∂bn
dΩ =

∫
Ω

∂Ψi

∂bq
RidΩ +

∫
Ω

Ψi
∂Ri

∂bq
dΩ =

∫
Ω

Ψi
∂

∂bq

(
∂fik
∂xk

)
dΩ

(4.47)

69

The last equality is valid because the flow equations are satisfied Ri = 0. Going
further

T2 =

∫
Ω

∂

∂xk

(
Ψi

∂fik
∂bn

)
dΩ −

∫
Ω

∂Ψi

∂xk

∂fik
∂bn

dΩ

=

∫
S

Ψi
∂fik
∂bn

n̂kdS −
∫
Ω

∂Ψi

∂xk

(
∂fik
∂Uj

∂Uj

∂bn

)
dΩ

=

∫
S

Ψi
∂fik
∂bn

n̂kdS︸ ︷︷ ︸
T3

+

∫
Ω

(
−∂Ψi

∂xk

Aijk

)
︸ ︷︷ ︸

FAE

∂Uj

∂bn
dΩ (4.48)

Computing the term ∂Uj

∂bn
is a very expensive process and needs to be avoided. To

achieve that, its multiplier is set to zero, and this introduces the field adjoint
equation (FAE). The T3 term is divided in the surface terms on the farfield
boundaries of the domain and the ones on the solid walls.

T3 =

∫
S

Ψi
∂fik
∂bn

n̂kdS =

∫
S∞∪Sw

Ψi
∂fik
∂bn

n̂kdS

=

∫
S∞

Ψi
∂fik
∂bn

n̂kdS︸ ︷︷ ︸
ABC

+

∫
Sw

Ψi
∂fik
∂bn

n̂kdS︸ ︷︷ ︸
T4

(4.49)

Term T4 is further expanded to include the geometric values on the boundary

T4 =

∫
Sw

Ψi
δfik
δbn

n̂kdS −
∫
Sw

Ψi
∂fik
∂xm

δxm

δbn
n̂kdS

=

∫
Sw

Ψi
δ

δbn
(fik n̂k) dS −

∫
Sw

Ψi fik
δn̂k

δbn
dS −

∫
Sw

Ψi
∂fik
∂xm

δxm

δbn
n̂kdS

=

∫
Sw

Ψ2
δ

δbn
(pn̂x) dS +

∫
Sw

Ψ3
δ

δbn
(pn̂y) dS −

∫
Sw

Ψifik
δn̂k

δbn
dS −

∫
Sw

Ψi
∂fik
∂xm

δxm

δbn
n̂kdS

=

∫
Sw

Ψk+1
δ

δbn
(p n̂k) dS −

∫
Sw

Ψi fik
δn̂k

δbn
dS −

∫
Sw

Ψi
∂fik
∂xm

δxm

δbn
n̂kdS

=

∫
Sw

Ψk+1
δp

δbn
n̂kdS︸ ︷︷ ︸

ABC

+

∫
Sw

Ψk+1 p
δn̂k

δbn
dS︸ ︷︷ ︸

SD

−
∫
Sw

Ψi fik
δn̂k

δbn
dS︸ ︷︷ ︸

SD

−
∫
Sw

Ψi
∂fik
∂xm

δxm

δbn
n̂kdS︸ ︷︷ ︸

SD

(4.50)

After the analysis, the terms remaining, belong in three categories, as discussed
in the next sections.

70

4.5.2.1 Field adjoint equations (FAE)

The equations that give the adjoint field are

−∂Ψi

∂xk

Aijk = 0⇔ −Ajik
∂Ψj

∂xk

= 0

⇔ −AT
k

∂Ψ⃗

∂xk

= 0 (4.51)

and it’s worth mentioning that are linear equations. The adjoint inviscid flow
vector f⃗A

PQi is calculated as

f⃗A
PQi

=
1

2
(−AT P

Ψ⃗P − ATQ

i Ψ⃗
Qi)− 1

2
|ÃT |(Ψ⃗L − Ψ⃗R) (4.52)

4.5.3 Sensitivity derivatives (SD)

The sensitivity derivatives are computed as

δFaug

δbn
=

∫
S

ΨiRi
δxk

δbn
n̂kdS −

∫
Sw

Ψi fik
δn̂k

δbn
dS +

∫
Sw

Ψk+1 p
δn̂k

δbn
dS

+

∫
Sw

p
δ

δbn
(n̂kr̂kdS)−

∫
Sw

Ψi
∂fik
∂xm

δxm

δbn
n̂kdS (4.53)

The term
(

δxk

δbn

)
describes the relation between the coordinates of the geometrical

nodes and the design variables, and for this reason, for the cells that don’t
intersect with the geometry, the term is zero. So the first term of equation (4.53),
based on the aforementioned observation, can be re-written only for the solid
wall boundaries (Sw) as

δFaug

δbn
=

∫
Sw

ΨiRi
δxk

δbn
n̂kdS +

∫
Sw

(Ψk+1 p − Ψi fik)
δn̂k

δbn
dS

+

∫
Sw

p
δ

δbn
(n̂kr̂kdS)−

∫
Sw

Ψi
∂fik
∂xm

δxm

δbn
n̂kdS (4.54)

71

4.5.3.1 Adjoint Boundary Conditions

The adjoint boundary conditions are formed from the terms on the boundaries of
the computational domain i.e the terms noted with ABC, namely

ABC =

∫
S∞

Ψi
∂fik
∂bn

n̂kdS +

∫
Sw

Ψk+1
δp

δbn
n̂kdS +

∫
Sw

δp

δbn
n̂kr̂kdS

=

∫
S∞

Ψi
∂fik
∂bn

n̂kdS +

∫
Sw

δp

δbn
(Ψk+1 n̂k + n̂k r̂k) dS (4.55)

The first integral is on the outer boundaries of the domain and the second one on
the boundary. In order to avoid computing the terms

(
∂fik
∂bn

, δp
δbn

)
their multipliers

are set to zero, and so the adjoint boundary conditions are:
A. For the farfield boundaries (S∞)

−→
Ψ |S∞ =

−→
0 (4.56)

B. For the solid boundaries (Sw)

Ψk+1|Sw n̂k + n̂k r̂k = 0 (4.57)

Adjoint Ghost Cell Boundary Conditions

The adjoint boundary conditions are applied in the same way as the primal
boundary conditions. By solving an equation as the eq. 4.30 the adjoint
variables are copied at the ghost cells. After the copy, the variables need to be
modified to impose the boundary condition. So, the final equation to be solved is

Ψs
k+1 = Ψk+1 − 2Ψ · nx − 2(n⃗ · r⃗)nx (4.58)

where k = 1, 2 and Ψs
k+1 are the adjoint flow variables in the ghost cells.

