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Abstract. The design of 2-D turbine blades using tar-
get pressure considerations is described. It is based on
the optimization of a set of free-parameters through Ge-
netic Algorithms (GAs). Profile shapes are modeled using
combinations of circular arcs and Bezier functions. The
number of free-parameters may vary, depending on the
particular design requirements; they practically consist
of the radii and orientations of the circular arcs and the
control-points of the Bezier functions, but other parame-
ters may be optimized as well. The exploitation capabili-
ties of the GA are improved using adaptive ranges for the
free-parameters. Close to the optimum solution, the GA
switches to an iterative hillclimbing (HC) method, which
undertakes the final refinement. The method application
is demonstrated in a steam-turbine blade design problem.

1 INTRODUCTION

The increasingly demanding turbine operating conditions
(higher temperatures and pressures, higher output power
levels, etc) require design methods capable to produce
new blade shapes that meet certain requirements. Given
that the experimental testing of new blades is both costly
and time consuming, CFD methods should be used as far
as posible. In general, these tools rely on:

(a) the improved understanding of complex flow phe-
nomena occurring in turbine cascades,

(b) the progress in the available CFD analysis methods,
(c) the availability of powerful computing facilities, in-

cluding parallel processing and
(d) the availability of effective optimization tools.

The proposed method is a contour design method for
2-D blades that is based on a novel geometrical model
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for the blade geometry. This consists of the combina-
tion of two circular arcs for the leading (LE) and trail-
ing (TE) edges with Bezier curves for the major part of
the pressure (PS) and suction (SS) sides. Free-parameters
are identified and controlled by GAs and HC. Their role
is to compute the set of parameters, that give the tar-
geted pressure distribution along the blade surface, un-
der prescribed flow conditions. A primitive variable flow
solver for unstructured grids is used for the evaluation
of the candidate blade shapes, through solving the flow
field in 2-D cascades. Inviscid or viscous flow models
and various turbulence models can be used to associate
a fitness score with each shape, through post-processing.
A distributed-memory parallel computer, in the so-called
SIMD mode, helps saving computing time through the
concurrent evaluation of multiple candidate solutions.

The literature survey on aerodynamic shape optimiza-
tion methods will be restricted to some recent works in
the field of turbine blade optimization through GAs, and
is by no means exhaustive. Bezier curves are used in
[3] to model the turbine blade contour, whereas a 17-
parameter geometrical coding is used in [9] and fourth-
order parametric splines in [5]. Due to their smoothing
properties, Bezier functions have been preferably used in
external aerodynamic shape optimizations as well (see,
for instance [2]). Aerodynamic criteria, with or without
mechanical and geometry constraints, constitute the ob-
jective function. The convergence of GAs is often en-
hanced, by combining them with other optimization meth-
ods, using variable population size, or through heuristics.

2 AIRFOIL BLADE
PARAMETERIZATION

The first aim is to convey to the reader the proposed pa-
rameterization for 2-D turbine blades. The usually rounded
form of these blades close to the LE and TE yields the

c� 1998 K. Giannakoglou
ECCOMAS 98.
Published in 1998 by John Wiley & Sons, Ltd.



modeling through combined circular arcs and Bezier-Bernstein
polynomials very attractive. The two circular arcs model
the front and rear part of the airfoil. The two Bezier poly-
nomials model the remaining parts along the PS and the
SS, (Fig. 1) and are controlled by NP � 2 and NS � 2
control-points, respectively. The two end-points of each
Bezier curve coincide with the end-points of the circu-
lar arcs (nodes T1 to T4). In the “main” design scenario,
the free-parameters are those listed in Table 1. It should
be noted that, the blade stagger angle and the two chord
end-points are fixed. Using these points and R1, R2, b�1
and b�2 values, the centers and radii of the LE and TE
edge circles are defined. The T1 to T4 nodal points are
then computed, by drawing the tangents from P1, S1, P5
and S5, respectively (assume that NP � NS � 5).

R1 radius of the LE circle
b�1 inlet blade angle
R2 radius of the TE circle
b�2 exit blade angle
xi� i � 2� NP � 1 x-coordinate of NP control-

points over the PS
yi� i � 2�NP � 1 y-coordinate of NP control-

points over the PS
xi� i � 2� NS � 1 x-coordinate of NS control-

points over the SS
yi� i � 2�NS � 1 y-coordinate of NS control-

points over the SS

Table 1. Set of free parameters

According to this table, the number of free-parameters
is equal to

NFP � 4 � 2NP � 2NS

There is reason to couple circular arcs with Bezier
curves. According to the Bezier polynomial theory [1],
the pth derivative at the each end-point is determined by
the point itself and the p adjacent ones. Of course, the
first derivative is equal to the slope of the straight line
joining the end-point and the adjacent interior control-
point. Consequently, drawing the tangent from the 2nd

or the �NP � 1�th (or �NS � 1�th) Bezier points to the
leading or trailing edge circles respectively, the location
of the 1st and the �NP � 2�th (or �NS � 2�th) Bezier
points can be found. It is important to note that the two
curves remain continuous at the junction points.

