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Abstract

This Master Thesis deals with the development of primal and adjoint solvers for
use in aerodynamic shape optimization. It is divided in two main parts; the first
one was conducted in Rolls-Royce Deutschland based on the in-house CFD
solver HYDRA. It is a 3D steady solver, which solves the RANS equations,
coupled with the Spalart-Almaras turbulence model, on unstructured
body-fitted grids according to the vertex-centered finite-volume method. It is
then coupled with a discrete adjoint solver to perform aerodynamic shape
optimization. The second part is conducted at the National Technical University
of Athens using a 2D steady solver which solves the Navier-Stokes equations on
cartesian grids using the cell-centered finite-volume method and is coupled with
a continuous adjoint solver.

In the first part, a source term is added to the primal 3D equations to alleviate
limit cycle oscillations in case the solution is not stable and then the discrete
adjoint problem is derived based on the new primal equations. The flow in a
compressor vane is simulated with two different angles of attack, in which case
the adjoint computes the sensitivity map.

In the second part, the existing flow solver is modified to handle viscous flows
and assessed by simulating a flow over a flat plate and around a NACA0012
airfoil. The results are compared with literature data. Afterwards, the software is
parallelised and its efficiency is evaluated. At the end, the continuous adjoint
problem to this solver is developed for use in aerodynamic shape optimization.
The equivalent adjoint boundary conditions are derived as imposed on a
cartesian grid. The software is evaluated by optimizing the shape of two airfoils,
the target being to maximize lift.
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Chapter 1

Introduction

Throughout its history, fluid dynamics has been a field of continuous
development. One of the major steps in the subject was in the 18th century,
when Leonhard Euler introduced the equations of acceleration of a steady,
irrotational flow under gravitational action [13], which set the base of modern
fluid dynamics. To follow, Louis Marie Henri Navier in 1822 [27] made the first
attempt to extend the equations on viscous fluids, which combined with G.G.
Stokes’ study in 1842-1851 [46], formulated the widely known "Navier-Stokes"
equations.

In the years that followed, the Navier-Stokes equations have been studied
thoroughly in order to derive analytical solutions (L. Prandlt [38], H. Blasius [8])
and account for additional physical phenomena (O. Reynolds [39]). The second
breakthrough came around the middle of the 20th century with the development
of high-speed computers and introduced a new scientific field, the
"Computational Fluid Dynamics" (CFD). The computer, combined with the
extensive development of numerical methods to solve physical problems, allowed
for faster and inexpensive analysis of flow fields compared to the limited and
costly experiments performed in the wind tunnel until that time.

In parallel to fluid dynamics, another field which has always attracted the
interest of many scientists, the theory of optimization. Hence, the pursue of a
problem’s (mathematical or not) optimal solution, with respect to specific
criteria. Starting with optimization of dedicated geometrical problems, such as
finding the minimum distance between two points, and continuing with the
development of the theory of Calculus of Variations, a field of mathematical
analysis that uses variations to find minima and maxima of functions. While the
beginning of the subject cannot be precisely dated, scientists like I.Newton,
L.Euler, G.W. von Leibniz, A.L. Cauchy, C.Jacobi and many more showed
immediate interest and developed new principles and theories within the



subject. [18] Based on the Calculus of Variations the first optimization
algorithms emerged during the 19th century and, in the 20th century, thanks to
the continuous development of computers, stochastic optimization methods
arise and gradient-based methods prosper.

1.1 CFD-based Optimization within the Industry

Today, optimization tools combined with CFD analysis are widely used in the
industry, in a variety of sectors including automotive, aerospace, chemical and
medical research and have revolutionized the products’ design process. Even
though there are only a few dedicated studies, the introduction of CFD analysis in
the industry has significantly reduced the cost of product development, the need
for experimental analysis, the time of optimization activities and it has helped
to achieve improved, detailed and reliable design of products. One study on
the benefit of CFD application in a chemical and engineered-material company
showed that in a six year period the financial benefit of using CFD has been six
times greater than the amount spent on CFD activities. ( [11])

Taking a look at some of today’s biggest companies in the aerospace and
automotive sector, CFD based optimization has become a fundamental design
tool. Rolls-Royce plc has developed an in-house CFD solver, HYDRA [51], to
study flows around complex geometries inside the gas turbine. The tool is
handling unsteady 3D flows in compressor and turbine cascades and is mainly
used to assess the aerodynamic efficiency of turbomachinery components.
Combined with a gradient-based optimization algorithm it has become a
powerful tool for the company’s engine design. General Electric Aviation has also
developed an in-house solver, TACOMA [3], to perform aerodynamic analysis and
shape optimization in turbomachinery blades for jet engines. It is a 3D unsteady
CFD solver using RANS equations and the £ — w turbulence model implemented
in FORTRAN 90. There has been a lot of effort on making the software parallel
using a tri-hybrid parallelization approach, namely, a combination of MPI,
OpenMP and OpenACC. In addition to the in-house solvers, both companies
utilize commercial CFD software for simulating heat transfer, aero-acoustics,
aero-mechanics etc. Coming back in Europe, in 2018 Airbus announced
collaboration with both the german and french aerospace research centers DLR
and ONERA in order to enhance their CFD knowledge and capability on
designing aerodynamically efficient aircrafts [2]. The product of the collaboration
is the high fidelity second order finite volume CFD solver, CODA, developed in
C++ which is aimed to simulate external aerodynamics during the aircraft’s
normal and complex manoeuvres [50]. Within the automotive sector, Tesla
Motors has been using the commercial STAR-CCM+, CFD solver developed by
Siemens, to perform aerodynamic simulations around electric vehicles. The tool
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has assisted to optimize the energy consumption and the range performance of
the vehicles, which is currently one of the biggest challenges in the sector [45].
However, industry has always been a competitive environment. Different
companies working in the same sector are developing and selling similar
products. For this reason each company has to find the balance between
delivering a product fast and having the highest quality possible. Naturally, as
CFD analysis has become an essential tool in today’s industry, the challenge for
a CFD developer is to create a competitive software to be able to fit in the market;
hence, a software which produces accurate results in the shortest time possible.

1.2 Adjoint Optimization

Due to the big and complex geometries and flowfields that the industrial
applications deal with, CFD analysis can be very expensive and time-consuming.
This is why CFD solvers are in the majority of the times combined with
gradient-based optimization algorithms rather than stochastic ones. One of the
most popular gradient based optimization methods is the adjoint method. In
simple terms, the adjoint method is a method of computing the objective
function sensitivities with respect to the design variables by demanding the
elimination of terms that are expensive to compute (i.e. the derivatives of the
flow quantities w.r.t. the design variables). The method will further be discussed
in the next sections.

The method was first introduced by Pironneau in 1984 [37] for aerodynamic
applications and was further developed by Jameson [19] Giles and
Pierce [15] [36]. Originally, it was used for problems of external aerodynamics,
such as flows around airfoils and wings [6]. Later on, Yang et al. [55] applied the
adjoint method for flows in 2D cascades, governed by the compressible Euler
equations, and Chung et al. [10] performed an adjoint-based inverse design of
the 3D Rotor 37 case. Eventually, there have been several applications on the
shape optimization of single-row turbomachinery using the adjoint method, such
as by Wu et al. [54] and Papadimitriou and Giannakoglou [32] [33]. Adjoint
solvers that supported multi-row applications appeared quite later; prominent
first examples are the contributions of Frey et al. [14] and of Wang and He [53].
The major benefit of the adjoint method is that the cost of computing the
gradient of the objective function is almost equal to the cost of one CFD solver
run, in contrast to other gradient computing methods, such as finite differences,
for which this cost is equal to N CFD solver runs, with N being the number of
design variables. The cost of the adjoint method is proportional to the number of
objective functions F' instead, which is beneficial for CFD-based shape
optimization problems, where the design variables significantly outnumber the
objective functions.



One of the method’s challenges is that it requires a second mathematical
problem to be derived and solved, which must be consistent with the primal
problem formulation. If the primal problem changes, then the adjoint method
should be re-formulated. The same applies in case of changes to the objective
function; any modification of the function of interest, requires once again
development of the adjoint problem.

1.3 Thesis Background and Overview

This thesis deals with adjoint methods for aerodynamic shape optimization in
industrial and other applications. It is divided in two parts; the first one deals
with cases where the adjoint solver is unable to converge due to instabilities in
the flow solution, and the second part is about developing the continuous adjoint
method of an existing CFD solver which handles cartesian grids and uses the
ghost-cell method to impose boundary conditions.

In particular, the first part of the thesis was conducted in Rolls-Royce
Deutschland, a subsidiary of British aircraft engine maker Rolls-Royce plc,
based in Dahlewitz, Germany. The work has been carried on Rolls-Royce’s CFD
solver, HYDRA. The subject of the analysis is to find a method to make the
adjoint equations converge, in cases which the primal CFD solver is reaching
limit cycle oscillations; an idea developed by Paolo Adami within the Methods
Team of RRD. The first step is to introduce a new source term to the primal
equations in order to make the solver converge to the mean value of the two
extreme states of the limit cycle. In the next step, the source term is modified
accordingly and introduced to the adjoint equations. The purpose is to make the
adjoint problem converge into a steady state solution, to be used to compute the
sensitivity derivatives of the objective function w.r.t the design variables.
Combined with steepest descent, the design solution is changing towards the
direction where the objective function is minimized, until it reaches an optimal
design.

The second part of the thesis was conducted at NTUA using an in-house CFD
solver [44]. In the first part, the existing 2D steady CFD solver is being parallelized
using the MPI protocol. Next, the adjoint CFD solver using the continuous adjoint
method is created based on the primal solver, which uses the immersed boundary
method to solve the primal equations on cartesian grids. One of the biggest
benefits of the immersed boundary methods on cartesian grids can be seen on
applications where the geometry is moving with time. In such cases, with the
traditional body-fitted mesh approach, a new mesh would have to be created at
each timestep. However, the new mesh is not always of a good quality, especially
as the shape gets more complex during optimization. As such, a CFD optimization
tool could possibly produce non-reliable results. For an industrial application,
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this would mean an unprofitable amount of time spent and that the simulation
would need to be restarted from the beginning. With an immersed boundary
CFD solver such scenarios cannot occur, as the mesh remains almost unchanged
throughout unsteady simulations.

The Master thesis consists of 4 chapters, which are summarized below:

Chapter 1 - Introduction

Chapter 2 - 3D Flow Equations. As both CFD solvers described herein are
used for aerodynamic applications, they solve the Navier-Stokes equations
or a form of them. For this reason, the governing equations will be presented
in the beginning in their most general form and later on, on each separate
chapter, the equations will be recast accordingly.

Chapter 3 - Part 1: Improvement of Adjoint Convergence Robustness for
Steady CFD Applications. In this chapter, the HYDRA steady solver is
outlined together with the discrete adjoint method. The method used to
alleviate limit cycle oscillations is described, and the modifications made to
the primal and adjoint solver are demonstrated. Finally, the results of the
method are presented and analyzed in order to conclude on following steps.

Chapter 4 - Part 2: Programming and Parallelization of a Flow Solver and
the Continuous Adjoint Method using the Ghost-Cell Method. Applications
in Aerodynamic Shape Optimization. In this chapter, the in-house steady
solver of NTUA is outlined and modified to handle viscous flows. The
software is parallelised using the MPI protocol. Finally, the adjoint system
is derived from the primal equations, using the continuous adjoint method,
and used to perform aerodynamic shape optimization.

Chapter 5 - Summary and conclusions. A summary and overview of the
methods and results is presented together with conclusions and potential
next steps.






Chapter 2

Steady 3D Navier-Stokes Equations

and Adjoint Optimization

As stated in the previous section, this thesis deals with two CFD based
optimization tools. Both tools numerically solve the Navier-Stokes equations, in
3D or 2D, by using the adjoint method to compute the sensitivity derivatives of
the objective function w.r.t the design variables.

In this chapter, the general form of the Steady 3D Navier- Stokes equations is
presented in order to establish a reference system for all CFD calculations
performed herein. In the following sections, these equations will be modified
accordingly to adapt to each CFD solver. Furthermore, the general theory of the
adjoint optimization method will be presented, to establish a common
terminology.  The adjoint equations will be presented for each software
separately.

At the end of the chapter, the adjoint optimization theory will be outlined. The
method is divided into two main parts, the continous and the discrete approach,
each of them having its benefits and weaknesses. Each of the CFD solvers used
herein, is combined with one of the two methods and for this reason, the methods
will further be analyzed later in the thesis.



2.1 General form of the steady 3D Navier-Stokes
equations

Observing an infinitesimally small element fixed in space with compressible fluid
moving through it, the conservation form of the Navier-Stokes is formulated as

ap S
_ . = 2.1
5tV () =S, 2.1)
a(apt“) AV (T T p T — ) =S, 2.2)
E
%Jrv-(pﬁE—kpU—(?-U—kVT):Se 2.3)

where p is the density of the fluid, ¥ = [u, v, w]T the Cartesian velocity, p the static
pressure, 7" the stress tensor, E the relative total energy per unit mass, 7' the
static temperature, k the thermal conductivity coefficient, [ the identity matrix
and S., S,,, S. are source terms for each equation. Throughout this thesis only
steady flows are considered and the equations will be numerically solved using
the time-marching technique. For this reason, ¢ refers to the pseudo-time.

The system is closed by assuming that the thermodynamic properties of the fluid
satisfy the equation of perfect gas

p=pRT = = ”y% (2.4)

where R is the perfect gas constant, v the heat capacity ratio and c the speed of
sound. The total energy per unit mass F is given by

1
E=—"7=+ 562 (2.5

Assuming an isotropic Newtonian fluid and Stokes’ hypothesis for the viscosity,
the stress tensor components are given by

. aUZ‘ an 2 8Uk
Ty = # [(8% * 81:1-) a 36” 3xk] (2.6




with ;o being the dynamic viscosity and ¢;; the Kronecker delta. Hereafter, twice
repeated indices imply summation over £ = 1,2,3 (according to the Einstein’s
convention).