72

4.5.4 Aerodynamic Shape Optimization

Application 1

The first application of the optimization software is on the airfoil shown in figure
4.27 whose shape is defined with 17 Bezier points.

Figure 4.27: Airfoil shape optimization. Initial shape.

In order to keep the length of the airfoil the same, not all the points are allowed
to move. The two points at the leading and trailing edge are fixed and the only
points able to move are points 2, 3, 4, 12, 13, 14. The mesh around the airfoil is
shown in figure 4.28. The airflow has velocity V = 100m

s
and zero angle of attack

Figure 4.28: Mesh around a NAcA0012 airfoil.

Figure 4.29 shows the convergence graphs of the adjoint equations and figures
4.30 show the adjoint fields.

73

Figure 4.29: Convergence of the adjoint equations

(a) (b)

(c) (d)

Figure 4.30: Adjoint variables fields. a)adjoint density b)adjoint x-momentum c)adjoint
y-momentum d)adjoint energy.

74

Figure (4.31) shows the comparison between the starting and the optimized
geometry.

Figure 4.31: Comparison of initial and new geometry.1

The initial airfoil has Lift of Linit = 0.0N , end the optimized one Lopt = 1529.01N .
The objective function is shown in figure 4.32.

Figure 4.32: Airfoil shape optimization. Change in the objective function during
optimization.

Because the flow is inviscid, the lift force will continue to increase as the
optimization cycles continue, unless a constraint is imposed.

Application 2

The second application is on the airfoil shown in figure 4.33. The shape is again
defined using 17 Bezier points.

75

Figure 4.33: Airfoil shape optimization. Initial shape.

Same as before, only the points 2, 3, 4, 12, 13, 14 are allowed to move, while the
length of the airfoil remains the same. Figure 4.34 shows the mesh around the
airfoil..

Figure 4.34: Mesh around an airfoil.

The flow has velocity V = 100m
s

and a = 5o angle of attack. Figure 4.35 shows
the convergence of the adjoint equations and figures 4.30 show the adjoint flow
variables.

76

Figure 4.35: Convergence of the adjoint equations.

(a) (b)

(c) (d)

Figure 4.36: Adjoint variables fields. a) adjoint density, b) adjoint x-momentum, c)
adjoint y-momentum, d) adjoint energy.

77

Figure 4.37) shows the comparison of the initial and the optimized geometry.

Figure 4.37: Comparison of current and optimized.

The lift of the initial airflow is Linit = 1239.16N , and the final Lopt = 3613.87N .
The objective function during optimization is shown in figure 4.38.

Figure 4.38: Change in objective function during the optimization.

as before, because the objective function is increasing, the optimization stops
after 9 cycles.

78

Chapter 5

Summary and Conclusions

This chapter concludes the study by summarising the key points of the work
presented herein together with the key findings. The main purpose of this work
was to contribute to the development of primal and adjoint CFD solvers for
application on aerodynamic shape optimization. For the first part of the thesis,
conducted in RRD, the in-house CFD solver HYDRA was used. The main focus of
the study was on cases where the primal equations were exhibiting limit cycle
oscillations while converging. This lead to the adjoint equations diverging, which
means that optimization for these cases was not possible. To solve this problem,
a new source term was introduced into the primal equations, which is acting as
a force, and forces the residual of the equations to converge to the mean value of
the oscillations. The adjoint problem was formulated accordingly to include this
source term. The software was tested on a case of flow around a compressor
stator vane and, indeed, eliminated the oscillations from the primal solution but
also made the adjoint equations to converge to a solution. This solution was
used to derive the sensitivity derivatives.
For the second part of the thesis, an existing software of the NTUA was used.
The software was initially able to solve inviscid flows, so as part of the thesis it
was modified to solve viscous flows as well. It was then validated against
analytical and experimental data found in the literature. Next, the program was
parallelised usign the MPI protocol, in order to make the solving process faster.
The parallel software was evaluated for its speed and efficiency in comparison to
the serial software. Finally, the adjoint problem was derived using the
continuous adjoint method. Two cases were used to evaluate the adjoint
method, by performing aerodynamic shape optimization on two different airfoils.
The key conclusions from the entire study are the following:

• By adding an appropriate source term into the primal equations, the
convergence of the primal problem can be optimized and achieve a more

79

stable solution in cases of LCO.

• The adjoint convergence is highly affected by the status of the primal
solution. If the second one is oscillating and not stabilised, the adjoint
problem cannot converge. The work here has proven that when the primal
solution is stable, then adjoint convergence can be achieved.

• Making a software parallel improves the speed of the CFD solver
significantly. Especially for industrial solvers, parallelisation is almost
obligatory, otherwise the solving process is unsustainable. When using
finer mesh for the computational domain, the benefit of the parallel
software becomes bigger, because the communications between partitions
are smaller.

• Generally, the ghost cell method imposes the boundary conditions indirectly,
which means less accurately. However, the simulations herein show that
the method can achieve very good results compared to other solvers which
use body-fitted mesh or compared with literature data, at least for laminar
flows.

• It is important to mention that the work here has set the ground for further
development on both software. On HYDRA, there is a clear benefit on
making the adjoint problem to converge, when before it wasn’t possible. A
sensitivity map was derived and optimization can now be perform on a case
that couldn’t converge in the past. In the second part of the thesis, an
additional optimization software was created an added to the toolset of the
LTT/NTUA, which handles cartesian grids and can be used to perform
aerodynamic shape optimization.

80

Bibliography

[1] Metis - serial graph partitioning and fill-reducing matrix ordering.

[2] A partnership for next-generation computational fluid
dynamics. https://www.airbus.com/en/newsroom/news/
2018-01-a-partnership-for-next-generation-computational-fluid-dynamics.
2018.

[3] B. M. Aaron Vose and J. Levesque. Tri-hybrid computational fluid dynamics.
Cray User Group, 41(2):363–386, 2014.

[4] S. R. Allmaras, F. T. Johnson, and P. R. Spalart. Modifications and
clarifications for the implementation of the Spalart-Allmaras turbulence
model. 7th International Conference on Computational Fluid Dynamics
(ICCFD7), Big Island, Hawaii, 2012.

[5] G. M. Amdahl. Validity of the single processor approach to achieving large
scale computing capabilities. In Proceedings of the April 18-20, 1967, Spring
Joint Computer Conference, AFIPS ’67 (Spring), pages 483–485, New York,
NY, USA, 1967. ACM.

