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Outline

From traditional problem solving techniques to EAs.
Generalized EA: Basic and advanced operators.
Mathematical foundations of EAs.
EAs for multi-objective optimization.
Distributed Evolutionary Algorithms (DGAs). 
Hierarchical Evolutionary Algorithms (HGAs).
Constraints’ handling.
Efficient ways for reducing the computing cost of EAs.
Applications in the field of aeronautics, turbomachinery, 
energy production, logistics.
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Effective/Efficient Problem Solving Techniques

The number of possible solutions in the search space is 
so large as to forbid exhaustive search
Seeking the best combination of approaches that 
addresses the purpose to be achieved
Finding the solution using the available computing 
resources
Finding the solution within the available time
One or more (contradictory) targets
Solving the problem under a number of (hard/soft) 
constraints
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Basic Concepts of Problem Solving Techniques

Representation: how to encode alternative candidate 
solutions for manipulation
Objective: describes the purpose to be fulfilled
Evaluation function: returns a value that indicates the 
(numeric of ordinal) quality of any particular solution, 
given the representation
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Hill-Climbing: A Traditional (Deterministic) PST

Useful Definitions:
Neighborhood of a solution
Local Optimum

x1

x2

Ideas for creating Hill-Climbing Method variants
How to select the new solution for comparison with the 
current solution (how to compute the gradient) …
To use more than one starting solutions, if necessary …
To be “less deterministic” …

Requirements:
A starting point
Computation of gradient
Termination criteria
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Algorithms Relying on Analogies to Natural Processes

Evolutionary Programming
Genetic Algorithms
Evolution Strategies
Simulated Annealing
Classifier Systems
Neural Networks

Traditional 
Problem Solving 
Techniques

Algorithms 
with analogies 

to Natural 
Processes
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The Subclass we are interested in …

Methods which are based on the principle of 
evolution (i.e. the survival of the fittest)

Handling populations of candidate solutions
Undergoing unary (mutation-type) operations
Undergoing higher-order (crossover-type) operations
Using a selection scheme biased towards fitter 
individuals

Generation

1

Generation

2

Generation

3

Generation

4
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EA –
 

Schematic Presentation:
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EA –
 

Prerequisites:
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Parameterization &
Representation

Objective Function

Fitness
Function

Evolution Operators

Stopping Criterion
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Encoding the free variables –
 

Binary Coding:

x

mx Gene

Candidate solution

Binary digits per variable,  m=1,Mmb

1
,
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user defined bounds
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A schema

 
is a similarity template describing a subset of 

strings with similarities at certain string positions 
(Holland, 1968)

Schemata in binary strings:

*10 * 1

01001 01011 11001 11011

Defining length d(S)=5-2=3

Order of schema o(S)=3 (fixed digits)

m=length of string(=5)
r=number of *’s (=2)

2m

 

possible schemata

2r

 

strings matched by this schema
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The order

 
of a schema affects its survival probabilities 

during mutation

Why dealing with Schemata?

*10 * 1
Defining length d(S)=5-2=3

Order of schema o(S)=3 (fixed digits)

The defining length

 
of a schema affects its survival 

probabilities during crossover

(Schema Theorem)
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Encoding the free variable–
 

Real Coding:

1 2( , ,..., ,..., )m Mx x x xRepresentation:

A step ahead:

Representation including evolution 
parameters (the concept of ES):

1 2 1 2( , ,..., ,..., , , ,..., ,..., )m M mx x x x σ σ σ σΜ



______________________________________________

Introductory Course to Design Optimization 

K.C. Giannakoglou, Associate Professor NTUA, Greece

The effect of selection:

(mg

 

) examples of a particular schema (S), generation (g)

F(S)=average fitness of the strings matching schema (S)

Schema Theorem (1/4) :

mg+1

 

>mg if F(S)>Fmean,g

mg+1

 