The Navier-Stokes equation can be written in vector form as

%—IZ + V- Fm(0) 4+ V- Fe ) =8 2.7)

where U = [p, pu, pv, pw, pE] are the conservative flow variables. The flux vectors
F™ and FY*¢ include the inviscid and viscous terms of the Navier-Stokes
equations respectively. In particular

pU 0 Se
.. pUU +p€x o 7__)1 . Sml

F' = | ptv +pé, | , o = — Th , S = | Sme (2.8)
pUE + pu TeUk + Q S,

where € = [é,,¢,,¢,|T are the unit vector in the z,y, 2 directions respectively,

Tk = [Th1, Thos Tkg]T and, from Fourier’s law of heat conduction, § = kVT.

2.1.1 Steady 3D RANS equations & Turbulence modeling

For the flow within a jet engine or around a car, the equations should be
modified to account for the presence of turbulence. One of the most common
methods to simulate turbulence was developed by O. Reynolds in 1895 [39] and
is known as the Reynold-Averaged Navier-Stokes equations (RANS). The idea
behind this method is that all the fluctuations of the flow variables, such as
pressure or velocity, happen around a mean value. As a result, the variables are
divided in a time-averaged and a fluctuating quantity which are inserted in the
Navier-Stokes equations. By solving the RANS equations the time-averaged
value of every variable is derived. This method inevitably introduces new
variables to quantify the turbulence in the flow and need to be further modeled.

The RANS equations have the same form as the 3D Navier-Stokes in equations
- with the only difference that the flow variables i.e. density, velocity
and pressure are now time-averaged. Turbulence is modeled through the
turbulent viscosity u;, as proposed by Boussinesq, using the hypothesis that
when averaging the NS equations over time, the non-linear term resulting from
turbulent fluctuations in velocity can be written as an additional diffusion
term [9]. Thereby, the turbulent viscosity is introduced in the stress tensor of eq.
(2.9) as
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The Spalart-Allmaras Turbulence Model

For the applications presented in this thesis, the Spalart-Allmaras (SA) turbulence
modeling is used and the turbulent viscosity is defined as

3

X
- = (2.10)
X3+ 031

e = pvfur,  fun X =

R

where v = % is the kinematic viscosity. The SA variable v is computed by the

standard form of the model’s equation [4]
ov n d(vuy) 110 (v + D) ov n ov Ov
— = —|—((v+v)=— Cpp——
ot oxy, o |0z, oxy, b2 oz, Oxy,
V A vV
Conv Diff
N
~ 1
 en— (e f) (3)

Prod D —
Destr

S/

(2.11)

where term Conv expresses the transport of v, term Diff the molecular and
turbulent diffusion, terms Prod, Destr model the turbulence production and
destruction.

Regarding the rest of the quantities appearing in eq. ll Q is the modified
vorticity

~ v
Q:Q+va2, (2.12)

ow v\’ ou  Ow\” ou v\’ X
Q—V(@‘a—z)%a—z‘a—x)*(@‘a—x)’ N

where () is the magnitude of the vorticity and d the distance to the nearest wall.
The function f,, is given by

1
1+chs\° 6 v
w = —_— , =T+ CyalT —7T), r= =
d g (964‘63}3 g 2( ) QK22
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and the closure constants are

2
e = 0.1355, (2 = 0.622, o=, o1 =71,
1
Cut = 2 ton Cuz = 0.3, ] K = 0.41
K g

2.2 Adjoint Optimization

In this section, an introduction of the adjoint optimization method is given. More
detailed analysis as well as the mathematical formulation is given in later
sections. As mentioned before, solving the 3D Steady Navier-Stokes or RANS
equations for industrial applications is time-consuming. For this reason, such
CFD solvers are usually combined with gradient-based optimization methods,
which are significantly faster than stochastic optimization algorithms, in order to
avoid adding further computational cost. This thesis deals with gradient-based
optimization methods, by making use of the adjoint method.

In their general form, adjoint methods are for computing the derivatives of an
objective function, and at the same time ensuring that the problem’s governing
equations are satisfied. The optimization problem is viewed as a constrained
problem; the design variables vector b that minimizes the objective function F' is
sought with the constraint of satisfying the governing equations i.e. the primal
problem, which in the purposes of this thesis, are the Navier-Stokes equations.
The objective function can, in general, be written as

=,

F=F(U,b) (2.13)

where U is the vector of the flow variables. For an infinitesimal change 8b in the
design variables’ vector b the change in the objective function is

OF = a—]féﬁ + a—ljég (2.14)
oU ob

Additionally the governing flow equations can, in general, be written as

-

R=RU,b)=0 (2.15)

And again for an infinitesimal change §b in the design variables’ vector b the
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change in the governing equations vector is

SR = @5(] 1 %55 -0 (2.16)
oU ob

The adjoint problem is formulated by introducing an augmented form of the
objective function using a Lagrangian multiplier ¥ multiplied by the R vector.

Fpy=F+U"R (2.17)

The augmented function is now differentiated w.r.t the design variables b using

equations [2.14] and [2.16

6 F g = or ——5U + é)—Féb — g7 8—RcSU + @51) (2.18)
U b ou b
and by rearranging the terms
5 F g = a—F — \IJTaR §U + 8—F — \IfTaR 8b (2.19)
U U b b

By demanding the elimination of the most expensive terms, namely the variation
of the flow variables, the adjoint equations are derived

oF 8R
— =0 (2.20)
ou 8U

and by solving the derivative of the objective function is computed as

6FTL9 _ oF \IJTaR 2.21)
ob b ob

There are two main categories of adjoint methods in CFD applications, the
continuous and the discrete method. In the continuous adjoint [21], the
governing equations are first differentiated w.r.t. the design variables and then
discretized on the available grid. The reverse process is followed in discrete
adjoint [16] [22], where the flow equations are first discretized and then, their
differentiation leads to the system of adjoint equations already in discrete form.
The advantages and disadvantages of each approach have been extensively
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discussed in the literature [35] [26], and it is generally agreed that both
approaches are equally efficient on computing gradients in CFD-based
optimization problems. Furthermore, there are many different approaches to
formulating the continuous and discrete adjoint method, and the details of their
implementation result in each having advantages and disadvantages. This thesis
deals with both continuous and discrete adjoint methods. More details about the
theory and formulation of each method will be discussed separately in the later
sections.
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Chapter 3

Improvement of Adjoint
Convergence Robustness for Steady

CFD Applications

The first part of the thesis was conducted in Rolls-Royce Deutschland using the
in-house software, HYDRA [51]. HYDRA is a CFD solver for unsteady 3D flows
used within the turbine and compressor design teams. In this work, the 3D
steady RANS equations are coupled with the Spalart-Allmaras turbulence model
as presented in chapter 2 and are solved iteratively, using a Runge-Kutta
pseudo-time stepping scheme. The software is combined with a discrete adjoint
CFD solver to perform aerodynamic shape optimization. The adjoint system is
solved with a, consistent with the primal, Runge-Kutta solver to derive the
sensitivities of the objective functions [28], [52]. The sensitivity derivatives can
then be inserted in an optimization tool, for example using the steepest descent
method to obtain the new design variables, which define a new geometry, and
the process starts again. After a number of optimization cycles, the new
optimized geometry results.

In this first part of the MSc thesis, a method to alleviate such limit cycle
oscillations is developed in order to allow for further shape optimization process.
In particular, a source term is introduced into the primal equations which aims
to act as an artificial force to the system with the purpose to allow the primal
problem to converge to a mean solution. From a primal stable and converged
solution, the adjoint system can more easily converge and allow for the
computation of the sensitivity derivatives and the optimization.
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In what follows, an overview of HYDRA will be presented including the primal
and adjoint equations. The primal equations will be first discretized on an
unstructured grid, according to the vertex-centered finite-volume method and
the boundary conditions will be imposed in order to close the system. Then, the
discrete adjoint theory and method will be presented. Further on, the source
term will be introduced together with the modifications in the primal and adjoint
equations. The new system of equations will be used to solve the flow over a
compressor vane to verify the convergence of the primal solution. The resulting
flow field from the primal solver will be used to solve the adjoint problem for the
same case. Finally, the adjoint solution will be used to calculate the sensitivity
derivatives of the objective function, which in this case is the total pressure loss
coefficient over the vane.

3.1 Discretization of the Flow Equations

The primal equations solved within HYDRA are the 3D RANS equations
combined with the Spalart-Allmaras model as described in Section [2.1.1|The
RANS equations are discretized on an unstructured grid using vertex-centered
control volumes, as illustrated for a 2D case in figure

e node (control volume center, grid vertex)

e—e oriented connections (edges) with node i

connections (edges) between other nodes

%  midpoints of edges, centroids of grid cells
»=--x face of control volume V,

— outward normal unit vector of face corre-

sponding to edge [ (connecting nodes i, j)

Figure 3.1: Vertex-centered control volume in a 2D unstructured grid [52].

Integrating eq. over the control volume V; and applying the Green-Gauss
theorem gives the RANS equations expression on node ¢

Z@_({@QZ + E@ = S; (3.1)
0Q; ot

where U is the conservative flow variables vector, () is the primitive flow variables
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vector, t is the pseudo-time R; is the residual at node ¢ and S; are the source
terms. -
R, = Z <Fmv Fmsc j) : ﬁijASij (3.2)

JEE;

where L; is the set of nodes connected to node 7 via an edge, n;; the unit vector
vertical to the edge connecting nodes ¢ and j and As;; the area of the face
associated with the same edge. To simplify the notation, the oriented face area is
defined as 5;; = 17;;As;;.

3.1.1 Inviscid Fluxes

The inviscid fluxes F' ’T;”’Z»j across the interface between control volumes V;, V; are
computed based on the Roe scheme [42] by a combination of a central difference
term with a numerical dissipation term FZJJV b,

ZFW’.—’,. - Z%(Iﬁ[—i—ﬁ]}) -5 + ZFL]]VDQJ (3.3)

JEE; JEE; JEE;

The addition of the numerical dissipation term ]*ijjv D ensures numerical stability
of the solver method. Based on Roe’s approximation [42] this term becomes

Fvo g L gg” | A 4| As5AQ, (3.4

ij
where A ;; is the primitive flux Jacobian and its absolute value is defined as
I‘A }I_l, with ‘A ! being the diagonal matrix of absolute eigenvalues (of_A) and T’

the corresponding matrix of right eigenvectors. The term is computed as

ij a@ij a@» :

ij
where the primitive variables are ();; = %(Ql + Q])

The formulation of the difference AQ);; in eq. determines the numerical
accuracy of the scheme. For example if AQ;; = @); — );, the scheme becomes
first-order accurate in space. Herein a non-linear blend between the first-order
upwind and a second-order scheme with third-order numerical dissipation
fluxes is used based on the Jameson-Schmidt-Turkel (JST) scheme [20].
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3.1.2 Viscous Flux

The viscous flux F’Z‘]/ at the control volume face associated with the edge
connecting nodes ¢ and j, is computed using equation combined with the

Spalart-Allmaras turbulence model. The term becomes

0
7_—)1,1']'
. 7_!2,1'3'
Fﬂ;}isc —_ 7__25,1']'

= o Hij Pt ij
<Tkvk)ij + y—1 (Prl + Pry >

(iva b sz])
. Ht,ij5
<#w + e >

(3.6)

For computing the primitive flow variables, the arithmetic average is used,
whereas for the turbulent viscosity, the geometric average is preferred because of

its exponential growth near viscous walls. Hence:

Qij = (QH‘Q])

Hij =

N~ DN —

(1 (Qi) + 1(Q;y))

Heig = \/Mt ,Ut Qg

(3.7)

(3.8)

(3.9)

Discretizing the inviscid and viscous flux terms, as discussed in this section, leads
to an overall second-order spatial discretization scheme, which is used throughout

this thesis.

3.1.3 Boundary Conditions

Walls

For the nodes laying along the solid walls, zero mass flux is imposed by setting
the velocity components and the turbulent viscosity to zero. The discrete coupled

RANS equations for the solid wall are

(I — B)7yar =0
Bﬁwall =0

(3.10)
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where [ the identity matrix and 7,,; the residual vector of the wall nodes. For
the 3D compressible flow the 5-equation system considered, along with a
one-equation turbulence model, and so the B matrix extracts the components of
velocity and turbulent viscosity from wall nodes on which the boundary conditions
are imposed.

(3.11)

s

I
S OO O oo
[l elNell S =)
S oo~ OO
SO = O OO
S OO O oo
_ o O O O O

The solid wall boundaries are considered adiabatic, so the wall heat flux is set to
ZEro.

Inlet/Outlet

For the inlet, the total pressure, total temperature, flow angles and the turbulent
viscosity whereas at the exit the static pressure are imposed. These boundary
conditions are weakly imposed using the inviscid boundary flux across the
boundary interface s; in eq.

i g, — % ((ﬁm” (Qm/m) + Fm (Qb)) Sp— g_g | Ay (Qb - Cjz'n/out>> (8.12)

where subscript b denotes the boundary face and (Qi,/ou: refers to the
pseudo-nodes outside of the domain, which are used to impose the boundary
conditions. The outlet static pressure is computed at the hub radius and its
radial distribution from hub to tip is derived by solving the radial equilibrium
equation

op v,

o =P (3.13)

where r is the radius and vy the circumferential component of the velocity. Within
HYDRA, a target mass flow rate can be chosen as an outlet boundary condition.
Here, the mass flow rate through the outlet cross-section A,,; is

h = / pudA (3.14)
Aout
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The target mass flow is achieved by updating the outlet static pressure pp,; at
each iteration as

d . —1
Appup = (' — 1) <£) (3.15)

where ‘2—’; is hand-derived within the code.

