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Abstract

A computational technique for the numerical solution of the Navier-Stokes equa-
tions is ported on the distributed memory Intel-Paragon computing system. A
key element in the present work is that the solution method possesses the ca-
pability of using either structured or unstructured grids, through a common
finite-volume discretization technique and an explicit time integration scheme.
The parallelization of the method is based on the multi-domain concept, where
each subdomain is assigned to a different processor. Different discretization algo-
rithms for the control volumes along or close to the interfaces and consequently
different communication techniques are employed, depending on the type of the
grid, in order to minimize the inter-processor communication cost. The laminar
flow around an isolated NACAQ012 profile, at zero incidence, infinite Mach num-
ber equal to 0.5 and a Reynolds number equal to 5,000 is analyzed, by making
use of up to 40 compute nodes.

I Method Formulation

In a Cartesian coordinate system, the mass, momentum and energy conservation
equations are written in a vector form, as follows ([Hirsch90])
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by separately introducing inviscid (superscripted by inv) and viscous (super-
scripted by wvis) terms. The solution variable array is denoted by W, while ?

and 8 stand for the flux vectors in the x and y directions, respectively.

Equation 1 is integrated over control volumes which are formed around any
grid node. For both structured and unstructured grids, the finite volumes are
defined in a similar way, by successively connecting the midpoints of the seg-
ments incident upon the node at hand, with the barycenters of the (triangular
or quadrangular) grid elements surrounding this node. In figure 1, the finite vol-
umes for the structured and the unstructured meshes are denoted by the dashed
areas.



Figure 1 Grid nodes and grid cells, as well as finite volumes for structured and
unstructured meshes

For the integration of equation 1 over each control volume Cp the Green’s
theorem is used, so
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where K(P) stands for the set of grid nodes which are directly linked to node P.
The summation ) . applies over the segments AB (figure 1) which correspond to
the dCpg part of the control volume boundary dCp. Associated with each part
dCpg, which constitutes the interface between cells Cp and Cyg, is the normal
outward vector 7
segment AB.

For the steady flows considered herein, the discretization of the above equation
leads to

= (ng, ny), its length being equal to the length of the straight
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where the surface integral is equal to the area of the volume C),, while q%) is the

numerical approximation of the flux directed from P to Q. The approximated

flux vectors, either inviscid or viscous, are written in a compact form as

— 1= — =
Cpq = 5(Pp + 0q) +Tpro (4)

The term Tpq is zero for the viscous fluxes (this corresponds to the standard
central differencing scheme, for the structured grids). For the inviscid fluxes, the
Roe flux difference splitting scheme is used ([Roe81]), according to which the
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extra term Tpg is calculated as follows
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In equation 5, A* denotes the flux jacobian which is built using the Roe-averaged
quantities and 1s extended to second order accuracy through the standard MUSCL
extrapolation technique ([vanLeer81]) in structured grids or an appropriate im-
plementation of the latter for unstructured grids ([Fezoui89]).

In the structured grids, all nodes are swept and inviscid and viscous fluxes
are computed along the right and the upper edges of the corresponding control
cells. In the unstructured grids, the inviscid fluxes are computed via a loop over
segments, during which contributions at their two nodal edges are collected. For
the same grids, viscous fluxes are calculated by sweeping over triangular elements
and collecting contributions to their three nodes. All quantities are stored at grid
nodes.

The time derivative term in equation 3 is discretized by using the forward
Euler scheme. Consequently, the solution is updated at each node in an explicit
manner. Local time-stepping is used. Boundary conditions are employed through
the adherence condition along the solid walls, while the fluxes leaving or enter-
ing the domain along the farfield boundaries are computed through a proper
implementation of the Steger-Warming scheme ([Steger81],[Fezoui89]).

ITI Parallelization Aspects

1  The Intel-Paragon Computing System

The Intel-Paragon is a scalable distributed-memory multi-processing system. Its
network topology is planar and supports Multiple Instruction/ Multiple Data
(MIMD) applications. Tt is based on Intel’s i860XP/S RISC processors with
a high-speed inter-connection network. In the present application, the Intel-
Paragon machine is used in a Single Program/Multiple Data (SPMD) mode.
This computer has been installed in the Supercomputing Center of the Na-
tional Technical University of Athens (NTUA) and is equipped with 51 nodes
having a theoretical peak performance of 48x75 Mflops, in double precision com-
putations. In the current configuration there are 48 compute ( lying on a two-
dimensional 4x12 mesh backplane) and 3 service nodes. Each node consists of
two i860XP/S RISC processors, the first of them being the application proces-
sor while the other stands for the message processor. Both processors share the
same memory, which is equal to 32 Mb per node with a cycle time of 50 MHz.
The message processor 1s responsible for the message-passing operations, its role
being to send to and receive messages from the other nodes via the network in-
terface. The application processor is carrying out the primary work. Two RAID
disks of 4.8 Gb each are connected to the two I/O nodes with SCSI interfaces.



Figure 2  Grid partitioning for structured and unstructured meshes

In the configuration used in the present study, the 100 x 100 Linpack bench-
mark, executed on 36 processors, resulted to the following figures: R4, = 1.558
Gflops , Npae = 10500 , Nyj5 = 2600 and for the 1000 x 1000 Linpack:
R1000 = 0237Gf10p8 .