The tabulated set of free-parameters in neither manda-
tory nor even the optimum one. Alternative sets can be
defined, depending on the design requirements. For in-
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Figure 1. Parameterization of a turbine blade

stance, so far, blade chord, cascade pitch and stagger an-
gle were fixed to values reflecting experience from pre-
vious successful designs. Some or all of them are likely
to be considered as extra free-parameters to be optimized
as well. On the other hand, NFP can be considerably
reduced, by fixing the NP � NS x-coordinates of the
Bezier control-points; for instance, they could be evenly
distributed along the axial chord. In many cases, fixing
the x-coordinates of the control-points is harmless, though
in some other cases this might be detrimental.
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3 OPTIMIZATION THROUGH GAs

The optimization problem will be associated with the vec-
tor of free-parameters defining the blade shape. Let us
denote these parameters by ui� i � 1� NFP . The aim is
to find a set of ui values so that the surface pressure dis-
tribution of the corresponding blade be as close as pos-
sible to the targeted one. Each ui set represents a search
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point in the space of potential solutions. GAs, viz. ran-
dom search algorithms based on the model of biological
evolution, will be used to find the optimum solution.

In the beginning, a population of Npop individuals is
randomly selected over the search space of possible solu-
tions. Each individual is given a fitness score that denotes
its suitability. Minimization and maximization problems
may be equally handled through a simple transforma-
tion of the fitness score. The problem at hand is a mini-
mization problem, where the optimum solution is the one
corresponding to the individual with the lowest fitness
score among its competitors. The computation of fitness
scores requires flow problem solutions through CFD soft-
ware which are the time-consuming. Depending on their
scores, the individuals compete to reproduce offspring;
the fittest of them survive while the weaker die out. This
is carried out in a repetitive manner, up to the point where
no better solutions are likely to appear. At each genera-
tion, individuals are subject to genetic mechanisms like
selection, mating, crossover and mutation.

The critical problem of modeling each individual, in a
manner which is suitable for GAs, is now taken up. Each
ui parameter is coded as a binary chromosome

Ci

�
b1� b2� b3� � � � � bni

�

where bm � 0 or 1. In general, the binary strings for the
NFP parameters could be of variable length. The length
stands for the number ni of bits in each chromosome.
The lower ui�min and the upper ui�max bounds for each
free-parameter are imposed and the binary string Ci is
decoded as follows

ui
�
b1� b2� � � � � bni

�
� ui�min �

�
k Ci

�
b1� b2� � � � � bni

�
k

k Ci (1� 1� � � � � 1) k

�
ui�max � ui�min

�

where

k Ci

�
b1� b2� � � � � bni

�
k�

niX

k�1

bk 2k�1

The concatenation of NFP binary strings gives rise to
the full binary string utilized by the GA. So, the chromo-
some length, i.e. the number L of bits used to encode the
ensemble of NFP free-parameters is equal to

L �

NFPX

i�1

ni

As a supplement, Gray coding [7] representation can be
optionally incorporated. Gray coding produces slightly
better results and accelerates convergence.

The evolution of the Npop randomly selected individ-
uals is carried through the following genetic operations:

(1) Parent Selection. Reproductive trials are allocated to
each individual, according to their fitness score. These
trials define the number of copies of each individual
in the mating pool. The fitter individuals are likely to
receive more than one copies. Some of the less fit indi-
viduals are likely to stay out of the mating pool. First,
all individuals are mapped onto a roulette wheel with
Npop slots. The size of the slot corresponding to the
ith individual is proportional to the difference between
its score and the score of the worst individual in this
generation. Using the roulette wheel, the mating pool
for the next generation is formed.

(2) Crossover. Pairs of individuals are selected from this
pool at random and their chromosomes are cut at a
point selected at random; the parts after and before the
cuts are mutually exhanged. Here, a 1-point crossover
per free-parameter is used, which corresponds to aNFP -
point crossover for the full chromosome of length L.
So, the substring of any free-parameter contain a mix-
ture of genes from the parental substrings. The crossover
possibility for each pair in the mating pool is kept very
high (90%).