3.1.4 Implicit Runge-Kutta scheme

At this point the set of RANS equations is re-written here

oU 8@- 3 ( ~> _s,

oG LR (3.16)

& @) = %ﬁn Fy+ Y FNP s+ Y F sy (3.17)

JEE; JEE; JEE;

The implicit RK scheme in Hydra was developed by Misev [24], based on the work
of Swanson et al. [48,/49] and further developed by Vasilopoulos [52]. In the
general form, the scheme can be written as

vV oU /-~ < <
niog (@) Q 3.18)
where n denotes the pseudo-time step. After the system is discretized in
pseudo-time is solved iteratively using a time-marching technique for the update

of the primitive variables u. The final form of the implicit RK 3-step scheme
derived from [3.18

-1
Quk = g — aka( P +f) Rk k=1, s (3.19)

Oimp
where J" is the Jacobian matrix, P" the preconditioner, «; the primary RK

coefficients, o0;,, the implicit CFL number, here 0;,,, = 2 and s the number of RK
steps, here s = 3 [52].
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By expanding equation [52]

Gno — G (3.20)
RPOR) — g D (@(n,H)) + (1 — By) RPmk=D (3.21)
QP = G — apo (K™) <ﬁf (@””“”) + BP0k g (@””“‘”)) (3.22)
Qg =@ (3.23)

where k£ = 1,2, 3, K is the implicit preconditioner matrix

1
K=

P+ J (3.24)

Oimp

and R! and R” the inviscid and diffusive components computed using the current
estimate of (). The source term S will be used to introduce the artificial force to
control the convergence of the primal solver, and will be discussed in the section
3.3.

3.2 Hydra discrete adjoint solver

In this section, the discrete adjoint theory will be presented [15] and applied to
derive a, consistent to the primal, adjoint Runge-Kutta scheme in order to solve
the adjoint equations to further compute the derivatives of the objective function.
The aim of solving the primal equations is to drive the non-linear residual within
each control volume to zero

R(U,X)=0 (3.25)

where R = [él, B EN] is the residual of all nodes U= [U'l, U, [jN]
the primitive flow variables and X = |71, ..., Z;, ..., Zn] the coordinates of all (V) grid
nodes within the computational domain. To perform gradient-based optimization
in a problem with an objective function F', the derivative of F' w.r.t the design
variables must be computed. This is a function of the flow solution U as well as
the grid coordinates X, which are functions of the design variables b, all of this
leading to the relation

— = = — =

F=FOX0), X)) (3.26)

Hence the gradient of the objective function /' can be written using the chain rule
as

dF  dF dX dX,

=== (3.27)
db  dX dXg db

21



where X, are the coordinates of the surface grid nodes. Using the adjoint
method, the term %, which stands for the volume sensitivity derivatives or
simply sensitivity derivatives, is calculated. First step of the adjoint method is to

create an augmented objective function

Foug=F — VTR (3.28)

where VU is the adjoint variables vector. The derivative of eq. w.r.t X is now

- 0
F F - uT
AFag _ AF G dBR d¥7 (3.29)
dX dX dX dX
OF 9FdU - (OR ORdU
0X 00U dX 0X 0UdX
F - 0R F - 0R)\ dU
_OF o [OF 5 0RY dU (3.31)
0X 0X ou oU | dX
The main idea now is to avoid computing the most expensive term j—g, and for

this reason its multiplier is set to zero. This yield to the discrete adjoint equation

T

or
oU

T
U= {g—g} (3.32)

After the adjoint field is computed, the sensitivity derivatives are computed as

dF 9F - 0R
dX 0X 0X

In general, it is preferred that the adjoint solver converges with the same rate
as the primal, which is called duality preserving [17]. Without going into further
detail, as it is beyond the scope of this thesis, the equivalent to the primal, implicit
Runge-Kutta scheme to solve the adjoint equations used herein [52].

An overview of the implicit adjoint solver algorithm implemented in Hydra is shown

in figure [3.2]
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Algorithm 3: Steady implicit adjoint solver.
read in UN"";

compute objective_adj — G;

compute implicit preconditioner K;

construct transpose matrix K';

initialize ¥, iter — 0;

while (iter < iter,,,) and EJREIR"'*IS =>¢) do // pseudo-time loop
stagepy — 3;

while stagep; = 1 do // 3-stage Runge-Kutta loop
impose BCs_adj;

compute fluxes_adj — CTw, D" w;

compute residual R;

solve KT W = Rg; // linear solver nested loop
update solution ¥ — W + a0 ¥;

stagepy — stagepy — 1;

end

iter — iter +1;

end

Figure 3.2: Overview of Hydra’s implicit adjoint solver algorithm [52].

More detail on how the Runge-Kutta system is derived can be found in [28] [52].

3.3 Brute Force Method for cases with Limit Cycle

Oscillation

Limit-cycle oscillation (LCO) is a fixed-amplitude oscillation appearing in the
convergence diagram of the governing equations due to non-linear phenomena in
the system. The amplitude of the oscillations remains the same regardless of the
initial conditions. One example of LCO behaviour in a converging equation is
shown in figure The details of the case will be presented in the next section.
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Reszidual

iterations

Figure 3.3: RMS residual of the primal equations.

The solution of the equation is oscillating between two extreme values. And while
this behaviour could be negligible when it comes to an already converged solution
of the primal (flow) equations, e.g. the two extreme values oscillate between 10~°
and 1077, it is of utmost importance when it comes to solving the adjoint equations
after that. The convergence of the adjoint problem is extremely sensitive to the
convergence of the primal problem’s solution. For the same case, which exhibited
LCO in the solution of the primal problem, the convergence diagram of the RMS
residual of the adjoint equations. is shown in figure

adjoint Residual

0 50 100 150 200
iterations

Figure 3.4: RMS residual of the adjoint equations.
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One can see that the adjoint problem is not converging when the primal problem
is exhibiting oscillations as in figure [3.3]

In order to fix this problem, an idea developed by Paolo Adami within the Methods
Department of RRD is introduced, called Brute Force Method for cases with Limit
Cycle Oscillation convergence. In what follows, the method will be referred to as
"the brute force method". The basic principle is to introduce a term in the primal
equations which will eliminate the oscillations without affecting the final solution
and which, after being differentiated, will make the adjoint problem converge. The
source term introduced in the governing equations is equivalent to a "force" and
will drive the residual of the primal equations to converge into the mean value
of the two extreme states of the limit cycle. The source term is differentiated
accordingly and introduced into the adjoint equations, which will then be used
to compute the sensitivity derivatives of the objective function w.r.t the design
variables.

The first step of the process is to obtain the mean value of the local flow variables,
within N iterations, as shown in figure |3.5, using the equation

(3.34)

The choice of N will be made in the next section.

r

NANAN
Y

Residual

M

fharation:

Figure 3.5: Calculation of mean value of flow solution.
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N
To avoid saving any additional flow solution other than the last one, the sum » _ v;

i=1
is calculated while the solver is running and for the last N iterations. At the end
of the simulation, the sum is divided by N to derive the mean value, which is

calculated only once throughout the simulation.

Now the purpose of the source term is to force the primal solution to converge
fully to a single solution rather than oscillating between two. The solution which
the equations are driven to converge to, is the mean value of the LCO. This means
that the source term should be formulated so that, the areas where the solution
is far away from the mean value, have a bigger source term whereas the areas
where the solution is close to the mean value, have a small value. While there
are other methods and numerical techniques to drive the system to converge to
its mean value and a consequently seeking convergence of the adjoint solver [29],
the brute force method was preferred due to its simplicity both in mathematical
formulation as well as in software developing. The source term is introduced into
the RHS of eq. in the form

e < 2o
|
es[RSTIESIEESEAST

1

Sy = - (3.35)

where the ’bar’ indicates the mean value of the variable calculated from eq.
and 7 is a parameter with units of time, used in the denominator to scale the
source term to fit in the primal equations. The choice of 7 will be made after
parametric study in the next section. The term is discretised and introduced into

the RHS of eq. as
U; — ﬂi
Spi = Vi (3.36)
T

After the discretization of the system, the source term is part of the residual
R in equation [3.19, An additional component is added to the diagonal terms of
the Jacobian J of the system, resulting from the term

% = E (3.37)
ou; T

The same term is added to the adjoint equation to derive the adjoint variables.

In the beginning, the user defines an acceptable residual for convergence and a
maximum number of iterations for the solver to run. In cases with LCO, the
residual does not meet the convergence criteria and, therefore, reaches the
maximum iteration limit. However, during the last N iterations, the mean value
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of the oscillating solution is being computed. Now, instead of stopping the
simulation, the source term, which includes the mean value, is switched on and
the 'new’ governing equations are solved again until the convergence criteria is
reached.

Calculation of mean flow for
I}I iterations
|
(PR

Residual

s e A

100 200 200 400

1
Primal equations solved without i Primal equations solved with
source term : source term

L4

Figure 3.6: Brute Force Method Overview

3.4 Brute Force method assessment

The geometry used to evaluate the aforementioned method, is a compressor stator,
designed in the Technical University of Berlin (TUB) in Germany. The design is
based on a representative outlet guide vane (OGV) of modern jet engines and is
shown in figure )
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(a) (b)

Figure 3.7: Compressor OGV designed at the Chair of Aero Engines of TUB.(a) Photo
of rig test (b) 3D shape

The computational mesh around the stator was created using the Rolls-Royce
in-house tool PADRAM (PArametric Design and Rapid Meshing [23]. The resulting
body-fitted mesh has around 2 - 10° nodes and is a combination of an O-type grid

around the blade together with four H-type grids for the rest of the domain. A
section of the grid is shown in figure |3.8

Figure 3.8: Mesh around compressor OGV at midspan section.
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The objective function of interest is the total pressure losses between the inlet and
outlet of the CFD domain, defined by the pressure loss coefficient

w = Dt inlet — Pt,outlet (3.38)

Dt,inlet

Two cases are simulated using this geometry. The OGV is first subjected to flow
with inlet flow angle of 46° which is 4° greater than its design case. In what
follows, the case will be referred as +4° case’. For this flow, the primal problem is
converging normally, without oscillations. The adjoint problem is also converging
and the sensitivity map can be derived. In order to evaluate the brute force
method, a case in which the primal flow exhibits LCO must be tested. One such
case is when the OGYV is subjected to flow with inlet flow angle by 5° higher than
its design value. In what follows, the case will be referred as '4-5° case’. Here,
the primal problem is exhibiting LCO and the adjoint problem is thus diverging.
The brute force method is then introduced in the second case to help the adjoint
convergence.

As there are no available data to validate the results of the +5° case, the code is
validated against the +4° case.
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Study case: 1-4° off-design

Primal problem

At first the vane was subjected in airflow of 4° higher than its design case. For
this case, both the primal and adjoint problem converge without the need of the
source term. The Root-mean-squared residual (RMS) of the primal and adjoint
equations is shown in figures and respectively.

Residual

-15 F

-16 F

-17

] 100 200 300 400 500 B0O 700 800
iterations

Figure 3.9: Case +4. RMS residual of the primal equations without source term.

5.5}

fAdjoint Residual

-7.5

0 50 100 150 200 250 300 350 400
iterations

Figure 3.10: Case +4. RMS residual of the adjoint equations without source term.

The first step of the method is to compute the mean value of an oscillating CFD
solution based on eq. [3.34f Assuming that M is the maximum number of
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iterations that the solver is running set by the user in the beginning of the
simulation and N is the amount of iterations used to derive the mean flow
solution. For the parametric study, the N value was set to 5% M, which means
that the mean value will be computed for the last 5%M iterations. Next, the
number was increased to 10%, 15%, 20% and 25% M to see how the average mean
solution changes. By increasing the iterations to 25%M, the average mean
solution only changes for about 1% which is considered to be small. For this
reason, the final value of N was set to 20%M, which for this problem is 80
iterations.

N (%omax iterations) | Delta % from previous
5% -
10% 6.8%
15% 4.3%
20% 2.1%
25% 1.1%

Table 3.1: Change of the mean flow solution with respect to the number of samples-
flow solutions being averaged.

Second step is to derive the parameter 7 from the equation[3.36] As stated earlier,
it is a parameter with units of time and its value is derived after a parametric
study, based on how much the RMS residual of the pirmal equations including
the source term, changes. The case used for the parametric study is the +4°
case, where the value of 7 was set to 3,5,7 and 10. The RMS residual of the
primal equations after several runs, is shown in figure [3.11] The chosen value
for 7 is 7 = 7, because for numbers higher than 7, the residual doesn’t change
significantly.

wononon
o oW

oA oA A
=

Residual
e
=

0 100 200 300 400 500 B0 o0 800
iterations

Figure 3.11: Parametric study to derive T constant. RMS residual of primal equations
including the source term. Purple: T = 3, Green: 7 = 5, Blue: T = 7, Brown: 7 = 10
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After choosing 7 = 7 the +4° case is simulated with the new solver. A comparison
of the RMS residual of the primal equations with and without the source term is
shown in figure (3.12

Solver with Brute Force Method ——
Mormal Solver ——

Rezidual

0 100 200 300 400 o] B0 700 800
iterations

Figure 3.12: Case +4. Comparison of primal equations’ convergence with and without
source term. Green - without source term. Blue - with source term.

For M = 800 max iterations set by the user, one can see the source term being
switched on after the first 400 iterations. Afterwards, the equations continue to
be solved for another 400. During the first 400 iterations, the residual was having
some small oscillations, although the mean value was reducing with time. After
the introduction of the source term, the oscillations vanish and the equations
converge in a faster rate. It is important to mention that the source term tends to
zero as the simulation goes on, because the solution approaches the mean value.

