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Abstract

The aim of this Master’s thesis is to develop and assess an optimization soft-

ware based on the cooperative behavior of individual members of the three sub-

groups (roosters, hens, and chicks) within a chicken swarm as they search for food.

The performance of the Chicken Swarm Optimization (CSO) algorithm is compared

with Evolutionary Algorithm (EA) and Metamodel-Assisted Evolutionary Algortihm

(MAEA), which are implemeted through the EASY software, developed by the Par-

allel CFD & Optimization Unit of the School of Mechanical Engineering of NTUA.

In the future, an overarching objective is to potentially integrate promising elements

of the proposed algorithm into EASY, to further improve its performance.

As part of the Swarm Intelligence family of algorithms, the CSO technique manages

populations of chickens that move through the design space in search of optimal

solutions. This thesis investigates the interactions among the three aforementioned

subpopulations that comprise the total swarm, the parameter settings related to their

rearrangement, and the overall performance of CSO compared to EA and MAEA.

This algorithm effectively handles both Single-Objective (SOO) and Multi-Objective

Optimization (MOO) problems. New features have also been introduced by the author

beyond what is described in the literature, aimed at further improving the algorithm’s
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performance. These new features concern the movement of the roosters and the

handling of penalized individuals in both SOO and MOO problems with constraints.

Specifically, the shortcomings of the original algorithm—particularly in relation to

the movement of roosters and chicks—were effectively addressed through the intro-

duction of a stochastic mechanism that aids in avoiding local optima. Furthermore,

the capability to solve MOO problems was developed/programmed using the SPEA-II

method. Constraint handling in MOO problems was strengthened through a mech-

anism that enhances the foraging ability of non-penalized individuals, potentially

leading to a greater number of solutions. Lastly, a ”revival” mechanism was im-

plemented to restore individuals previously penalized with elimination, in a manner

that improves the algorithm’s performance rather than merely replacing them without

substantial enhancement.

The algorithm is developed and validated on well-known mathematical benchmark

problems, and further tested on two pseudo-engineering problems: the Vibrating

Platform Design and the Two-Bar Truss Design problems. Although CSO is capable

of solving CFD problems as well, these are not presented in this thesis due to the dif-

ferent background of the author. Overall, the results are very promising, suggesting

that CSO is a powerful optimization algorithm capable of being applied to a variety

of problems. However, further tuning and investigation are necessary for it to con-

sistently reach the performance levels currently exhibited by EASY, particularly in

more complex optimization cases.

Last but not least, it is important to highlight the significant role of Metamodel-

Assisted techniques in modern stochastic optimization algorithms. The EASY frame-

work incorporates this which is utilized in this thesis. In contrast, the CSO algorithm

does not currently support metamodel assistance. Introducing such a mechanism into

CSO could represent a promising direction for future work, potentially enhancing its

performance.
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Περίληψη

Σκοπός της μεταπτυχιακής αυτής εργασίας είναι η ανάπτυξη λογισμικού για την εφαρ-

μογή μιας μεθόδου βελτιστοποίησης με απώτερο σκοπό να βρει εφαρμογή σε προβλήματα

μηχανικού. Ο αλγόριθμος βασίζεται στο πώς ένα σμήνος κοτόπουλων, αποτελούμενο από

τρεις υπο-πληθυσμούς (κόκορες, κότες, κοτοπουλάκια), συνεργάζονται στην αναζήτη-

ση τροφής, πραγματοποιώντας, με αυτόν τον τρόπο, βελτιστοποίηση στα προβλήματα

αυτά. Τα αποτελέσματα που προέκυψαν, συγκρίνονται με τον Εξελικτικό Αλγόριθμο

(EA) και τον αλγόριθμο Βοηθούμενης Βελτιστοποίησης μέσω Μεταμοντέλων(MAEA),

που είναι υλοποιημένοι στο λογισμικό EASY της Μονάδας Παράλληλης Υπολογιστικής

Ρευστομηχανικής & Βελτιστοποίησης του Ε.Μ.Π., με απώτερο στόχο την ενσωμάτωση

υποσχόμενων στοιχείων του πρώτου στο δεύτερο, στο εγγύς μέλλον.

Στο πλαίσιο των αλγορίθμων Swarm Intelligence, ο αλγόριθμος Chicken Swarm O-

ptimization (CSO) διαχειρίζεται πληθυσμούς κοτόπουλων που κινούνται στον χώρο

σχεδιασμού αναζητώντας βέλτιστες λύσεις. Η μεταπτυχιακή εργασία εξετάζει τις αλ-

ληλεπιδράσεις μεταξύ των τριών προανεφερθέντων υπο-πληθυσμών που απαρτίζουν το
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συνολικό σμήνος, τις παραμέτρους που σχετίζονται με την αναδιάταξή τους, καθώς και

τη συνολική απόδοση του CSO σε σύγκριση με τους αλγόριθμους EA και ΜΑEA.

Επιπλέον, ο αλγόριθμος έχει τη δυνατότητα να χειρίζεται αποτελεσματικά τόσο προ-

βλήματα βελτιστοποίησης ενός Single Objective Optimization - SOO) όσο και πολλών

Multi-Objective Optimization - MOO στόχων. Επίσης, έγιναν μερικές σημαντικές

προσθήκες στον αλγόριθμο από τον συγγραφέα, πέραν όσων αναφέρονται στη βιβλιο-

γραφία, με στόχο την περαιτέρω βελτίωση της απόδοσής του. Αυτές αφορούν την κίνηση

των κοκόρων καθώς και τη διαχείριση των ατόμων που τιμωρούνται λόγω παραβίασης

περιορισμών σε προβλήματα με περιορισμούς είτε ενός είτε πολλών στόχων.

Συγκεκριμένα, τα μειονεκτήματα του αρχικού αλγορίθμου—ιδίως σε ό,τι αφορά την

κίνηση των κοκόρων και των μικρών κοτόπουλων—αντιμετωπίστηκαν επιτυχώς μέσω

της εισαγωγής ενός στοχαστικού μηχανισμού, που βοηθά στην αποφυγή τοπικών α-

κροτάτων. Επιπλέον, η δυνατότητα επίλυσης προβλημάτων βελτιστοποίησης πολλών

στόχων αναπτύχθηκε με τη χρήση της μεθόδου Strength Pareto Evolutionary Algorith-

II (SPEA-II). Η διαχείριση περιορισμών σε προβλημάτων πολλών στόχων ενισχύθηκε

μέσω ενός μηχανισμού που βελτιώνει την ικανότητα αναζήτησης τροφής των μη τιμωρη-

μένων ατόμων, οδηγώντας ενδεχομένως σε περισσότερες λύσεις. Τέλος, εφαρμόστηκε

ένας μηχανισμός «αναβίωσης» για την επαναφορά ατόμων που είχαν υποστεί ποινή θα-

νάτου, με τρόπο που ενισχύει την απόδοση του αλγορίθμου, αντί να την επιβαρύνει ή να

περιορίζεται απλώς στην αντικατάστασή τους χωρίς ουσιαστική βελτίωση.

Ο αλγόριθμος αναπτύχθηκε και δοκιμάστηκε σε γνωστά μαθηματικά προβλήματα α-

ναφοράς και, στη συνέχεια, εφαρμόστηκε σε δύο προβλήματα ψευδο-μηχανικής: τον

Σχεδιασμό Πλατφόρμας Δόνησης (Vibrating Platform Design) και τον Σχεδιασμό Δι-

κτυώματος Δύο Ράβδων (Two-Bar Truss Design). Αν και ο CSO μπορεί να εφαρ-

μοστεί και σε προβλήματα Υπολογιστικής Ρευστοδυναμικής (CFD), τα συγκεκριμένα

δεν παρουσιάζονται στην εργασία λόγω του διαφορετικού γνωστικού αντικειμένου του

συγγραφέα. Συνολικά, τα αποτελέσματα είναι ιδιαίτερα ενθαρρυντικά, υποδεικνύοντας

ότι ο CSO αποτελεί έναν ισχυρό αλγόριθμο βελτιστοποίησης με δυνατότητα εφαρμογής

σε ευρύ φάσμα προβλημάτων. Ωστόσο, απαιτείται περαιτέρω ρύθμιση και μελέτη για

να φτάσει σε επίπεδα απόδοσης αντίστοιχα με αυτά του EASY, ειδικά σε πιο σύνθετα

προβλήματα βελτιστοποίησης.
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Τέλος, αλλά εξίσου σημαντικό, είναι ουσιώδες να υπογραμμιστεί ο καθοριστικός

ρόλος των τεχνικών Βοηθούμενης Βελτιστοποίησης μέσω Μεταμοντέλων (Metamodel-

Assisted) στους σύγχρονους στοχαστικούς αλγορίθμους βελτιστοποίησης. Το λογισμι-

κό EASY ενσωματώνει αυτή τη δυνατότητα, η οποία χρησιμοποιείται και στην παρούσα

εργασία. Αντιθέτως, ο CSO δεν υποστηρίζει επί του παρόντος τη χρήση μεταμοντέλου.

Η ενσωμάτωση ενός τέτοιου μηχανισμού στον CSO θα μπορούσε να αποτελέσει μια

πολλά υποσχόμενη κατεύθυνση για μελλοντική έρευνα, ενισχύοντας ενδεχομένως την

απόδοσή του.
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Chapter 1

Introduction

1.1 Introduction to Optimization

The term optimization refers to the process of seeking the most suitable solution or

set of solutions to any problem, the performance of which is described by one or

more mathematical functions. These mathematical functions are known as objective

functions or target functions or design functions [1]. The optimal solution is defined

as the value-set of the design variables in the design space where these variables

are defined. Furthermore, the solutions that emerge must respect the constraints

imposed, if any.

Problems aiming to optimize a single objective function (Single Objective Opti-

mization - SOO) [2] seek the global extremum of this function. If this is the min-

imum, then we have a minimization problem; if it is the maximum, then it is a

maximization problem. However, real-world problems are much more complex than

that. Constraints make them more challenging. Additionally, there might be many

local optima where the solution could get ”trapped”.

The challenges multiply if solving the problem requires satisfying many objective

functions (Multi-Objective Optimization - MOO) [3] [4]. With MOO methods, the

so-called Pareto front is sought. Among the members of the Pareto front, one objec-
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tive requires sacrificing performance in another, necessitating a careful balance and

compromise. There is a whole scientific field, called decision-making, that guides

users in selecting the most appropriate solutions among those found. However, this

is beyond the scope of this thesis.

Various methods exist to solve optimization problems. These are divided into two

categories: stochastic and deterministic (or gradient-based).

1.2 Deterministic Optimization Methods

Deterministic optimization methods (or gradient-based methods) rely on the general-

ized concept of the gradient of the objective function, with their primary goal being

to calculate or at least approximate it. Computing the gradient is not a trivial task.

Several methods have been introduced and developed for this purpose, including the

Finite Differences Method [5], [6], the Complex Variables Method [7], [8], the Direct

Differentiation (continuous and discrete) [9], and the Adjoint Variables (continuous

and discrete) methods [2].

Apart from precision, one of the most critical considerations for an engineer is

the cost to compute the gradient of the objective function. In real-world problems,

the number of design variables, denoted as N , is typically much larger than the

number of objectives, M . Most optimization methods computing the gradient have a

computational cost that scales proportionally withN . However, the Adjoint Variables

Method stands out due to the fact that its cost does not scale with N [2]. This unique

characteristic makes it particularly advantageous and places it in a distinguished

position among other optimization techniques.

The Deterministic algorithms are highly dependent on initialization. Since the solu-

tion is randomly initialized, it may fall into local optima. Furthermore, the implemen-

tation of deterministic algorithms often requires greater development time compared

to stochastic algorithms. Extending and generalizing these methods to solve similar

problems can be particularly challenging.
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1.3 Stochastic Optimization Methods

In contrast to deterministic methods, stochastic methods do not use the gradient of

objective functions. They adapt easily to various problems for which they are designed

and are capable of locating the global extremum in each case. In other words, they

are independent of initialization. However, they have higher runtime cost compared

to deterministic methods. The implementation of stochastic algorithms involves the

use of a separate software to calculate objective functions and evaluate candidate

solutions.

There is a plethora of stochastic algorithms well described in the literature, such as

Genetic Algorithms (GA)[10], [11], [12], Evolutionary Strategies (ES) [13], [14], [15],

[16], [17], [18], Genetic Programming (GP)[19], [20], [21], [22], [23], and other bio-

inspired algorithms that simulate the behaviors of natural systems, animals, insects,

and more. Particle Swarm Optimization (PSO) [24] is a well-known representative of

the latter category. A derivative of PSO is the Chicken Swarm Optimization (CSO)

algorithm [25], which is programmed, used and assessed in this thesis.

1.4 Basic Concepts in Optimization

To provide a foundation for understanding stohastic optimization, it is essential to

first discuss a basic optimization problem. This approach will help illustrate the fun-

damental characteristics of optimization and shed light on the challenges that may

arise during the process. By analyzing a simple problem, the reader can gain a clearer

understanding of the core principles and intricacies involved in optimization. Evolu-

tionary optimization employs nature-inspired strategies such as mutation, crossover,

and elitism to iteratively refine solutions. Given the vast scope of stochastic methods,

this thesis focuses on providing a concise introduction to the field, outlining its key

principles while acknowledging that it cannot encompass all topics within the domain.

In out notation, objective functions are denoted by fi, while inequality constraint

functions by gi must be less than or equal to zero (gi ≤ 0) and equality constraint

functions by hi. However, alternative notations may also be used depending on the
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context. The variables upon which both the objective functions and constraints de-

pend are referred to as design variables, denoted by xi. The collection of these design

variables forms a vector, known as the design vector. Each design variable is confined

by its own bounds within the RN space, collectively referred to as the design space.

This design space defines the region where optimization occurs. So, the aim in an

optimization problem is to find the design vector:

X⃗∗ =



x∗
1

x∗
2
...

x∗
N−1

x∗
N


(1.1)

which minimizes or maximizes the objective function in SOO problems, or provides

a compromise set of solutions in MOO problems. Additionally, the solution must

respect all constraints, if any.