(3) Mutation. Mutation is applied to each individual af-
ter crossover. It randomly alters bits with a small prob-
ability (usually less than 1%).

4 THE EVALUATION OF CANDIDATE
SHAPES

The evaluation of candidate solutions is carried through
a 2-D flow solver for unstructured grids with triangular
elements. The flow solver is based on the finite-volume
method. Over each control volume, the governing equa-
tions are discretized using second-order upwind schemes
for the convective terms and a linear distribution scheme
for the diffusion ones �6�. The numerical solution is per-
formed through the Jacobi scheme, involving a number
of sub-iterations. For viscous flow calculations, the stan-
dard Jones-Launder k � � model �4� has been used. Wall
functions are applied along the walls by assuming that the
local node is in a small but constant distance from a hy-
pothetical solid surface. Thus, slip conditions are locally
imposed.

Having obtained the numerical solution of the flow
equations in the 2-D cascades formed using the candidate
blade profiles, the evaluation of the corresponding chro-
mosome takes place. The fitness function is defined as the
area between the targeted and the predicted pressure dis-
tributions along the profile. The integration yields a pos-
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itive real value which constitutes a measure of the chro-
mosome’s quality. It is indispensable to perform these
computations using a p � p�s� representation, where s

is the arc-length along the airfoil contour. By doing so,
differences in the pressure distribution occuring close to
the rounded LE can be distinctly taken into account.

5 METHOD ACCELERATION

In the proposed method, the chromosome length L ex-
ceeds the limits which, according to our experience, al-
low the efficient usage of GAs. This is due to the large
number of free-parameters (in the “main” design sce-
nario, FFP � 24, for NP � NS � 5), each of which
needs to be coded using a five- to seven-bit length sub-
string. Therefore, the length of the coding string is ex-
pected to be in the range of 120 � 168 bits. With these
figures in mind and a population size of about 30 � 50
chromosomes, the computing cost of the GA increases
considerably. It has been also observed that the number
of generations needed to reach an almost optimum solu-
tion increases too. In general, the standard GA manages
to rapidly improve the fitness score of the best solution
during the first generations, but drifts slowly (and often
endlessly) during the subsequent generations.

In order to overcome this unpleasant behaviour, an
adaptive-range scheme incorporated to the standard GA
and, towards convergence, the hillclimbing optimizer was
used instead.

The adaptive-range scheme consists of the re-definition
of the range of variation for each free-parameter, accord-
ing to the GA results. The re-definition of ui�min , ui�max,
i � 1� NFP takes place at a certain generation, if no real
benefit is expected from a longer calculation. A criterion
based on the lack of improvement of the best score over
the last k, k � 5�10 generations, is applied. Let ui�min ,
ui�max, be the i � th variable bounds used for the GA
during the first generations. Assume, also, that the GA
derived the best chromosome which corresponds to the
u�i values. Then, the subsequent GA operations will be
carried out using a new range, given by

u
new
i�min � u

�

i �
1
2
ui�max � ui�min

p
�

u
new
i�max � u

�

i �
1
2
ui�max � ui�min

p
(1)

where p is a small integer (p � 2�4). The re-definition of
the range may be used more than once, if this contibutes
to the deeper convergence of the GA.

Upon convergence of the GA, with or without interme-
diate re-definitions of the search space, the HC algorithm

takes over. This is based on the best chromosome cal-
culated by the GA and promotes small changes resulting
to score improvement. In its iterative version, the algo-
rithm builds L new chromosomes by successively alter-
ing one bit in the string. After evaluating them through
the Navier-Stokes solver, the best of them (if different
from the previous best) is chosen and the procedure restarts
up to the final convergence. A maximum number of iter-
ates is allowed, otherwise HC terminates whenever im-
provement to the current chromosome is not feasible. The
HC improves further the solution obtained through the
GA, though in the expense of costly computations. Nev-
ertheless, the HC cost can be reduced through (a) paral-
lelization, (b) selective evaluation of a small subset of the
L new chromosomes, according to a preceding sensitiv-
ity analysis (it is beyond our scope to discuss it here), or
(c) combination of both.

Apart from its sequential version, the proposed method
is also available in a parallel version for distributed-memory
computers. The Intel-Paragon computer of the Supercom-
puting Center of NTUA was used along with the so-called
fine-grain parallelization of the GA and the HC part of
the algorithm. Since the costly part is the evaluation of
the candidate chromosomes through iterative CFD direct
solvers, each processor is associated with one chromo-
some and undertakes the relevant computations. The gen-
eration of the unstructured grid, the iterative solution of
the Navier-Stokes equations up to a specified accuracy
and the comparison between predicted and target pres-
sure distributions, are all performed in parallel.