The final solution of the flow variables is shown in figures [3.13H3.16
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xvelocity

Figure 3.13: Case +4. Isoareas of the mean x-velocity field. mid-span section on xy
axis.

yvelocity
r Max

Figure 3.14: Case +4. Isoareas of the mean y-velocity field. 2D slice on xy axis.

zvelocity

Max

e

Min

Figure 3.15: Case +4. Isoareas of the mean z-velocity field. 2D slice on xy axis.
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pressure

Figure 3.16: Case +4. Isoareas of the mean pressure field. 2D slice on xy axis.

The source term at the end of the simulation is close to zero for all equations.
The highest divergence of the term is found in the x-velocity, close to the trailing
edge of the vane where the highest unsteadiness of the flow exists. However the
value is still very low in the order of 107!, The source term of the x-momentum
equation is shown in figure [3.17]

source fer
7.01e-10

Figure 3.17: Case +4. Isoareas of the source term by the end of the simulation.

Using this solution of the primal problem, the adjoint system is solved and the
adjoint solution is used to compute the sensitivities of the objective function|3.38,
The sensitivities are computeq using the equation The source term needs
to be added to the last term g—;; of the equation as

The sensitivity map is shown in figure [3.18§|
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Figure 3.18: Case+4 sensitivity derivatives.

The objective function is the total pressure loss coefficient and the map shows
which areas need to be reshaped in order to reduce the pressure losses. Red
colour indicates areas that need to be pushed inwards, while blue areas need to
be pulled outwards.
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Study case: 1-5° off-design

Primal problem

As already mentioned in the beginning of this section, the second case to be
studied is the +5° off-design case of the same compressor stator. The results
are compared with the ones for the +4° case in order to assess the brute force
method. In this case, the primal flow solution exhibits limit cycle oscillations
and although the solution doesn’t change significantly when compared to the +4°
case, the adjoint solver is unable to converge. The RMS residual of the primal
flow equations and the adjoint equations, without the source term, are shown in

figures [3.19/and [3.20]

Residual
&
o

-10,5 F

0 100 200 300 400 500 EOO
iterations

Figure 3.19: Case +5. RMS residual of the primal equations without source term.
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adjoint Residual
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Figure 3.20: Case +5. RMS residual of the adjoint equations without source term.

In order to evaluate the brute force method, the primal problem is simulated with
the source term switched on. The RMS residual of the primal equations is shown

in figure [3.21]

-8

T
bf _force
normal solver

. Residual

-14

0 100 200 300 400 500 600 700 800
iterations

Figure 3.21: Case +5. Comparison of primal equations’ convergence of the solver with
and without source term. Green - without source term. Blue - with source term.

The green line shows the residual without using the source term and the blue
one is after the introduction of the term. At 320 iterations the mean value of the
flow starts to be computed. After 400 iterations, when the solution is already
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oscillating for about 3 periods, the source term is switched on. The solution
now starts to converge without any oscillations and by the end of the simulation,
the RMS residual of the primal equations has dropped 9 orders of magnitude
and reached a value of about 107! compared to the initial equations without the
source term, where the residual dropped only one order of magnitude down to
1071 The mean value and subsequently the final solution of the flow variables
is shown in figures|3.22

xvelocity

5 Max

Figure 3.22: Case +5. Isoareas of the mean x-velocity field. 2D slice on xy axis.

yvelocity

Max

Figure 3.23: Case +5. Isoareas of the mean y-velocity field. 2D slice on xy axis.
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Figure 3.24: Case +5. Isoareas of the mean z-velocity field. 2D slice on xy axis.

pressure

Figure 3.25: Case +5. Isoareas of the mean pressure field. 2D slice on xy axis.

Isoareas of the source term are shown in figure [3.26]

Figure 3.26: Case +5. Isoareas of the source term.

Again here, the source term is higher on the suction side of the blade, towards the
trailing edge, where the highest unsteadiness of the flow due to separation can be
found.
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Adjoint Problem and Sensitivity Calculation

After the computation of the primal fields, the adjoint system is solved using the
fully converged primal solution. The RMS residual of the adjoint equations with
the source term is shown in figure 3.27]

Adjoint Residual

0 50 100 150 200 250
iterations

Figure 3.27: Case +5°. RMS residual of the adjoint equations with the source term.

One can see that the equations are now converging and after around 70
iterations the RMS residual stabilizes. Comparing the residual with the one in
figure it appears that the introduction of the source term has contributed to
the convergence of the adjoint equations even for 2.5 orders of magnitude which
proves how sensitive is the adjoint system to the nature of the primal solution
given.

Going forward, the adjoint solution is used to compute the sensitivities of the
objective function The sensitivities are calculated the same way as for the
+4° case. The isoareas of the sensitivities is shown in figure [3.28]
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Figure 3.28: Case+5 sensitivity derivatives.

As observed, the values of the sensitivities are quite low, very close to zero
throughout the whole domain. One reason why the sensitivities are low is that,
despite the adjoint equations converging, the residual has not achieved deep
convergence. Looking at the stabilized residual one can see that it dropped 2.5
orders of magnitude down to 10~7 which is still higher than the primal residual
which dropped 9 orders of magnitude down to 104,

However the most important factor in such a sensitivity map is the sign of the
sensitivities rather than the absolute number. To examine that, a comparison
with the sensitivity map of the +4°, converged case has been done. The
expectation is that the two cases would give similar pattern when it comes to the
sensitivity map. Comparing the map with figure [3.18| one can see that the
direction of the sensitivities on the stator is comparable and for the 45° case the
sensitivities appear to have the expected sign.

In order to validate the method, the next step would be to use the sensitivity
map and perform at least one optimization step. This would show if the objective
function is actually reducing which would mean that the direction of the
sensitivities is correct. However, this is currently out of the scope of this work.
This work has set the ground for further analysis on the adjoint convergence by
introducing and testing the brute force method in two cases.
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Chapter 4

Programming and Parallelization of
a Flow Solver and the Continuous
Adjoint Method using the Ghost-Cell
Method. Applications in

Aerodynamic Shape Optimization.

The second part of the thesis was conducted at the Parallel CFD & Optimization
Unit of the NTUA on an in-house ghost-cell flow solver of inviscid flows, to be
extended to viscous flows. The purpose is to apply methods that improve the
speed of the software and additionally, develop the continuous adjoint method in
order for the software to be further used in aerodynamic shape optimization. It is
a 2D steady CFD solver which uses cartesian grids and the ghost cell method to
apply the boundary conditions on the geometry walls. A cartesian grid consists
of only horizontal and vertical lines as shown in figure (4.1
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Figure 4.1: Cartesian grid around an airfoil

One can see that the form of the mesh is independent of the geometry it
surrounds, as the boundary of the geometry intersects with the computational
cells arbitrarily. The biggest benefit of cartesian grids can be seen when
simulating flow around moving geometries. In such cases, if the grid is
body-fitted, then at every time-iteration, while the geometry is moving, a new
mesh must be created in order to follow the moving boundary. However if a
cartesian, non-body-fitted grid is used, then it remains unchanged throughout
the simulation. The main drawback comes form the fact that cartesian grids are
not body-fitted, which means that the grid nodes are not attached to the solid
boundary. In this case, imposing boundary conditions is not a straightforward
process and has to be done carefully, in order not to violate the physical laws.
Throughout the years, a number of techniques has been developed in order to
impose boundary conditions on a non body-fitted mesh. All these methods are
called "Immersed Boundary Methods" (IBM) [40], a term inspired from the fact
that the geometry looks as if it is immersed into the mesh.

Immersed Boundary Methods - IBM

The Immersed Boundary Methods are generally divided in two categories, the
continuous methods and the discrete ones [40]. Their main purpose is to simulate
the effect of the solid boundary on the fluid flow, either by changing the governing
equations directly, or by interfering with the discretization method. In particular,
within the continuous methods, a new term f is introduced in the equations to
simulate the force exerted from the solid to the fluid. The force becomes bigger
as the flow approaches the boundary and fades out as the flow goes away from it.
For a steady inviscid flow of a compressible fluid around a solid body, the Euler
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equations of a ompressible fluid apply [13],

V.pu=0
. (4.1)
V.-pui+ Vp=0
The force term is added to the RHS of the momentum equations as
V.pii+Vp=f 4.2)

The equations are then discretized and solved on the nodes or control volumes
of the cartesian grid. The continuous methods are mainly used in biology where
the geometrical boundaries are elastic e.g. the surface of the heart, while they
are not so commonly used for airfoils which have solid boundaries. The first one
to introduce the IBM methods was C. Peskin [34] while studying the blood flow
inside the human heart. One drawback of the continuous methods is that they
demand the equations to be solved within the entire solid geometry, which adds
to the computational cost without providing any additional information, as the
solution inside the solid geometry has no physical meaning.

In the discrete methods, the governing equations are first discretized and then
modified in the neighbourhood of the solid boundary to account for its effect on the
fluid. In contrast to the continuous methods, here the equations are only solved
within the fluid domain [30]. The two main discrete methods are the Cut-Cell
Method and the Ghost-Cell Method; in the first one, the parts of the cell which
are inside the body are trimmed and the equations are solved only within the
fluid portion, while in the second one, an additional equation is introduced and
solved within the solid body to simulate the force on the fluid. This thesis deals
with the Ghost-Cell Method which will further be analyzed in the next section
and from now on will be referred to as GC. The existing software only handles
inviscid flows, so initially, the viscous terms will be added to the equations. To
continue, the software will be parallelised using the MPI protocol. Finally, the
continuous adjoint method will be derived from the primal problem, in order to
perform aerodynamic shape optimization. The optimisation software will be tested
on two airfoils, which will be optimised for maximum lift.

4.1 2D Steady Viscous Flows

In this section, the governing equations used to simulate viscous flows are
presented. As the software was initially developed to handle steady 2D inviscid
flows [12] so the first task is to modify the equations to simulate viscous flows.
At first, the process of developing a cartesian grid is described and afterwards
the 2D Navier - Stokes equations are presented and discretized within the
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computational domain. The application of the boundary conditions based on the
Ghost-Cell Method is shown. In the next sections, the software is validated
against the analytical solution of the flow over a flat plate and some additional
experimental data on an airfoil.

Cartesian Mesh Generation

The mesh generation process presented here was already part of the software and
was developed by Samouchos [44]. The generation of a cartesian grid starts by
dividing the computational domain in four cells of equal volume, which connect
on the barycenter of the initial domain. Each one of the cells is again divided in
four cells of equal volume and the process continues until the maximum volume
is less than the maximum accepted volume defined by the user [44]. At this stage,
the mesh quality is not good, and so a process of gradual refinement is applied,
in order to achieve higher solution accuracy close to the solid boundary. The
refinement is done based on a sigmoid function [4.2] which defines the volume V;
of each cell as a function of its distance from the solid boundary.

I"';me

I"'rrriu'n

i -
r

'D miix

Figure 4.2: Definition of the volume cell V as a function of the distance from the solid
boundary.

By the end of this process, the mesh is of good quality and can provide the highest
accuracy near the boundary. An example of a cartesian refined mesh around an
airfoil is shown in figure
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Figure 4.3: Refined cartesian grid around an airfoil.

2D Steady Navier-Stokes Equations and

Discretization on Finite Volumes

As mentioned before, the software was only able to simulate inviscid flows, so as
a first step, the viscous terms were added to the equations. Here, the final 2D
Navier-Stokes equations are presented together with their discretization on the
computational domain and afterwards the software is validated.

Based on the analysis made on chapter 2, equation for 2D steady viscous flow
of compressible fluids is applied here

V- F(O) 4V Fe(0) =0 @.3)
where
pi 0
ﬁinv _ pziu + pix : ﬁvisc — 7__} 7 4.4)
pUU + pey, 2
pUE + pU TkUk + Qk

where 7, = [Tk1, The, Tkg]T is computed based on eq. and from Fourier’s law of
heat conduction ¢ = kVT.

Equations [4.3|are discretized in finite volumes and the values of the flow variables
are saved at the center of the volumes (cell-centered method). This means that
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the finite volumes () are the computational cells of the mesh.

OFjw  OFy
S dQ) = 4.5

where i = 1, 2, 3,4 equations and k£ = 1, 2 directions. Twice repeated indices imply
summation according to Einstein’s convention. Using the Green-Gauss theorem,
the spatial integral becomes surface around the surface S of a cell

/ (F}r — Ey*)ngdS = 0 (4.6)
S

where n; is the vector vertical to each edge of the cell. Assuming that the flux
field f is uniform on every edge, the term is discretized

/ ( ii]zw . ’Lz;gzsc)nkds _ Z( ii]zw . iz];isc)niAsj 4.7)
S

j=1

where n is the number of edges attached to the fluid.

The vector ]3““’ is again computed based on Roe’s scheme [42] as
RPQ; L =p Qs LosipL 7w

where F is the inviscid flux of the current cell and F is the flux of the i — th
neighbour of the cell as shown in figure

Figure 4.4: Inviscid fluxes on the common edge between cells P and Q).

Vectors Uy, Ur are the flow variables of () and P as shown in figure
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Figure 4.5: Flow variables on the common edge between cells P and ().

The accuracy of the discretization scheme depends on how the flow variables are
interpolated on the common edge. For first-order accuracy, the values are simply
copied on the edge as

Ur=U
e 4.9)
UL =Ug
For second order accuracy, the Taylor expansion is used as
ou ou
UR:UP+ (—) Ax—l— (—) Ay (4.10]
or ) p oy ) p

where Az = 2y — xp and Ay = y; — yp with f being the barcenter of the common

edge. The vector U}, is computed accordingly using the Uy values. The spatial
derivatives g—g,%—g of P are computed using the values U of all the neighbours of

P as described below. From Taylor expansion

L - 9Up oUp
= A A 4.11
UQ Up + o7 x + 8y Y ( )

where Az = g — xp and Ay = yg — yp. Setting AU = Uy — Up the equation
becomes

OUp Ny + 9P Ny AT — 0 (4.12)
ox dy

There are two cases that might appear; one cell sharing an edge with a cell of the
same size, or sharing an edge with two smaller cells. On the first case, shown in
figure the derivatives are computed using central finite difference scheme as

dU Uo — Un
~ == -3 4.1
(dx)P 2Az (4.13)

49



e 0O

AX

Figure 4.6: Finite difference scheme for cells with the same volume.