As mentioned before, the design variables are bounded. Therefore, there is a need

to define a minimum and a maximum value for every design variable, i.e.:

xmin
i ≤ xi ≤ xmax

i , i = 1, . . . , N (1.2)

In SOO, the problem is typically defined by a function f(X⃗) that needs to be

maximized or minimized. The optimization process involves exploring the search

space to identify the solution X⃗∗ that maximizes or minimizes f(X⃗) while adhering

to the specified constraints.

While the problem may appear straightforward, it’s quite challenging since there

is an, theoritically, infinity number of candidate solutions to be evaluated. Moreover,

challenges emerge when the objective function is non-linear, has many local minima or

maxima, or is subject to complex, often nonlinear constraints. In such cases, finding

an optimal solution can be computationally demanding.

A simple approach to solving such optimization problems is to start with a random

initial solution X⃗, evaluate its objective function, and then iteratively make small
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changes to it. After each modification, the solution is reevaluated, and if the new

solution improves the objective function, is kept. This process is repeated until the

changes in the objective function value become negligible over successive iterations,

indicating that either further improvements are minimal or a local optimum has been

reached.

A second approach involves taking a set of design vectors X⃗i (i.e a population),

and evaluating all of them. The best solution, X⃗∗
i , is then kept and so forth.

These two approaches correspond to different classifications of stochastic algo-

rithms: the individual-based methods and the population-based methods, respec-

tively. A basic population-based evolutionary algorithm (EA), with terminology bor-

rowed from the (µ, λ) EA/EASY framework, consists of λ offspring and µ parents,

where usually µ ≤ λ. The λ offspring are evaluated and based on a selection proce-

dure, µ parents are chosen. Then, using a procedure different from the one before,

the selected parents generate λ new offspring.

1.5 Introduction to Swarm Intelligence

The CSO algorithm is thoroughly discussed in Chapter 3. However, as CSO belongs

to the family of swarm intelligence algorithms, it is essential to first get familiar with

the ideas behind swarm intelligence algorithms, in order to better understand the

CSO when it is introduced.

Intelligent meta-heuristic algorithms have the capability to learn and provide effec-

tive solutions to highly complex problems. Within this category, swarm intelligence

computing is gaining prominence, as these algorithms mimic the adaptive and learning

behavior of biological organisms. Their appeal lies in their ability to address increas-

ingly complex problems, navigate vast multi-dimensional solution spaces, adapt to

the dynamic nature of constraints, and manage incomplete, probabilistic, or imper-

fect information in decision-making processes.

However, the rapid advancements in this field have made it increasingly difficult

for researchers to stay up to date, as new algorithms are introduced at an accelerated
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pace. Over the years, numerous swarm intelligence algorithms have been developed,

including particle swarm optimization (PSO) [24] [26], ant colony optimization (ACO)

[27], [28], [29], artificial bee colony optimization (ABCO) [30], [31], bacterial foraging

optimization (BFO) [32], [33], [34], firefly optimization (FO) [35], [36], [37], leaping

frog optimization (LFO) [38], [39], bat optimization algorithms (BOA) [40], [41], and

CSO [25], [42], among others. To build a stronger foundation in swarm intelligence

algorithms and set the stage for understanding CSO, the fundamental concepts of

PSO is introduced next.

1.6 Particle Swarm Optimization

PSO[24] [26] holds a prominent position among swarming theory and bio-inspired

algorithms. It serves as a broader category that encompasses the CSO algorithm.

For this reason, it is crucial to introduce and briefly present PSO before delving into

the specifics of CSO. The PSO [24] [26] algorithm is inspired by the collective behavior

of swarm animals, such as fish schools or bird flocks, among others. Fundamentally,

the primary objective of the PSO algorithm is to search for parameters that optimize

a given objective function.

In PSO, each particle represents a potential solution within the search space. Each

particle in the swarm has a position, velocity, and fitness value. The position repre-

sents a potential solution, the velocity indicates the direction and speed of movement,

and the fitness value measures how good the solution is. Particles keep track of their

personal best positions and the global best position, which guide the swarm’s move-

ment towards optimal solutions. The algorithm updates each particle’s velocity and

position based on a combination of its current velocity, the distance to its personal

best, so-far, position, and the distance to the global best, so-far, position.
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1.7 Chicken Biology

To better understand the CSO algorithm, it’s helpful to first learn about real chick-

ens and how their flocks behave. According to [25], which provides comprehensive

information about chicken biology, chickens are among the most common domesti-

cated animals worldwide. These social creatures typically live in groups and display a

surprisingly advanced level of intelligence. They can recognize and remember over a

hundred individual chickens, even after being apart for long periods. Their vocal com-

munication is rich, consisting of more than 30 distinct sounds such as chirps, crows,

and squawks, used to convey messages about nesting, food, mating, and threats.

Chickens don’t rely solely on trial and error to learn; they also draw on past experi-

ences and observe the behavior of others to guide their actions.

A structured social ranking, often referred to as a pecking order, shapes their in-

teractions. More assertive birds hold dominant positions, staying close to the leading

roosters, while less dominant individuals tend to keep to the edges of the group. Any

changes to the group, like adding or removing members, temporarily disrupt this

structure until a new balance is formed.

High-ranking chickens generally get first access to food. Sometimes, a rooster that

discovers food will even call over the rest of the group before eating. This kind of

considerate behavior is also seen in hens as they care for their young. However,

such cooperation is mostly limited to members of the same group. When unfamiliar

chickens enter the area, roosters often respond with loud vocalizations to defend their

territory.

Behavioral patterns also differ between roosters and hens. The leading rooster

actively seeks out food and defends the group’s area. Dominant hens follow roosters

while foraging and chicks typically feed near their mothers.

While individual chickens may appear simple, collectively they exhibit a kind of

coordinated behavior. Working together, they follow their internal social structure to

locate food efficiently. This group-level cooperation, or ”swarm intelligence,” can be

viewed as a natural problem-solving process, one that has inspired the creation of new

optimization algorithms. This fascinating behavior inspired scientists and engineers
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to develop a novel bio-inspired algorithm: the CSO algorithm.

1.8 Real-World Optimization Problems

The concepts discussed in the previous sections lay the groundwork for solving basic

SOO problems. However, real-world challenges are often far more complex, requir-

ing modifications to the foundational stohastic algorithms introduced earlier in the

chapter. Engineers frequently face problems involving constraints, and many of these

problems also require addressing multiple objectives. It is important to note that

the ideas presented in this section apply not only to the previously discussed algo-

rithms but also to other stochastic and bio-inspired algorithms. Sorting operation and

comparison make use of penalized fitness values, rather than the raw fitness values

themselves.

1.9 Goal of Thesis

The CSO algorithm has been gaining significant interest over the last decade since

its introduction. Numerous researchers have tested and applied the algorithm in

various fields, such as data mining, robotics, and more [42]. The promising results

have intrigued the Parallel CFD & Optimization Unit of NTUA to explore and design

enhancements for the algorithm.

The team has previously developed the (µ, λ) EA (as in the EASY software) [2],

that merges characteristics from GA and ES. The primary focus of this thesis is

to present the characteristics of CSO, a population-based stochastic algorithm, the

relationship between the three populations it comprises, the comparison with (µ, λ)

EA, its integration of ideas drawn from EASY and the potential application of CSO

concepts to EASY. The contribution of this work aspires to bridge the gap between

a swarm intelligence algorithm and the (µ, λ) EA.
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1.10 Structure of the Thesis

This thesis is structured into the following chapters:

� Chapter 2 - Evolutionary Optimization Algorithms: This chapter pro-

vides an analysis of the basic principles of optimization, the (µ, λ) EA and an

introduction to swarm intelligence algorithms and PSO.

� Chapter 3 - The CSO Algorithm: A detailed description of the CSO algo-

rithm is presented, including its structure, operation, and application to opti-

mization problems.

� Chapter 4 - Applications - Discussion: An analysis about the parameters

of CSO is presented on how the parameters RN,MN,G affect the solution of

the SOO problem of the shifted Rastrigin function. Two pseudo-engineering

problems, the Vibrating Platfrom Design and the Two Bar Truss Design, are

tested and are compared to EA and MAEA. This shows how well can the CSO

perform, compared to a well-developed algorithm.

� Chapter 5 - Conclusions and Future Work: This chapter presents the

conclusions drawn from the performed tests and suggests directions for future

work in the field.



Chapter 2

EA-based Optimization

EAs represent a wide class of stochastic algorithms. The notable rise in the use of

such algorithms followed the rapid increase in computational power. Consequently,

the corresponding wall clock time was drastically reduced. In addition, they gained

significant interest due to their non-mathematical foundation, their ease of adaptation

to various problems, and their flexibility in comparison to deterministic algorithms.

The only thing needed is an evaluation software to assess each individual. Their

greatest advantage is that they do not fall in local optima. However, the time required

to find the optimal solution can be quite large, as it demands a significant number

of evaluations to reach it. The concept of EAs is not new; they were proposed in

the 1960s [43] [44] [45]. Their foundation stems from Darwin’s theory of evolution of

species.

With the term ”evolution”, we describe the automatic process of adaptation to

each system to the environment. The term ”environment” includes all the external

conditions that affect the system. EAs are computational models that, through a

process analogous to the evolutionary adaptation of individuals in the environment,

solve problems. For this purpose, they utilize stochastic mechanisms of evolution

derived from nature, and they are based on principles of the evolution of species,

which were initially developed by Darwin in the 1960s. EAs resemble, in a simplified
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way, the evolution of natural populations. According to Darwin’s theory, individuals

in a population are engaged in the struggle for resources such as shelter, food, and

survival. The successful individuals have a higher probability of reproducing and

passing their traits to future generations. This natural selection means that the

offspring of successful individuals will have better-adapted traits to the environment

and, as a result, improve the population. The combination of these favorable traits

from different successful individuals results in the population evolving and adapting

to the environment.

A fundamental characteristic of EAs is that they are population-based methods

(with a few exceptions, ES may have a population of one individual) and involve an

iterative process, similar to other stochastic methods (e.g., CSO). While EAs were ini-

tially developed for solving single-objective problems, with appropriate modifications,

they can, also, address MOO problems to provide the Pareto front of non-dominated

solutions.

A special place among EAs is held by the GA[10], [11], [12], which is the most

widely recognized EA. Two other prominent categories with extensive applications

are ES [13], [14], [15], [16], [17], [18] and GP[19], [20], [21], [22], [23]. Below is a

concise overview of the three main categories of EAs and their applications.

2.1 The Generalized EA - (µ, λ) EA

In this section, a Generalized EA is introduced, combines elements of GA and ES. This

algorithm, also referred to as the (µ, λ) EA, was developed by the PCOpt /NTUA, as

mentioned earlier. Further details can be found in [2]. However, since the developed

software, EASY, is based on this algorithm and is used for comparison with the CSO

algorithm presented in this thesis, the (µ, λ) algorithm is also briefly presented herein.

The (µ, λ) EA handles populations of solutions. This iterative process is repeated

until a convergence criterion is satisfied. The convergence criteria can be one or any

combination of the following:

� The best solution is no longer improving,
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� The population becomes homogeneous,

� The computational time limit provided by the user is reached.

Before proceeding with the detailed steps of the algorithm, it is essential to intro-

duce the three groups of individuals that the algorithm operates with. The first group

is Gt,µ, the parent group, which consists of µ individuals. The parents are selected by

applying the parent selection operator and the offspring by applying the crossover,

mutation and elitism operators. The second group is Gt,λ, the offspring group, which

consists of λ individuals. Finally, the third group is Gt,e, the elite group, consisting

of the elite individuals. The superscript t is the generation counter, indicating that

these groups evolve over successive generations. The elite group holds the best solu-

tions identified up to the current generation, ensuring that these superior solutions

are preserved throughout the evolutionary process. Further details can be found in

[2].

2.1.1 Parent Selection

One of the most critical parameters influencing the performance of the algorithm

is the parent selection operator. Its objective is to exploit the best characteristics

of high-quality candidate solutions, refining and improving them across generations.

Ideally, this process guides the EA toward convergence on a satisfactory and accept-

able solution for the optimization problem at hand.

The literature proposes several parent selection operators. Despite decades of re-

search, no universal guidelines or theoretical frameworks exist to determine the most

suitable parent selection operator for a given problem. This is a significant challenge,

as an inadequate parent selection operator can result in premature convergence and

inefficiency.

Six different Selection Operators (SOP) [46] are considered the most common ones:

roulette wheel selection (RWS)[47], stochastic universal sampling (SUS)[48] [49], lin-

ear rank selection (LRS) [49], exponential rank selection (ERS) [49], tournament

selection (TOS) [49] [50], and truncation selection (TRS) [49]. From this list of op-
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erators, only TOS is presented here, as it is the one used for the simulations in this

thesis.

2.2 Constrained Optimization

Optimization problems with physical significance include, usually, constraints. For

instance, when designing a transportation system with minimal cost, the objective

function could represent the total cost. However, the design must also satisfy various

physical and safety regulations to ensure that it can handle the required loads without

failure. Therefore, the strength limits must be considered as constraints and must

not be exceeded under any circumstances. It is important to note that there is no

need to impose constraints on the objective functions, such as a maximum allowable

cost in this example, because the solutions are optimized based on these functions,

making it unnecessary. A constraint may involve a subset of the design variables,

or even all of them simultaneously. In a black-box approach the evaluation software

must be able to provide the EA not only with the values of the objective functions

fi(X⃗), but also with the values of the constraints gi(X⃗) for each candidate solution

X⃗, since the solution must be tested in every aspect of the problem.

The infeasible individuals in the population that do not satisfy one or more of the

constraints should never be ignored by the EA. If they are allowed to reproduce freely,

the population will acquire unsuitable characteristics over time, and optimization will

fail.

There are two categories of constraints: equality and inequality constraints. In this

thesis, the analyzed problems involve inequality constraints of the form gi(X⃗) ≤ 0.