[6] W. K. Anderson and D. L. Bonhaus. Airfoil design on unstructured grids for
turbulent flows. AIAA Journal, 37(2):185–191, 1999.

[7] H. Bishop Keller, N. Y New Yor, N. York, A. Mathematical Society, for
Industrial, and S. aplied mathematis. Computational fluid dynamics / [edited
by herbert b. keller]. SERBIULA (sistema Librum 2.0), 02 2019.

[8] H. Blasius. Grenrschichten in flussgkeiten mit kleiner reibung. Zeitschrift
für Angewandte Mathematik und Physik, 41(2):363–386, 1908.

[9] J. V. Boussinesq. Théorie de l’écoulement tourbillonnant et tumultueux
des liquides dans les lits rectilignes à grande section. Comptes Rendus des
Séances de l’Académie des Sciences, 122:1290–1295, 1877.

[10] J. Chung, G. Martin, and K. D. Lee. Aerodynamic design of 3D compressor
blade using an adjoint method. AIAA Paper 2004-0027, 42nd AIAA Aerospace
Sciences Meeting and Exhibit, Reno, USA, 2004.

81

https://www.airbus.com/en/newsroom/news/2018-01-a-partnership-for-next-generation-computational-fluid-dynamics
https://www.airbus.com/en/newsroom/news/2018-01-a-partnership-for-next-generation-computational-fluid-dynamics

[11] D. L. Davidson. The enterprise-wide application of computational fluid
dynamics in the chemicals industry. Proceedings of the 6th World Congress
of Chemical Engineering, 41(2):363–386, 1851.

[12] D.Chatzinikolaou. Development and Application of the Ghost-Cell Method for
2D Steady Inviscid Flows of Compressible Fluids (in Greek). Diploma Thesis.
Laboratory of Thermal Turbomachines, N.T.U.A, 2017.

[13] L. Euler. Principes generaux de l’etat d’equilibre des fluides;" "principes
generaux du mouvement des fluides;" "continuation des recherches sur la
theorie du mouvement des fluides.". Histoire de l’Acacdernie de Berlin,
41(2):363–386, 1755.

[14] C. Frey, H. P. Kersken, and D. Nürnberger. The discrete adjoint of a
turbomachinery RANS solver. ASME Paper GT2009-59062, ASME Turbo
Expo. Orlando, Florida, 2009.

[15] M. B. Giles. On the use of Runge-Kutta time-marching and multigrid for the
solution of steady adjoint equations. Technical Report NA00/10, Computing
Laboratory, University of Oxford, UK, 2000.

[16] M. B. Giles, M. C. Duta, J. D. Müller, and N. A. Pierce. Algorithm
developments for discrete adjoint methods. AIAA Journal, 41(2):198–205,
2003.

[17] M. B. Giles and N. A. Pierce. Adjoint equations in CFD-Duality, boundary
conditions and solution behavior. AIAA Paper 1997-1850, 13th AIAA
Computational Fluid Dynamics Conference, Snowmass Village, Colorado,
1997.

[18] H. H. Goldstine. A History of the Calculus of Variations from the 17th through
the 19th Century. Springer New York, NY, 1980.

[19] A. Jameson. Multigrid algorithms for compressible flow calculations. In
Multigrid Methods II. Lecture Notes in Mathematics, volume 1228, pages
166–201. Springer Berlin Heidelberg, 1986.

[20] A. Jameson, E. Schmidt, and E. Turkel. Numerical solutions of the
Euler equations by finite volume methods using Runge-Kutta time-stepping
schemes. AIAA Paper, 14th Fluid and Plasma Dynamics Conference, Palo
Alto, California, 1981.

[21] A. Jameson, S. Shankaran, and L. Martinelli. Continuous adjoint method
for unstructured grids. AIAA Journal, 46(5):1226–1239, 2008.

[22] D. J. Mavriplis. Discrete adjoint-based approach for optimization problems
on three-dimensional unstructured meshes. AIAA Journal, 45(4):740–750,
2007.

82

[23] A. Milli and S. Shahpar. PADRAM: Parametric design and rapid
meshing system for complex turbomachinery configurations. ASME Paper
GT2012-69030, ASME Turbo Expo. Copenhagen, Denmark, 2012.

[24] C. Misev. Development and Optimization of an Implicit CFD Solver in Hydra.
PhD thesis, University of Surrey, UK, 2017.

[25] M.Martin. Measurement technology for micro-scale aerodynamics. National
Renewable Energy Laboratory, pages 1–6, 2007.

[26] S. K. Nadarajah and A. Jameson. A comparison of the continuous and
discrete adjoint approach to automatic aerodynamic optimization. AIAA
Paper 2000-0667, 38th AIAA Aerospace Sciences Meeting and Exhibit, Reno,
USA, 2000.

[27] L. M. H. Navier. Memoire sur les lois du mouvement des fluides. Memoires
de l’Academie Royale des Sciences vol.6, 41(2):363–386, 1827.

[28] G. Ntanakas. Unsteady Discrete Adjoint Method Formulated in the
Time-Domain for Shape Optimization in Turbomachinery. PhD thesis,
National Technical University of Athens, Greece, 2018.

[29] E. Padway and D. Mavriplis. Toward a pseudo-time accurate formulation
of the adjoint and tangent systems. AIAA Paper 2019-0699, AIAA SciTech
Forum, San Diego, California, 2019.

[30] D. Pan. An immersed boundary method for incompressible flows using
volume of body function. International Journal for Numerical Methods in
Fluids, 50(6):733–750, 2006.

[31] D. Pan and T. Shen. Computation of incompressible flows with immersed
bodies by a simple ghost cell method. International Journal for Numerical
Methods in Fluids, 60:1378 – 1401, 08 2009.

[32] D. I. Papadimitriou and K. C. Giannakoglou. Compressor blade optimization
using a continuous adjoint formulation. ASME Paper GT2006-90466, ASME
Turbo Expo. Barcelona, Spain, 2006.

[33] D. I. Papadimitriou and K. C. Giannakoglou. Total pressure loss minimization
in turbomachinery cascades using a new continuous adjoint formulation.
Proceedings of the Institution of Mechanical Engineers, Part A: Journal of
Power and Energy, 221(6):865–872, 2007.

[34] C. Peskin. Flow patterns around heart valves: a digital computer method
for solving the equations of motion. IEEE Transactions on Biomedical
Engineering, BME-20(4):316–317, 1973.

[35] J. E. V. Peter and R. P. Dwight. Numerical sensitivity analysis for
aerodynamic optimization: A survey of approaches. Computers & Fluids,
39(3):373–391, 2010.