On the second case, where the cell shares an edge with two smaller cells as

shown in figure the mean value of the flow variables of the smaller cells is
first computed and then the flow variables are transferred to the common edge as

dU Ugm — Ur
—_— = — 4.14
< dx ) P 0.75Ax ( )

Q
R P I Qm
. ) s
0.75Ax
le

Figure 4.7: Finite difference scheme for cells with different volume.

The matrix |/~1| from Roe’s scheme eq. (4.8) is computed in the same way as

the Jacobian matrix A = (A,,A4,) = (agggw, az;gw) [43] using the Roe averaged

primitive variables which are [41]:

(4.15)

Oy
Il
S v ™

- x VOEWS s 1/ pBWSY
h e d - — .
where p = \/(prpr) and Qo34 [JE i/ oF
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The stress tensor of eq. is calculated based on eq. described in Section
2.1.

Flow Solver

Assuming U* is the exact flow solution, which satisfies the equations
R(U*) =0 (4.16)

where , A
nv V1SC
OFY  OFy

R’ pu—
al’k (%k

(4.17)

and also U is the current solution. In an iterative method, the solution U is getting
updated after each iteration until it reaches U*. This means that U differs from
U~ by AU.

U =U + AU (4.18)

Equation becomes o B
R(U+AU)=0 (4.19)

And using Taylor expansion around U the equation becomes

—

AU = —R(U) (4.20)

Q|
Qil| =L

Equation is called delta formulation [7] because in each iteration, instead of
computing the value of the flow variables U, the solver computes the correction
AU. Solving the system using delta formulation makes it in general more stable.

From equations the term ﬁp can be derived as

nb

. | e e
B = Y 5 4 5% = 5lAlpg(U — 7| a5 @.21)
=1

The term % consists of the diagonal entries

b _ ORe

b= 50 (4.22)
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and the off-diagonal entries

OR

ODpq = a_UZ (4.23)
from all its neighbours. From eq.

ORp 1 -

a_UP =5 > (A A AsY: (4.24)
P i=1
1 y
3513 = S(A— | An®ase (4.25)
Qi

For the rest of the gﬁv’; , where W are all the cells apart from the neighbours of P,

the derivative is zero. Finally, for n cells, the system becomes

Dy ... ODy,| [|AU; Ry
S Pl=— (4.26)

The system is solved using the Jacobi method. The correction of the flow

variables is
nb

AUp=—D""(R+ ) (0Dg,AlUy,)) (4.27)

i=1

and the solution after each iteration is updated based on (4.18).

4.2 Ghost-Cell Boundary Conditions

In order to solve the equations, the boundary conditions must be imposed. As
already mentioned in the beginning of the chapter, the boundary conditions on
the solid walls will be imposed using the Ghost-Cell Method. For viscous flow over
the boundary of a static body, the boundary condition to be satisfied is that the
velocity on the wall needs to be zero.

u=0 (4.28)

The main idea of the method is to compute values for the flow velocity within
an area of the solid body. The velocity within this area will then counteract the
effect of the fluid velocity, so that finally the velocity right on the boundary will
be zero. The cells within the solid body that get value for the velocity, are called
Ghost-Cells [31]. For the rest of the solid cells, the governing equations are not
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being solved so the flow variables don’t need to be saved. An example of ghost-cells
inside a cylinder are shown in figure 4.8

Figure 4.8: Ghost-Cells within solid body. Dark blue: Ghost-Cells, Light blue:Solid
cells

The solid body is within the circle, while the fluid is outside. The ghost-cells
are indicated with dark blue colour and this is where the flow velocity should be
computed. In the simplest case, where the solid boundary is right on top of a

mesh line, as shown in figure then the velocity at the solid cells is set to be
exactly the opposite of that of the fluid.

vg=5m/s

N

vp=—-5m/s

Figure 4.9: Flow velocity on solid cells for the ghost-cell method.
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Initially, the velocity of the fluid cell K is copied to the solid cell P and then is
getting reversed. By doing this, the velocity in the middle of the distance between
K and P i.e. on the boundary, is zero. In the general case, the grid lines line up
with the solid boundary as shown in figure 4.10|

PN L

Figure 4.10: Grid line that does not line up with the solid boundary.

In order to copy the flow velocity inside the ghost cells, a new differential equation
is solved within the solid cells as described below. The computational cost of
solving one such equation is negligible compared to the solution of the governing
equations. The equation demands that the velocity remains unchanged over the
direction vertical to the solid boundary 77 as shown in figure The direction
of the vector 7 looks from the fluid towards the solid and its magnitude is

o0 o,
ox’ Oy

i = ( (4.29)

where ® is the distance of the cells from the boundary i.e. the level-set field, as
shown in figure The final equation which transfers the velocity inside the

ghost cells is
ou; ~ oU; 0®

8t + 85Ek a(L'k N

By solving equation the flow variables on the ghost cells are updated after
each iteration from U to U;**.

0 (4.30)

ouy oo

Dy, Oz (4.31)

Urtt = U — At
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By solving the equation, the flow velocity is copied at the ghost cells and afterwards
is getting reversed. It is proven that the correction on the velocity vector inside
the ghost cells is right even when the equation has not fully converged. It
appears that solving equation for 15 iterations provides accurate results.
The pseudo-time step is
Ax A
At = min(—, —y) (4.32)
Ny Ny
After the flow variables are copied to the ghost cells, the velocity vector is reversed

as . .
Us =—-Up (4.33)

where [’ indicates fluid cells and S indicates solid cells.

4.2.1 Interpolation of flow variables on the solid boundary

As the flow variables are not available directly on the solid boundary, it is
sometimes needed to interpolate them there, in order to compute other variables
such as lift coefficient or skin-friction coefficient. In this section, the method to
interpolate variables from the cells surrounding the boundary, on top of the solid
wall is presented.

A variable ® is interpolated at a geometry node k as

nb
O = D, (4.34)
=0

where nb are the grid nodes in the vicinity of k. Using the Dirac equation Pht is
written as

nb
Dy = / DS ~ Z O;0A0 (4.35)
Q i=0

And comparing and the weights are w; = 0A(). For the numerical
approximation of the Dirac function, the following equation is used [44]

2

1 _1r2
2 22 (4.36)

~——¢
2w dr?
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4.3 2D Steady Viscous Solver Validation

4.3.1 Flow over a flat plate

The first case used to validate the software is the flow over a flat plate where
the results can be verified when compared with the analytical solution of the
skin-friction coefficient, developed by Blasius [8]. Figure[4.11|shows the boundary
layer over a flat plate when exposed to a flow with U, velocity.

(6]

Figure 4.11: Boundary layer over a flat plate.

Figure shows the cartesian mesh created around the flat plate with negligible
thickness. The mesh consists of 36000 cells.
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Figure 4.12: Cartesian mesh around a flat plate.
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The plate is horizontal and the inlet flow angle is zero. The total pressure at the
inlet of the domain is py;,, = 1.03bar and the total temperature T};,, = 300K ,while
the static pressure on the outlet is p,,,; = 1.02bar. The Reynolds number of the
flow is Re = 1093, based on the length of the plate, and the Mach number is
Ma = 0.086. On the upper side of the computational domain and far away from
the boundary layer so it doesn’t affect the flow, the Neumann boundary condition
of the velocity is applied

0

9% _ 0 (4.37)

dy
The convergence of the governing equations and the velocity magnitude field is

shown in figures -
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Figure 4.13: Flow over a flat plate. Convergence of governing equations.
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Figure 4.14: Flow over a flat plate. Velocity Magnitude.
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To avoid the inlet boundary conditions interacting with the boundary conditions
on the solid boundary, the plate is considered to start from the position x =
0.3 and not from the beginning of the domain. To validate the solution, the
skin-friction coefficient of the plate is calculated as

1)
Cr = %pd—égo (4.38)

As there are no values for the flow variables on the boundary of the plate, the term
Z—Z needs to be interpolated to the geometry nodes.The interpolation of the flow
variables at the solid boundary is described on Section In this case, the
flow can be considered incompressible (Mach = 0.086) so the Blasius analytical

expression for the skin-friction coefficient can be used for comparison

0.664
Cr = (4.39)

vV Re,

Figure shows the analytical and computed C' distribution w.r.t. Re,.
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Figure 4.15: Flow over a flat plate. Skin friction coefficient and comparison with the
analytical solution.

One can see that the CFD solution is aligned with the analytical one and the
biggest difference between the two is less than 0.05.
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4.3.2 Flow around NACAO0012 airfoil

The second application to verify the software is the flow around a NACA0012 airfoil
with a chord line of ¢ = 1m. The infinite conditions of the flow have Reynolds
number of e = 1000, Ma = 0.5 and with zero angle of attack. The mesh around
the airfoil consists of about 70000 cells, shown in figure [4.16]
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Figure 4.16: Flow around N AC'A0012 airfoil. Part of the cartesian mesh.

The convergence of the continuity, x-momentum, y-momentum and energy
equations, as well as the velocity magnitude are shown in figures 4.19
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Figure 4.17: Flow around NACAOO012 airfoil. Convergence of the flow equations.
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Figure 4.18: Flow around NACAO0O012 airfoil. Velocity magnitude.

0.038 0.039
X

Figure 4.19: Flow around NACAO0O012 airfoil. Velocity vector inside and outside of the
Sfluid.

Near the boundary and inside the solid geometry one can see the ghost cells having
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a non-zero velocity value. To evaluate the solution, the pressure coefficient of the
airfoil is calculated and compared with data from the literature [47]. Again the
method described in subsection 4.3.1.1 is used to interpolate the flow pressure
on the boundary. Figure[4.20compares the two values for the pressure coefficient

1.2 T T

cpCompdtationaI [ ]
cpReference m

Cp

0.6 1 1 1 1

Figure 4.20: Flow around NACAO0O012 airfoil. Calculated pressure coefficient (purple
line) compared with literature data (blue line).

The two curves appear to have a slight difference possibly because of the
interpolation of the pressure on the boundary. The results are still valid though
and prove that the solver is working correctly.
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4.4 Parallelisation of CFD solver

In this section of the thesis, the process of making the software parallel is
described. Simulating a flow and solving the governing equations can be a time
consuming process. Especially if the computational domain is 3D and includes a
complex geometry, such a simulation could need days or even weeks to be
finished. For this reason, parallel software which runs simultaneously in various
cores is becoming more and more popular within the CFD community.

For the purposes of this thesis, the distributed memory system (cluster) of the
Parallel CFD & Optimization Unit of NTUA was used. Within a cluster there are
different computational nodes connected to each other, and their function is
controlled by a specific software. Every node has its own memory, which is
shared by all its processors. This means that the system has distributed
memory for each node, but shared memory for each local processor.

4.4.1 Communication between processors - MPI Protocol

The idea of parallel computing is that the processors are working and executing
tasks independently. However, at times during the process, they need to
communicate in order to exchange information. For this reason, for
programming on shared and distributed memory systems, there are special
software developed to control and coordinate the tasks on each processor.
Herein, the MPI protocol is used.

MPI works based on the idea of Master & Workers. From the available
processors, one is considered to be the master and is responsible for distributing
tasks and information. Usually the Master doesn’t execute any computations.
The MPI protocol allows point-to-point and multipoint communications.
Point-to-point communications are exclusively between two processors. This is
achieved with two basic commands MPI SEND and MPI _RECV. The
message which is to be send has a unique identifier, known by both the sender
and the receiver. Multipoint communication, on the other hand, is when a
processor needs to send the same message to all the other processors. This is
achieved by the command M PI_BCAST.

4.4.2 Mesh Partitioning in Parallel Computing

The generation of the computational mesh is executed only on a single processor,
to be referred to as the Master. After the mesh is finished, the mesh nodes are
distributed to the Workers, where the flow equations will be solved. Each Worker
is responsible for only a part of the mesh, and the parts are interconnected. An
example of how the mesh is divided in four processors is shown in figure [4.21]
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Figure 4.21: Division of the mesh in four processors.

The partitioning of the mesh in smaller parts is not an easy process. To make it
as efficient as possible, each part of the mesh needs to contain the same amount
of cells, which means that the processors are responsible for the same amount of
tasks to execute. Second requirement is that the processors need to
communicate the least possible times. Communication is time consuming and if
they are too many, it could take more time to communicate than actually solving
the equations. Herein, for the partitioning of the mesh the open software
METIS is used. At the end, each processor is assigned to one partition,
where it will solve the flow equations.

4.4.3 Method and Frequency of Communication

As already described in chapter 4.1, in order to solve the equations at a cell, the
values of the flow variables at all neighbouring cells are needed. However, as one
processor only sees a part of the mesh, for the outer cells there is no information
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about the flow variables of the neighbours, as they belong to a different partition.
For this reason, communication zones are created as shown in figure [4.22

05

Figure 4.22: Communication zones between processors.

Each processor is solving the flow equations within one partition and gets
information for the flow variables of the cells within the communication zone.
After every solving iteration, each processor communicates with its neighbouring
processor to exchange information about the cells in the communication zone.
This kind of communication is done using the commands MPI_SEND and

MPI_RECYV.

4.4.4 Parallel Software Applications

The software is tested using different numbers of processors. For the assessment
of the benefit of the parallelisation, two metrics were used; the parallel speed-up
and the efficiency.