The interprocessor communication is carried out through a row-column rout-
ing. Since the disk I/O takes place via the same communication network ,it
burdens the communication cost. Nevertheless, the communication time 1s only
slightly affected by the number of nodes interfering between two communicating
compute nodes. The communication cost is estimated as the cost of sending and
receiving information between compute nodes. For the exchange of a double-
precision variable message, this communication cost consists of a latency (being
equal to about 65 pusec, regardless of the message length) in addition to a linear
part which is proportional to the size of the message (the proportionality factor
being equal to about 0.12 psec per double-precision variable) ([Arbenz94]). The
type of communication to be used is defined by the user. In the present work
the sunchronous communication mode has been used by exploiting the existing
NX library.

2 Grid Partitioning and Parallel Implementation

The approach adopted herein for the parallelization of the solution algorithm is
based on the domain-decomposition concept. The global grid is first partitioned
into a number of subdomains each of which is assigned to a different processor.

For the structured grids, the global mesh is partitioned by defining ’equidis-
tant’ (measured in terms of the number of grid lines in between them) grid lines,
as interfacing boundaries. The subdomains are defined as in figure 2, where the
dashed line plays the role of the interfacing boundary between the two adjacent
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Figure 3 Communication patterns for two adjacent subdomains (and conse-
quently processors). Structured mesh, second order accuracy

subdomains. As shown in figure 2, adjacent subdomains do not share common
nodes, while each control volume strictly belongs to a single subdomain. The
grid of each subdomain is perimetrically extended using two rows of fake nodes;
the nodes along the first row coincide with the boundary nodes of the adja-
cent domains. The second row allows the application of second order accurate
schemes. The communication task is associated with these two rows of nodes in
order to properly assign them the dependent variables calculated at the bound-
ary and near-boundary grid lines of the adjacent subdomains. Thus, at the end
of each iteration, the dependent variables at the fake nodes of each subdomain
are updated by receiving information from the adjacent domains. In this way,
the numerical fluxes for all the nodes within each subdomain are computed us-
ing values already loaded to the corresponding processor. By retaining a well
ordered communication schedule, any internal subdomain exchanges informa-
tion only with four adjacent subdomains (east, west, north and south), while
communication with four additional subdomains (in the cross directions, line
north-west etc.) is avoided. Figure 3 shows the information exchange between
two adjacent subdomains, in an illustrative manner.

For the purposes of the present study, the unstructured grid was generated by
subdividing each quadrangular element of the structured grid into two triangles.
The partitioning of the unstructured grid was carried out on the basis of the
structured grid. Consequently, all internal subdomains communicate with four
adjacent ones (by means of a common set of edges) and with four other subdo-
mains (by means of a single common node). The control volumes corresponding
to the interface nodes split among two or more adjacent subdomains (figure 2).

For the unstructured grids, the communication takes place in two phases. In
the first phase, the gradients of the four primitive variables (to be used within
the second order accurate scheme) and as well as time-steps are exchanged over
each interface node. At the end of the first phase, the fluxes computation is
taking place. However, the so calculated fluxes over the interface nodes which
belong to more than one subdomains, are incomplete. For this reason, in the
second phase,; the four fluxes per node are exchanged. By adding these fluxes,



interface nodes are separately updated, as members of the subdomains where
they belong to.

Due to the way the subdomains have been defined, the connectivity of ei-
ther structured or unstructured subdomains retains the exact topology of the
interprocessor communication network. Since C-type grids are in use, the afore-
mentioned rule is perturbed only along the split line springing from the trailing
edge, but this is of minor importance.

The above partitioning methods fulfill the standard requirements of equiload-
ing the processors while minimizing the interprocessor communication.

IIT Assesment of the Parallel Method

The case used to assess the numerical tool ported on the Intel-Paragon is con-
cerned with the two-dimensional flow around a NACAQ0012 profile. The flow is
considered to be laminar, with a free stream Mach number of M=0.5 and zero in-
cidence. The Reynolds number based on the free stream conditions and the airfoil
chord, is 5000. The flow is subsonic and it is characterized by a tiny separation
bubble near the trailing edge. The Reynolds number for this case approaches
the upper limit for steady laminar flows prior to the onset of turbulence. Zero
heat flux is prescribed along the airfoil surface. Numerical results for this case
are available in [Mavriplis89].

As discussed in a previous section, the starting point for all grids used in the
calculations is the same structured grid. This is a C-type mesh, generated using
a standard hyperbolic grid generation method ([Rizzi81]). The grid dimension
1s 283x50 and the leading edge is located at the 44th node. The distance of the
first grid node off the wall is equal to 0.2 percent of the chord, while the outer
boundary is placed at a distance of 75 chords from the airfoil.

