
Unstructured 3-D Grid Partitioning Methods
Based On Genetic Algorithms

K.C. Giannakoglou and A.P. Giotis 1

Abstract. In this paper, two methods that are capable
to efficiently partition 3-D unstructured grids for paral-
lel processing, will be presented. Implicit to either of
these methods are a recursive bisection pattern, a multi-
level acceleration scheme and local refinement heuristics.
Although both are based on Genetic Algorithms (GAs),
their concept and formulation are completely different.
The first method uses binary coding, where 0’s and 1’s
denote owning processor for each grid entity. The sec-
ond method encodes a few control parameters that define
a unique bisection of the grid, on the equivalent graph,
where a physical problem is solved. Advantages and dis-
advantages of both methods will be cited and a hybrid
scheme will be suggested as a fast alternative partitioner.

1 INTRODUCTION

The numerical solution of large-scale physical problems
is time-and memory-consuming. For an unstructured grid
to be effectively processed on a distributed memory par-
allel computer, balanced grid subsets, as many as the avail-
able processors, should be created. “Good” Unstructured
Grid Partitioning (UGP) methods should meet the fol-
lowing requirements

� to create subdomains with the same number of grid el-
ements (tetrahedra), ensuring thus equally loaded pro-
cessors

� to minimize the number of interface elements (trian-
gular faces), ensuring thus an as low as possible inter-
processor communication.

For evident reasons, the UGP software should not be
CPU-time or memory- consuming. Note that, the afore-
mentioned requirements correspond to non-overlapping
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grid partitions, but similar statements can be also made
for overlapping partitions, provided that the evenly dis-
tributed grid entities are nodes rather than tetrahedra.

Among existing UGP methods, Recursive Spectral Bi-
section (RSB) [5] is by far the most popular. As the grid
size increases, RSB becomes time-consuming and accel-
eration techniques [7] or local refinement heuristics [1]
are employed. However, our intention is to refrain from
comparing RSB and the proposed methods in terms of
computer cost, since the cost of RSB partitioners depends
highly upon the eigensolvers used.

The first proposed UGP method (to be referred to as
BITMAP) is an extension of a 2-D grid partitioner that the
authors presented in [4], while the second one (FIELD)
is a novel method. The chosen abbreviations reflect the
spirit of each method. Common features of the two parti-
tioners are listed below:

1. They operate on the equivalent graph, which is formed
by nodes (corresponding to tetrahedral elements) and
links (corresponding to triangular faces). So, although
3-D grids with tetrahedral elements will be partitioned,
the methods’ extension to grids with different element
types is straightforward.

2. They are based on the concept of recursive bisections,
giving rise to 2n subdomains.

3. The genetic operators are coupled with a single-pass
multilevel scheme and upon convergence at any level,
the GAs continue to operate at the next finer level.

4. At lower levels, special refinement algorithms improve
the quality of the partition.

2 PROBLEM FORMULATION

Due to their recursive character, both methods will be for-
mulated for a single bisection. By repetively applying the
same algorithm, 2n partitions can be obtained.

c� 1998 K.C.Giannakoglou and A.P.Giotis
ECCOMAS 98.
Published in 1998 by John Wiley & Sons, Ltd.



2.1 THE BITMAP FORMULATION

The BITMAP formulation is based on the mapping of the
equivalent graph nodes to a bit-string, which is suitable
for the selected optimizer (GAs). Each bit corresponds to
a single graph node and its bit value determines whether
this node belongs to the one or the other partition.

In GAs, the performance of each bit-string represent-
ing a candidate solution, is expressed by its fitness score.
A fitness function incorporates the requirements of load
balance and minimum interface size and returns a single
value for each bit-string. In [4], a mathematical expres-
sion for the fitness function, that proved to be effective in
2-D UGP problems has been proposed. Its extension to
3-D grids is straightforward. Assume that N1 and N2 are
the numbers of tetrahedra in the two subdomains, while
Ncf is the number of faces along the interface. Then

C1�N1� N2� Ncf � �
jN1 �N2jp

N1N2
� w

Ncf

Nf
(1)

where Nf is the total number of graph links. The first
quotient in eq. 1 is a measure of the load balance, whereas
the second measures the interface size. The w parameter
is a weighting factor, but for a discussion about w the
reader should refer to [4].

