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Abstract 

The main objective of this PhD thesis was the development of software for the 
solution of aerodynamic and aeroelastic problems, running on modern Graphics 
Processing Units (GPUs). On GPUs, the analysis and design of aerodynamic shapes 
can be done with substantial reduction in the computational cost, compared to the 
corresponding software running on Central Processing Units (CPUs).  
 
Over the last 10 years, GPUs were evolved into many-core shared memory parallel 
systems. Their computational capabilities exceed those of modern CPUs by more than 
one order of magnitude. The GPUs, used in this PhD thesis, are based on the CUDA 
architecture developed by NVIDIA. Regarding hardware, the GeForce 280, 285 and 
Tesla M2050 cards were used. The Tesla M2050 graphics cards, in particular, are part 
of a GPU-cluster, possessed by the PCopt/LTT, which comprises four interconnected 
blade servers with three Tesla M2050 each. So, for the solution of large scale 
aerodynamic and aeroelastic problems, a cluster with twelve Tesla M2050 units was 
used. 
 
In this PhD thesis, GPU-solvers for the 2D steady/unsteady Navier-Stokes equations 
for compressible fluids and the 3D steady/unsteady Euler equations for compressible 
fluids have been developed. Both GPU-solvers use dynamic unstructured/hybrid grids 
which are able to deform, following the deflection/deformation of the body surface. 
The grid quality is ensured by the spring analogy method. For turbulent flows, the 
one-equation turbulence model of Spalart-Allmaras is used to effect closure. The 
integration of the flow equations on the unstructured grids is carried out using the 
finite volume method, with vertex-centered storage. The GPU-enabled software 
reproduces the results of the corresponding CPU solver, which has been thoroughly 
validated in previous PhD theses at PCopt/LTT. Therefore, emphasis was exclusively 
laid on the reduction of the computational cost. 
 
The major drawback of programmable GPUs, with respect to nowadays CPUs, is their 
limited cache memory. Cache memories are low-latency memories, used for 
temporary data storage. The greater the size of the available cache memories, the 



faster a program runs. Thus, the parallel efficiency of any GPU-code is strongly 
related with memory handling. From the memory handling point of view, the vertex-
centered approach of the finite volume technique is the worst case, compared either to 
the use of structured grids or even unstructured grid with the cell-centered finite 
volume approach. This is due to the lack of structure in the numbering of the grid 
nodes and, compared to cell-centered schemes, the variable number of neighbors per 
grid node. 
 
To program CFD codes on GPUs required rewriting the existing CPU-solver 
(programmed in FORTRAN90) in the programming language supported by CUDA 
(C++ with some extensions for the efficient control of the GPU in that period of time). 
Even if the firstly developed GPU-code could solve the flow equations faster than the 
corresponding CPU-software, its parallel speed-up was not as high as expected. In 
order to increase the parallel efficiency of the GPU-solver, the following actions were 
taken: 

• Different programming approaches for the computation of the flow fluxes 
were programmed and assessed in terms of parallel speed-up. 

• Since GPUs contain extra memories, other than the main (device or global) 
one, the programming technique was reconsidered so as to maximize their 
exploitation. These memories are the texture, constant, local and shared ones. 
The cached texture, cached constant and non-cached local memory spaces 
reside in device memory. On the other hand, the shared memory is distributed 
to the GPU multiprocessors and is used for interchanging data between the 
processes executed in parallel on the same multiprocessor. The efficient use of 
all GPU memories increased the parallel speed-up of the GPU-solver. Among 
other: 
(a) It was ensured that concurrently running processes access nearby (or even 

consecutive) global memory spaces. 
(b) CPU and GPU processes may run in parallel. 
(c) The computational grid was divided into subdomains and the nodes of 

each subdomain were renumbered and sorted, based on the number of 
their neighbors, in ascending order. 

• A mixed precision arithmetic (MPA) solver has been proposed. Since the 
discretized flow equations are solved for the flow variables’ corrections, a less 
accurate numerical scheme for the computation of the l.h.s. coefficient 
matrices and an accurate one for the r.h.s. terms (i.e. the residuals) can be used. 
In the proposed MPA code variant, the l.h.s. coefficient matrices are stored 
into single precision (SPA) variables whereas the residuals are stored into 
double precision variables (DPA). This reduces the total number of global 
memory accesses and, thus, increases the parallel efficiency of the GPU-code. 
Besides, MPA does not harm the accuracy of the solution since the residuals 
are computed with double precision. 

 
These actions called for the complete restructuring of the initial GPU-code. The final 
GPU-code solves the flow equations about 20 times faster compared to the initial one. 
In order to measure the parallel speed-up of the programmed GPU-enabled code(s), a 
number of inviscid and turbulent flow problems around an airfoil and a wing were 
solved. In these cases, unstructured grids (consisting of triangular or tetrahedral 
elements for 2D or 3D cases respectively) with different numbers of grid nodes were 
used, on the GTX 280, 285 and Tesla M2050 graphics cards. It was shown that the 



flow model (inviscid of turbulent), the grid size and the compute capabilities of the 
GPUs affect the parallel speed-up of the GPU-solver. As a consequence, the examined 
problems give different speed-ups. Large scale problems take more advantage of the 
GPUs, as larger grids achieve higher speed-ups. For 2D turbulent flows of 
compressible fluids, the highest speed-up is about 60x, 90x and 110x, using a Tesla 
M2050, compared to a single core of a modern CPU, using double, mixed or simple 
precision arithmetic, respectively. The same computations on a GTX 285 yield about 
30% less speed-up. The highest recorded speed-ups for the solution of the 3D Euler 
equations is 40x, 55x and 90x, on Tesla M2050, with DPA, MPA and SPA, 
respectively. The corresponding speed-ups for GTX285 are about 25% less. For the 
measurement of the aforementioned speed-ups, the CPU-solver used DPA and was 
executed on a single core of an Intel Xeon CPU, 2.00GHz, 4096 MB cache memory. 
 