Therefore, only this category is discussed in detail. If the constraint value is greater

than the threshold but below the nominal value, the individual receives a ”soft”

penalty. Otherwise, it receives a ”death” penalty. A penalty is calculated for each

individual based on the constraints it does not satisfy. The total penalty is the sum or

product of all penalties for each constraint the individual violates. In some cases, it

may be more appropriate to use the product of penalties, depending on the developer’s
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choice. The penalized fitness is given by the following equations:

If all the constraints are respected,

fp(X⃗i) = f(X⃗i) (2.1)

else,

fp(X⃗i) = f(X⃗i) + Penalty (2.2)

where fp(X⃗i) is the penalized fitness of the ith individual and Penalty is given by

Penalty =
Nc∑
j=1

penaltyj or Penalty =
Nc∏
j=1

penaltyj (2.3)

where nc is the number of constraints and penaltyj is an exponential function de-

pending on the value of each constraint j, the nominal threshold CTHR
j (which is

zero, since the the form of constraints is gi ≤ 0), above which an individual receives

the ”soft” penalty, and the relaxed penalty value CD
j , above which an individual re-

ceives a ”death” penalty. For every constraint, both values are selected by the user.

In summary:

If gj(X⃗) ≤ CTHR
j → Penaltyj = 0 (2.4)

If CTHR
j < gj(X⃗) < CD

j → Penaltyj = exp

[
gj(X⃗)− CTHR

j

CD
j − gj(X⃗)

]
(2.5)

If gj(X⃗) ≥ CD
j → Penaltyj = ”Death” Penalty (2.6)

Figure 2.1 shows how the penalty value increases as the constraint value approaches

the CD value. In some cases, researchers may assign a ”death” penalty to a solution

when the penalty becomes extremely high, even though the constraint value is still

lower than the nominal value. This ”death” penalty value could be something like

1020, which is considered sufficiently large to discard a solution.
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Figure 2.1: Penalty function between the threshold CTHR
j and the nominal penalty

value CD
j .

2.3 MOO Problems

Consider a MOO minimization problem with M objectives and N design variables,

where there are M objective functions f1(X⃗), f2(X⃗), . . . , fM−1(X⃗), fM(X⃗) that de-

pend on the same n common design variables. The vector-valued objective function

to be minimized, f⃗(X⃗), is defined as:

f⃗(X⃗) =



f1(X⃗)

f2(X⃗)
...

fM−1(X⃗)

fM(X⃗)


(2.7)

The primary issue that arises based on the theory of EAs presented in Section 2.2

lies in the area of parent selection. All methods proposed in for SOO, ranked solutions,
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from best to worst, use the value of f(X⃗) as a criterion. However, in MOO, there are

now many equally important and almost always conflicting objective functions fi(X⃗),

which makes it far from obvious which offspring should be selected as parents.

In MOO, unlike SOO, there are many optimal solutions instead of just one. A

vector X⃗P is referred to as a Pareto optimal solution if, in a minimization problem,

no other vector X⃗R exists in the design space such that fi(X⃗R) ≤ fi(X⃗P ) for every

i = 1, 2, . . . ,m, and simultaneously fj(X⃗R) < fj(X⃗P ) for at least one objective j.

Conversely, a vector X⃗D is said to be dominated by X⃗R if fi(X⃗R) ≤ fi(X⃗D) for every

i = 1, 2, . . . ,m, and fj(X⃗R) < fj(X⃗D) for at least one objective j. The set of all

non-dominated solutions generated by the algorithm forms the Pareto front, which

represents the trade-offs between the objectives. The Pareto front can be visualized

effectively only in 2D or 3D.

Two members of the Pareto front cannot be compared to each other without in-

volving extra criteria. In a two-objective problem, it is generally expected that one

solution will perform better in one objective and worse in the other, compared to

another solution that behaves inversely. For this reason, a family of optimization

methods that has started to find significant applications (especially in optimization

problems in aerodynamics) is those based on the concept of the Pareto front. These

methods do not compute a single solution but instead a Pareto front.

The solution to a MOO problem does not conclude with the calculation of the

Pareto front. Instead, it marks the beginning of a new phase: selecting a preferred

solution among all the optimal solutions. However, this is not a topic relative to

this study, so it won’t be detailed further. In order to compute the Pareto front, a

utility function, denoted as Φ, is introduced. Φ can represent a combination of all

the objective functions fm. For example, it can be expressed as:

Φ =
M∑

m=1

wmfm, (2.8)

where wm are the corresponding weights of fm, indicating the prioritization or impor-

tance of each objective. Figure 2.3 illustrates how a Pareto member is not dominated

by any other individual, as shown by its dominance boundaries, and how a non-Pareto



2.3. MOO Problems 17

Figure 2.2: The red dots denote the Pareto front in a two-objective minimization
problem, while the blue dots present the some dominated solutions by the Pareto
front.

individual dominates others, indicated by its extended dominance lines.

Calculating Φ using weighted values for the objective functions is a basic approach

that often leads to suboptimal results. To address this issue and deliver improved

outcomes in computing the Pareto front, various algorithms have been developed, such

as NSGA (Nondominated Sorting Genetic Algorithm)[51], SPEA (Strength Pareto

Evolutionary Algorithm)[52], and their evolved alternatives. Since SPEA-II is utilized

in the CSO algorithm this thesis is dealing with, further details on it can be found in

this chapter.

2.3.1 SPEA

Strength Pareto Evolutionary Algorith (SPEA) [52] is a many objective optimization

algorithm and belongs to the field of evolutionary multiple objective algorithms.



18 Chapter 2. EA-based Optimization

Figure 2.3: Non-Dominated solutions in red denote the Pareto front with green dot
being a random solution on the Pareto, while the blue are some domianted solutions
and the magenta dot present a random dominated solution by the Pareto front.

The ”Strength Pareto” concept plays a critical role in SPEA. The objective of the

algorithm is to identify and preserve a set of non-dominated solutions, ideally forming

a Pareto optimal set. All Pareto optimal solutions are part of the ”Pareto optimal

set”, which consists of the best non-dominated solutions in the objective space.

Two main parameters are considered for each solution:

1. **Strength Pareto (S(i))**:

S(i) =
n

µ+ λ+ 1
, (2.9)

where n is the number of individuals (each representing a solution vector) that are

dominated by or are equal to individual i. Dominated solutions have lower strength

values compared to others according to Eq. (1).
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2. **Fitness Value (Φ(j))**:

Φ(j) =
∑
∀i<j

S(i), (2.10)

where Φ(j) for individual j in the population is calculated by summing the strength

values S(i) of all population members that dominate (≻) or are equal to individual

j.

This fitness assignment implies that solutions with lower fitness values are better.

2.3.2 SPEA-II

Similar to the steps presented in Subsection 2.3.1 for the basic SPEA algorithm,

the enhanced version, SPEA-II [53], is presented in the following paragraphs. This

improved algorithm incorporates mechanisms to better preserve diversity and ensure

convergence toward the Pareto front.

Let Gt,λ denote the main population at generation t. Similarly, let Gt,e represent

the archive of elite individuals at generation t, which contains the best non-dominated

solutions found so far.

2.3.2.1 Steps of SPEA-II

(1) Initialization: Set t = 0 and generate the initial population Gt,λ
0 and empty

archive Gt,e
0 .

(2) Calculate Fitness Values: For each individual i in both the archive elite

group Gt,e and the offspring group Gt,λ, the strength value S(i) is calculated using

the following equation:

S(i) =
∣∣{j | j ∈ Gt,λ +Gt,e&i > j}

∣∣ , (2.11)

where the symbol ∪ stands for the multiset union, ≻ corresponds to the Pareto

dominance relation, and & means AND.
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In SPEA-II, the fitness F (i) is defined as:

Φ(i) = R(i) +D(i), (2.12)

where the raw fitness of individual i can be calculated by the following equation:

R(i) =
∑

j∈Gt,λ∪Gt,e

S(j). (2.13)

However, if the optimization goal is to minimize the objective f(i), the raw fitness

should be minimized, i.e., R(i) → min, corresponding to a non-dominated individual.

The individual’s density D(i), for distinguishing those with the same raw fitness

values, is calculated using the κ-nearest neighbor method, using the following equa-

tion:

D(i) =
1

σκ
i + 2

(2.14)

where σκ
i represents the objective-space distance between the i-th individual and the

κ-th nearest neighbor. The κ-th nearest neighbor is defined as κ = µ+λ+ϵ
c

, where ϵ is

the number of elites and c is a constant integer value on the order of 2–3. In this way,

the κ-th nearest neighbor dynamically changes according to the number of elites in

each generation.

2.4 Metamodel-Assisted Evolutionary Algorithm

(MAEA)

In a lot of optimization problems, EAs require a large number of evaluations to

reach high-quality solutions. The computational cost per generation is dominated by

the evaluation of the objective functions, especially when these evaluations involve

time-consuming simulations or external software. Typically, this cost scales with the

population size λ, leading to a total of λg evaluations over g generations, excluding

those that already exist in the database. When λg becomes very large, the total

runtime may exceed the limits of what is feasible using conventional CPU resources.
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To address this generic issue, the concept of Metamodel-Assisted EAs (MAEAs)[54],

[55], [56] has been introduced. A metamodel significantly reduces the overall com-

putational cost while maintaining good convergence behavior. MAEAs operate using

the already discussed selection and reproduction techniques, but with the addition of

metamodels that can predict the objective function values of candidate solutions. In

simple terms, a metamodel can be seen as a function with adjustable weights, which

are tuned to approximate the objective function’s value. To ensure a good approx-

imation, a database is required containing pairs of previously evaluated individuals

and their responses. The metamodel uses this data to train itself on-line, separately

for each new offspring to be evaluated, and approximate its objective functions, much

faster, thus dramatically reducing the overall optimization cost.

MAEA Functionality

The operation of a MAEA can be broken down into two key phases [54], [55]. The

first phase (which runs as a conventional EA) involves filling the database with suf-

ficient data to ensure that the metamodels built during the process are effective.

If previous exact evaluations have already been performed using the same software,

these can directly be incorporated into the database before running the MAEA. If

these evaluations are deemed adequate for tuning the metamodels, this phase can be

skipped. However, if not, the MAEA behaves like a standard EA during the initial

generations. This means each new candidate solution is evaluated using the evalua-

tion software and then added to the database, along with its corresponding objective

function value.

Once this initial phase is completed, the second phase begins. During reproduction,

a local metamodel is created for each offspring, trained using the data from nearby

evaluated solutions in the database. This results in the creation of λ personalized

metamodels, each capable of providing an approximate evaluation of the λ offspring.

The population is then ranked based on the metamodel predictions, and the top

individuals are sent for exact evaluation by the software to verify their characteristics.

The user can specify the number of individuals to be re-evaluated on the problem-
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specific model, denoted as λe, with the requirement that λe ≪ λ so that the use

of metamodels still offers a significant reduction in computational cost. The exactly

evaluated individuals are then added to the database to further enrich it for future

usage.

This process is known as Low-Cost Pre-Evaluation (LCPE) and has proven to be

highly efficient, especially when Radial Basis Function Networks (RBFNs) are used

as the metamodels [54], [55], [56]. It is also particularly efficient when applied to

MOO problems [57].
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Chicken Swarm Optimization

Among other optimization methods, bio-inspired algorithms have become a promi-

nent area of research, demonstrating their potential across various domains. These

algorithms draw inspiration from natural phenomena and the behavior of living or-

ganisms, offering innovative approaches to solving complex optimization problems.

In particular, swarm optimization algorithms, which replicate the collective behavior

of groups of organisms, have shown exceptional efficiency and effectiveness in tackling

challenges in fields such as machine learning and engineering.

This chapter delves into a specific algorithm in this category: the CSO Algorithm

[25]. Over the last decade, CSO has emerged as a promising meta-heuristic algorithm,

attracting substantial interest from researchers[42] due to its simplicity, adaptability,

and robust performance. By modeling the social behaviors and hierarchical structures

observed in chicken swarms, the CSO algorithm offers a unique and effective approach

to optimization.

The chapter is structured as follows: It begins with an overview of the fundamental

principles underlying the CSO algorithm, providing a conceptual understanding of its

mechanics. Subsequently, the implementation of the algorithm, as developed by the

author, is detailed.
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3.1 CSO Algorithm

A simplified version of the CSO algorithm is presented in Table 3.1. In this table,

TN is the total number of chickens, RN is the number of roosters, HN is the number

of hens, CN is the number of chicks, MN is the number of mother hens, G is the

population re-arrangement factor and Max Generations is the maximum number of

generations.

Chicken Swarm Optimization Algorithm

Initialize a population of TN total number of chickens and define the related parameters

(RN , HN , MN , CN , G, Max Generations, Number of Objectives, boundaries for each

design variable).

Evaluate the fitness values of the TN chickens, t = 0.

While t < Max Generation:

If t % G = 0:

Rank the chickens’ fitness values and establish a hierarchical order in the swarm.

Divide the swarm into different groups and determine the relationship between the

chicks and mother hens in a group.

End if

For i = 1 : TN :

If i is a rooster, update its solution/location using equation 3.3.

If i is a hen, update its solution/location using equation 3.6.

If i is a chick, update its solution/location using equation 3.7.

Evaluate the new solution.

If the new solution is better than its previous one, update it.

Set the elite individuals.

The whole is added to the database.

End for

End while

Table 3.1: Framework of the CSO.
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Implementation Details

The CSO algorithm, discussed in this study, is developed for minimization and op-

erates in a more straightforward manner than what has been explained previously,

specifically, it employs the following rules. Within a flock, there are distinct popu-

lations of roosters, hens, and chicks. Each of them is structured into units that are

referred to as groups whereby each unit has one rooster, several hens and chicks. The

structure of the groups is defined from top to bottom as the rooster which sits at the

top, hens in the middle and chicks at the bottom. The rooster’s count determines

the number of groups in the flock. The user defines a number of parameters for the

algorithm including the number of roosters and the number of hens and chicks. So,

since the total population is accounted for by the sum of these three, it does not

need to be defined explicitly by the user. The user also specifies the new generation

factor G which essentially determines when the population rearrangement mechanism

is triggered, the maximum allowable generations, and the number of design variables

and their limits. More detailed information about the input file can be found in

Appendix 5.1.