Some numerical aspects will be elaborated first. The solution obtained on the
basis of the unstructured grid and a second order accurate scheme has been
proved to be stable. On the contrary, the second order calculation on the struc-
tured grid appeared to be unstable and the instability occured after some thou-
sands of iterations. The resulting unsteady flow, was attributed to the very high
Reynolds number of the case examined. From a numerical point of view this is
a consequence of the insufficient amount of artificial dissipation added by the
upwind scheme 1tself, in this case. As expected, the first order solution scheme
was always stable. So, in order to overcome the instability problems; a hybrid
scheme was finally implemented. Thus, for the computation of the inviscid fluxes
over the midnodes, using the equation
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a blend of first and second order accurate schemes was applied. This was realized,
in practice, by expressing the solution variables array at the nodal points as



Figure4 Mach number isolines in the vicinity of the airfoil and non-dimensional
u-velocity contours close to the trailing-edge
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where » stand for the first and second order accurate approxima-

tions of the corresponding variable vectors. A similar expression is used for W—>Q
as well. The value w = 0.8 was found to be the maximum one which allowed a
stable solution, while providing a very satisfactory comparison with some refer-
ence results.

Results to be used for the validation of the approach adopted herein are then
presented. These results have been obtained by running on 30 processors for
both the structured and the unstructured grids.

Figure 4 illustrates the iso-Mach contours in the vicinity of the airfoil and
the negative non-dimensional u-velocity contours, in order to make clear the
separation region that appears close to the trailing edge of the airfoil. Its origin
is located at the 80 percent of the airfoil, which is in accordance with the reference
calculations [Mavriplis89].

In figure 5, the predicted pressure C}, and friction C'; coefficient distributions
along the airfoil wall are shown. For the C), distribution, results obtained through
the structured and the unstructured grids are illustrated. For the sake of conve-
nience, the C'; distribution was also obtained using only the structured grid. The
predicted distributions are compared with the reference results [Mavriplis89].

Figure 6 shows the convergence history of the structured grid algorithm for
the flow case under consideration, running on 30 processors. Since the method is
explicit, its convergence history is identical to that of the sequential algorithm
running on a single processor.

Finally, the speedup S, and the efficiency E versus the number of proces-
sors NN, are tabulated in Table 1 and plotted in figure 7, for both structured
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Figure 5 Pressure and friction coefficient distributions along the airfoil wall
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Figure 6 Convergence history for the structured grid on 30 processors

and unstructured grid computations. Table 1 was filled in after performing 5000
iterations, which is a typical number of iterations required for a convergence
of about five orders of magnitude. The structured grid computation presents a
slightly better speed-up. This can be attributed to (a) the fact that the code
for structured grids is 25 % slower than the unstructured one when the same
number of nodal points are used (this is due to the different ways used for the
calculation of the viscous terms) and (b) the increased communication required
by the unstructured grid concerning neighbouring subdomains in the cross di-
rection. In this table, T¢, is the CPU time required for the calculation, T; is the
elapsed time and T, is the communication time spent for the communication
task. All these times have been measured in seconds.
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Figure 7 Speed-up and the efficiency curves for both structured and unstruc-
tured grid computations

Structured grid Unstructured grid
Nell B] S [ Tea| Ta] Too| B] S| Tea| Tul Teo]
1 1 1140302 | 40302 0 1 1130313 | 30313 0

5 (098 | 4.89 41208 | 9000 | 822 | 0.97 | 4.85| 31244 | 6680 | 940

1011 0.97 | 9.67 | 41680 | 4800 | 1246 || 0.94 | 9.43 | 32128 | 3480 | 1819

1511 0.94 | 14.10 | 42870 | 3550 | 2572 || 0.90 | 13.55 | 33569 | 2410 | 3243

20 || 0.91 | 18.30 | 44040 | 3000 | 3986 || 0.89 | 17.79 | 34084 | 1860 | 3789

24 || 0.90 | 21.72 | 44520 | 2650 | 4478 || 0.88 | 21.06 | 34536 | 1620 | 4213

30 || 0.88 | 26.48 | 45660 | 2400 | 5496 || 0.85 | 25.60 | 35520 | 1330 | 5214

40 || 0.85 | 34.46 | 46782 | 2233 | 7112 || 0.81 | 32.32 | 37519 | 1160 | 7245

Table 1  Calculation and communication time (sec) for 5000 iterations

IV  Conclusions

An explicit, finite-volume solution algorithm for the solution of the compress-
ible Navier-Stokes equations has been migrated to a distributed memory Intel-
Paragon parallel computer. Aiming at a better understanding and assessment of
the parallelizing techniques used, the laminar flow around an isolated profile was
examined using either structured or unstructured grids. The unstructured grid
calculations were performed by generating a pseudo-unstructured grid, resulting
from the splitting of the C-type structured grid elements into triangles. Depend-
ing on the type of the grid, the solution and the communication algorithms are
different, aiming at an optimum efficiency per case. For the structured grids,
each domain is perimetrically extended using two rows of fake nodes, which




resulted to increased computational loading per subdomain and minimum com-
munication. The upwind scheme used in conjuction with a structured grid was
proved to be insufficient for a stable solution in the examined high Reynolds
number case and a hybrid scheme, formulated by merging first and second order
accurate schemes, was used instead. In the case of unstructured grids with sec-
ond order accurate schemes, better efficiency was obtained through a two-phase
communication scheme.
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