<mg if F(S)<Fmean,g

1
,

( )
g g

mean g

F S
m m

F+ =
Reproductive Schema

Growth Equation

1 (1 )g gm m k+ = +

1
1 0(1 )ggm m k +

+ = +
Long term effect 
of selection
(k=constant)
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The effect of crossover:

Possibility of destructing the schema S during crossover:

Schema Theorem (2/4) :

( )
1des

d S
p

m
=

−

****11010*01*1*11*
d(S)

m-1

( )
1

1main Xover

d S
p p

m
= −

−

Possibility of maintaining the schema S:

1
,

( ) ( )
( ) ( ) (1 )

( ) 1g g Xover
mean g

F S d S
m S m S p

F S m+ ≥ −
−

Schema Growth Equation (after selection & crossover):
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Schema Theorem (3/4) :

The effect of mutation:

Possibility of maintaining the schema S after mutation:

( )(1 ) 1 ( )o S
surv mut mutp p p o S= − ≈ −

****11010*01*1*11*

1
,

( ) ( )
( ) ( ) (1 ( ) )

( ) 1g g Xover mut
mean g

F S d S
m S m S p o S p

F S m+ ≥ − −
−

Final Schema Growth Equation:

Short, low-order, above-average

 
schemata should receive an 

(exponentially) increasing number of strings in the next 
generations
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Schema Theorem (4/4) :

Lessons Learned:
Short, low-order, above-average schemata sould receive 
an (exponentially) increasing number of strings in the 
next generations (Schema Theorem).
GA explore the search space by short, low-order 
schemata.
GAs seek near-optimal performance through the 
juxtaposition of short, low-order, high-performance 
schemata (the so-called building blocks, Building Block 
Hypothesis).



______________________________________________

Introductory Course to Design Optimization 

K.C. Giannakoglou, Associate Professor NTUA, Greece

Exploration vs. Exploitation :

Exploration: seeking the global optimum in new and 
unknown areas in the search space.
Exploitation: making use the knowledge gained from the 
previously examined points to guide the search towards 
new better points in the search space.

Holland 1975:   GAs

but:
Infinite population size
Fitness function value accurately reflects the utility of a 
solution
Genes in a chromosome do not interact significantly
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EAs: Binary or Real Coding?

Binary Coding:
Creates lengthy binary strings if high accuracy is 
required.
Offers the maximum number of schemata per bit of 
information, compared to any other coding.
Facilitates theoretical analysis and the development of 
new genetic operators.
Smallest alphabet that allows a natural expression of the 
problem (Goldberg, 1989).

Real Coding:
Problem-tailored genetic operators can readily be 
devised.
High-cardinality alphabets contain more schemata 
(Antonisse, 1989).
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Generalized Evolutionary Algorithm (EA)

λ
,gS λ

,  1,mx m M=

μ
,gS μ

e
,g eS

,  1,kF k K=

( )y F x=

1: Kφ →

eΤ

Τμ
κ

ρΤrΤm

Offspring Parent Elite
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ΕΑ
 

–
 

Schematic Presentation:
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Parent Selection Operator
 

Τμ
 

(1/5)

(Neglecting Elitism)

Phase 1:

Phase 2:

( ), , ,
,1

prov g gS S Sμ μ λ
μ= Τ ∪

( )1, ,
,2

g provS Sμ μ
μ

+ = Τ

Life-span κ
Fitness φ

Selective 
Pressure

(Fitness φ)

(ES)

(GA)
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Parent Selection Operator
 

Τμ
 

(2/5)

Proportional selection

Linear ranking

Roulette wheel

Probabilistic Tournament selection

Indirect Selection (μ<λ)

( )
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1, , ,
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1, ,
,2

g g g

g prov

S S S

S S

μ μ λ
μ

μ μ
μ

+

+

= Τ ∪

= Τ



______________________________________________

Introductory Course to Design Optimization 

K.C. Giannakoglou, Associate Professor NTUA, Greece

Parent Selection Operator
 

Τμ
 

(3/5)