The mechanism of constraint handling and penalty assignment is discussed in more

detail in a later section. However, it is important to note that, in this approach, the

nominal (CTHR
i ) and relaxed (CD

i ) threshold values are user-defined. The individ-

uals exceeding CD
i are considered to have incurred a ”death” penalty and must be

reintroduced into the population through a resurrection mechanism.

The initial positions of all chickens are generated randomly using a uniform real

distribution, ensuring they lie within the boundaries of the design variables. The

hens are assigned to their rooster mates as follows: First, the total number of hens

is divided by the number of roosters. Each rooster is initially assigned the quotient

number of hens randomly. Any remaining hens (those left over after the division) are

then distributed one by one to the roosters, continuing serially, until all hens in the

population are assigned to the roosters in the flock. For example, if there are two

roosters and seven hens in the flock, then each rooster is assigned with three hens and

the one remaining is assigned to the rooster with the best fitness. So, the first/best
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rooster has four hens in its group and the second has three hens. The same rule

applies to the assignment of chicks to their mother hens. Note that the hens that are

declared as mothers are randomly selected. Once the initial population (Generation

0) has been constructed, its evaluation is ready to be performed.

After initialization and the first evaluation, the main loop of the algorithm begins.

At each generation, the position of each individual is updated according to mathe-

matical formulas that will be detailed later in this chapter. Once the new position

is computed, it is checked against the predefined boundaries. If the position exceeds

these boundaries, the position is assigned the value of the boundary. If it is iteratively

modified by adding or subtracting values to ensure it lies within the boundaries, until

the solution is within the acceptable range, the algorithm loses its sequence, as the

hens may not follow their mate rooster and the chicks their mother hen. This process

not only ensures that the solution stays within the specified range but also mini-

mizes the likelihood of multiple individuals lose their connection with other related

individuals, which can occur when the solution is adjusted to lie on the boundaries.

While the function for evaluating individuals is running, the algorithm calls an

external evaluation software, a separate program responsible for assessing the indi-

viduals. The necessary information for this process is retrieved from specific files.

More details about the input file can be found in Appendix 5.2.

The algorithm, then, determines whether the chickens are in a better position with

respect to the constraints. First, the fulfillment for constraints, if any, is checked. If

all constraint values are below their respective thresholds, the solution is considered

to respect the constraints. However, if the value of at least one constraint exceeds the

CTHR but remains below the CD, the chicken incurs a penalty in its fitness values,

calculated as follows:

fpenalized = f + Penalty (3.1)

where

Penalty =
Nc∑
i

e
3
gi−CTHR

i
CD
i

−gi f, (3.2)
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where Nc is the number of constraints, ci is the computed constraint, CTHR
i is the

nominal threshold, and CD
i is the relaxed threshold value. From this point onward,

every chicken sorting operation is performed using fpenalized. Naturally, if there are

no constraints or if the chickens respect the constraints, the values of f and fpenalized

are identical. In the case that more than one constraint is not respected, the higher

penalty value is used for the penalty computation. If the value exceeds the CD,

the chicken incurs a ”death” penalty, meaning that the penalized fitness fpenalized

becomes the largest possible value, representing ”death”. Since the algorithm has

no reason to continue in this state, a new chicken takes its place from the database.

This new chicken may be penalized or not, but certainly will not carry a ”death”

penalty. If the database is empty (which occurs in Generation 0) or if all chickens

suffer a death penalty (an extreme case), a completely random position is assigned

to the new chicken. The role of the chicken (whether rooster, hen, or chick) remains

unchanged.

The penalized fitness value determines the classification of the chickens. Those

with the smallest fitness values, since it is a minimization algorithm, are classified

as roosters, while those with the largest fitness values become chicks, and those in

between are classified as hens. Fitness values are calculated after the evaluation of

each individual by the evaluation software. Each individual’s position and fitness are

updated only if the calculated fitness is better than the previous one and if it does

not carry a ”death” penalty. Otherwise, the position of the chicken is not updated,

even if it respects the constraints. However, a chicken may still be updated even if

its fitness value is worse, as long as it respects the constraints, since solutions that

respect the constraints are the primary goal.

The evaluation of the entire population is carried out at every generation. How-

ever, the rearrangement of populations is conducted only after every G generations.

The process of assigning rooster mates, mother hens, and chicks is performed in the

same manner as described above. After every iteration, every chicken that has been

evaluated is stored in the database.

The database only keeps the essential information: the chicken’s ID, its design

vector, the fitness values (for MOO, this includes all fitness values; for SOO, there
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is just one fitness value), penalized fitness values, constraint values, and whether the

chicken is penalized or not. A chicken is considered non-penalized if all of its con-

straint values meet the constraints, otherwise it is penalized. Also, in unconstrained

optimization, the fitness values and the penalized fitness values are identical. As for

the algorithm’s implementation, all data is stored in C++ objects for processing and

it uses real encoding by default.

3.1.1 Movement of the chickens

The mathematical formulas for the calculation of chicken positions are presented. The

position of the i-th individual in the j-th dimension at the t-th generation is denoted

by xt
i,j. The movement of chickens within the design space follows stochastic rules

based on their hierarchy: roosters lead the group, followed by hens, and finally,

chicks. The movement of the chickens is described in hierarchical order. First, the

movement of the roosters is described, followed by that of the hens, and finally, the

movement of the chicks.

It is important to note that the formulas used to compute each individual’s position

have been modified. The basic structure presented in [25] is followed; however, the

original algorithm is quite sensitive and prone to getting trapped in local minima.

To address this issue, a later study presented in [58] introduces a modification to

the chicks’ position update formula. This idea can be further expanded to enhance

the overall performance of the algorithm. Therefore, an additional modification is

proposed by the author, which involves changes to the position update formulas for

both roosters and chicks.

3.1.1.1 Movement of roosters

Each rooster serves as the leader of its groups. Those with better fitness values are

given priority access to food over those with lower ones. Consequently, roosters with

superior fitness values should move across a wider area in the design space, reflecting

their dominant role and enhanced capability to explore resources. According to [25],

this can be formulated as:
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xt+1
i,j = xt

i,j · (1 +N (0, σ2)) (3.3)

σ2 =

1, if fi ≤ fk,

exp
(

fk−fi
|fi|+ϵ

)
, otherwise

(3.4)

where k ∈ {1, N} and k ̸= i. When there is only rooster in the flock k = i and

σ2 = 1. The term N (0, σ2) refers to a Gaussian distribution with mean value 0 and

variance σ2. The constant ϵ is used to avoid division by zero and represents the

smallest positive constant in the computer system. The variable k denotes the index

of a rooster, which is randomly selected from the group of roosters. The function f

represents the fitness value associated with the corresponding position x.

There some cases, however, where roosters may be trapped in local minima, causing

the group to get trapped as well. In order to overcome this drawback, a simple idea

is proposed. The rooster with the worst fitness is forced to take a random position

in the design space with a 50% probability. In case this happens, there two different

formulas that can be chosen with equal probability each, the first is a complete random

position in the design space and the second is given by this formula:

xt+1
i,j = xmin,j + (xmax,j − xmin,j) · Rand(0, 1) (3.5)

where Rand(0, 1) is a uniformly distributed random value in the range [0, 1]. This

mechanism acts as a strong mutation operator, similar to the one employed by EASY.

For example, in the case where only one rooster forages in the flock and it might

mislead the group, this mechanism is applied to it, as it is considered to be the

“worst” individual at that time.

Another modification occurs when updating the position of a rooster. In SOO

problems, if the best solution does not improve after two generations, the standard

deviation is set to 0.01. This adjustment assumes that the current region might con-

tain the best solution, and thus intensifies the search in a smaller, more focused area.

Similarly, in MOO problems, the same value is assigned to the standard deviation
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if the number of solutions on Pareto front remains unchanged for two consecutive

generations.

3.1.1.2 Movement of hens

The hens follow their group mate rooster to search for food. Furthermore, they may

stand in a better position and steal food from other hens in a different group. The

position of a hen in the flock is calculated as follows.

xt+1
i,j = xt

i,j + S1 · Rand(0, 1) ·
(
xt
r1,j

− xt
i,j

)
+ S2 · Rand(0, 1) ·

(
xt
r2,j

− xt
i,j

)
(3.6)

where S1 = exp
(

fi−fr1
|fi|+ϵ

)
, S2 = exp

(
fr2−fi
|fr2 |+ϵ

)
, Rand is a random number sampled

from a uniform distribution over [0, 1], and the indices r1 ∈ {1, 2, . . . , TN} the index

of the rooster that is a group-mate of the i-th hen, and r2 ∈ {1, 2, . . . , TN}. The

index of a randomly chosen chicken (rooster or hen) from the entire swarm. The

constraint r1 ̸= r2 ensures that the indices are distinct and can never be equal. As

for the fitness values fi, fr1 , fr2 , it is expected that fi > fr1 since a rooster is expected

to have a lower fitness value than a hen. Additionally, fi > fr2 if r2 is a rooster or a

hen in the first half of the cumulative population of hens and roosters, and fi < fr2

if r2 is a hen in the second half of the cumulative population. When fi > fr1 , S1 > 1,

which indicates that the i-th hen is influenced more by its rooster group-mate. It is

important to note that S2 can take very high values, leading to delays. Therefore,

it has been decided to normalize the exponent, rather that keep the exponent as the

difference of fr2 − fi [25].

3.1.1.3 Movement of chicks

As mentioned above, chicks forage for food only around their mother hen. This is

formulated as:

xt+1
i,j = xt

i,j + FL(0, 2) · (xt
m,j − xt

i,j) (3.7)
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where xt
m,j denotes the position of the i-th chick’s mother (j ∈ {1, 2, . . . , N}).

FL (FL ∈ {0, 2}) is a parameter indicating that the chick would follow its mother to

forage for food. Considering individual differences, the FL of each chick is randomly

chosen between 0 and 2.

To address the early convergence problem of the algorithm, [58] proposed a mod-

ification whereby chicks are allowed to update their positions using an alternative

strategy with a probability of 25%, instead of strictly following Equation 3.7. To

promote a broader exploration of the design space, when a chick is selected to up-

date its position differently (with the probability of 25%), it either follows the rule

defined in Equation 3.8 with a probability of 50%, or is assigned a completely random

position—analogous to the position update strategy employed by roosters—with the

same probability.

xt+1
i,j = xmin,j + (xmax,j − xmin,j) · Rand(0, 1) (3.8)

3.2 Single-Objective CSO

In SOO, the problem is typically defined by a function f(X⃗) to be minimized. The

optimization process involves exploring the search space to identify the solution X⃗∗

that minimizes f(X⃗) while adhering to the specified constraints.

In this thesis, the solution X⃗∗ is determined through the movement of chickens

within the design space. Each solution is required to respect the boundaries and

constraints defined by the problem. Understanding the dynamics of chicken movement

in the search space is key to solving optimization problems effectively, as it mimics

natural processes that help in exploring the solution space efficiently. By leveraging

the movement patterns of different types of chickens (roosters, hens, and chicks), we

aim to find the best possible solution for the given optimization problem.

After the evaluation of a chicken, the algorithm checks whether the new position

yields a better fitness value. If it does, the penalty status check is performed. If

any of the chicken’s constraint functions exceed the nominal death value, it receives
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Figure 3.1: Example of a flock in groups

a death penalty and is resurrected this actions is detailed later in Subsection 3.4.4).

If the constraints do not exceed the CD but are still above the CTHR, a penalty is

applied and the chicken returns to its previous position. Otherwise, it successfully

updates its position.

If the chicken does not improve its fitness value, it returns to its previous position, as

described earlier, unless it is forced to update its position according to the mechanism

detailed in Subsection 3.1.1.
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3.3 Multi-Objective CSO

The concepts discussed above are specific to SOO problems. For MOO, additional

computations are incorporated. In this thesis, the algorithm employs the SPEA-II to

calculate the fitness (Φ) of each individual. A key difference in the implementation

of SPEA-II within the CSO framework is that the κ-nearest neighbor is defined as

the closest individual to the examined individual, based on their actual distance in

the objective space. It is not computed using the formula κ = µ+λ+ϵ
c

. This approach

ensures the effective handling of multiple conflicting objectives by balancing trade-offs

and maintaining a diverse set of Pareto-optimal solutions.

For the elite population, the algorithm stores only those individuals that belong to

the Pareto front, even if the user requests a larger number of individuals. Conversely,

if the user requests fewer individuals than the total number of elites, the algorithm

stores and returns only the specified number of individuals, selected in the sequence

they were calculated.

3.4 Elite Selection

The selection of elites plays a significant role in the effectiveness and performance of

the optimization process. As mentioned earlier, after evaluation, a chicken updates its

position only if it achieves a better fitness value while still respecting all constraints. In

SOO problems, this process is relatively straightforward. However, in MOO problems,

additional challenges arise due to the need to balance multiple conflicting objectives,

making the selection criteria more complex.

3.4.1 Elites in SOO problems

In SOO problems, the solution is checked to determine whether the penalized fitness

fp is better than the previous one. If fp is better and the chicken is not penalized at

all, then the solution is updated as indicated by fp, and in such a case the penalized

fitness is equal to the normal fitness, fp = f .
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Otherwise, if the chicken’s ”death” status and previous ”death” status are both

true, then the chicken undergoes a resurrection procedure, which is discussed later.

If the chicken’s ”death” status is true but was false in the previous state, then the

chicken returns to its previous state so that it can continue searching for a better

solution without being penalized. If the solution is not improved, then once again,

the chicken resurrects if both the current and previous ”death” statuses are true.

Otherwise, it returns to its previous state.

Figure 3.2: Elite Selection in MOO. The new individual, if it is in the green or in
the deep blue position, is added in the elites group. In contrast, the one in the red
position does not.

3.4.2 Elites in MOO problems

In MOO, things become more complicated. To fully comprehend the method, let us

consider a simple example of a MOO problem with two objective functions. In this

example, 11 individuals are used, and the result shown in Figure 3.2 is taken after
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t generations. Individuals 1, 3, and 7 form the Pareto front as it was before the tth

iteration.