83

[36] N. A. Pierce and M. B. Giles. Preconditioned multigrid methods
for compressible flow calculations on stretched meshes. Journal of
Computational Physics, 136(2):425–445, 1997.

[37] O. Pironneau. Optimal Shape Design for Elliptic Systems. Springer Series in
Computational Physics, 1984.

[38] L. Prandtl. Über flüssigkeitsbewegung bei sehr kleiner reibungen.
Verhandlungen des dritten internationalen Mathematiker- Kongresses in
Heidelberg, 41(2):363–386, 1905.

[39] O. Reynolds. On the dynamical theory of incompressible viscous fluids and
the determination of the criterion. Philosophical Transactions of the Royal
Society of London, 41(2):363–386, 1895.

[40] G. R.Mittal. Immersed boundary methods. Annual review of fluid mechanics,
2005:1069–1082.

[41] P. Roe. Approximate Riemann solvers, parameter vectors, and difference
schemes. Journal of Computational Physics, 43(2):357–372, 1981.

[42] P. L. Roe. Approximate Riemann solvers, parameter vectors, and difference
schemes. Journal of Computational Physics, 43(2):357–372, 1981.

[43] A. Rohde. Eigenvalues and eigenvectors of the euler equations in general
geometries. 15th AIAA Computational Fluid Dynamics Conference, pages
1–6, 2001.

[44] K. Samouchos. The Cut-Cell Method for the Prediction of 2D/3D Flows in
Complex Geometries and the Adjoint-Based Shape Optimization. PhD thesis,
National Technical University of Athens, Greece, 2022.

[45] STAR-CCM+ Solves Aerodynamics and Heat in Tesla Model
S. https://www.digitalengineering247.com/article/
star-ccm-solves-aerodynamics-and-heat-in-tesla-model-s.
2010.

[46] G. G. Stokes. On the theories of the internal friction of fluids in motion,
and of the equilibrium and motion of elastic solids. On the Theories of the
Internal Friction of Fluids in Motion, and of the Equilibrium and Motion of
Elastic Solids, 41(2):363–386, 1851.

[47] R. Swanson and S. Langer. Steady-state laminar flow solutions for naca 0012
airfoil. Computers & Fluids, 126:102 – 128, 2016.

[48] R. C. Swanson, E. Turkel, and R. C. C. Convergence acceleration of
Runge-Kutta schemes for solving the Navier-Stokes equations. Journal of
Computational Physics, 224(1):365–388, 2007.

84

https://www.digitalengineering247.com/article/star-ccm-solves-aerodynamics-and-heat-in-tesla-model-s
https://www.digitalengineering247.com/article/star-ccm-solves-aerodynamics-and-heat-in-tesla-model-s

[49] R. C. Swanson, E. Turkel, and S. Yaniv. Analysis of a RK/implicit smoother
for multigrid. In Computational Fluid Dynamics 2010, pages 409–417.
Springer Berlin Heidelberg, 2011.

[50] The CFD Solver CODA and the Sparse Linear Systems Solver Spliss. https:
//elib.dlr.de/143414/1/2021-07-29_HLRN_CODAResults.pdf.
2018.

[51] The HYDRA code - Rolls Royce’s standard aerodynamic
tool. https://www.mpls.ox.ac.uk/research-section/
the-hydra-code-rolls-royces-standard-aerodynamic-design-tool.
2012.

[52] I. Vasilopoulos. CAD-based and CAD-free Aerodynamic Shape Optimization
of Turbomachinery Blade Rows using the Adjoint Method. PhD thesis, NTUA,
2020.

[53] D. X. Wang and L. He. Adjoint aerodynamic design optimization for blades
in multistage turbomachines–Part I: Methodology and verification. Journal
of Turbomachinery, 132(2):021011, 2010.

[54] H.-Y. Wu, F. Liu, and H.-M. Tsai. Aerodynamic design of turbine blades using
an adjoint equation method. AIAA Paper 2005-1006, 43rd AIAA Aerospace
Sciences Meeting and Exhibit, Reno, USA, 2005.

[55] S. Yang, H.-Y. Wu, F. Liu, and H.-M. Tsai. Aerodynamic design of cascades
by using an adjoint equation method. AIAA Paper 2003-1068, 41st AIAA
Aerospace Sciences Meeting and Exhibit, Reno, USA, 2003.

85

https://elib.dlr.de/143414/1/2021-07-29_HLRN_CODAResults.pdf
https://elib.dlr.de/143414/1/2021-07-29_HLRN_CODAResults.pdf
https://www.mpls.ox.ac.uk/research-section/the-hydra-code-rolls-royces-standard-aerodynamic-design-tool
https://www.mpls.ox.ac.uk/research-section/the-hydra-code-rolls-royces-standard-aerodynamic-design-tool

Εθνικό Μετσόβιο Πολυτεχνείο
Σχολή Μηχανολόγων Μηχανικών
Τοµέας Ρευστών
Εργαστήριο Θερµικών Στροβιλοµηχανών
Μονάδα Παράλληλης Υπολογιστικής Ρευστοδυναµικής
& Βελτιστοποίησης

Ανάπτυξη Πρωτεύοντων και Συζυγών Επιλυτών για Χρήση στην
Αεροδυναµική Βελτιστοποίηση Μορφής.

∆ιατµηµατικό Πρόγραµµα Μεταπτυχιακών Σπουδών
‘Υπολογιστική Μηχανική’