2.2 THE FIELD FORMULATION

In the so-called FIELD formulation, the unstructured grid
is mapped onto a 3-D graph, with graph nodes located at
the barycentres of grid tetrahedra. This mapping gives
rise to a parallelepiped domain which encloses the 3-D
graph, with its six faces being parallel to the cartesian
planes. A pair of point-charges is allowed to float within
this domain. Each point-charge (A or B) creates a 3-D
scalar field around it. The field value at any graph node
�x� y� z� can be determined by considering its distances
from A�xA� yA� zA� and B�xB� yB � zB�

rA �
p
�xA � x�2 � �yA � y�2 � �zA � z�2

rB �
p
�xB � x�2 � �yB � y�2 � �zB � z�2 (2)

in a way which mimics the static electric field around a
charged particle. As in the Coulomb’s law, two coeffi-
cients (kA and kB) need to be introduced. Two possible
forms of the mathematical expressions for the scalar field
value (potential) at any graph node �x� y� z� are given be-
low:

F �x� y� z� � �ekArA � e
kBrB (3)

or

F �x� y� z� � �
kA

r2
A

� kB

r2
B

(4)

The exponential decaying law in eq. 3 requires kA and
kB to be negative. For the sake of convenience, negative
kA and kB values can be used in eq. 4, as well. Of course,
expressions 3 and 4 could be replaced by other “physical
laws” with similar characteristics. A bisection obtained
using this formulation is shown if fig. 1.

As follows from the previous discussion, eight param-
eters �xA� yA� zA� kA� xB� yB� zB� kB� are sufficient to
define a unique scalar field over the graph space. Sorting
the graph nodes by the local scalar field values, orders the
graph in a way that allows its bisection to be readily car-
ried out; it is evident that, half of the graph nodes with the
lower F �x� y� z� values should belong to the first, while
the remaining half to the second partition. In this way, the
load balance requirement is automatically satisfied and
the fitness function, needs to account only for the mini-
mum communication requirement, thus

C2�Ncf � � Ncf (5)

Note that the coefficient k for one of the charges may
be defined arbitrarily. So, we will assume that kA � �1
and the number of free-parameters is reduced by one !

(xA,yA,zA,kA
)

(xB
,yB,
zB,
kB)

Figure 1. A single bisection, obtained using the FIELD
formulation

3 OPTIMIZATION THROUGH GAs

GAs [2], [6] are based on the natural evolution and the
Darwinian strife for life. Optimization is implicit to the
NP-complete UGP problem and, as a consequence, GAs
are candidate solution tools [3].

The UGP problem, as encoded in the BITMAP for-
mulation, allows for a direct optimization through GAs.
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On the other hand, the small number of free-parameters
appearing in the FIELD formulation makes the use of
GAs very attractive for this method as well. In the FIELD
method, the seven free-parameters

�xA� yA� zA� xB � yB� zB � kB� (6)

are first transformed to binary strings and are then con-
catenated to yield the full chromosome.

The basic GAs operators like crossover, parent selec-
tion and mutation, are quite the same in both methods,
with the exception of some extra mutation operations of
corrective character, applied in BITMAP. The crossover
operator is a standard two-point one. A hybrid scheme for
the parent selection is employed, where 90% of the indi-
viduals are selected through linear fitness ranking and the
rest of them via probabilistic tournament. This allows a
limited number of poor individuals to survive.

In [4], the authors modified some of the operators to
accelerate the convergence of the GAs. The same modifi-
cations have been transferred to the 3-D BITMAP method.
So, the mutation operator allows a limited number of bits
to alter from 0 to 1 or vice-versa (one-way scheme), at
random with variable probability, according to the posi-
tion of the corresponding gene in the current graph.

Over and above, in the BITMAP method, a correc-
tive operator is applied to a small percentage of the pop-
ulation every n (for instance, n � 7) generations. Its
purpose is to alter the owners of small groups of graph
nodes that are completely enclosed by the rival owner.
This correction step is associated with an increased prob-
ability (about 70%). Often, the so-corrected individuals
become quite unbalanced, though with smaller interface
size. The parent selection algorithm, ensures that some of
these provisionally unbalanced individuals do survive in
the new generation.

4 MULTILEVEL APPROACH AND
LOCAL REFINEMENT

The multilevel approach is used in both methods. At each
bisection , the initial graph G0 (corresponding to the un-
structured grid) becomes coarser by collapsing neighbor-
ing graph nodes into groups. The coarsening algorithm
should avoid excessive deviations in groups’ population.
So, at level Gm�m �� 0 a graph node will collect sev-
eralGm�1 graph nodes. The graph node with the smaller
population (in terms of the initial G0 nodes it possesses)
is considered first and nodes in contact with it are at-
tached until its population number exceeds a pre-specified
number proportional to the level m and to the initial grid

size. A succession of M similar coarsening steps pro-
vides the final or coarser graph (highest level, GM ) with
a size that can be easily handled by GAs. The GM graph
is first partitioned in two subsets yielding thus the initial
chromosomes for the GM�1 graph bisection. This algo-
rithm is repeated up to G0.