Suppose the eleventh individual has moved within the search space and obtained

objective function values that lead to three possible conditions, as illustrated in Fig-

ure 3.2. If this position is the one denoted by the red dot, then it does not belong

to the Pareto front. If it takes the position denoted by the intense blue dot, then it

is not dominated and it does not dominate any other individual on the Pareto front;

thus, this individual is added to the Pareto front. In the last case, denoted by the

green dot, this particular individual dominates one individual on the Pareto front

and is not dominated by any other individual in the front. Consequently, the sixth

individual is replaced by the eleventh.

Back to the CSO now, having in mind the discussion above, the algorithm takes

into account not only the raw fitness calculated by the SPEA-II algorithm to compare

individuals for the elite selection, but also the mechanism discussed in the previous

example. Specifically, if an individual takes a position corresponding to the intense

blue dot illustrated in Figure 3.2, it is added to a container holding all possible elite

individuals. The actual elite selection occurs later. In case the position is as denoted

by the red dot, the following may happen:

Red Dot Conditions
Current ”death” status true and Previous ”death” status false → return to
previous state.
Current ”death” status false and Previous ”death” status true → update to
current state.
Current ”death” status true and Previous ”death” status true → chicken resur-
rects.
Current penalty status false and Previous penalty status true → update to
current state.
Current penalty status true and Previous penalty status false → return to pre-
vious state.
Current penalty status true and Previous penalty status true→ if the raw fitness
is better, update to current state; otherwise, return to the previous state.

If the position is as denoted by the green dot, the following cases apply:
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Green Dot Conditions
Current penalty status false → update to current state.
Current ”death” status true and Previous ”death” status false → return to
previous state.
Current ”death” status true and Previous ”death” status true → chicken resur-
rects.
Current ”death” status true and Previous ”death” status false → return to
previous state.
Current penalty status true and Previous penalty status true → update to
current state (this happens because the individual is in a better position; although
it is penalized, it is allowed to continue since it might improve and eventually
respect the constraints in a later state).

It is important to note that, every time a chicken updates its state, even if it is

penalized, the rationale is to allow it to continue moving, with the expectation that

it will eventually reach a better state.

Later, every solution found during the current iteration—including the entire pop-

ulation, the already existing elites, and the possible elites—is gathered together. All

these solutions are then compared with each other to separate dominated from the

non-dominated ones. The solutions that are not dominated by any others form the

newly created elite group.

Moreover, when the search for elites is performed, if an individual is found to

be identical to one in the elite group, a possible replacement occurs. This means

that the identical chickens acquire a noise in their position and are reinjected into

the population. As a result, they replace chickens with the worst fitness while also

inheriting the attributes associated with their specific ID to maintain connection in

the population. Specifically, roosters retain their assigned hens, hens keep their mate

rooster and chicks, and chicks inherit their mother hen.

Last but not least, an additional mechanism is implemented to handle penal-

ized chickens in MOO problems. During population rearrangement, each penalized

chicken’s position is replaced by that of a randomly selected elite individual, with

added noise. This happens with a probability of 75%.

When the maximum number of elites has not yet been reached, the noise is con-
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strained to a smaller region around the selected elite, increasing the likelihood of

discovering and adding another elite individual to the elite set. Otherwise, the noise

is applied over a broader area, promoting exploration of different regions in the design

space. This broader search comes with the risk of placing individuals in areas where

they may be penalized. This mechanism is introduced to address situations where only

a few non-penalized individuals are available to form the elite pool. By forcing pe-

nalized individuals to relocate near elite ones, the pool of potentially high-performing

solutions is expanded, thereby enhancing the overall algorithm performance.

3.4.3 Thinning

The user of the algorithm has the freedom to select how many elites can be on the

Pareto front. This means that the algorithm must handle the case when the maximum

elite number requested by the user has reached its limit and one more asks to enter

the elite group. The simplest way to handle such a case, albeit quite ineffective, is

to discard any chicken beyond that limit. This solution may satisfy the maximum

limit set by the user, but it may lead to a Pareto front with sparse and dense regions

in several spots. Consequently, the quality of the Pareto front is reduced, making it

more challenging for the user to understand and accurately evaluate the results.

In this thesis, to make the process smoother distances, as measured by the penalized

fitness of each chicken, are calculated. The two individuals with the minimum distance

are kept as candidates for replacement when a new elite candidate arrives. The

distance between every chicken and the new elite candidate is then calculated, and if

the minimum of these distances is greater than the minimum distance between the

two old candidates, one of the old candidates is replaced, with the selection happening

randomly. No specific criteria are applied for this action.

3.4.4 Chicken Resurrection

As mentioned previously in this section, some chickens according to some criteria are

resurrected in order to play again their roles in the algorithm. This mechanism is

presented here.
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When a chicken dies, a spot gets empty in the population. If no action was taken

to replace this spot, then the total size of the population would vary, and the algo-

rithm would lose control. In order to preserve and control the algorithm, the total

population must be fixed.

At first, the algorithm checks the ID of the chicken to determine whether it is a

rooster, hen, or chick. A search is performed in the database, where every previously

calculated individual is stored, and a random individual with the same ID is returned.

Then, its position is modified with a random noise, and a new chicken is reintroduced

into the population.

Except for the position, the newly created chicken is assigned the same relationships

it had before its death. The rooster is assigned its hens, the hen is assigned its mate

and its chicks, and the chick is assigned its mother hen. If the database is empty,

which happens during the first iteration, the chicken is initialized with the highest

possible fitness and a random position. In the extreme case where in the Generation

0 all chickens are about to die, then the same action is performed for 5 times. If their

”death” status is true every time, the algorithm terminates and the user should try

again.

3.5 DataBase

The database is used to store all evaluated individuals and is enriched in every iter-

ation. If an individual already exists in the database, it is discarded. In this thesis,

the implementation does not follow the structure of a regular database, like MySQL

etc.. Instead, it is a C++ structure containing objects with specific values. The val-

ues stored in the database include the positions of the chickens, their fitness values,

penalized fitness values, constraints, raw fitness values, and their IDs.

Every time a chicken’s position is calculated, it is checked against the database to

determine if it already exists. If it does, the stored chicken from the database is used

instead of the newly calculated one. This approach reduces the number of evaluations

performed. Additionally, the database is utilized for chicken resurrection as seen in

Subsection 3.4.4.
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A database may also serve other purposes. One of them is to train metamodels to

enhance the effectiveness of stochastic algorithms, as done in a MAEA.

3.6 Hyper-Volume Indicator

A quantitative measure is required to assess the closeness and quality of an estimated

set of solutions relative to the Pareto front. One of the most widely used and effective

indicators for this purpose is the Hypervolume Indicator (HVI).

The hypervolume indicator measures the volume of the objective space that is

weakly dominated by the estimated Pareto front and bounded by a predefined ref-

erence point. It simultaneously captures both convergence—how close the solutions

are to the Pareto front, and diversity, how well the solutions are distributed along the

front. A higher HVI value indicates that the Pareto front dominates a greater por-

tion of the objective space, assuming the reference points are fixed and appropriately

selected, and it is commonly used as an indicator of convergence in MOO problems.

In this study, the HVI is employed to compare the quality of the Pareto fronts

produced by the EA or MAEA and CSO algorithms.
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Applications - Discussion

Initially, every optimization algorithm is tested using a series of well-known bench-

mark problems. These problems are mathematical functions, commonly referred to

as test functions. Widely recognized examples include the Rastrigin function, the

Ackley function, and others, which are characterized by many local optima and a

single global minimum, typically at zero (0, 0, 0,...0).

Since these problems are inherently challenging, optimization algorithms often risk

getting trapped in local optima. To better evaluate an algorithm’s performance and

robustness, it is beneficial to shift these functions so that the global optimum be

located at a value other than zero. This allows for a more thorough assessment of the

algorithm’s ability to explore the search space effectively.

Moreover, the complexity of the problem increases when a larger number of design

variables are introduced, making the optimization process even more demanding. This

provides an advantage when testing an algorithm compared to pseudo-engineering

problems, which are also commonly used. It is important to note that these test

functions do not include any constraints.

Pseudo-engineering problems, on the other hand, represent scenarios that are closer

to real-world applications, providing a more practical approach for testing optimiza-

tion algorithms. Unlike test functions, the number of design variables in pseudo-

engineering problems is fixed, making them easier in this regard. However, many of

these problems include constraints, which significantly increase their complexity.
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In this thesis, the shifted Rastrigin function is used to examine the parameters of

the algorithm for SOO problems. Additionally, EAs or MAEAs and CSO are com-

pared using two pseudo-engineering problems. For each problem, the population size

in every generation and the encoding method have been kept the same for both algo-

rithms to ensure the most absolute comparison possible. All other setup paremeters

are selected in order to achieve the best possible performance for each algorithm.

4.1 CSO Parameters Analysis

The Rastrigin function is defined as:

f(X⃗) = 10n+
N∑
i=1

[
x2
i − 10 cos(2πxi)

]
(4.1)

where N is the number of dimensions or design variables. Each dimension corresponds

to a variable xi, where i = 1, 2, . . . , N and xi ∈ [−5.12, 5.12].

The function has many local minima, making it difficult for optimization algorithms

to find the global minimum. The global minimum occurs when xi = 0 for all dimen-

sions, and the function value is f(X⃗) = 0. The shifted Rastrigin function used for

this analysis has its global minimum at xi = 3, i = 1, . . . , N . The Rastrigin function

is shifted away from the origin because CSO easily finds the global minimum at zero;

shifting the function makes the optimization task more challenging. To achieve this,

the function is defined as:

h(X⃗) = f(X⃗ −


3

3
...

3


) (4.2)
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4.1.1 CSO Parameters

This analysis will focus on three parameters of the algorithm: the number of roosters,

the number of mother hens, and the regeneration parameter G. The study will

examine how these parameters affect the solution of the problem and potentially

provide guidance on their optimal usage. The balance remains due to the adjustment

of the chicks population, when changing the number of roosters. After several runs, a

population size of 60 individuals appears to be sufficient for the algorithm to perform

both effectively and efficiently.

Moreover, for the plots and tables presented in this subsection, data from 5 inde-

pendent runs with different random seeds (initialiazation of the first population) were

used. Specifically for the plots, the respective objective function values from each run

were used individually, rather than computing average values across runs. For each

x-axis value (i.e., the number of function evaluations), if an objective function value

was not available in a particular run, the most recent previous objective function val-

ues was carried forward. For example, in a case of evaluations 14585 to 14696, if an

objective function value of 0.055 was recorded at evaluation 14585 and no new value

was available until evaluation 14696, the value 0.055 was used for all intermediate

evaluations. At evaluation 14696, when a new objective function value (e.g., 0.026)

appeared, the curve changed accordingly.

4.1.1.1 Number of Roosters RN

The number of roosters plays a significant role in the overall swarm mechanism.

Roosters are the only individuals that explore the design space independently, without

being influenced by the positions of other members of the flock, whether roosters,

hens, or chicks. As a result, the performance of the algorithm can be heavily influenced

by the quality of the rooster leaders. A poorly performing rooster may misguide

its group, negatively affecting convergence. Conversely, a competent rooster leader

can significantly improve the search process and help the algorithm find the optimal

solution more efficiently. Therefore, the number of roosters warrants discussion, not

only to highlight this aspect of the algorithm’s design but also to explain how the
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algorithm mitigates the risk of poor leadership within the swarm. Table 4.1 shows

the constant parameters used for studying the RN parameter. Table 4.2 presents the

values and the number of evaluations of every run, of every case.

CSO
HN = 20
MN = 16

CN = 39 / 37 / 35
G = 5

G Max = 350

Table 4.1: Shifted Rastrigin function. CSO algorithm parameters for RN analysis.

Before diving into the analysis of RN, it is important to highlight an interesting

observation. The RN parameter bears resemblance to the number of demes used

in the (µ, λ)-EA, known as Distributed EA (DEA). This functionality divides the

population into groups corresponding to the demes. These demes can cooperate and

exchange information with one another, much like the groups in the CSO algorithm,

which interact through the hen population.

RN = 1

When RN = 1, there is only one group in the flock, and every chicken follows a single

rooster. As a result, the algorithm’s convergence toward the best solution becomes

highly dependent on the performance of this individual rooster. If the rooster is not

effective, the algorithm may struggle to find the optimal solution.

From Tables 4.2 and 4.1, it is evident that the algorithm’s performance is sig-

nificantly worse compared to the other two RN configurations. It requires more

evaluations, and the objective function achieves higher values. A likely explanation

for this is the rooster’s movement mechanism: it moves randomly and only updates

its position if it discovers a better solution. However, after two generations (see Chap-

ter 3 for algorithm details), it may randomly relocate in the design space with a 50%

probability, which disrupts its trajectory. While this mechanism is intended to help

the rooster escape local optima if it gets stuck, it also introduces instability, for this
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case, which, most likely, negatively impacts overall performance.

RN = 3, 5, 7, 9

These four selections give much better performance than RN = 1, as expected. The

mechanism mentioned above is now applied only to the worst rooster—the one with

the highest fitness. As a result, the best roosters continue their search uninterrupted,

leading their groups toward the optimal solution in each generation. The worst rooster

is free to wander when the time comes, which may allow it to eventually become the

best. If that happens, its group will follow it to the better solution.

RN = 5 yields slightly better results, as shown in Table 4.2. In particular, it

appears more stable, as indicated by its lower convergence value, lower mean, lower

median, and smaller standard deviation compared to the other RN values. The only

exception is the mean and minimum number of evaluations, which is slightly higher

than RN = 3, though the difference is negligible.

Figure 4.1: Shifted Rastrigin function. Comparison among the mean values of 5
different RN values (RN = 1, 3, 5, 7, 9) by using five independent runs with different
seeds.
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Figure 4.2: Shifted Rastrigin function. This figure presents comparison of all 5 inde-
pedent runs of 5 different RN values (RN = 1, 3, 5, 7, 9).

Figure 4.1 provides a graphical representation of the discussion above. In the case

of RN = 1, it is evident that the algorithm performs worse: it converges more slowly,

although it seems to converge a bit faster than RN = 5 at first. Also, it reaches a

higher final value, and requires slightly more evaluations. However, the comparison

between RN = 3, RN = 5, RN = 7 and RN = 9 reveals an interesting insight.