Μεταπτυχιακή Εργασία

∆ανάη Χατζηνικολάου

Επιβλέπων: Κυριάκος Χ. Γιαννάκογλου, Καθηγητής ΕΜΠ

Αθήνα, 2022

ii

Κεφάλαιο 1

Περίληψη

Η µεταπτυχιακή εργασία ασχολείται µε την ανάπτυξη πρωτεύοντων και συζυγών
επιλυτών για χρήση στην αεροδυναµική ϐελτιστοποίηση µορφής. Χωρίζεται σε δύο
κύρια µέρη: το πρώτο µέρος έγινε στην Rolls-Royce Deutschland µε τη χρήση του
επιλυτή CFD, HYDRA. Πρόκειται για έναν επιλύτη 3∆ µόνιµης συνεκτικής ϱοής, ο
οποίος επιλύει τις εξισώσεις RANS, σε συνδυασµό µε το µοντέλο τύρβης
Spalart-Almaras, σε µη-δοµηµένο πλέγµα µε τη µέθοδο πεπερασµένων όγκων. Το
λογισµικό σε συνδυασµό µε τη διακριτή συζυγή µέθοδο χρησιµοποιείται στην
αεροδυναµική ϐελτιστοποίηση µορφής σε ϐιοµηχανικές εφαρµογές
στροβιλοµηχανών. Η εργασία ασχολείται µε περιπτώσεις κατά τις οποίες η
σύγκλιση του πρωτεύοντος προβλήµατος περιπίπτει σε ταλαντώσεις µε συνέπεια το
συζυγές πρόβληµα να αποκλίνει και να µην µπορούν να παραχθούν οι παράγωγοι
ευαισθησίας. Εισάγεται ένας όρος πηγής στις εξισώσεις του πρωτεύοντος
προβλήµατος έτσι ώστε να µειωθούν οι ταλαντώσεις, και στη συνέχεια ο ίδιος όρος
διαφορίζεται ώστε να εισαχθεί στο συζυγές πρόβληµα. Ο κώδικας εφαρµόζεται στη
ϱοή γύρω από ένα πτερύγιο συµπιεστή µε δύο διαφορετικές γωνίες ϱοής.
Το δεύτερο µέρος της εργασίας συντάχθηκε στο Εθνικό Μετσόβιο Πολυτεχνείο
χρησιµοποιώντας τον κώδικα της ΜΠΥΡΒ/ΕΜΠ ο οποίος επιλύει 2∆ µόνιµες ϱοές
σε καρτεσιανά πλέγµατα µε τη µέθοδο των ψευδο-κυψελών και ο οποίος
συνδυασµένος µε τη συνεχή συζυγή µέθοδο χρησιµοποιείται για την αεροδυναµική
ϐελτιστοποίηση µορφής. Αρχικά, ένας υπάρχον επιλύτης ϱοής για ατριβείς ϱοές
τροποποιείται ώστε να χειρίζεται και συνεκτικές ϱοές και, στη συνέχεια,
πιστοποιείται µε την προσοµοίωση µιας ϱοής πάνω από µια επίπεδη πλάκα και
γύρω από µια αεροτοµή NACA0012. Τα αποτελέσµατα συγκρίνονται µε
ϐιβλιογραφικά δεδοµένα. Στη συνέχεια, το λογισµικό παραλληλοποιείται και
αξιολογείται η απόδοσή του. Στο τέλος, διατυπώνεται το συζυγές πρόβληµα µε τη
χρήση της συνεχούς συζυγούς µεθόδου για τη χρήση σε αεροδυναµική
ϐελτιστοποίηση µορφής και αξιολογείται κάνοντας ϐελτιστοποίηση µορφής σε δύο
διαφορετικές αεροτοµές, µε συνάρτηση κόστους τη µεγιστοποίηση της άνωσης.

1

1.1 Βελτίωση σύγκλισης συζυγούς προβλήµατος

µόνιµων ϱοών

Για πρώτο µέρος της εργασίας χρησιµοποιείται το λογισµικό HYDRA της Rolls-Royce
Deutschland. Το λογισµικό επιλύει τις εξισώσεις RANS για 3∆ µόνιµες συνεκτικές
ϱοές στη µορφή

∂U⃗

∂t
+∇ · F⃗ inv(U⃗) +∇ · F⃗ visc(U⃗) = S⃗ (1.1)

όπου U⃗ = [ρ, ρu, ρv, ρw, ρE] είναι το διάνυσµα των συντηρητικών µεταβλητών. Τα
διανύσµατα ϱοής F⃗ inv και F⃗ visc περιλαµβάνουν τους µη-συνεκτικούς και
συνεκτικούς όρους των εξισώσεων αντίστοιχα. Συγκεκριµένα

F⃗ inv =


ρυ⃗

ρυ⃗u+ pe⃗x
ρυ⃗v + pe⃗y
ρυ⃗w + pe⃗z
ρυ⃗E + pυ⃗

 , F⃗ visc = −


0
τ⃗1
τ⃗2
τ⃗3

τ⃗kυk + qk

 , S⃗ =


Sc

Sm1

Sm2

Sm3

Se

 (1.2)

όπου τ⃗k = [τk1, τk2, τk3]
T και από το νόµο του Fourier q⃗ = k∇T . Οι εξισώσεις

συµπληρώνονται από το µοντέλο τύρβης Spalart-Almaras (SA) που εισάγει την SA
µεταβλητή ν̃, η οποία υπολογίζεται από την εξίσωση

∂ν̃

∂t
+

∂(ν̃υk)

∂xk︸ ︷︷ ︸
Conv

=
1

σ

[
∂

∂xk

(
(ν + ν̃)

∂ν̃

∂xk

)
+ cb2

∂ν̃

∂xk

∂ν̃

∂xk

]
︸ ︷︷ ︸

Diff

+ cb1Ω̃ν̃︸ ︷︷ ︸
Prod

− (cw1fw)

(
ν̃

d

)2

︸ ︷︷ ︸
Destr

(1.3)

όπου ο όρος µε Conv δηλώνει τη µεταφορά της µεταβλητής ν̃, ο όρος Diff την
µοριακή και τυρβώδη διάχυση, οι όροι Prod, Destr µοντελοποιούν την παραγωγή
και καταστροφή της τύρβης. Η πλεγµατοποίηση του υπολογιστικού χωρίου γίνεται
µε το λογισµικό PADRAM της RRD χρησιµοποιώντας µη-δοµηµένο οριόδετο
πλέγµα. Οι εξισώσεις ϱοής διακριτοποιούνται στους κόµβους του πλέγµατος µε τη
µέθοδο των πεπερασµένων όγκων και επιλύονται µε τη µέθοδο Runge-Kutta τρίτης
τάξης. Στη συνέχεια, η διακριτή συζυγής µέθοδος χρησιµοποιείται για τον
υπολογισµό των συζυγών µεταβλητών και των παραγώγων ευαισθησίας µε σκοπό
την αεροδυναµική ϐελτιστοποίηση µορφής.