Parallel speed-up shows how much faster the software becomes with respect to
the time of the serial execution and is given by

=T,

(4.40)
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where 75 is the time of a serial execution and 7'» the time of a parallel execution.
The efficiency of the software shows how much does one processor contribute to
the reduction of the overall execution time. The following equation is used for the
calculation

E=S/p (4.41)

where p is the number of processors used. Based on Amdahl’s law [5], the parallel
acceleration increases as the available processors increase, but it is always limited
from the part of the software that cannot be parallelised. In the ideal case, where
the whole software can be parallelised, the decrease in computational time would
be proportional to the increase in the number of processors, i.e. for n processors
the execution time would be n times smaller than the serial execution.

Here, for the assessment of the software, a simple case of a horizontal flow around
an airfoil is used with three different sizes of the mesh. The first mesh consists of
30000 cells, the second one of 60000 cells and the last one of 100000 cells. An
example of the coarser mesh is shown in figure
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Figure 4.23: Mesh of 30000 cells around an airfoil for the assessment of the parallel
software.

The flow is solved using an increasing number of processors and afterwards the
speed-up and the efficiency are computed. Figure shows the execution time
w.r.t the number of processors.
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Figure 4.24: Execution time w.r.t. number of processors.

As the number increases, the benefit in execution time becomes smaller. This is
because from one point on, the communications between the partitions become
too many, and the addition of more processors adds to the communication burden.
Figures [4.25 and [4.26| show the speed-up and the efficiency accordingly.
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Figure 4.25: Speed-up of the software for increasing number of processors.
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Figure 4.26: Efficiency of the software from the addition of extra processors.

One can see that with the addition of extra processors, the variables diverge from
the ideal curve. However, by using a finer mesh, the parallel speed-up approaches
the ideal curve. This is because in a finer mesh, the percentage of the cells in the
communication zones is lower compared to a coarser mesh.
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4.5 The Continuous Adjoint Method for

Aerodynamic Shape Optimization

In this section, the continuous adjoint method is developed for the 2D steady
inviscid flow. The primal equations are the Euler equations, i.e. equations [4.3
without the viscous terms. The adjoint method is implemented in the software in
order to perform aerodynamic shape optimization. At first, the adjoint problem is
derived from the primal equations and the ghost cell equation is also modified in
order to apply the adjoint boundary conditions. Finally, the software is used to
perform shape optimization of two airfoils with the objective to maximize the lift
force exerted on them using different angles of attack.

The shape of the airfoils is derived using the Bezier curves and the coordinates
of the Bezier points are the design variables of the optimization problem. The
derivative of the objective function w.r.t the design variables is derived using the
adjoint method, and afterwards, the steepest descent method is used to perform
the optimization cycles.

4.5.1 Objective Function

The objective function for the optimization problems throughout this part of the
thesis is the lift force over an airfoil,

F—/ pnrdS (4.42)
Sw

where Sy, the surface of the airfoil, p the static pressure, 7 the unit vector in the
direction of the lift and 7 the unit vector vertical to the airfoil showing outwards.
The design variables are updated using the steepest descent method

oF
prew = pold _p—_ 4.43

where 7 is a coeflicient which defines the step of the method.

4.5.2 Continuous Adjoint Method

To formulate the adjoint method, an augmented function is defined

Foug = F + / ; R;d (2 (4.44)
2
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The derivative of this function w.r.t the design variables is the same as the
derivative of [, as the additional term is zero.

6Fuy _ OF 0

5. ob. 5b WR dg? (4.45)

and using the Leibnitz theorem the equation becomes

5Faug . oF Tk .
5. b, /Q dQ /WR —ndS (4.46)

Each term of eq. (4.46) will be analysed separately

5F ap 0
Tl = — =

ABC SD

The first term refers to the variation of the flow variables on the boundary of
the airfoil and contributes to the adjoint boundary conditions. The second term
includes the variation of the geometric characteristics of the solid w.r.t the design
variables and contributes to the sensitivity derivatives. At this point is important
to note again that the flow variables are not available on the boundary, so in
order to calculate the surface integrals, interpolation of the values should be
performed, as described in section 4.3.1.1. The variables to be interpolated are
the conservative flow variables and their spatial derivatives. The derivatives of the
geometric parameters is calculated analytically from the Bezier curve. The second
integral of equation becomes

o (¥, OR; 0 (Ofik
T2:/ dQ / RdQ—i—/\I/ —2dQ :/\Ifl—( >dQ
(4.47)
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The last equality is valid because the flow equations are satisfied R; = 0. Going
further

_ 9 (o Ofi [ 0% Ofu
T2—/ o, (WZ au, )dQ ds?

8fzk ~ afzk aUJ
2
/ indS = / o (an o, ) ¢
o fzk ~ _awl B 8UJ
_ / v oo de /Q ( oy Ak | 5, 40 (4.48)
T3 FXE

Computing the term g[b] is a very expensive process and needs to be avoided. To

achieve that, its multiplier is set to zero, and this introduces the field adjoint
equation (FAE). The T3 term is divided in the surface terms on the farfield
boundaries of the domain and the ones on the solid walls.

T3 = /w O ApdS = / ; O ApdS
ab SoocUSw

8b
_ afzk ~ afzk ~
_/5 v, ab de—l—/ v, 8b ngdS (4.49)
ABC T4

Term T4 is further expanded to include the geometric values on the boundary

fzk ~ / afzk 5$m ~
T4 = 2 v,
/ TR M Far

- ) . 5nk Ofik 0xm,
—/Swyv/zéT(fzk i) dS /S v; fzk b /SMWZE% n,dS
1 R 6nk afzk 6$m o
. Yo — - v, — U=
/Sw 25— (PN dS+/Sw . (pny) dS / fm b /Sw 95, ob
5nk Ofir 0T
/Sw s E i) dS = /S Vi gy 5b /Sw Vi Oz, Ob,,

/ Vit1 55 ﬁkds-i-/ Upy1 p %ds / Y fir Zk / v ﬂ - N dS
Sw Sw Sw Sw

ox,, 0b,
ABC SD SD )
(4.50)

After the analysis, the terms remaining, belong in three categories, as discussed
in the next sections.
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4.5.2.1 Field adjoint equations (FAE)

The equations that give the adjoint field are

ow; o,

et A =0 —A —2 =0
8mk ik <~ Jik 8xk
o
—AT — =9 4.51
A 8xk ( )

and it’s worth mentioning that are linear equations. The adjoint inviscid flow

= PQi
vector f4 ~ is calculated as

~po; 1 - o Liirer w
Jat = S ATTGE - ATIEO) — J|AT|(E - ) (4.52)

4.5.3 Sensitivity derivatives (SD)

The sensitivity derivatives are computed as

5Faug oxy, . O,
_ [ d ALY Oy p Lg
5b, /S Ry wdS = /S fkéb s+/5w R T

5 .. Ofik 0T,
v, —— 4,
+/w 3o, (i TrdS) — /Sw " 9r. oh Ny dS (4.53)

8bn,
nodes and the design variables, and for this reason, for the cells that don’t

intersect with the geometry, the term is zero. So the first term of equation (4.53),
based on the aforementioned observation, can be re-written only for the solid
wall boundaries (.5,,) as

The term ( 5&) describes the relation between the coordinates of the geometrical

0y 0Ty . Oy
W = /S“) WzR 5bn nkds + /w (Wk—‘rl p WZ flk‘) (Sb dS
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4.5.3.1 Adjoint Boundary Conditions

The adjoint boundary conditions are formed from the terms on the boundaries of
the computational domain i.e the terms noted with ABC, namely

ik op op .
ABC = /0o v, a‘zk nidS +/ Vit1 Wnkds + /Sw % NgTEdS
o afzk ~
= nde ![/kJrl nk —+ nk Tk) dS (455)
Soo

The first integral is on the outer boundaries of the domain and the second one on

. . i 8 . -
the boundary. In order to avoid computing the terms <%:, ﬁ) their multipliers

are set to zero, and so the adjoint boundary conditions are:
A. For the farfield boundaries (S.)

%
B. For the solid boundaries (S,,)

Uii1|s, Tk + N 7 = 0 (4.57)

Adjoint Ghost Cell Boundary Conditions

The adjoint boundary conditions are applied in the same way as the primal
boundary conditions. By solving an equation as the eq. the adjoint
variables are copied at the ghost cells. After the copy, the variables need to be
modified to impose the boundary condition. So, the final equation to be solved is

WS =Wy — 20 - n, — 2(7 - Py (4.58)

where k = 1,2 and ¥; | are the adjoint flow variables in the ghost cells.
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4.5.4 Aerodynamic Shape Optimization

Application 1

The first application of the optimization software is on the airfoil shown in figure
[4.27|whose shape is defined with 17 Bezier points.

0.1 e .
0.05
0
-0.05
0.1 .—.’——_—_—l——;._ I 1
0 0.2 0.4 0.6 0.8 1

Figure 4.27: Airfoil shape optimization. Initial shape.

In order to keep the length of the airfoil the same, not all the points are allowed
to move. The two points at the leading and trailing edge are fixed and the only
points able to move are points 2, 3, 4, 12, 13, 14. The mesh around the airfoil is
shown in figure m The airflow has velocity 1V = 1007 and zero angle of attack

0.3

-0.5

-0.5 o] 0.5 1 1.5

Figure 4.28: Mesh around a NAcAOO12 airfoil.

Figure [4.29] shows the convergence graphs of the adjoint equations and figures
show the adjoint fields.
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Figure 4.29: Conwergence of the adjoint equations

(c) (d)

Figure 4.30: Adjoint variables fields. a)adjoint density b)adjoint x-momentum c)adjoint
y-momentum d)adjoint energy.
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Figure (4.31) shows the comparison between the starting and the optimized
geometry.

[slsl=l=l=l=]s]=]
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o] 0l 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4.31: Comparison of initial and new geometry. 1

The initial airfoil has Lift of L;,;; = 0.0N, end the optimized one L,,; = 1529.01N.
The objective function is shown in figure 4.32]

1600 T T T T T T T T
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1

400 | 1

200 - B
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0 1 2 3 4 5 4] 7 8 9

optimization cycles

Figure 4.32: Airfoil shape optimization. Change in the objective function during
optimization.

Because the flow is inviscid, the lift force will continue to increase as the
optimization cycles continue, unless a constraint is imposed.

Application 2

The second application is on the airfoil shown in figure The shape is again
defined using 17 Bezier points.
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Figure 4.33: Airfoil shape optimization. Initial shape.

Same as before, only the points 2, 3, 4, 12, 13, 14 are allowed to move, while the
length of the airfoil remains the same. Figure shows the mesh around the
airfoil..
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Figure 4.34: Mesh around an airfoil.

The flow has velocity V' = 100" and a = 5° angle of attack. Figure shows
the convergence of the adjoint equations and figures show the adjoint flow
variables.
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Figure 4.35: Convergence of the adjoint equations.
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Figure 4.36: Adjoint variables fields. a) adjoint density, b) adjoint x-momentum, c)
adjoint y-momentum, d) adjoint energy.
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Figure 4.37) shows the comparison of the initial and the optimized geometry.
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Figure 4.37: Comparison of current and optimized.

The lift of the initial airflow is L;,; = 1239.16N, and the final L,,; = 3613.87N.
The objective function during optimization is shown in figure [4.38]
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Figure 4.38: Change in objective function during the optimization.

as before, because the objective function is increasing, the optimization stops
after 9 cycles.
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Chapter 5

Summary and Conclusions

This chapter concludes the study by summarising the key points of the work
presented herein together with the key findings. The main purpose of this work
was to contribute to the development of primal and adjoint CFD solvers for
application on aerodynamic shape optimization. For the first part of the thesis,
conducted in RRD, the in-house CFD solver HYDRA was used. The main focus of
the study was on cases where the primal equations were exhibiting limit cycle
oscillations while converging. This lead to the adjoint equations diverging, which
means that optimization for these cases was not possible. To solve this problem,
a new source term was introduced into the primal equations, which is acting as
a force, and forces the residual of the equations to converge to the mean value of
the oscillations. The adjoint problem was formulated accordingly to include this
source term. The software was tested on a case of flow around a compressor
stator vane and, indeed, eliminated the oscillations from the primal solution but
also made the adjoint equations to converge to a solution. This solution was
used to derive the sensitivity derivatives.

For the second part of the thesis, an existing software of the NTUA was used.
The software was initially able to solve inviscid flows, so as part of the thesis it
was modified to solve viscous flows as well. It was then validated against
analytical and experimental data found in the literature. Next, the program was
parallelised usign the MPI protocol, in order to make the solving process faster.
The parallel software was evaluated for its speed and efficiency in comparison to
the serial software. Finally, the adjoint problem was derived using the
continuous adjoint method. Two cases were used to evaluate the adjoint
method, by performing aerodynamic shape optimization on two different airfoils.

The key conclusions from the entire study are the following:

e By adding an appropriate source term into the primal equations, the
convergence of the primal problem can be optimized and achieve a more
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stable solution in cases of LCO.

The adjoint convergence is highly affected by the status of the primal
solution. If the second one is oscillating and not stabilised, the adjoint
problem cannot converge. The work here has proven that when the primal
solution is stable, then adjoint convergence can be achieved.

Making a software parallel improves the speed of the CFD solver
significantly. Especially for industrial solvers, parallelisation is almost
obligatory, otherwise the solving process is unsustainable. When using
finer mesh for the computational domain, the benefit of the parallel
software becomes bigger, because the communications between partitions
are smaller.

Generally, the ghost cell method imposes the boundary conditions indirectly,
which means less accurately. However, the simulations herein show that
the method can achieve very good results compared to other solvers which
use body-fitted mesh or compared with literature data, at least for laminar
flows.