On the contrary, all genetic operators are undertaken
by a master processor. Thus, the proposed method is not
a parallel GA in the strict sense, but the available pro-
cessors of a parallel computer are used to minimize the
duration of a single turbine blade design.

6 RESULTS - THE DESIGN OF A
STEAM-TURBINE BLADE

In this Section, the design of a steam turbine blade will
be demonstrated. An existing steam-turbine blade shape,
with data available in [8], (chord � 100mm, stagger an-
gle � 37�11deg�, pitch-to-chord ratio � 0�55117) will be
used as the background profile. With the inlet flow angle
and the isentropic exit Mach number fixed to the experi-
mental values, 19�3deg� and 1�189 respectively, a shock
that emanates from the trailing edge appears, which then
reflects on the SS of the adjacent blade. The shock reflec-
tion is visible on the SS pressure distribution at about 75
percent axial chord, as a region of recovered pressure.

The experimental pressure distribution (or more pre-
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cisely that obtained using a direct calculation) was pur-
posely modified to give the targeted pressure distribution.
A linear distribution replaced the wavy one over the front
part of the SS, while the pressure distribution represent-
ing the shock reflection over the SS rear part remained
intact. Using the so-defined target pressure distribution,
we proceeded to the design of the turbine blade that was
expected to be quite close, though not identical, to the
original one; the latter will be referred to as the “refer-
ence” blade. The target pressure distribution is repeated
in most of the figures of this paper; for practical reasons,
p � p�x�, instead of p � p�s�, plots are shown.

Fig. 2 illustrates indicative ranges of variation for the
10 Bezier control points. The lower and the upper bounds
of the free-parameters were assumed to differ sunstan-
tially during the first phase of the GA-based optimization

(GA1). Using the user-specified ranges, GA1 resulted to
the evolution of the best score shown in 3. A rapid im-
provement of the best score in the early generations was
followed by a slower one. The GA1 could probably ter-
minate about the 15th generation, but 30 generations are
presented in order to demonstrate the evolution trends. It
is worth noting that there is lack of improvement of the
best score during the last (more than 10) generations.

At the end of GA1, the range of variation for all free-
parameters was re-adjusted, according to eq. 1 (p � 4)
and the second GA phase started (GA2). Its convergence
history is shown in fig. 4; improvements occured much
more often and the best score gradually improved. At the
end of the 30th GA2 generation, the optimization tool
switched to HC, which took about 10 iterates (fig. 5)
to improve the best score. The finally obtained blade is
shown in fig. 6. We recall that the ”reference” blade shape
is not the targeted shape and deviations in fig. 6 should
not be interpreted as design errors.

Figs. 7, 8 and 9 illustrate the pressure distributions
along the solid walls of the optimum blade shapes at the
end of GA1, GA2 and HC. Using only GA1, the pres-
sure distribution over the PS was “easily” captured, de-
spite the coarse binary analysis (5 bits per variable). The
shock wave location and intensity was also correctly re-
produced, as may be seen from the satisfactory compar-
ison of predicted and targeted pressure distributions at
the rear part of the SS. Indeed, the shock reflection pat-
terns on the SS are very close to the targeted ones, even
if discrepancies do appear in the front part of the SS. The
improvements due to GA2 and HC are mainly concerned
with the latter. The blade obtained using GA1, GA2 and
HC gives a pressure distribution that is in perfect agree-
ment with the targeted pressure distribution.
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7 CONCLUSION

A design method for 2-D turbine blades was presented.
The designer’s requirements are cast in the form of a tar-
geted pressure distribution and a number of geometrical
parameters are controlled by GAs, with or without re-
adjustment of their range or HC. The undertaken tran-
sonic steam-turbine design problem was succesful and
the major conclusions are as follows:

(a) The proposed geometrical model, using circular
arcs and Bezier polynomials, proved to be very effective
for the modeling of turbine blades.

(b) GAs proved to be efficient optimizers, especially if
combined with acceleration techniques (adaptive ranges
of the free-parameters, hillclimbing). The adaptive-range
method overcomes convergence stagnation problems and
improves considerably the optimum solution. The itera-
tive hillclimbing undertakes the final refinement.

(c) The parallelized version of this method divides the
design time approximately by the number of available
processors.
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