Although earlier analysis suggested that RN = 5 yields better overall results, the

figure shows that it converges more slowly than RN = 9 until approximately 15000

evaluations. Also, RN = 7 converges slower, but it reaches almost the same value as

RN = 3 and RN = 9. This behavior highlights the nature of the algorithm when

multiple roosters are involved: the worst rooster has the opportunity to become the

best relatively quickly, potentially accelerating convergence.

Also, in Figure 4.2, it is evident that for RN = 3, 5, 7 and RN = 9, the variance is

lower compared to the case of RN = 1. However, despite the reduced variance, the

corresponding curves remain somewhat dispersed.

Based on the presented results, it is evident that having more roosters generally
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leads to better convergence, as the underlying mechanism benefits from a larger num-

ber of guiding individuals. In the examined case, the best performance was achieved

with RN = 5, although RN = 3, 7, 9 also demonstrated strong results.

4.1.1.2 Number of Mother Hens MN

The number of mother hens is a particularly sensitive parameter that significantly

affects the algorithm’s performance. It determines which hens will act as mothers

and how many chicks will be assigned to each. Since chicks follow only their respec-

tive mothers, if a mother explores poorly or inefficiently, her chicks are likely to do

the same. At first glance, it may seem risky to use only one mother in the flock.

Conversely, if all hens are mothers, there will be fewer chicks per mother, and if some

of these mothers are not effective at foraging, many chicks may also perform poorly.

Naturally, these assumptions may not be valid for all problem types, so it is advisable

for users to experiment with different mother hen configurations to identify the most

effective setup for their specific case.

This analysis tries to give the reader a glimpse of how MN works and possibly give

some guidance. The table 4.3 presents the constant values of the parameters used for

these runs.

CSO
RN = 5
HN = 20
CN = 35
G = 5

G Max = 350

Table 4.3: Shifted Rastrigin function. CSO algorithm parameters for MN analysis.

From Table 4.4, it is easy to observe that, for the shifted Rastrigin problem, select-

ing MN = HN
2

= 10 yields the best performance overall. This setting achieves lower

minimum and maximum values, along with better mean and median results. Both

MN = 1 and MN = 5 are strong competitors, as they approach the performance

of MN = 10 with slightly fewer evaluations. In particular, for MN = 1, it seems
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that a single mother hen is sufficient to consistently follow a good rooster in every

population rearrangement, achieving good results reliably. On the other hand, when

MN = HN = 20, the algorithm struggles more in terms of performance. However,

this does not imply that choosing MN = HN is always a poor choice; later, it will

become clear why, in some problems, setting MN = HN can actually improve the

algorithm’s performance.

Figure 4.3: Shifted Rastrigin function. This figure presents comparison of mean values
of five different MN values (MN = 1, 5, 10, 15, 20) by using five independent runs
with different seeds.

Figure 4.3 is a good example of the discussion above. The MN = 5 case appears

to converge to the best value compared to all other cases, although its convergence

is slower than the rest. Good performance, both in terms of convergence speed and

final value, is achieved with MN = 10, followed by MN = 15. On the other hand,

the worst performance is observed for the MN = 20 and MN = 1 cases. Based on

the above results, for such problems, an intermediate value of MN , neither too small

nor too large, should be selected to achieve better performance. For such problems,

values around 1
4
HN or 1

2
HN are usually sufficient.
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4.1.1.3 Population Re-arrangement Parameter G

The purpose of this parameter is to re-arrange the population (Table 3.1 Step 4) .

This means it determines when the best chickens become roosters, the worst become

chicks, and the middle-ranked ones become hens, with the frequency of these updates

dictated by G. It also governs when some of the hens are promoted to mothers.

The goal of this analysis is to verify the claims made in [42], which state that the

G parameter should be neither too low nor too high. If G is too low, the algorithm

may quickly become trapped in local optima, whereas if G is too large, the overall

effectiveness of the algorithm declines.

The table 4.5 presents the constant values of the parameters used for these runs.

CSO
RN = 5
HN = 20
MN = 10
CN = 35

G Max = 350

Table 4.5: Shifted Rastrigin function. CSO algorithm parameters for G analysis.

The analysis presented here verifies the conclusions from [42] and both table 4.6

and figure 4.4 confirms it. When G = 1, it means that in every generation population

re-arrangement occurs and the best chickens become roosters. This means that every

time the rooster starts searching from an initial position, the groups change in every

generation as well, and a rooster cannot lead its group properly. So, the exploration

ability reduces, and this causes the algorithm to eaily gets stuck in local optima.

On the other hand, when G = 50, which is quite large, only 7 re-arrangements

occur over the course of 350 maximum generations. In this case, the algorithm allows

the roosters to lead their groups for a significant amount of time. However, if an

individual other than a rooster finds a better position and gets a better fitness value,

it retains the position without becoming a rooster and thus cannot properly lead the

group. It must wait until the next re-arrangement, which might occur quite late. As

a result, the algorithm’s performance can be heavily impacted at times. The metrics
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results clearly indicate this, as the algorithm struggles somewhat in this setting.

Therefore, a compromise between these two extremes tends to allow the algorithm

to perform better. In the examples presented, G = 5 shows a slight advantage,

achieving the lowest fitness value and overall better metric results.

Figure 4.4: Shifted Rastrigin function. This figure presents comparison of mean values
of six different G values (G = 1, 2, 5, 10, 20, 50) by using five independent runs with
different seeds.

Also, for G = 2, G = 10, and G = 20, the results show quite good performance.

However, the user of the algorithm must experiment to find the best setup for each

specific problem. For the case examined, a value different from G = 1 or one that is

too large could potentially provide better performance.

4.2 Pseudo-Engineering Problems

In this study, two pseudo-engineering design problems are selected to evaluate and

compare the performance of the two algorithms. These benchmark problems are the

Vibrating Platform Design and the Two-Bar Truss Design, both of which have been
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sourced from the comprehensive suite introduced in [59]. These problems were chosen

due to their relevance in structural optimization and their ability to reflect real-world

constrained MOO scenarios, making them suitable for a meaningful performance as-

sessment. In particular, two comparisons are conducted: one with EA and another

one with MAEA.

For every run of each algorithm the fitnesss assignement mode is SPEA2. The

number of elites requested is 50 for each run. Also, for each algorithm 5 indepen-

dent runs with different initializations were conducted to ensure a more robust and

meaningful comparison, not affected by stochasticity. All comparisons are performed

under the same computational budget.

4.2.1 Vibrating Platform Design Problem

The Vibrating Platform Design problem is a constrained MOO problem used as a

benchmark to evaluate the effectiveness of various evolutionary algorithms in solving

complex real-world problems.

This problem was notably studied in [60], where has been proposed several en-

hancements to standard Multi-Objective Genetic Algorithms (MOGAs). However,

in their study, the vibrating platform problem was used solely as a representative

test case due to its inclusion of mixed-discrete variables, which introduces additional

complexity to the optimization process.

In this work, the same problem helps comparing the performance of the proposed

CSO algorithm against the EA and MAEA algorithms, and to evaluate how effectively

CSO handles MOO with mixed-variable types. The Vibrating Platform Design is a

constrained MOO problem that seeks to optimize the dynamic and cost performance

of a mechanical structure. The problem consists of two objective functions that need

to be minimized:

f1 = − π

2L2

√
EI

µ
(4.3)
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f2 = 2bL (c1d1 + c2(d2 − d1) + c3(d3 − d2)) (4.4)

Objective function f1 represents the inverse of the dynamic performance of the

platform, where L is the length of the platform, EI is the moment of inertia, related

to the platform’s cross-sectional geometry and µ is the material’s density per unit

length.

Objective function f2 represents the cost associated with the platform, which is

proportional to its material and structural dimensions, where b is the breadth of the

platform, L is the length of the platform, d1, d2, d3 represent the different thicknesses

of the platform at various segments and c1, c2, c3 are cost coefficients that reflect the

material or structural cost at different thickness intervals.

It, also, involves the following inequality constraints:

g1 = µL− 2800 ≤ 0 (4.5)

g2 = d1 − d2 ≤ 0 (4.6)

g3 = d2 − d1 − 0.15 ≤ 0 (4.7)

g4 = d2 − d3 ≤ 0 (4.8)

g5 = d3 − d2 − 0.01 ≤ 0 (4.9)

The mass per unit length µ is given by:

µ = 2b (ρ1d1 + ρ2(d2 − d1) + ρ3(d3 − d2)) (4.10)

The bending stiffness EI is given by:

EI =
2b

3

(
E1d

3
1 + E2(d

3
2 − d31) + E3(d

3
3 − d32)

)
(4.11)

The material properties are as follows:
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ρ1 = 100, ρ2 = 2770, ρ3 = 7780

E1 = 1.6, E2 = 70, E3 = 200

c1 = 500, c2 = 1500, c3 = 800

The design variables and their respective bounds are:

0.05 ≤ d1 ≤ 0.5

0.2 ≤ d2 ≤ 0.5

0.2 ≤ d3 ≤ 0.6

0.35 ≤ b ≤ 0.5

3 ≤ L ≤ 6

To effectively study and solve the problem, it is necessary to define two threshold

values for each constraint: the CTHR, as specified by the constraint equation itself,

and a CD, defined by the user. If an individual exceeds the CD, a ”death” penalty is

applied. Every parameter value is denoted by the table 4.7.

CSO EA & MAEA
RN = 3 µ = 20
HN = 32 λ = 90
MN = 32 Crossover probability = 97%
CN = 45 Crossover Mode = 2-point /var
G = 5 Mutation probability = 5%

G Max = 400 Parents of one offspring = 3
Tournament size = 3

Tournament probability = 90%
max evaluations = 30000
encoding = Binary-Gray

Table 4.7: Vibrating Platform Design Problem. CSO and EA/MAEA algorithm
parameters.
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The only way to control the maximum number of evaluations in CSO is by multi-

plying the total population size by the maximum number of generations, before the

algorithm starts. In this case, the product yields 28000 evaluations. However, some

evaluations are skipped because certain updated individuals coincide with previously

evaluated ones stored in the database. When this occurs, their evaluation is bypassed,

and the corresponding stored solutions are reused instead. As a result, for the run

presented, the actual number of evaluations performed by CSO was around 25000.

The number of total evaluations for EA remains at 30000 evaluations.

The results presented in Figure 4.5 are quite interesting and highlight the potential

of CSO. The front of non-dominated solutions (computed with the same computa-

tional budget) obtained by CSO appears to be better distributed than that of EA. In

particular, most of EA’s solutions are quite spread, but they do not reach the edges

and seem to be dominated by CSO’s solutions. The objective function values for EA

are primarily within the ranges of [−12,−4]× 10−3, and within [250, 650] for f2.

CSO, on the other hand, provides a clearer approximation of the Pareto front. Al-

though the bottom-right corner of the front of non-dominated solutions appears more

densely populated compared to other regions, the overall distribution of solutions is

better and spans a wider area than that of EA. Moreover, dominance of the front

of non-dominated solutions is clearly in favor of CSO. The number of total solutions

after 5 runs are 107 for CSO and 32 for EA.

The results produced by HVI shows a well produced quality of CSO’s front of non-

dominated solutions comparing to that of EA. The HVI value of EA starts from very

low values close to 0.25, and it is increased till the value 0.72. While CSO starts from

the value of 0.3 till the value 0.75, in lesser evaluations. Both the Pareto front and

the HVI obtained by CSO appears to be superior in terms of solution quality.

Two key factors contribute to these results more than any others. The first is the

algorithm’s design, which replaces penalized individuals with elite ones, adding ran-

dom noise to their updated positions. This mechanism helps keep individuals within

non-penalized regions for foraging, and is applied every G generations. As a result,

the algorithm maintains a larger and more effective pool of individuals for discovering

the front of non-dominated solutions (computed at the same computational budget).
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Figure 4.5: Vibrating Platform Design Problem. Front of non-dominated solutions
(computed at the same computational budget) comparison CSO and EA. Both algo-
rithms display the fronts of non-dominated solutions obtained from 5 separate runs
with different initializations. The number of individuals on the Pareto is 107 for CSO
and 32 for EA.

The second factor is the selection of the MN and G parameters. When MN

is set equal to HN , the algorithm ensures that if all hens are penalized, a greater

number of individuals can be replaced by elite ones. Regarding the choice of G, the

value of 5 strikes a balance—it is neither too small nor too large. A smaller G could

cause the algorithm to repeatedly reset into non-penalized zones, potentially limiting

exploration and making it harder to discover better regions. On the other hand, a

larger G might delay the algorithm’s response to penalization, making it less effective

at escaping poor or infeasible regions. Thus, the selected value of G = 5 allows the

flock to forage and function as intended while maintaining adaptability.

As for the results produced by comparing CSO to MAEA, the outcomes show much

more similarity. The settings used for the metamodel—listed in Table 4.8—are the

default parameters recommended by EASY software.

With 30000 evaluations, MAEA is able to produce better results than in previous
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Figure 4.6: Vibrating Platform Design Problem. Convergence of CSO vs EA using
Hyper-Volume Indicator. CSO starts from a higher value and converges to a higher
value than EA.

Parameter Value
Metamodel type RBF
Exact evaluations (min) 10
Exact evaluations (max) 15
LCHE pause generations 5
Minimum DB entries 500
Not failed 50
Training patterns (min) 20
Training patterns (max) 40

Table 4.8: LCHE Settings.

runs in terms of dominance, as expected. By the end, the number of elite individuals

reaches 42 in total, as shown in Figure 4.7. The solutions are now better distributed

across the front of non-dominated solutions. CSO completes around 29000 mean eval-

uations and performs comparably to MAEA, but has more solutions (107). Notably,

MAEA’s solutions are, now, better distributed.

Figure 4.8 illustrates the convergence behavior of both algorithms. MAEA demon-
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Figure 4.7: Vibrating Platform Design Problem. Front of non-dominated solutions
(computed at the same computational budget) of CSO vs MAEA. Both algorithms
display the fronts of non-dominated solutions obtained from 5 separate runs with
different initializations. The number of individuals on the front of non-dominated
solutions is 107 for CSO and 42 for MAEA.

strates faster convergence, as indicated by the lower HVI values. After 21000 evalu-

ations, both algorithms appear to converge at a similar rate. However, CSO reaches

an objective value of 0.75, while MAEA converges to a higher value of 0.85, in slightly

more ecaluations. Overall, the HVI graph demonstrates similar performance of CSO

and MAEA, which is fully consistent with the results observed in the front of non-

dominated solutions analysis (Figure 4.7).