Proportional selection:

Select (λρ)

 
individuals

 
out of  (μ) preselected

 
ones
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Premature 
convergence due to 

the presence of a 
“super-fit”

 
individual.
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Parent Selection Operator
 

Τμ
 

(4/5)

Roulette Wheel:

Select (λρ)

 
individuals

 
out of  (μ) preselected

 
ones

( )

( )

1

_ 360
s

o

i

angle slot μ
ι

φ

φ
=

=

∑

Premature 
convergence due to 

the presence of a 
“super-fit”

 
individual.
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Parent Selection Operator
 

Τμ
 

(5/5)

Fitness Ranking:
Individuals are sorted in the order of fitness values
Reproductive trials are assigned according to rank
Linear Ranking
Exponential Ranking, etc

Overcomes the problem of the presence of an extreme 
individual
Fitness ranking performs better than fitness scaling.
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Recombination Operation
 

Tr
 

–
 

Binary Coding

}One-point

Two-point
One- or two-point per variable
Discrete (variables’ interchanging)
Uniform (with parent-depending probability)

0110100111
0100001100

0110001100

0110100111
0100001100
1010001010

0110000010

ρ=2

ρ=3
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Recombination Operation
 

Tr
 

– Real Coding

One-point, ρ=2 x1
 

x2
 

x3
 

x4
 

x5
 

x6
x1

 

x2
 

x3
 

x4
 

x5
 

x6 } x1
 

x2
 

x3
 

x4
 

x5
 

x6

x4
 

=x4
 

+r
 

(x4
 

-x4
 

),
 

r∈ [0,1]
Two-point
M-point

Discrete, ρ=2
Discrete Panmictic ρ=Μ (50% selection probability 

from each parent {1,2}, {1,3}, ..., {1,Μ} )
Generalized Intermediate Panmictic

xm
 

=xm
 

+rm
 

(xm,ρ
 

-xm
 

),
 

m=1,M,
 

rm
 

∈ [0,1]

xm
 

=xm
 

+rm
 

(xm
 

-xm
 

),
 

m=1,M,
 

rm
 

∈ [0,1]

Blend Xover (BLX-a), c=(1+2a)r-a, a=0.5
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Mutation Operator
 

Tm
 

-
 

Binary Coding

0110001100
00101011001

1...5
m M

mm

P
b

=∑
∼

Dynamic Adjustment

 
of

 
Pm , depending on

• the number of generations without any improvement

• the number of evaluations without any improvement
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Mutation Operator
 

Tm –
 

Real Coding

Dynamic mutation probability per variable

 
Pm

max

1

1

2
max

(1 )

2

( , ),   0.5

( , ),   0.5

( , ) 1

( , ) 1
p

m m m

m
m m m
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g
g

x D g U x r
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x D g x L r
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D g a a r

g
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ή

…
 

or, using number of evaluations, 
instead of number of generations

p~0.2
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Mutation Operator
 

Tm –
 

Real Coding

( )exp (0,1) (0,1)

(0,1)

m m m

m m m m

´

x x N

σ σ τ τ

σ

= ⋅ ⋅Ν + ⋅ Ν

= + ⋅

( )
( )

1

1

2

' 2

τ

τ

−

−

= Μ

= Μ
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Genetic Algorithms or Evolution Strategies or …

Binary Coding
μ=λ, parents=offspring
ρ=2, two-parent recombination
κ=0, zero life-span
Ρr<1, recombination probability
K=1, one target

[Holland,

 
1970]

[Goldberg, 1989]
[Michalewicz, 1994]
[Fogel]

Real Coding, including the evolution parameters
Without parent Selection Operator (μ<λ)
μ<<λ
κ=0 (μ,0,λ) = (μ,λ) or κ=∞ (μ,∞,λ) = (μ+λ)
ρ=2
Pr=1
Κ=1