2

1.1.1 Μέθοδος της ¨ωµής¨ δύναµης (Brute Force Method) για

περιπτώσεις σύγκλισης οριακού κύκλου

΄Οταν η σύγκλιση εµπίπτει σε οριακό κύκλο σηµαίνει ότι παρατηρούνται ταλαντώσεις
συγκεκριµένου πλάτους το οποίο δεν αποσβένει. Παρατηρείται ότι όταν η σύγκλιση
του πρωτεύοντος προβλήµατος έχει αυτήν τη συµπεριφορά, το συζυγές πρόβληµα
αποκλίνει.
Για την αντιµετώπιση του προβλήµατος, χρησιµοποιείται η ιδέα που αναπτύχθηκε
εσωτερικά στην RRD και ονοµάζεται µέθοδος ¨ωµής¨ δύναµης, Brute Force Method.
Στόχος της µεθόδου είναι να εισάγει έναν όρο πηγής στις εξισώσεις ϱοής, ο οποίος ϑα
αναγκάσει τη λύση να συγκλίνει στη µέση τιµή των ταλαντώσεων και ο οποίος όταν
παραγωγιστεί και εισαχθεί στις συζυγείς εξισώσεις, ϑα τις αναγκάσει να συγκλίνουν.
Για τον υπολογισµό του, αρχικά υπολογίζεται η µέση τιµή των µεταβλητών ϱοής

ū =

N∑
i=1

vi

N
(1.4)

όπου Ν είναι ο αριθµός των τελευταίων επαναλήψεων που χρησιµοποιήθηκαν για να
υπολογιστεί η µέση τιµή. Ο ακριβής αριθµός ϑα υπολογιστεί αργότερα, µε ϐάση τις
εκάστοτε εφαρµογές που γίνονται. Ο όρος πηγής έχει τη µορφή

S⃗f =
1

τ


ρ− ρ̄
u− ū
v − v̄
w − w̄
E − Ē

 (1.5)

όπου η µπάρα δηλώνει τη µέση τιµή της µεταβλητής η οποία υπολογίστηκε από
την εξίσωση 1.4 και τ είναι µια παράµετρος µε µονάδες χρόνου η τιµή της οποίας
επιλέγεται µετά από παραµετρική ανάλυση. Ο όρος πηγής διακριτοποιείται στους
κόµβους του πλέγµατος ως

Sfi =
ui − ūi

τ
Vi (1.6)

και εισάγεται στις εξισώσεις Runge-Kutta. Οι εξισώσεις ϱοής λύνονται αρχικά χωρίς
τον όρο πηγής και κατά τη διάρκεια των Ν τελευταίων επαναλήψεων, αφού η λύση
εµπίπτει σε οριακό κύκλο, υπολογίζεται η µέση τιµή των µεταβλητών ϱοής. Μετά το
πέρας των Ν επαναλήψεων, ο όρος πηγής εισάγεται στις εξισώσεις οι οποίες
συνεχίζονται να λύνονται µέχρι να επιτευχθεί µεγαλύτερη σύγκλιση.

3

1.1.2 Εφαρµογές

Η γεωµετρία που χρησιµοποιήθηκε για την εφαγµογή της µεθόδου είναι ο στάτορας
ενός συµπιεστή όπως σχεδιάστηκε στο Τεχνικό Πανεπιστήµιο του Βερολίνου TUB
και ϕαίνεται στο Σχήµα 1.1

Σχήµα 1.1: Στάτορας συµπιεστή σχεδιασµένος στο Τεχνικό Πανεπιστήµιο του Βερολίνου

TUB.

.

Το υπολογιστικό πλέγµα αποτελείται από περίπου 2 · 106 κόµβους. Αρχικά το
πτερύγιο εκτίθεται σε ϱοή 46o το οποίο είναι 4o περισσότερο από τη τιµή για την
οποία έχει σχεδιαστεί. Το πρωτεύον και το συζυγές πρόβληµα της εφαρµογής αυτής
συγκλίνουν ακόµα και χωρίς την εισαγωγή του όρου πηγής. Η εφαργµογή γίνεται
για πιστοποίηση της µεθόδου και για να χρησιµοποιηθούν τα αποτελέσµατα για
σύγκριση. Η δεύτερη περίπτωση, για την οποία αυτή τη ϕορά το συζυγές πρόβληµα
χωρίς τον όρο πηγής δε συγκλίνει, είναι η περίπτωση όπου το πτερύγιο εκτίθεται σε
ϱοή 5o µεγαλύτερη από τη γωνία σχεδιασµού. Η µέθοδος Βρυτε Φορςε
χρησιµοποιείται εδώ έτσι ώστε να επιτευχθεί σύγκλιση των συζυγών εξισώσεων. Τα
αποτελέσµατα συγκρίνονται µε εκείνα της πρώτης εφαρµογής (+4o).

1.1.3 Η περίπτωση +4o.

Αρχικά, χωρίς την εισαγωγή του όρου πηγής, οι πρωτεύουσες και συζυγείς
εξισώσεις συγκλίνουν χωρίς ταλαντώσεις. Μετά την εισαγωγή του όρου πηγής, οι
εξισώσεις συνεχίζουν να συγκλίνουν µε γρηγορότερο ϱυθµό και επιτυγχάνεται
ϐαθύτερη σύγκλιση. Στη συνέχεια, επιλύεται το συζυγές πρόβληµα και
υπολογίζονται οι παράγωγοι ευαισθησίας. Η συνάρτηση-στόχος προς

4

ελαχιστοποίηση είναι ο συντελεστής απωλειών ολικής πίεσης

ω =
pt,inlet − pt,outlet

pt,inlet
(1.7)

Χρησιµοποιώντας το συζυγές πεδίο υπολογίζονται οι παράγωγοι ευαισθησίας, οι
οποίες ϕαίνονται στο Σχήµα 1.2

Σχήµα 1.2: Εφαρµογή +4o. Παράγωγοι ευαισθησίας.

Στο Σχήµα ϕαίνεται ποιες περιοχές πρέπει να µετακινηθούν ώστε να µειωθεί ο
συντελεστής απωλειών. Με κόκκινο χρώµα ϕαίνονται οι περιοχές που πρέπει να
µετακινηθούν προς τα έξω, ενώ µε µπλε ϕαίνονται εκείνες που πρέπει να
µετακινηθούν προς τα µέσα.

1.1.4 Η περίπτωση +5o.

Σε αυτήν την εφαρµογή η σύγκλιση του πρωτεύοντος προβλήµατος εµπίπτει σε
οριακό κύκλο και κατά συνέπεια το συζυγές πρόβληµα αποκλίνει. Μετά την
εφαρµογή της µεθόδου απότοµης δύναµης, το πρωτεύον πρόβληµα συγκλίνει χωρίς
ταλαντώσεις στην ίδια λύση που συγκλίνουν και οι εξισώσεις χωρίς τον όρο πηγής.
Το συζυγές πρόβληµα επίσης ϕαίνεται να συγκλίνει και το υπόλοιπο των εξισώσεων
µειώνεται κατά 2.5 τάξεις µεγέθους όπως ϕαίνεται στο Σχήµα 1.3.

5

Σχήµα 1.3: Σύγκλιση RMS συζυγών εξισώσεων µε τη µέθοδο της ¨ωµής¨ δύναµης.

Οι ισογραµµές των παραγώγων ευαισθησίας ϕαίνονται στο Σχήµα 1.4.