4.2.2 Two Bar Truss Design Problem

The two-bar truss is a type of truss structure consisting of two bars connected at the

ends by either pins or joints. This type of truss is commonly used in construction and

engineering applications. It is a simplified constrained MOO problem that aims to

minimize both the volume (mass-related) and the stress of a simple truss structure.

The problem consists of two objective functions to be minimized:
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Figure 4.8: Vibrating Platform Design Problem. Convergence of CSO vs MAEA with
RBFN using Hyper-Volume Indicator. CSO starts from a higher value and converges
to a lower value than MAEA in fewer evaluations. MAEA reaches similarly high
values as CSO, although it requires slightly more evaluations to do so.

Figure 4.9: Schematic representation of the Two-Bar Truss Design problem [61].

f1 = x1

√
16 + x2

3 + x2

√
1 + x2

3 (4.12)
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f2 =
20
√
16 + x2

3

x3x1

(4.13)

Objective function f1 represents a performance or cost metric related to the geom-

etry and load-bearing behavior of the truss, where x1 is a design parameter typically

related to material volume or size, x2 is a geometric parameter affecting stiffness and

deformation and x3 is a scalar factor (e.g., shape coefficient or slenderness ratio).

Objective function f2 reflects stress performance under load, inversely related to

the product of a design variable and a shape /stiffness parameter. The square root

and division imply inverse proportionality to stiffness and direct impact on stress.

The design must satisfy the following nonlinear inequality constraints:

g1 = f1 − 0.1 ≤ 0 (4.14)

g2 = f2 − 105 ≤ 0 (4.15)

g3 =
80
√

1 + x2
3

x3x2

− 105 ≤ 0 (4.16)

ensuring that performance objectives do not exceed permissible limits for weight,

stress, and deformation.

The variables x1, x2, x3 are subject to the following bounds:

10−5 ≤ x1 ≤ 100

10−5 ≤ x2 ≤ 100

1 ≤ x3 ≤ 3

reflecting feasible ranges for geometric and physical design parameters, maintaining

the structural integrity and realism of the design space.

Two Bar Truss Design Problem with constraints is examined, now, as it is more

realistic and representative of the challenges an engineer must address. To effectively

study and solve the problem, it is necessary to define two threshold values for each



62 Chapter 4. Applications - Discussion

constraint again, as done before. Every parameter value is denoted by the table 4.9.

CSO EA & MAEA
RN = 3 µ = 20
HN = 32 λ = 80
MN = 32 Crossover probability = 97%
CN = 45 Crossover Mode = discrete
G = 5 Mutation probability = 5%

G Max = 250 Parents of one offspring = 2
Tournament size = 3

Tournament probability = 90%
max evaluations = 20000

Table 4.9: Two Bar Truss Problem. CSO and EA/MAEA algorithm parameters.

For this problem, less total evaluations than the Vibrating Platform Design problem

(around 20000 were allowed). So the maximum selected number of evaluations from

CSO is 80 · 250 = 20000 and for EA is 20000.

The results presented in Figure 4.10 demonstrate promising performance of the

CSO algorithm; however, it does not perform as well as in the previously solved prob-

lem. The front of non-dominated solutions obtained by the EA appears to be better

distributed compared to that of CSO. Specifically, the EA identified 138 solutions

that are more widely spread within the same number of evaluations, whereas CSO

produced only 88 solutions. In the region corresponding to f1 values in the range

[0.01, 0.02], EA outperforms CSO, as CSO’s corresponding f2 values are higher and

thus dominated by those found by EASY. In the left-most portion of the front of

non-dominated solutions, CSO was unable to find as many solutions as EA.

In general, CSO provides a clearer approximation to EA regarding the front of non-

dominated solutions. It is distributed quite well along the objective with small gaps

on it. This could be considered as a proof the mechanism that helps keep individuals

within non-penalized regions for foraging, can lead to a pretty good performance

comparable to a much more tested algorithm as EA. This is a useful asset of the

algorithm and its user.

The results obtained from the HVI analysis indicate that CSO produces a front of
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Figure 4.10: Two Bar Truss Design Problem. Front of non-dominated solutions
(computed at the same computational budget) of CSO vs EA. EA has a wider front
of non-dominated solutions solutions. The number of individuals on the Pareto is 88
for CSO and 138 for EA.

non-dominated solutions comparable to the EA. EA’s HVI starts from relatively high

values, close to 0, due to its the fact that in the first generations did not manage to

find elite individuals. By the end, it managed to reduce the HVI value a bit higher

than 0.9. However, it converges a bit slower, till 10000 evaluations, than CSO, which

begins with a HVI of around 0, as it initially struggles, as well, to identify high-quality

solutions. At the end, it reduces its HVI value to 0.9 faster than EA. As a conclusion,

CSO performs better than EA in this case. After 10000 evaluations, both algorithms

converge with similar rate.

As for the results produced by comparing CSO to MAEA, the outcomes are very

similar. The settings used for the metamodel, listed in Table 4.8, are still the de-

fault parameters recommended by MAEA. The same conclusions can be drawn, as

in previously described without the use of metamodel. The only change is that in

Figure 4.12 MAEA gives 142 individuals instead of 138.

Figure 4.13 presents the behaviour of both algorithms. MAEA struggles to find
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Figure 4.11: Two Bar Truss Design Problem. Convergence of CSO vs EA using
Hyper-Volume Indicator. Both algorithms converge with similar rate to the same
value.

solutions at the beggining as before. This is indicated by the HVI values which

equal to 1. HVI decreases till the HVI value of around 0.1.The use of the RBF

metamodel helped MAEA converge faster, with performance nearly matching that

of CSO. However, its convergence is slower up to approximately 7000 evaluations.

After, it slightly becomes better, and after 13000 evaluations they both converge

with similar rate to the same vlaues.
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Figure 4.12: Two Bar Truss Design Problem. Fronts of non-dominated solutions
(computed at the same computational budget) of CSO vs MAEA. MAEA has a
wider front of non-dominated solutions. The number of non-dominated individuals is
88 for CSO and 142 for MAEA.
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Figure 4.13: Two Bar Truss Design Problem. Convergence of CSO vs MAEA using
Hyper-Volume Indicator. Both algorithms converge with similar rate to the same
value.



Chapter 5

Conclusions

This thesis examined every aspect of the CSO algorithm as developed and imple-

mented by the author. Prior to the detailed exploration of CSO, the fundamentals of

stochastic optimization were introduced, alongside an overview of Swarm Intelligence

and the PSO algorithm, since CSO falls within this broader category. Additionally,

reference was made to the (µ, λ)-EA and its core principles, as it served as a bench-

mark for comparing the performance of CSO.

Regarding CSO itself, the algorithm’s inspiration from the biological behavior of

chicken flocks was analyzed. The structure and interaction among the three pri-

mary populations (roosters, hens, and chicks) were thoroughly described. Specifi-

cally, roosters lead their respective groups, hens follow their designated rooster, and

chicks follow only their mother hen. A systematic rearrangement of population and

regrouping of individuals is carried out every G generations.

The CSO was applied to the shifted Rastrigin function, where the global minimum

lies at (3, 3, . . . , 3) instead of the origin (0, 0, . . . , 0), in order to increase the prob-

lem’s complexity and challenge the optimization process. A thorough investigation

was conducted into how the algorithm’s parameters, RN , MN , and G, influence

convergence behavior and final solution quality. To further evaluate the performance

and robustness of the implementation, two pseudo-engineering optimization problems

were also solved, the Vibrating Platform Design and the Two Truss Bar Design prob-

lems. Each problem was run both with and without the use of metamodels, integrated
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through the EASY framework, in order to study how well can the CSO perform com-

paring to a surrogate-assisted algorithm. The constrained handling provided insight

into the CSO’s adaptability and performance in more practical and computationally

demanding scenarios.

Regarding the analysis of CSO’s parameters, it is evident that operating with only

one rooster, and thus only one group, leads to inconsistent results and deviations

in solution quality. Employing a greater number of roosters improves performance,

as it reduces the risk of the algorithm being misled by a poorly performing rooster.

Increasing the number of roosters allows for broader exploration, as the flock can

forage more effectively across the search space. Moreover, this setup provides an

opportunity for underperforming roosters to evolve into effective leaders for their

respective groups. Figure 4.1, with RN = 3, 5, 7, 9, illustrates this behavior clearly.

For the number of mothers, no definitive conclusion can be drawn. When there is

only one mother in the flock, if she follows a poorly performing rooster, she will likely

lead her chicks to suboptimal regions as well. Conversely, if the rooster is a good

leader, the chicks following their mother may produce better results. This results

in a high variation in performance, as shown in Figure 4.3. Furthermore, when

MN = HN , a large number of hens may follow a bad rooster, causing a significant

portion of the chicks to forage inefficiently. Based on this, it is advisable to use a

value of MN such that 1 < MN < HN for unconstrained problems. In contrast,

for constrained optimization problems, it is recommended to use a large number of

mothers, even MN = HN . This is because when many mother hens are penalized,

the constraint-handling mechanism forces them to forage in non-penalized regions.

A larger MN ensures that more hens, and by extension their chicks, are redirected

toward feasible and potentially better regions of the search space.

Regarding the population rearrangement factor G, setting G = 1 causes the pop-

ulation to be rearranged at every generation. This frequent reshuffling can lead the

algorithm to become easily trapped in local minima, as it prevents the defense mecha-

nisms, such as the stochastic escape behavior of roosters or the random repositioning

of chicks, from functioning effectively. On the other hand, when G is set too high, the

algorithm’s adaptability decreases, resulting in reduced performance. These observa-
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tions are consistent with the findings reported in [42]. Therefore, it is recommended

to test several values of G, avoiding values that are too small or too large, and tuning

the parameter based on the specific characteristics of the problem at hand.

The CSO also demonstrated notable performance when compared to EA andMAEA.

For the Vibrating Platform problem, CSO outperformed EA and MAEA, yielding

more solutions with better distribution across the front of non-dominated solutions.

The results are presented in Figures 4.5 and 4.7. For the Two-Bar Truss Design

problem, CSO presented slightly worse results than EA and MAEA. The results are

presented in Figures 4.10 and 4.12.

Overall, the CSO algorithm presented in this thesis was thoroughly evaluated and,

based on the results, has proven to be a promising optimization approach. Naturally,

further testing and validation on a wider range of problems are necessary to fully assess

its robustness and general applicability. In some cases, CSO outperformed EA and

MAEA, while in others, it performed comparably. Some of the novel ideas introduced

in CSO, as it has a swarm-based behavior, are not straightforward to integrate into

EASY due to fundamental differences in algorithmic structure. However, there is

potential for EASY to benefit from the concepts employed in CSO, possibly through

hybridization or algorithmic extensions.

Future Work

There are several ideas that were not explored by the author but could be consid-

ered for future development of the CSO algorithm. Given the promising performance

of the constraint-handling mechanism used in MOO problems, a similar approach

could be investigated for unconstrained problems to further enhance the algorithm’s

robustness. Additionally, there are instances where the software exhibits delays dur-

ing execution. As the implementation is written in C++, performance optimization

through multithreaded programming could be a valuable enhancement, for example,

by assigning a separate thread to each group in the population.

Furthermore, alternative strategies for constraint handling could be explored. The

current method is quite strict, and while a very loose approach did not yield strong
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results, a balanced compromise between the two may lead to improved performance.

Such developments could enhance both the efficiency and adaptability of the algo-

rithm across a wider range of problem types.

In the context of MOO, the function Φ is used to rank and rearrange individuals

within the population. According to the values of Φ, individuals are assigned be-

havioral roles such as roosters, hens, and chicks, following the described hierarchical

model. However, this scalar metric Φ may not be the most suitable choice, as it does

not take into account the relative positions of individuals on the Pareto front. Since Φ

typically aggregates multiple objectives into a single value, it may obscure important

trade-offs and overlook the distribution of solutions. A more geometric approach, one

that incorporates inter-individual distances in the objective space, could offer a better

means of differentiation. For example, metrics based on crowding distance or spatial

proximity might help preserve diversity while enhancing convergence guidance.

Last but not least, it is worth noting that the CSO algorithm currently lacks a

Metamodel-Assisted feature, a technique that has proven beneficial in many modern

stochastic optimization algorithms by reducing computational cost and guiding the

search more efficiently. Integrating such a mechanism into CSO could be a valuable

direction for future research, potentially improving convergence speed and overall

performance, especially in high-dimensional or computationally expensive problems

such as CFD problems.
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in der Strömungstechnik. Technische Universität, Berlin, 1965.

[15] H.-P. Schwefel, ≪Collective phenomena in evolutionary systems≫, in Problems

of Constancy and Change – The Complementarity of Systems Approaches to

Complexity, P. Checkland and I. Kiss, Eds., Int’l Soc. for General System Re-

search, 1987.

[16] H.-P. Schwefel, Evolution and Optimum Seeking: The Sixth Generation. John

Wiley & Sons, Inc., 1993.

[17] D. V. Arnold, Noisy Optimization with Evolution Strategies. Springer, 2002,

vol. 8.

[18] H.-G. Beyer, The Theory of Evolution Strategies. Springer, 2001.

[19] P. J. Angeline and K. E. Kinnear Jr, Eds., Advances in Genetic Programming

2. Cambridge, MA: MIT Press, 1996.

[20] W. Banzhaf et al., Eds., GECCO-99: Proc. Genetic and Evolutionary Compu-

tation Conference. San Mateo, CA: Morgan Kaufmann, 1999.

[21] J. R. Koza, Genetic Programming: On the Programming of Computers by Means

of Natural Selection. Cambridge, MA: MIT Press, 1992.

[22] J. R. Koza, Genetic Programming II: Automatic Discovery of Reusable Pro-

grams. Cambridge, MA: MIT Press, 1994.