It is important to mention that the work here has set the ground for further
development on both software. On HYDRA, there is a clear benefit on
making the adjoint problem to converge, when before it wasn’t possible. A
sensitivity map was derived and optimization can now be perform on a case
that couldn’t converge in the past. In the second part of the thesis, an
additional optimization software was created an added to the toolset of the
LTT/NTUA, which handles cartesian grids and can be used to perform
aerodynamic shape optimization.
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Kegpaliawo 1

ITepidnyn

H petamuyiaky) epyacia aocyoAeital Pe v avdartudn MPRIEVOVIOV Kal ouluyov
EMAUTQOV Yla Xprjon otnv agpoduvapiky) Bedtiotonoinon popeng. Xwpidetat oe duo
KUpla pépn: 1o rpwto pépog £yve otnv Rolls-Royce Deutschland pe ) xprjon tou
ermAutr) CFD, HYDRA. IIpokettat yia évav ermdutn 3A poviping OUVEKTIKIG PO1|G, O
oroiog ermAvel g eSlonoelg RANS, o ouvbuaopd pe 1o poviédo TtupBng
Spalart-Almaras, oe pn-dopnpévo mAgypa pe ) pEéBodo nenepacpevav oykev. To
Aoylopiko oe ouvbuaopo pe I dwakpitr] ouduyr) pEBodo xpnolpomoleital otnv
agpodUVAPIKY BeAtiotomnoinon pop®prig ot Blopnxavikeég  ePpaplOYES
otpoBlopnyxavov. H epyaocia aoyoAeitatr pe MePUTI®OEIS KATA TS OIOiEg 1)
OUYKA101 TOU MP®TEVOVIOG MPOBANIATOG IEPTIITIEL O TAAAVIWOOELS P€ OUVETELA TO
ouduyég poBAnua va armokAivel KAt va pnv Propouv va napaxfouv ot mapdywmyot
eualobnoiag. Ewodyetat évag 0pog 1myng ot €§l0W0ES TOU TMPRTEVOVIOG
TIPOBANNATOG £T01 MOTE va PEI®O0UV 01 TAAAVIROELS, KAl Ot GUVEXELWd O 1610G 0p0g
dragopidetatl wote va eoaxBet oto ouduyeg nmpoBAnpa. O kwdikag epappodetal ot
pOI1] YUP® AIto €va IMTePUY10 OUNITIEDTH] PE U0 S1aPOopETIKEG YWViEG PONG.

To &eutepo pépPog NG epyaociag ouvtaxbnke oto EOvikd MetooBio IToAuteyveio
Xpnoponoiloviag tov Koadika tmg MITYPB/EMII o omoiog eruAuetl 2A povipeg pogg
oc Kapleolava mAEypata pe 1w péEBodo tov Weudo-kuped®v KAl O Oroiog
ouvbuaopévog pe ) ouvexr) ouduyr peBodo xpnotpormnoteital yla v agpoduvapike)
BeAtiotonoinon popdng. Apxikd, €vag Umapxov €mAUING pong yla atpiBelg pog
Tporornotleital wote va Xepidetal Kal OUVEKTIKEG POEG KAl, OTn OUVEXELWd,
IIOTOTIOE(TAl PE TNV IIPOCOUO0I®OoT Hlag POoNng IAdve aro pia eminedn mAdka Kat
YUpe amo pwa agpotopr; NACAOO12. Ta amotedéopata ouykpivoviatr pe
BBAloypadika Oedopéva.  Zin ouvéExeld, 1o AOYIOMIKO TtapaAAnAortoleitat kat
a&lodoyeital n anodoorn tou. Z1o téAog, Sratunmveral 10 ouluyEg POBANUA Pe )
XpHon 1Ing ouvexoug ouduyoug pebOdou yla T XPron o€  AgPOOUVANIKI)
BeAtiotoroinon poppng Kat aglodoyeital kavoviag Bedtiotoroinon popdng oe dUo
81apOPETIKEG AEPOTOHEG, € CUVAPTNON KOOTOUG Tr] PEYIOTONOINoN NS Aveong.



1.1 BeAtiwon ouykAiwong ouluyoug mnpoBAnpatog
HOVIHQV pO®V
[Ma npato pépog tng epyaciag xpnotporoteitat to Aoytopiko HYDRA tng Rolls-Royce

Deutschland. To Aoytopiko ermdvet 1ig e§lo0oelg RANS yia 3A pdvijieg OUVEKTIKEG
POEG Ot NOPor)

oU Lo Lo
5+V-F’"“(U)+V~F““(U) =S5 (1.1)
ériou U = [p, pu, pv, pw, pE] eival to 81dvuopa tev cuvinpnukeov petaBAntov. Ta

daviopata porg F kar FY¢ mepllapBavouv TOUG  HN-OUVEKTIKOUG KAl
OUVEKTIKOUG OPOUG T®V £S1000E®V AVTIOTOIXA. ZUYKEKPIPIEVA

pU 0 Se
N pOU + péy o 1 | Sm

F'" = | ptv +pé, | , e = — Ty , S = |Sme (1.2)
pUE + po TkUk + Qe Se

Oorou T, = [Tkl,TkQ,Tkg]T Kkat ard 1 vopo tou Fourier ¢ = EVT. Ot e§lowoelg

OUpIANP®VOVIAl aro to poviédo tupbng Spalart-Almaras (SA) rou sioayet v SA
petaBAntr) 7, ) oroia urodoyidetat ano v e§iowon

0 0w L[ (0P 0p 0p
ot or, o |0z e Y291, Oy,
Conv D:'?f

(1.3)

orou o opog pe Conv dndmvel tn petadopd ng PetabAntig v, o opog Diff v
Hoplakr) kat tupBwdn diaxuon, ot opot Prod, Destr poviedormolouv v nmapayoyi)
Kal Rataotpodn g tupbng. H mAeypatonoinon tou urodoylotikou xepiou yivetal
pe 10 Aoyiopiko PADRAM 1ng RRD yprnowonowwviag pn-8opnpévo oplodeto
mAéypa. Ot e§lonoelg pong dlakpirorolovvial otoug KOPBoug Tou TMAEYHATOS HE )
P€60d0 eV nenepacpévev OYKV Kat ermdvoviat pe ) pébodo Runge-Kutta tpitng
1déng. I ouvéxewa, n dwakpuy ouluyrg péBodog xprnotporoleital yia tov
UTIOAOY100 TV 0UdUYRV PETaBANTOV KAl TV MAPAYy®y®v eudlobnoiag pe okoro
Vv agpoduvapikry] BeAtiotonoinon popePpng.



1.1.1 Me£60o6og tng “wpng” duvapng (Brute Force Method) ywa

MEPLNTOOELS OUYKALONG OPLAKOU KUKAOU

‘Otav 1 OUYKAL0n EUITITIEL O€ OPLAKO KUKAO ONHAiVEL OTL IAPAT|POUVIAL TAAAVIOOELS
OUYKEKPIPEVOU MTAATOUG 10 ortoio 6ev amooBévetl. TTapatnpeital 611 dtav 1 oUYKA0N
TOU TIPOIEVOVIOG TIPOBANIATOG £XEL AUTHV T OUNIIEPIPOPA, TO OUCUYES TIPOBANHA
ATIoRA{VEL.

[a v avupetomon 1ou npoBAnpatog, xpnotporoleital n 18éa mou avantuxbnke
eontepkd oty RRD kat ovopdadetat pébodog “wpng” duvapng, Brute Force Method.
Z16X0g6 G 1ebodou eival va elodyet Eévav 06po rnyng otig e§1000e1g Porg, o ortoiog Sa
avaykaoel ) AUorn va oUyKAIvel ot PEoT T TRV TAAAVIOOE®V KAl O 0TI010G 0tav
apay®ylotel kat eioayxOel otig ouduyeig e§1000elg, 9a 11§ avayKAoel va OUYKAIVOUV.
[Ma tov urtoAoy1lopo tou, apy1Kda uroAoyidetal n péon TPn 1oV PetaBAnT®v pong

N

> Ui
_ =1
u =

N

(1.4)

ortou N eivat o ap1Bpog tov teAeutainv eENAvAAnPemv mou Xpnotponomdnkay yia va
urnodoytotel 1 péon tpn. O arpBng apidpog Sa unodoyiotel apyotepa, pe faon 1g
EKAOTOTE EPAPHOYEG TTOU yivovial. O 0pog TINyng £XEl I Hopdr

(1.5)

e < 2>
|
s < s

OTToU 1] Prdapa SnA@vel I PEOT TN TG PETABANTAG 1 Oroia UroAoyiotnKe aro
mv e§lowon Kal T €ival pla mapdperpog Pe povadeg XpOovou 1) Tiun g oroiag
EMMAEYETAL PETA A0 TIAPAPETPIKY) avdduon. O opog nnyng dtakpironoleitat otoug

KOPB0oUG TOU MAEYHATOS B
U; — Uy

St = Vi (1.6)

-
Katl ewoayetat otg e§lonoelg Runge-Kutta. Ot e§lowoelg por)g AUvoviat apXikd Xopis
oV 6po TNyHS Kat Katd 1 didpkela v N tedevtaiov enavadnpenv, apou 1 Auon
ENITIITIEL O OPLAKO KUKAO, urtodoyiletat ) péon T v petaBAntov porng. Metd to
répag v N emavadnyemv, 0 O0pog INYNg €10AYETAl OTIG €§1000EIS Ol OI0ieg
ouveyidovial va Auvovtal pexpt va smrteuxel peyaduteprn oUuyKALoT).



1.1.2 Ed¢appoyég

H yeoperpia mou xpnotponoOnke ya tmyv epaypoyn g pebodou eivat o otatopag
€VOG OupPITiEoT!] ONwg oxedidotnke oto Teyxviko ITaverotpio tou Bepodivou TUB
Kat @aiverat oto Txnua

(b)

Ixnpa 1.1: Zraropag ovumieot oyediaouevog oto Texvikd Iaveniot)uio tov BepoAivou
TUB.

To uroloylotiké mAéypa arotedeital and mepimou 2 - 108 képBoug.  Apxikd To
repuytlo exktibetat oe por) 46° 1o omoio eivat 4° meploodTEPO AMO T TN Yid TV
ortoia £xet oxedlaotel. To mpwtevov Kat 1o ouduyEég MPOBANPA NG EPAPHOYS AUTHS
OUYKAIVOUV aKOPA KAl X®PIG TNV €10aymyn Tou opou ninyrs. H epapypoyn yivetat
yla rmotoroinon g pebodou kat yia va xpnotporionfouv ta arnoteAéopata yia
ouykplon. H deutepn nepimmon, yla v ornoia auvtt) ) @opd 1o ouduyEg rpoBAnpa
X®PIig tov 6po nnyng Se ouykAivel, eivat n mepimt@on OMoU 1o MIEPUYL0 eKtiBeTal o
pon 5° peyaAutepn amd 1 ywovia oxediaopou. H pébodog Bpute Popge
Xpnotwporoteital e8¢ €101 wote va ermteuyxBel oUYKALON OV ouluymv e§lonoewv. Ta
aroteAéopata ouykpivoviat pe ekeiva g npoing epappoyng (+4°).

1.1.3 H nepintoon +4°.

Apxkd, Xwpig TV £10aywyr Tou Opou INyrg, Ol IPXTEVOUCES Kal ouduyelg
€§1000e1g OUYKAIVOUV Xwpig tadaviooelg. Metd v €10aymyr ToU 0pou IMnyng, ot
€€1000elg ouveyi{ouv va OUYKAIVOUV HE Ypnyopotepo pubpod Kat ermtuyxdaverat
BaButepn ouyKkAloT). It ouvéxela, emAvetal 10 ouluyEG TpoBAnpa  Kat
urodoyidovtat o1 mapdywyol suaicHnoiag. H ouvaptnon-otoxog 1mpog
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elayiotornoinon ival o CUVIEAEOTAS ATIOMAEIDV OAIKYG TIEONS

_ Dt inlet — Pt,outlet

(1.7)
Dt inlet

Xpnowomnoloviag to ouduyeg medio umoAoyiovial o1 mapdywyol sualcHnoiag, ot
oroieg @aivovrat oto Txfjpa

Zxnpa 1.2: Epapuoyn +4°. Iapdywyotr evaiodnoiag.

Zto IZxnpa @aiveral moleg TMEPLOXEG TIPETEL va PETaKIvnBouv ®ote va pelndel o
OUVTEAEOTS aATIWAEI®V. Me KOKKIVO XpwHd @aivovidl ol TIEPIOXEG TTOU TIPETIEL va
petakivnOoUv 1mpog Ta £€§®, €ve HE UIMMAE @Aivovial €KEIVEG TOU IIPEMEL vd
HetakivnOouv mpog ta péod.

1.1.4 H nepintoon +5H°.

Ze autfv Vv £pAPPOyn 1 OUYKAION TOU TIPXTEVOVIOS TPOBANIATOS EUITITITEL OF
OPlaKO KUKAO Kal KATA OUVErela 1o ouluyég ImpoBAnpa aroxkAdiver. Meta v
epappoyn g pebddou anotoung Suvapng, 1o npetevov poBAnpua ouykAivel Xopig
tadaviooelg oty 1d1a Avorn 1mou cuyKAIVOUV KAl ot §10W0EIS X®PIS TOV OPO TINYHS.
To ouluyég mPoBANa ertiong @Aivetal va CUYKAIVEL KAl TO UTIOAOUTO TV E§10W0ERDV
pewvetat katd 2.5 tagelg peyéboug onwg @aivetal oto Lxnpa



Adjoint Residual
&
in

0 50 100 150 200 250
iterations

Ixnpa 1.3: ZvyxAion RMS ouluyov e§lowoewv e ™ pédobo g ~wung” dvvaung.

Ot woypappég TV napaywyev euatodnoiag gaivovratl oto Lxnpa

Zxnpa 1.4: Epapuoyn +5°. Iapdywyor evaiodnoiag.