[Schwefel, Rechenberg, 1965]

[Bäck, 1996]

GA

ES
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Multi-objective Optimization

Non-Pareto 
Front 

Techniques

Pareto Front 
Techniques

(K = number of objectives)
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Pareto Front

Front

 
0 (Pareto) F1

F2

Front

 
1

Front

 
2

,g eS
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Pareto Front –
 

Definition (Minimization Problems):

Dominant Solution:
( ) ( ) ( ) ( )

( ) ( )

( ) ( )

 {1,..., } :   

  {1,..., } :

p q p q

p q
k k

p q
k k

x x s s

k K F F

k K F F

< ⇔ < ⇔

∀ ∈ ≤ ∧

∃ ∈ <

' ' :Mx x x x/⇔ ∃ ∈ >

Pareto Optimal Solution:
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Multi-Objective Optimization
 

–
 

Computation of
 

φ

1

K

k k
k

w Fφ
=

= ⋅∑

,  [1, ]kF k Kφ = ∈

Pareto_Rank( ),  k 1,kF Kφ = =

For parent selection, VEGA 
[Schaffer, 1984]

[Goldberg, 1989]
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Vector Evaluated Genetic Algorithm (VEGA)

K=3

Selection 
based on 
φ=F1

Selection 
based on 
φ=F2

Selection 
based on 
φ=F3

Recombination, Mutation
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VEGA: Guess the final solutions…

Front

 
0 (Pareto) F1

F2

Front

 
1

Front

 
2

,g eS
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φ
 

computation using the Pareto front:

Front Ranking [Goldberg, 1989]

Niched Pareto GA (NPGA) [Horn, Nafpliotis, 1993]

Nondominated Sorting GA (NSGA) [Srinivas, Deb, 1994]

Strength Pareto EA (SPEA) [Zitzler, Thiele, 1998]

Pareto Envelope-based Selection Algorithm (PESA) [Corne, 
Knowles, Oates, 2000]

NSGA-II [Deb, Agrawal, Pratap, Meyarivan, 2000]

Strength Pareto EA ΙΙ (SPEA II) [Zitzler, Laumanns, Thiele, 
2001]
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φ
 

computation
 

–
 

Sorting  (NSGA)

F2

F1
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=

1

0,             ( , )

( , )
1 ,  ( , )

f shareN

j share
share

i dummy

d i j

Sh d i j
d i j

Sh

σ

σ
σ

φ φ
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⋅

∑

d(i,j)i

j

σshare

σshare

φ
 

computation
 

–
 

Niching
 

(NSGA)

1dummyφ =

F2

F1

_dummy prev frontφ φ ε= +
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φ
 

computation
 

–
 

SPEA

F1

F2

Sg,e
Dominated Solutions
Other Solutions

( )   
( ) [0,1)

1
eFφ

μ λ
= ∈

+ +
( )( ) 1 (  ) 1iFφ φ= + >∑
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Ways to reduce the number of evaluations:

Improved evolution operators

Hybridization with other optimization methods

Distributed EAs (island model)

Hierarchical EAs (faster solvers)

Use of surrogate models (metamodels, fast 
approximate model)
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Hybridization with other Optimization Methods

evaluations

Lo
g 1

0(
sc

or
e)

GA

AM
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Use of Surrogate Evaluation Models

Polynomial Interpolation
Artificial Neural Networks

Multilayer Perceptron
Radial Basis Function Networks

Kriging

Ways of using the surrogate evaluation model:
Decoupled from the exact evaluation tool (+Design of 
Experiments, DoE)
In combination with the exact evaluation tool

Regular Training (depending on the number of new 
entries in the DB)
Dynamical Training (separately, for each new 
individual)
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Use of Surrogate Models (with Off-Line Training)

Design of 
Experiments

Exact 
Evaluations

Surrogate 
model

Evaluations 
using the 
Surrogate 

Model

Genetic 
Operators

“Optimal”