Bibliography 73

[23] J. R. Koza, Gene duplication to enable genetic programming to concurrently

evolve both the architecture and work-performing steps of a computer program.

San Mateo, CA: Morgan Kaufmann, 1995.

[24] J. Kennedy and R. Eberhart, ≪Particle swarm optimization≫, in Proceedings of

ICNN’95 - International Conference on Neural Networks, Conference held 27

November 1995 - 01 December 1995., Perth, WA, Australia: IEEE, 1995, isbn:

0-7803-2768-3. doi: 10.1109/ICNN.1995.488968.

[25] X.-B. Meng, Y. Liu, X. Gao, and H. Zhang, ≪A new bio-inspired algorithm:

Chicken swarm optimization≫, in Lecture Notes in Computer Science: Proceed-

ings of the International Conference in Swarm Intelligence, Conference held

in October 2014., Location of the conference, if known: Springer, 2014. doi:

10.1007/978-3-319-11857-4_10.

[26] S. Alam, G. Dobbie, Y. S. Koh, P. Riddle, and S. U. Rehman, ≪Research on

particle swarm optimization based clustering: A systematic review of literature

and techniques≫, Swarm and Evolutionary Computation, vol. 17, pp. 1–13, 2014,

Available online 17 February 2014. doi: 10.1016/j.swevo.2014.02.001.

[27] M. Dorigo, V. Maniezzo, and A. Colorni, ≪Positive feedback as a search strat-

egy≫, Dipartimento di Elettronica, Politecnico di Milano, Italy, Tech. Rep. 91-

016, 1991.

[28] M. Dorigo, ≪Optimization, learning and natural algorithms (in italian)≫, Ph.D.

dissertation, Dipartimento di Elettronica, Politecnico di Milano, Italy, 1992.

[29] M. Dorigo, V. Maniezzo, and A. Colorni, ≪Ant system: Optimization by a colony

of cooperating agents≫, IEEE Transactions on Systems, Man, and Cybernet-

ics—Part B, vol. 26, no. 1, pp. 29–41, 1996.

[30] D. Karaboga, ≪An idea based on honey bee swarm for numerical optimization≫,

Erciyes University, Technical Report TR06, 2005.

[31] H. A. A. Bahamish, R. Abdullah, and R. A. Salam, ≪Protein tertiary structure

prediction using artificial bee colony algorithm≫, in Proceedings of the Third

Asia International Conference on Modelling & Simulation (AMS 2009), 2009.

https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1007/978-3-319-11857-4_10
https://doi.org/10.1016/j.swevo.2014.02.001


74 Bibliography

[32] S. M. Tabatabaei and B. Vahidi, ≪Bacterial foraging solution based fuzzy logic

decision for optimal capacitor allocation in radial distribution system≫, Electric

Power Systems Research, vol. 81, no. 4, pp. 1045–1050, 2011. doi: 10.1016/j.

epsr.2010.12.002.

[33] H. Chen, B. Niu, L. Ma, W. Su, and Y. Zhu, ≪Bacterial colony foraging op-

timization≫, Neurocomputing, vol. 137, pp. 268–284, 2014. doi: 10.1016/j.

neucom.2013.04.054.

[34] M. S. Li, T. Y. Ji, W. J. Tang, Q. H. Wu, and J. R. Saunders, ≪Bacterial foraging

algorithm with varying population≫, Biosystems, vol. 100, no. 3, pp. 185–197,

2010. doi: 10.1016/j.biosystems.2010.03.003.

[35] I. Fister, I. Fister Jr., X.-S. Yang, and J. Brest, ≪A comprehensive review of

firefly algorithms≫, Swarm and Evolutionary Computation, vol. 13, pp. 34–46,

2013. doi: 10.1016/j.swevo.2013.06.001.

[36] A. Gandomi, X.-S. Yang, S. Talatahari, and A. Alavi, ≪Firefly algorithm with

chaos≫, Communications in Nonlinear Science and Numerical Simulation, vol. 18,

no. 1, pp. 89–98, 2013. doi: 10.1016/j.cnsns.2012.06.009.

[37] A. H. Gandomi, X.-S. Yang, and A. H. Alavi, ≪Mixed variable structural opti-

mization using firefly algorithm≫, Computers & Structures, vol. 89, no. 23–24,

pp. 2325–2336, 2011. doi: 10.1016/j.compstruc.2011.08.002.

[38] J. Holm and E. Botha, ≪Leap-frog is a robust algorithm for training neural

networks≫, Network: Computation in Neural Systems, vol. 10, pp. 1–13, 1999.

[39] J. Snyman, ≪The lfopc leap-frog algorithm for constrained optimization≫, Com-

puters & Mathematics with Applications, vol. 40, no. 8–9, pp. 1085–1096, 2000.

doi: 10.1016/S0898-1221(00)85018-X.

[40] X.-S. Yang, ≪A new metaheuristic bat-inspired algorithm≫, in Studies in Com-

putational Intelligence, vol. 284, Springer, 2010, pp. 65–74. doi: 10.1007/978-

3-642-12538-6_6.

https://doi.org/10.1016/j.epsr.2010.12.002
https://doi.org/10.1016/j.epsr.2010.12.002
https://doi.org/10.1016/j.neucom.2013.04.054
https://doi.org/10.1016/j.neucom.2013.04.054
https://doi.org/10.1016/j.biosystems.2010.03.003
https://doi.org/10.1016/j.swevo.2013.06.001
https://doi.org/10.1016/j.cnsns.2012.06.009
https://doi.org/10.1016/j.compstruc.2011.08.002
https://doi.org/10.1016/S0898-1221(00)85018-X
https://doi.org/10.1007/978-3-642-12538-6_6
https://doi.org/10.1007/978-3-642-12538-6_6


Bibliography 75

[41] X.-S. Yang, ≪Chapter 10 - bat algorithms≫, in Nature-Inspired Optimization

Algorithms. Elsevier, 2014, pp. 141–154. doi: 10.1016/B978-0-12-416743-

8.00010-5.

[42] B. Chen, L. Cao, C. Chen, Y. Chen, and Y. Yue, ≪A comprehensive survey on

the chicken swarm optimization algorithm and its applications: State-of-the-art

and research challenges≫, Artificial Intelligence Review, vol. 57, p. 170, 2024,

Accepted: 5 May 2024 / Published online: 11 June 2024. doi: 10.1007/s10462-

024-10786-3.

[43] L. J. Fogel, Evolutionary programming, Foundational work in Evolutionary

Computation, San Diego, CA, USA, 1962.

[44] J. H. Holland, Genetic algorithms, Early development of Genetic Algorithms,

Ann Arbor, MI, USA, 1962.

[45] I. Rechenberg and H.-P. Schwefel, Evolution strategies, Pioneering work in Evo-

lution Strategies, Berlin, Germany, 1965.

[46] K. Jebari, M. Madiafi, and A. Elmoujahid, ≪Parent selection operators for ge-

netic algorithms≫, International Journal of Engineering Research & Technology

(IJERT), vol. 2, no. 11, 2013, issn: 2278-0181. [Online]. Available: https://

www.ijert.org/parent-selection-operators-for-genetic-algorithms.

[47] Baeldung, Roulette wheel selection in genetic algorithms, https://www.baeldung.

com/cs/genetic-algorithms-roulette-selection, 2023.

[48] Wikipedia contributors, Stochastic universal sampling, https://en.wikipedia.

org/wiki/Stochastic_universal_sampling, Accessed: 2025-04-30, 2024.

[49] T. Blickle and L. Thiele, ≪A comparison of selection schemes used in genetic

algorithms≫, Computer Engineering and Communication Networks Lab TIK,

Swiss Federal Institute of Technology ETH, Zurich, Switzerland, Tech. Rep.

TIK Report Nr. 1996, Accessed: 2025-04-30.

[50] Wikipedia contributors, Tournament selection, https://en.wikipedia.org/

wiki/Tournament_selection, 2024.

https://doi.org/10.1016/B978-0-12-416743-8.00010-5
https://doi.org/10.1016/B978-0-12-416743-8.00010-5
https://doi.org/10.1007/s10462-024-10786-3
https://doi.org/10.1007/s10462-024-10786-3
https://www.ijert.org/parent-selection-operators-for-genetic-algorithms
https://www.ijert.org/parent-selection-operators-for-genetic-algorithms
https://www.baeldung.com/cs/genetic-algorithms-roulette-selection
https://www.baeldung.com/cs/genetic-algorithms-roulette-selection
https://en.wikipedia.org/wiki/Stochastic_universal_sampling
https://en.wikipedia.org/wiki/Stochastic_universal_sampling
https://en.wikipedia.org/wiki/Tournament_selection
https://en.wikipedia.org/wiki/Tournament_selection


76 Bibliography

[51] K. Deb, A. Pratap, S. Agarwal, and T Meyarivan, ≪A fast and elitist multiob-

jective genetic algorithm: Nsga-ii≫, IEEE Transactions on Evolutionary Com-

putation, vol. 6, no. 2, pp. 182–197, 2002.

[52] E. Zitzler and L. Thiele, ≪Multiobjective evolutionary algorithms: A compar-

ative case study and the strength pareto approach≫, IEEE Transactions on

Evolutionary Computation, vol. 3, no. 4, pp. 257–271, 1999.

[53] E. Zitzler, M. Laumanns, and L. Thiele, ≪Spea2: Improving the strength pareto

evolutionary algorithm≫, ETH Zurich, Computer Engineering and Networks

Laboratory (TIK), Tech. Rep. 103, 2001.

[54] K. C. Giannakoglou, V. G. Asouti, and D. Kapsoulis, Low-cost evolutionary al-

gorithms for engineering applications, Parallel CFD & Optimisation Unit, Lab-

oratory of Thermal Turbomachines, School of Mechanical Engineering, National

Technical University of Athens, 2020.

[55] I. C. Kampolis, A. S. Zymaris, V. G. Asouti, and K. C. Giannakoglou, ≪Mul-

tilevel optimization strategies based on metamodel-assisted evolutionary algo-

rithms, for computationally expensive problems≫, in Proceedings of the Congress

on Evolutionary Computation (CEC), Singapore: IEEE, 2007.

[56] K. C. Giannakoglou and M. K. Karakasis, ≪Evolutionary algorithms with sur-

rogate modeling for computationally expensive optimization problems≫, in Pro-

ceedings of the Design Optimization International Conference (ERCOFTAC

2006), Spain, 2006.

[57] M. K. Karakasis and K. C. Giannakoglou, ≪Metamodel-assisted multi-objective

evolutionary optimization≫, in EUROGEN 2005, Evolutionary and Determin-

istic Methods for Design, Optimization and Control with Applications to Indus-

trial and Societal Problems, Munich, 2005.

[58] J. Liang, L. Wang, and M. Ma, ≪An improved chicken swarm optimization

algorithm for solving multimodal optimization problems≫, Mathematical Prob-

lems in Engineering, vol. 2022, pp. 1–18, 2022. doi: 10.1155/2022/5359732.

[Online]. Available: https://doi.org/10.1155/2022/5359732.

https://doi.org/10.1155/2022/5359732
https://doi.org/10.1155/2022/5359732


Bibliography 77

[59] A. Kumar et al., ≪A benchmark-suite of real-world constrained multi-objective

optimization problems and some baseline results≫, Expert Systems with Appli-

cations, vol. 213, p. 118 978, 2023. doi: 10.1016/j.eswa.2022.118978.

[60] S. Narayanan and S. Azarm, ≪On improving multiobjective genetic algorithms

for design optimization≫, Structural Optimization, vol. 18, pp. 146–155, 1999.

[61] A. O. Suite, Me 575 - two-bar truss design problem, https://apmonitor.com/

me575/uploads/Main/twobar.pdf, Accessed April 11, 2025, 2024.

[62] S. Sanyal, An introduction to particle swarm optimization algorithm, https://

www.analyticsvidhya.com/blog/2021/10/an-introduction-to-particle-

swarm-optimization-algorithm/, 2021.

[63] GeeksforGeeks, Particle swarm optimization (pso) – an overview, https://

www.geeksforgeeks.org/particle-swarm-optimization-pso-an-overview/,

Accessed: 2025-02-09.

[64] Wikipedia contributors, Rastrigin function, [Online; accessed DATE], n.d. [On-

line]. Available: https://en.wikipedia.org/wiki/Rastrigin_function.

https://doi.org/10.1016/j.eswa.2022.118978
https://apmonitor.com/me575/uploads/Main/twobar.pdf
https://apmonitor.com/me575/uploads/Main/twobar.pdf
https://www.analyticsvidhya.com/blog/2021/10/an-introduction-to-particle-swarm-optimization-algorithm/
https://www.analyticsvidhya.com/blog/2021/10/an-introduction-to-particle-swarm-optimization-algorithm/
https://www.analyticsvidhya.com/blog/2021/10/an-introduction-to-particle-swarm-optimization-algorithm/
https://www.geeksforgeeks.org/particle-swarm-optimization-pso-an-overview/
https://www.geeksforgeeks.org/particle-swarm-optimization-pso-an-overview/
https://en.wikipedia.org/wiki/Rastrigin_function


Appendices

5.1 Appendix A: Input file

All input parameters are kept in one input file by the name, Data.txt which is located

within the same directory as the program. The file is read by the algorithm at the

time of its initialization. An example of expected format for Data.txt follows:

Number of roosters 4

Number of hens 25

Number of mothers 10

Number of chicks 46

G 2

max generations 50

0 10

0 10

1 5

0 6

1 5

0 10
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5.2 Appendix B: CSO - Evaluation Software Con-

nection

While the function for evaluating individuals is running, the algorithm generates

an ASCII file called task.dat. This file contains the values of the design variables

in one column and stores the corresponding data. The evaluation software is then

called to perform the calculations for each individual iteratively. Specifically, a loop

begins, iterating through each chicken separately. For each chicken, the task.dat file

is written, and the evaluation of the chicken is performed. The evaluation software

reads the task.dat file for that chicken and generates two more ASCII files: task.res,

which stores the calculated objectives of the chicken, and task.cns, which holds the

values of the constraints, if any exist. Afterward, control returns to the CSO, which

reads the task.res and task.cns files and stores their values. This process continues

until all chickens have been evaluated.
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