[Tapatnpeitatl 0Tt THEG TRV TTAPAYOYRDV £lval OXETIKA XaPnAEg, oxXedov PNndevikeg oe
kanowa onpeia. Auté 9a propouce va opeidetal O0to yeEyovog OTt ITAPOAOo IOU 1O
ouduyEég TPOBANA OUYKAIVEL, TO UMOAOUTO pelwvetal Katd 2.5 tagelg peyéboug £wg
v té€n tou 1071, eve To undAoiro Tou MpeTEUOVIOg TIPOBANIATOG £Xel HelwPei Katd
9 1a€eig ég v takn tou 10714,

To onpavtikotepo OP®g 600 aPopd OTIg TAPAYRYOUS guatobnoiag ivat To ipdonpo
TOUG KAt O0X1 T000 T0 PEIPO TOUG. XUyKpivoviag Tig dUo nepuntooelg +4 kat +5 yovia
@aivetal 0Tt 01 2 TEPUTIROOELG £XOUV IMTAPOHOIEG TIAPAYWYOUS 000 aPOoPd OTO ITPOCHO.



1.2 Ipoypappatiopég ITapdAAndou Aoyiopikod IIpSAsing
Poov rat tng Zuveyxoug Zuluyoug MeBodou pe tn MEBoSo
tov Weudo-ruywelov. Ed¢pappoyég otnv Aspoduvaptkn
BeAtiotonoinon Mopong.

Ma 1o 6evtepo PEPOG NG €pyaociag XPNOopomnoufnKe 0 KOO1KAG UIOAOYIOTIKNG

peuotoduvapikng tou epyaoctnpiou MITYPB/EMII. O kodikag ermAvuetl 2A povipeg

atp1Beig poég o Kapteolava mALypata, pe 1 PEBodo tov weudo-ruyedwv. ApXiKd,

01 OPO1 TOV TACERV £10AYOVIAl OTIS £§10WO0ELG PO1G KOote 0 KOdKag va diayxeipidetal
KA1 OUVEKTIKEG pogg. Ot e§1000E1G PONG 10XUOUV 0TI LoPPT)

U . of. . af, ofr Ofy

- _ = = O 1.8
ot oxr Oy ox dy (1.8)
ortou
0
v Tk
Jr = o (1.9)
U; Tik + Gk

O tavuotng TV TAoemV UTtoAoyidetal armo 1) oXEon

B Ou;  0Ou; 2 . Ouyg
Tij = M [(axj * a) - 5%—%] (1.19)

orou to §;; eival 1o &éAta tou Kronecker kat 1o P 0 ouviedeot)g SUVANIKAG
OUVEKTIKOTNTAG. lMa v emBoArn ng OPlAKNG OUVONKNG HIn €10X0PENoNS
Xpnotpornoteital 1 pEBodog 1oV Peudo-KUWPEARDV, KATA TNV OI0id, OTl§ KUWEAEG TIOU
Bpiokovtal péoa oto oteped Kal Kovid oto oplo Sivoviatr KatdAAnda peyébn pong
WOTE va TIPooopolwbel n emibpaon tou otepeoy otr Por). APXIKA, 1 TAXUTNTAd KOovid
OTO OTEPO OP10 AVIYPAPOVIAL PECA OTIG PEUDO-KUWPEAES (E0WTEPIKA TOU OTEPEOU) KAl
ot ouvexela aviiotpEpetal n kateubuvorn ng. 'Etol, akpiBog mave oto otepeod oplo,
n tayuinua eivat pndevikr). H efiowon mou Avvetal péoa otig Peudo-Kupedeg yia
mVv avuypadr) tev peyebov porg eivat

oup o

Urtl = ur — At
! ! 8$k aa:k

(1.11)

orou U; ta peyédn pong otnv weudo-kuwedn ¢ kat ¢ n arootaon tng aro 1o oteped
op1o.



1.2.1 A§loAoynon npoypappaticO<viog

O kwdikag aflodoyeitat oe U0 ePaPPOYEG: Ot PO MAVE OE rtinedn MAAKA KAt Ot
PO1] YUP® ATI0 OUPHEIPIKY agpotopr]. Ed® mapouoiddovial ta arotedéopata povo
mg NPHOTNG epappoyng. 'a por mave oe eminedn nmAdka pe yovia porg pundevikr),
OAkn) miieon ewoodbou Py, = 1.03bar xkatr Seppoxpaocia Ti;, = 300K kat otaukn
rieon €§660u Py = 1.02bar, api®po Reynolds R = 1093 kat Mach = 0.086 to
redio taxutnTag mou IPOKUIIIEL £ivat

| IEEEEEEEN |

VelocityMagnitude: 0 3 6 912151821 242730

02 04 06
X

Zxnpa 1.5: Porj o Enineén IAdrxa. Moo tayviniag.

O ouvtedeotrg TpBng TG MAAKAG CUYKPiveTal pe tv avadutikn Avorn tou Blasius

onwg @atvetal oto Txnpa
0.664
C = (1.12)

v Re,

10

cIfCumputatiunaI []
blasius

log(cf)

0.001 |

0.0001

. . . |
1 10 100 1000
log(Rex)

Ixnpa 1.6: Por) oe Eninedn [Adrxa. KaumuAn ovviedeotn 10161¢ Kat oUyKoLon UE N
Avon Blasius.



[Mapatwnpeitat ot n aplOPNTIKN KAl 1 avaAutiky AUon €ival TIOAU KOVid 1 jid otnv
AAAn, pe peyaldutepn Swagopd Petal avalutikng KAt aplOpnukhg AUong Tou
ouvtedeotn] pBrg va eivat 0.05. It ocuvéxela, 10 AOylopiKO rapadAnlomnoteitat Kat
a&lodoyeital n arvdoon Kat i ermrayxuvvor) tou. H epappoyr) £ytve mdlt yua ) pon
YUp® amod eminedn mAdka Xpnolporowwviag tpia dagopetika mAdypata.  Xtd
Zxnpata (1.7)-(1.8) gaivovtat ta arotedéopata peta ano eriduon pe 3 Srapopeuka
nAéypata rou artotedovuvrat ard 36000, 70000 kat 100000 kuweAeg avtiototxa.

T T T T T T
coarse ——

10 1 medium ——m—
fine
ideal

SpeedUp

Cores

Ixnpa 1.7: Por) oe Eninedn IIAaxa. Emuayuvvon Aoyloutkov yia 51agopetikd mandog
eneepyaoctov kat 3 diapopestika wigyuara.

1.05 T T T T T

T

coarse —a—

medium —a—
fine

0.95

0.9 -

0.85

Efficiency

0.8

0.73

0.7 b

0.6 1 1 1 1 1 1

Cores

Ixnpa 1.8: Porn oe Eminedn IIAaka. Amddoon Aoyopkov yia Siagopetikd mAndog
eneepyaoctov kat 3 diapopestika wigyuara.



Mapatnpeitat 6t pe IV avinon TV €MeSEPYAOT®OV UIIAPXEL ATOKAION Ao TV
18avikn) kaprudn 610t au§dvovial ol EmKOvVeVieg PETadyu toug. Me v MUKVROT)
TOU MAEYHATOG ETTTUYXAVETAL KAAUTEPT TMPOOEYYION NG 18AVIKNG KAUMUANG, 6101t
MAEOV TO TIO0OOTO TV EIMKOIWVOVIOV €ival HIKPOIEPO O OXEON HE AUTO TRV
UTIOAOY10®V TIOU TIPETIEL VA YiVOUV.

1.3 BeAtiwotonoinon Mopdng pe Xpnon 1Ing
Zuveyxoug Zuluyoug MeOodou

Zto t¢dog g epyaciag avarrtuooetal 11 ouvexng ouduyng pébodog yia spappoyr)
oe agpoduvapikn PBeAtiotonoion poperg. H ouvdptnon-kéotoug tou npoBAnpatog
(aveon) divetat amo 1 oxéon

F:/ pngridS (1.13)

orou Sy N erm@pAvela g AEPOTOUNS, P 1) OTATIKY Ttieon, 7 to povadiaio diavuopa
otV Kateubuvon tng dvoong Kat 77 1o povadiaio Siavuopa kGOsto otnv agpotour)
pe kateubuvon 1mpog 1a €. Agou ermAdubouv ot culuyelg £§l000elg, T0 OUCUYEG
nedio xpnotpormoleital yla tov UMOAOYIOHO TRV MAPAY®OY®V €Ualodnoiag ot oroieg
Otn OUVEXEla Xprnotporiolouvial ot PBeAtiotonoinon pe ) pébodo tng andtopng
raBobou. To Aoylopiko PeAtiotonoinong ePpappootnKe os 2 agpotopég Katl 6w da
napouotaoctel n pia armo 1g 6vo. H aepotopr) @aiveratr oto IZxhpa Kat
napapetporoteitat pe 17 onpeia Bezier. H agpotour) arotedeital amo pia
OUVEXOUEVI] KAUTTUAT.

0.1 —— | .
0.05
0
-0.05
0.1 f | | |
0 0.2 0.4 0.6 0.8 1

Ixnpa 1.9: BeAuotonoinon Mopgrg Agpotoung. Apxiko oxnpua aspotounc uadi pe ta
onueia Bezier.

Ot petaBAntég oxeblaopou eivat ot ouvietaypéveg tov onpeiov Bezier. Metd v
erduor) yivetat oUyKpion g apxiKig Kat g teAKnG agpotoprig oto Exrjpa[1.10]
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O-l T T T I T T T T
ggg F initial B
.06 - imized 7
0.04 B
0.02 -
oL u
-0.02 -
-0.04 -
-0.06 q

-0.08 | T T 1 | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ZxfApa 1.10: Bejuotonoinon Mopgric Agpotourg. Zuykplon apxikng kat

BeAuoronomuévng yeopspiag.

H apxikn yeopetrpia £xel pndevikn tpn aveong Liy;: = 0.0V, eved n tedikr| Loy =
1529.01N. H mopeia tng ouvdptnong-kKOotoug Katd tr BeAtiotonoinon @aivetat oto

Zxnpa (1.11).

1800 T T T T T T T T

1400 + B

1200 B

1000 ~ A

objective function (Lift)
w
(=]
o
T
1

0 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9

optimization cycles

Zxnpa 1.11: BeAuoronoinon Mopprigc Agpotouric. Meta6oAr ouvdptnong-kootoug katd
m BeAunotonoinon.

Emnedr) n por) eivat atpiBrig, n davworn 9a ouveyioet va auidavel 000 TPOoX®wPd 1
BeAtiotomnoinon eKtog Kat av ermBAnOei kamnolog nieploplopog. 'Etotl, kptplo yia tov
Teppatiopo tou adyopibpou ermdéyetatl va eivat ot 9 kKUkAol BeAtiotonoinong.
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1.4 ZTupnepaopata

Ta Baoikd cupriepaocpata mou MPOoEKUYAV aro tmy Epeuva eivat ta eE§ng:

e Me Vv €l0aywyr] &vog OpoU TYNG Ol E§I0WOES TOU TMPRTEVOVIOG
MPOBANNATOG TIOU I OUYKALOL TOU TIEPUTITIEL O€ TAAAVIOOL], Ol TAAAVIQOOELS
Hropouv va e§alelpOouv Kat n AUoT va CUYKAIVEL TIEPIOOOTEPO.

e H ouyxkAion tou ouduyoug ripoBArpatog e§aptatatl o oAU peyddo Badpod anod
1] OUYKA10T] TOU MP®TEVOVIOG TTPoBANpatog. Ltnv mepimmtoon mou 1o deutepo
EXE1 TAAAVINOELG, 01 0UdUYEIS §10WOEIG PITOPEL VA ATIOKATIVOUV.

e H napaAAnlorioinon evog kodika ermgépet tepdotia e§01Kovopnon Xpovou yia
Vv emiduon TPOBANPATOV UMOAOYIOTIKLG peuctoduvapikng. Eidika otav
IIPOKETAL Yla HEYAAES ePaPHOYEG, 11 XPron mapdAAndou Aoylopikou eivat
anapaitnt). Metd ano nmapaperpikn PeALt nmapatnpnbnke Ot o MUKRVOTEPA
nAgypata, éva apdAAndo AOylopiko eivat mo anodotiko, dndadn prnopet va
ETPEPEL PEYAAUTEPT] EMITAYXUVON OtV eriduor. AuUto ogeiletal oto yeyovog
OTl TO TI0OCOOOTO TV KUWPEA®V TIOU TIPETEL VA EIMIKOIVEOVIOOUV gival aiodntda
H1IKPOTEPO ATIO TOUG UTTOAOY10110UG TTOU TPETTEL VA KAVEL KAOE enme§epyaotnS.

e H 11€60odog tov peudo-kuywedov eival ev yéver pia pébBodog rmou dev erniBaAAet
He akpiBela TG OplakEG OuvOnKeg OTO0 Oplo evog otepeou. [lap’ 6Aa autd
napatnpendnkav moAu kadd amotedéopata oe TPoBAnpata oTPeING EONS,
KAvoviag OUYKPIoN HE avadlutikég AUOElg KAl HE  arotedéopata Iou
IIPOEKUYPAV HE XPT)01] OPLOSETOV TIAEYHAT®V.

e H epyacia €Balde PBdoeig yla mepattép® avadluon Kat épeuvd. ApYIKA OTo
Aoylopikd HYDRA, o ouluyng kodikag ouykAivel KAl mapdyel anoteAéopata
0f TIEPUTIOOEIS TOU TPV Htav aduvato. Ao v dAAn pepla, ot
BBAloypagdia umndpyxouv Alyeg avadopeg ot Xprion g pebodou 1wv
yeudo-kuypedwv oe ouluyeig peboddoug, 16laitepa ot ouvexr) ouduyn pebodo.
To Aoylopiko 1oU avamtuxOnke €06woe TOAU Kald amnotedéopata otd
MPOBANNATA TOU £PAPUOCTNKE KAl TMALovV umdpxel €va akopa Siabéoipio
epyaleio BeAtiotonoinong ot MITYPB/EMII.
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