For the purpose of comparison, an Euler solver using either structured or unstructured 
grids and the cell-centered approach was also programmed. Moreover, the present 
PhD thesis also contributed to the efficient porting of the adjoint equation solvers, 
from the CPU to the GPU, so as to reduce the cost of gradient-based optimization 
processes. 
 
As far as the aerodynamic analysis is of concern, the GPU-solver was used for the 
study (a) of the dynamic interaction between the boundary layer and shock waves 
(buffeting) on the OAT15A airfoil, and (b) the impact of a synthetic jet in the 
reduction of the separation region downstream of a bump geometry. Moreover, the 
GPU-solver is used for the prediction of inviscid flow around a civil aircraft and 
inside a hypersonic compressor cascade. For these problems, the speed-up ranges 
from 40x to 45x using a single GTX 285 graphic card vis-à-vis to a single core of a 
modern CPU. It is worth noting that these GPUs have been plugged in some old 
personal computers. Using the Tesla M2050 graphics cards, the speed-up increased by 
~20%, compared to GTX 285.  
 
Having developed efficient GPU flow solvers, the next step was to use them in 
evolutionary algorithm (EA) based optimization (EASY software). The optimization 
of the steady suction control parameters, for the minimization of the length of the 
separation region downstream a fixed bump geometry inside a duct, was carried out 
on a number of GPUs (one GPU per evaluation). Thus, the gain from using GPUs, 
instead of CPUs, was superposed to the gain from the parallel evaluation of the 
population members. 
 
Based on the different speed-ups and prediction accuracy of the SPA and MPA GPU 
implementations of the Navier-Stokes equations solver, a hierarchical optimization 
method which is suitable for GPUs is proposed and demonstrated in turbulent 2D 
flow problems. The search for the optimal solution(s) splits into two EA-based levels, 
with different evaluation tools each. The low level EA uses the very fast SPA GPU 
implementation with relaxed convergence criteria for the inexpensive evaluation of 
candidate solutions. Promising solutions are regularly broadcast to the high level EA 
which uses the MPA GPU implementation of the same flow solver. Single- and two-
objective aerodynamic shape optimization problems are solved using the developed 
software. Namely, the design of an isolated airfoil for maximum lift and minimum 
drag coefficient and the design of a compressor cascade airfoil for minimum pressure 
losses were carried out using the aforementioned two-level EA. The gain from using 



the hierarchical EA instead of a conventional (single-level) EA was superposed to the 
gain from using GPUs instead of CPUs. 
 
As far as aeroelastic problems are of concern, the GPU-solver was validated in a 
pitching airfoil case and used for the prediction of the flutter boundaries of the airfoil, 
with two or three degrees of freedom. In these cases, the motion of the airfoil is 
constrained by a linear (plunging) and a torsional (pitching) spring. In the three-
degree of freedom airfoil case, the motion of the airfoil trailing edge (flap) is 
constrained by means of an additional torsional spring. The numerical results obtained 
by using the developed GPU-solver are in good agreement with published numerical 
results using different CFD tools. 
 
Due to memory limitations, a single GPU cannot be used for solving large scale 
aerodynamic/aeroelastic problems. For large scale problems, GPU clusters are 
employed. In the present thesis, a single CPU-thread was used to control the available 
GPUs per computational node. The communication between the GPUs of the 
interconnected nodes is based on the MPI parallel protocol. The parallel GPU-solver 
was used for the analysis of a Blended-Wing-Body (BWB) civil aircraft. This type of 
aircrafts are non-commercial having many aerodynamic benefits (higher ratio lift to 
drag, lower fuel consumption per passenger and mile, reduced noise production, etc) 
compared to commercial aircrafts with equivalent specifications. The corresponding 
studies were carried out in the context of a European project (Active Control for 
Flexible 2020 Aircraft, ACFA 2020), funded by the European Union. In this 
computationally demanding application, the GPUs were used for the reduction of the 
wall clock time; the use of three Tesla M2050 on the same computational node was 
about six times faster than 64 CPU-cores. Steady and unsteady inviscid flows around 
the BWB aircraft are presented; in the unsteady cases, a control surface or the aircraft 
was forced to oscillate/deform periodically. 
 
In conclusion, in this PhD thesis, GPUs were used for the solution of aerodynamic 
and aeroelastic problems using unstructured computational grids. Speed-ups from the 
use of GPUs ranging between 40x and 110x are reported. This substantial decrease in 
computational cost affects positively both the aerodynamic/aeroelastic analysis of 
aerodynamic bodies and the optimization-design via EAs, where a large number of 
evaluations must be performed. Since, larger grids achieve higher speed-ups, large 
scale problems take more advantage of the GPUs. This fact extends the range of 
industrial applications that can be carried out using CFD analysis tools. Finally, it 
should be noted that the proposed programming techniques can easily be implemented 
in any other GPU-enabled software solving general purpose PDEs on unstructured 
grids. 
 

 

 