Σχήµα 1.4: Εφαρµογή +5o. Παράγωγοι ευαισθησίας.

Παρατηρείται ότι τιµές των παραγώγων είναι σχετικά χαµηλές, σχεδόν µηδενικές σε
κάποια σηµεία. Αυτό ϑα µπορούσε να οφείλεται στο γεγονός ότι παρόλο που το
συζυγές πρόβληµα συγκλίνει, το υπόλοιπο µειώνεται κατά 2.5 τάξεις µεγέθους έως
την τάξη του 10−14, ενώ το υπόλοιπο του πρωτεύοντος προβλήµατος έχει µειωθεί κατά
9 τάξεις έως την τάξη του 10−14.
Το σηµαντικότερο όµως όσο αφορά στις παραγώγους ευαισθησίας είναι το πρόσηµό
τους και όχι τόσο το µέτρο τους. Συγκρίνοντας τις δύο περιπτώσεις +4 και +5 γωνια
ϕαίνεται ότι οι 2 περιπτωσεις έχουν παρόµοιες παραγώγους όσο αφορά στο πρόσηµο.

6

1.2 Προγραµµατισµός Παράλληλου Λογισµικού Πρόλεξης

Ροών και της Συνεχούς Συζυγούς Μεθόδου µε τη Μέθοδο

των Ψευδο-κυψελών. Εφαρµογές στην Αεροδυναµική

Βελτιστοποίηση Μορφής.

Για το δεύτερο µέρος της εργασίας χρησιµοποιήθηκε ο κώδικας υπολογιστικής
ϱευστοδυναµικής του εργαστηρίου ΜΠΥΡΒ/ΕΜΠ. Ο κώδικας επιλύει 2∆ µόνιµες
ατριβείς ϱοές σε καρτεσιανά πλέγµατα, µε τη µέθοδο των ψευδο-κυψελών. Αρχικά,
οι όροι των τάσεων εισάγονται στις εξισώσεις ϱοής ώστε ο κώδικας να διαχειρίζεται
και συνεκτικές ϱοές. Οι εξισώσεις ϱοής ισχύουν στη µορφή

∂U⃗

∂t
+

∂f⃗x
∂x

+
∂f⃗y
∂y

− ∂f⃗ v
x

∂x
−

∂f⃗ v
y

∂y
= 0 (1.8)

όπου

f v
k =


0
τ1k
τ2k

uiτik + qk

 (1.9)

Ο τανυστής των τάσεων υπολογίζεται από τη σχέση

τij = µ

[(
∂ui

∂xj

+
∂uj

∂xi

)
− 2

3
δij

∂uk

∂xk

]
(1.10)

όπου το δij είναι το δέλτα του Kronecker και το µ ο συντελεστής δυναµικής
συνεκτικότητας. Για την επιβολή της οριακής συνθήκης µη εισχώρησης
χρησιµοποιείται η µέθοδος των ψευδο-κυψελών, κατά την οποία, στις κυψέλες που
ϐρίσκονται µέσα στο στερεό και κοντά στο όριο δίνονται κατάλληλα µεγέθη ϱοής
ώστε να προσοµοιωθεί η επίδραση του στερεού στη ϱοή. Αρχικά, η ταχύτητα κοντά
στο στερό όριο αντιγράφονται µέσα στις ψευδο-κυψέλες (εσωτερικά του στερεού) και
στη συνέχεια αντιστρέφεται η κατεύθυνσή της. ΄Ετσι, ακριβώς πάνω στο στερεό όριο,
η ταχύτητα είναι µηδενική. Η εξίσωση που λύνεται µέσα στις ψευδο-κυψέλες για
την αντιγραφή των µεγεθών ϱοής είναι

Un+1
i = Un

i −∆t
∂Un

i

∂xk

∂Φ

∂xk

(1.11)

όπου Ui τα µεγέθη ϱοής στην ψευδο-κυψέλη i και Φ η απόσταση της από το στερεό
όριο.

7

1.2.1 Αξιολόγηση προγραµµατισθέντος

Ο κώδικας αξιολογείται σε δύο εφαρµογές : στη ϱοή πάνω σε επίπεδη πλάκα και στη
ϱοή γύρω από συµµετρική αεροτοµή. Εδώ παρουσιάζονται τα αποτελέσµατα µόνο
της πρώτης εφαρµογής. Για ϱοή πάνω σε επίπεδη πλάκα µε γωνία ϱοής µηδενική,
ολική πίεση εισόδου Ptin = 1.03bar και ϑερµοκρασία Ttin = 300K και στατική
πίεση εξόδου Psout = 1.02bar, αριθµό Reynolds R = 1093 και Mach = 0.086 το
πεδίο ταχύτητας που προκύπτει είναι

Σχήµα 1.5: Ροή σε Επίπεδη Πλάκα. Μέτρο ταχύτητας.

Ο συντελεστής τριβής της πλάκας συγκρίνεται µε την αναλυτική λύση του Blasius
όπως ϕαίνεται στο Σχήµα 1.6

Cf =
0.664√
Rex

(1.12)

Σχήµα 1.6: Ροή σε Επίπεδη Πλάκα. Καµπύλη συντελεστή τριβής και σύγκριση µε τη

λύση Blasius.

8

Παρατηρείται ότι η αριθµητικη και η αναλυτική λύση είναι πολύ κοντά η µια στην
άλλη, µε µεγαλύτερη διαφορά µεταξύ αναλυτικής και αριθµητικής λύσης του
συντελεστή τριβής να είναι 0.05. Στη συνέχεια, το λογισµικό παραλληλοποιείται και
αξιολογείται η απόδοση και η επιτάχυνσή του. Η εφαρµογή έγινε πάλι για τη ϱοή
γύρω από επίπεδη πλάκα χρησιµοποιώντας τρία διαφορετικά πλέγµατα. Στα
Σχήµατα (1.7)-(1.8) ϕαίνονται τα αποτελέσµατα µετά από επίλυση µε 3 διαφορετικά
πλέγµατα που αποτελούνται από 36000, 70000 και 100000 κυψέλες αντίστοιχα.

Σχήµα 1.7: Ροή σε Επίπεδη Πλάκα. Επιτάχυνση λογισµικού για διαφορετικό πλήθος

επεξεργαστών και 3 διαφορετικά πλέγµατα.

Σχήµα 1.8: Ροή σε Επίπεδη Πλάκα. Απόδοση λογισµικού για διαφορετικό πλήθος

επεξεργαστών και 3 διαφορετικά πλέγµατα.