 Solution

Inner Loop

Outer Loop
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Use of Surrogate Models (with On-Line Training)

best

Evaluations 
using the 
Surrogate 
Model(s)

Evaluations 
using the 

Exact Model

Genetic 
Operators

Fitness Value 
Homogenization

New 
Population

Build the 
Surrogate 
Model(s)
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Inexact Pre-Evaluation (IPE) –
 

The Concept:

Exact Evaluation of the most promising solutions

λ
evaluations

Evolution     
(to the next 
generation)

Inexact 
Evaluations

L<λ
 evaluations
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Local Surrogate Models -
 

Training Set:

x1

x2
min max[ , ]T T T∈
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Surrogate Models –
 

What else do they tell us???

err

err
F

Fitness Function Approximation
Confidence Intervals
Hessian Matrix Approximation
Sensitivity Derivatives (Importance Factors)

Optimal
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Optimization and Multi-processing

CPUs ≠ λ (ή L )

Loading Distribution:
Heterogeneous Platforms
Loading per processor
Variable evaluation cost

Synchronization (in each generation)

Master: ΕΑ Module - waiting list for evaluations
Slave: discrete (remote) evaluation process

Parallelization Level

Reduction of the Optimization Wall-Clock Time

CFDCFDEAEA
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Distributed
 

ΕΑ

Why ?
L (<< λ) < CPUs

Persistant diversity in 
populations
Straightforward parallelization

Additional Parameters:
Number of islands
Communication topology
Communication frequency
Migration algorithm
EA parameters per island

?
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Distributed
 

ΕΑ
 

on a Multi-Processor System

Evaluations 
Server

EA EA EA

Migrations

Islands

Asynchronous 
Requests for 
Evaluations

MASTER

SLAVE1 SLAVE2 SLAVE3 SLAVE4

Thread 1

Thread 2

Thread 3 Thread

 

4 Thread

 

5
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v1.3
 

The Evolutionary
 Algorithms SYstem

Applications

Developed by the National Technical University of Athens, 
(NTUA), Greece
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Problem: Rastrigin’s
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Results: Rastrigin’s
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Problem: Three-Element Airfoil, Lift Maximization 
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Results: Three-Element Airfoil, Lift Maximization
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Results: Three-Element Airfoil, Lift Maximization
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Problem: 3D Compressor Blade Design
NURBS
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Problem: Design of a Compressor Cascade

c=0.07ms=0.68c γ=30ο
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Results: Design of a Compressor Cascade
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Problem: Compressor Multi-Point Design
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Compressor Multi-Point Design (1 OP –
 

1 target)
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Compressor Multi-Point Design (3 OP –
 

2 targets)
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Compressor Multi-Point Design (5 OP –
 

3 targets)

Evaluations
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Compressor Multi-Point Design (5 OP –
 

5 targets)
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Problem: High-Lift, Low-Drag Optimization
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Results: High-Lift, Low-Drag Optimization
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Optimization of Combined Cycle GT Power Plants
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Natural gas fired, dual-pressure CCGTPP configuration

 GT: 260 MWe, 38% efficiency, exhaust gas mass flow 615 kg/sec at 600C. 

Design variables
HP steam pressure
LP steam pressure
superheated HP steam 
temperature
feedwater temperature at the inlet 
to the HP evaporator 
feedwater temperature at the 
outlet from the first HP economizer
feedwater temperature at the inlet 
to the LP evaporator 
superheated LP steam 
temperature
steam pressure fed to the water 
tank 
exhaust gas mass flow ratio 
(percentage of mass flowrate
traversing the LP economizer) 
exhaust gas temperature at the 
HRSG outlet 
steam extraction pressure from 
the LP steam turbine 
exhaust gas temperature at the 
inlet to the condensate preheater
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Optimization of Combined Cycle GT Power Plants
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