The gain from the use of the multilevel approach is
considerable. In the BITMAP method working with a coarser
graph, makes chomosomes extremely shorter. The reduced
length of chromosomes accelerates the genetic operators
a lot, and combined with local refinement at the lower
levels (see next section) yields a fast UGP software. In
the FIELD method the chromosomes’ length does not
change from level to level, since the seven free-parameters
are always encoded. However, economy in CPU-time is
achieved since, at the higher levels all scalar field com-
putations are performed on a coarser graph.

In the FIELD method the mutation operator described
in the previous section has been modified to account for
coarse graphs. So, at level Gm�m �� 0 graph links (in-
stead of graph nodes) are attributed a mutation probabil-
ity proportional to the number of constituent faces and,
in a second phase, one out of the two graph nodes shar-
ing this link may alter according to the aforementioned
one-way scheme. At level G0, mutation probabilities are
assigned to tetrahedra in proportion to the number of in-
terface faces they possess.

At the lower levels, massive alternations in the parti-
tions formed so far are not expected, so only a narrow
zone of graph nodes in the vicinity of the interface needs
to be handled by the optimizer. In this way, the comput-
ing cost decreases without damaging the quality of the
partition.

5 THE HYBRID METHOD

In general, the FIELD method has less memory require-
ments than the BITMAP one, since a set of seven real
variables, corresponding to the free-parameters in 6, suf-
fices to define a grid partition. In contrast to the BITMAP
method where the starting individuals generally corre-
spond to messy partitions, the FIELD algorithm starts
with partitions that are well in order, as defined by the
randomly selected set of free-parameters. Nevertheless,
the FIELD algorithm is associated with increased com-
puting cost per generation due to the repetitive calcu-
lations of the scalar field according to eqs. 3 or 4 (3 is
25% slower than 4) and the sorting procedure. A worth-
noting disadvantage of the same algorithm is that it be-
comes slow and often ineffective during the refinement
of an almost optimum solution. At the refinement phase
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the BITMAP method is very effective.
In view of the aforementioned advantages and disad-

vantages of the two developed methods, their coupling
has been tested and proved to be an efficient and effec-
tive alternative for 3-D grid partitions. The so-call HY-
BRID method utilizes the FIELD algorithm during the
first levels and switches to the BITMAP algorithm during
the remaining ones. The corresponding software includes
routines for the transformation of encoded chromosomes
from the FIELD to the BITMAP method. The flow chart
of the HYBRID method is shown in fig. 2.
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Figure 2. Flow chart of a single bisection for the HYBRID
method

As it will become clear in the next section, the HY-
BRID method outperforms in terms of (a) memory re-
quirements (vs. BITMAP), (b) computing cost (vs. both)
and (c) quality of the resulting partitions (vs. both).

6 METHODS’ APPLICATION

The methods presented were applied to the partition of
three 3-D unstructured grids of different sizes (tabulated

MESH1 MESH2 MESH3
Tetrahedra 16560 37800 111440

Nodes 3619 9260 23122

Table 1. Sizes for the partitioned meshes

in 1), used in industrial CFD applications. These grids
will be refered to as MESH1, MESH2 and MESH3. Each
grid will be partitioned in up to 2n � 32 subdomains.

MESH3 for instance, stands for an unstructured grid,
for flow calculations in a compressor cascade. A view
of the obtained partitions of MESH3 into 32 subdomains
is showed in Fig. 3. In this particular case, periodicity
conditions at the graph level had to be applied. Since the
proposed methods operate on the equivalent graph, it is
straightforward to incorporate periodicity conditions, by
introducing some extra graph links between tetrahedra in
contact with the corresponding periodic faces.

Indicative GA parameters used to partition the three
cases are listed in table 2.

Mutation probability is changing dynamically between
the upper and lower bounds as the problem converges.
Convergence is considered to occur when the average fit-
ness score is not decreasing or a best-ever individual can
not be found in N successive (idle) generations. In the
FIELD method, seven bits per variable are used but this
number should increase as the grid size increases in or-
der to determine the location of point charges with more
precision. Poor precision quickly explores the domain
and results to a coarse interface in fewer generations.
The generations done per bisection are in the range of
150 � 500.

The parameters in BITMAP that greatly affect the re-
sults are the mutation probability and the weighting fac-

Figure 3. MESH3 partitioned into 32 subdomains with the
BITMAP method.