9

Παρατηρείται ότι µε την αύξηση των επεξεργαστών υπάρχει απόκλιση από την
ιδανική καµπύλη διότι αυξάνονται οι επικοινωνίες µεταξύ τους. Με την πύκνωση
του πλέγµατος επιτυγχάνεται καλύτερη προσέγγιση της ιδανικής καµπύλης, διότι
πλέον το ποσοστό των επικοινωνιών είναι µικρότερο σε σχέση µε αυτό των
υπολογισµών που πρέπει να γίνουν.

1.3 Βελτιστοποίηση Μορφής µε Χρήση της

Συνεχούς Συζυγούς Μεθόδου

Στο τέλος της εργασίας αναπτύσσεται η συνεχής συζυγής µέθοδος για εφαρµογή
σε αεροδυναµική ϐελτιστοποίση µορφής. Η συνάρτηση-κόστους του προβλήµατος
(άνωση) δίνεται από τη σχέση

F =

∫
Sw

pnkrkdS (1.13)

όπου SW η επιφάνεια της αεροτοµής, p η στατική πίεση, r⃗ το µοναδιαίο διάνυσµα
στην κατεύθυνση της άνωσης και n⃗ το µοναδιαίο διάνυσµα κάθετο στην αεροτοµή
µε κατεύθυνση προς τα έξω. Αφού επιλυθούν οι συζυγείς εξισώσεις, το συζυγές
πεδίο χρησιµοποιείται για τον υπολογισµό των παραγώγων ευαισθησίας οι οποίες
στη συνέχεια χρησιµοποιούνται στη ϐελτιστοποίηση µε τη µέθοδο της απότοµης
καθόδου. Το λογισµικό ϐελτιστοποίησης εφαρµόστηκε σε 2 αεροτοµές και εδώ ϑα
παρουσιαστεί η µία από τις δύο. Η αεροτοµή ϕαίνεται στο Σχήµα (1.9) και
παραµετροποιείται µε 17 σηµεία Bezier. Η αεροτοµή αποτελείται από µια
συνεχόµενη καµπύλη.

Σχήµα 1.9: Βελτιστοποίηση Μορφής Αεροτοµής. Αρχικό σχήµα αεροτοµής µαζί µε τα

σηµεία Bezier.

Οι µεταβλητές σχεδιασµού είναι οι συντεταγµένες των σηµείων Bezier. Μετά την
επίλυση γίνεται σύγκριση της αρχικής και της τελικής αεροτοµής στο Σχήµα 1.10

10

Σχήµα 1.10: Βελτιστοποίηση Μορφής Αεροτοµής. Σύγκριση αρχικής και

ϐελτιστοποιηµένης γεωµετρίας.

Η αρχική γεωµετρία έχει µηδενική τιµή άνωσης Linit = 0.0N , ενώ η τελική Lopt =
1529.01N . Η πορεία της συνάρτησης-κόστους κατά τη ϐελτιστοποίηση ϕαίνεται στο
Σχήµα (1.11).

Σχήµα 1.11: Βελτιστοποίηση Μορφής Αεροτοµής. Μεταβολή συνάρτησης-κόστους κατά

τη ϐελτιστοποίηση.

Επειδή η ϱοή είναι ατριβής, η άνωση ϑα συνεχίσει να αυξάνει όσο προχωρά η
ϐελτιστοποίηση εκτός και αν επιβληθεί κάποιος περιορισµός. ΄Ετσι, κριτήριο για τον
τερµατισµό του αλγορίθµου επιλέγεται να είναι οι 9 κύκλοι ϐελτιστοποίησης.

11

1.4 Συµπεράσµατα

Τα ϐασικά συµπεράσµατα που προέκυψαν από την έρευνα είναι τα εξής :

• Με την εισαγωγή ενός όρου πηγής στις εξισώσεις του πρωτεύοντος
προβλήµατος που η σύγκλισή του περιπίπτει σε ταλάντωση, οι ταλαντώσεις
µπορούν να εξαλειφθούν και η λύση να συγκλίνει περισσότερο.

• Η σύγκλιση του συζυγούς προβλήµατος εξαρτάται σε πολύ µεγάλο ϐαθµό από
τη σύγκλιση του πρωτεύοντος προβλήµατος. Στην περίπτωση που το δεύτερο
έχει ταλαντώσεις, οι συζυγείς εξισώσεις µπορεί να αποκλίνουν.

• Η παραλληλοποίηση ενός κώδικα επιφέρει τεράστια εξοικονόµηση χρόνου για
την επίλυση προβληµάτων υπολογιστικής ϱευστοδυναµικής. Ειδικά όταν
πρόκειται για µεγάλες εφαρµογές, η χρήση παράλληλου λογισµικού είναι
απαραίτητη. Μετά από παραµετρική µελέτη παρατηρήθηκε ότι σε πυκνότερα
πλέγµατα, ένα παράλληλο λογισµικό είναι πιο αποδοτικό, δηλαδή µπορεί να
επιφέρει µεγαλύτερη επιτάχυνση στην επίλυση. Αυτό οφείλεται στο γεγονός
ότι το ποσοστό των κυψελών που πρέπει να επικοινωνήσουν είναι αισθητά
µικρότερο από τους υπολογισµούς που πρέπει να κάνει κάθε επεξεργαστής.

• Η µέθοδος των ψευδο-κυψελών είναι εν γένει µια µέθοδος που δεν επιβάλλει
µε ακρίβεια τις οριακές συνθήκες στο όριο ενός στερεού. Παρ΄ όλα αυτά
παρατηρήθηκαν πολύ καλά αποτελέσµατα σε προβλήµατα στρωτής ϱοής,
κάνοντας σύγκριση µε αναλυτικές λύσεις και µε αποτελέσµατα που
προέκυψαν µε χρήση οριόδετων πλεγµάτων.

• Η εργασία έβαλε ϐάσεις για περαιτέρω ανάλυση και έρευνα. Αρχικά στο
λογισµικό HYDRA, ο συζυγής κώδικας συγκλίνει και παράγει αποτελέσµατα
σε περιπτώσεις που πριν ήταν αδύνατο. Από την άλλη µεριά, στη
ϐιβλιογραφία υπάρχουν λίγες αναφορές στη χρήση της µεθόδου των
ψευδο-κυψελών σε συζυγείς µεθόδους, ιδιαίτερα στη συνεχή συζυγή µέθοδο.
Το λογισµικό που αναπτύχθηκε έδωσε πολύ καλά αποτελέσµατα στα
προβλήµατα που εφαρµόστηκε και πλέον υπάρχει ένα ακόµα διαθέσιµο
εργαλείο ϐελτιστοποίησης στη ΜΠΥΡΒ/ΕΜΠ.

12