4 K.C.Giannakoglou and A.P.Giotis



Population size 50
Idle Generations 5
Mutation probability 0.35-0.7%
Crossover probability 90%
Max reproductive trials 3
Tournament size 2
Tournament probability 95%
Correction operates on 15% of population per 7 generations
Correction upper bound 40% of elements
Bits per variable 7

Table 2. GAs parameters

tor w. The latter varies, depending on the size of the
graph to be partitioned. A recommended expression for
w, which is the outcome of many numerical tests, is given
below:

w � 8�96 ln�N1 �N2�� 55 (7)

The grids’ partition in 2n subdomains, using the pro-
posed methods, are tabulated in Tables 3. GAs param-
eters were kept constant aiming to a fair comparison,
but smaller interface sizes can be obtained if these are
fine-tuned. All methods resulted to balanced subdomains
(within �0�3% of the “perfect” balance) and so, we will
not present any information concerning the load balance.
The CPU-time results for each method and grid are incre-
mental. The whole time for 24 � 16 subdomains is the
sum of the partial times up to 24. All times are in seconds
and correspond to an Intel Pentium II 266MHz processor.

7 DISCUSSION

� Various alternatives of the FIELD method can be es-
tablished. For instance, more than two-point charges
can be used to drive a single bisection. This will ex-
pand the search space which will include more candi-
date solutions in conformity to a more general math-
ematical model, in the expense of increased chromo-
some lengths. The latter will increase the required num-
ber of generations and the computing cost per gener-
ation, since more scalar field computations should be
performed. Moreover, the quality of the obtained par-
titions is in general similar to the one with two point-
charges.

� Using an algorithm for the selection of the median
in the FIELD method rather than using an indexing
and ranking algorithm can further diminish the total

MESH1 INTERFACE
21 22 23 24 25

BITMAP 123 394 946 1572 2670
FIELD 132 394 946 1567 2600
HYBRID 127 383 904 1470 2504

MESH1 CPU-TIME (sec)
21 22 23 24 25

BITMAP 5 7 12 10 14
FIELD 20 16 15 17 12
HYBRID 6 5 9 8 11

MESH2 INTERFACE
21 22 23 24 25

BITMAP 252 764 1638 2554 3880
FIELD 310 830 1614 2614 4134
HYBRID 240 739 1489 2446 3853

MESH2 CPU-TIME (sec)
21 22 23 24 25

BITMAP 14 18 24 23 27
FIELD 54 84 61 53 44
HYBRID 12 11 25 19 23

MESH3 INTERFACE
21 22 23 24 25

BITMAP 204 891 1447 2321 3874
FIELD 330 1510 2698 4438 7320
HYBRID 198 853 1618 2488 3936

MESH3 CPU-TIME (sec)
21 22 23 24 25

BITMAP 28 37 27 37 53
FIELD 129 95 89 92 80
HYBRID 27 30 26 29 40

Table 3. Interface and CPU-time results for each method and
grid for each bisection level 2n

.

CPU-time of FIELD (about 20%). However, the in-
termediate partitions at levels Gm�m � 0 are not
exactly balanced since the number of tetrahedra col-
lapsed in a graph node is not constant. However, the
selected coarsening procedure is capable of creating
groups with small deviations in the number of con-
stituent tetrahedra. So, the aforementioned technique
could (and has been) used instead; the results are al-
most identical to those obtained through the standard
indexing algorithm, since the targeted balance is prac-
tically achieved at the finer level G0.
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8 CONCLUSIONS

The partitioning of unstructured grids for parallel pro-
cessing is considered as an optimization problem, accord-
ing the BITMAP and the FIELDformulations. Genetic Al-
gorithms have been employed to solve the optimization
problems and proved to be efficient and effective. Major
remarks for each method are capitulated below:

1. The BITMAP method is a fast partitioning tool, gener-
ating refined interfaces, provided that the special ge-
netic operators are employed. The encoding scheme
increases the memory requirements, compared to the
one used in the FIELD method. The two major param-
eters that affect the partition quality are the value of
the weighting parameter w and the mutation probabil-
ity.

2. Reduced memory requirements are associated with FIELD
method. However, the evaluation of candidate solu-
tions (calculation of the scalar field values at graph
nodes and sorting) is time-consuming. Surprisingly,
the careful selection of the mathematical law defining
the scalar field at the graph nodes, affects the partition
cost. As the grid size increases, the length of the bit-
string associated with each one of the free-parameters
should increase.

3. For both methods the local refinement during the lower
levels and the multilevel treatment of the grids and the
associated graphs is mandatory, otherwise the comput-
ing cost increases dramatically.

Considering the good refinement properties of the BITMAP
method and the good initial partitions that the FIELD
method may provide, a hybrid scheme was proposed. In
this scheme, the FIELD method undertakes the partition
during the first levels (coarser graphs) and the BITMAP
method during the remaining ones, always in the context
of the multilevel scheme.
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