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Abstract

Transonic airfoil design problems are solved using a Genetic Algorithm �GA� based
optimizer� At the desired operating point� the minimum drag and constant lift targets are
achieved through either a scalarized objective function� involving an arbitrary weighting
factor� or the Pareto technique� For the optimization of an airfoil at two operating points�
similar approaches are used� The CPU cost of the optimizer is kept low through Arti��
cial Intelligence� A multilayer perceptron is trained using already evaluated individuals
and provides good� though approximate� �tness predictions� With the regularly trained
network� the direct �ow solver calls are noticeably reduced�

� Introduction

The search for optimum aerodynamic shapes is a major problem in aeronautics� The airfoil
shape optimization requires a geometrical model fot its contour� which de�nes the set of
control�parameters� A �tness or objective function is then de�ned� which should be driven
to its minimum or maximum value� The minimization of drag is the usual objective in high�
speed civil transport� This should be achieved with prede�ned lift and� often� by satisfying
constraints relevant to the airfoil cross�section� Computational Fluid Dynamics �CFD� plays
an important role since it is capable to enlight �ow phenomena around complex shapes that
are aerodynamically evaluated without resorting to costly experiments�

Numerical optimization� usually through iterative gradient�based methods� is a widely
used tool� Rival to the aforesaid methods are stochastic optimizers and soft�computing tech�
niques� Their major advantage is the capability to locate global optima� Among them� GAs�
��	� are based on the concept of natural selection and their robustness has been proved in a
variety of applications� including problems that can be hardly solved using gradient informa�
tion� However� the shape optimization through standard GAs is time consuming due to the
great number of CFD evaluations it involves� In the past� ways to reduce the CPU cost have
been proposed by the second author� These were based on �a� the concurrent treatment of the
individuals on parallel computing platforms �
	 and�or �b� Arti�cial Intelligence ��	� In the
second approach� arti�cial neural networks �ANNs� are �rst trained to correlate shapes and
�tness scores and then used to evaluate new candidate solutions� without always resorting to
CFD computations�

The present paper extends the method previously used for inverse design turbomachinery
problems� to the airfoil shape optimization problem in aeronautics� The imposed require�
ments �on the lift and the drag� have been used in both the single� and the multi�objective
optimization fashion� Single� and multi�point designs at transonic �ow conditions� have been
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worked out� For the multi�objective problem the Pareto front method has been programmed
and its convergence speed was enhanced also through the ANNs�

� Design through GAs

A GA starts by randomly generating a population of individuals� each of which stands for
a candidate shape�solution with a binary or real number coding� Herein� the former was
implied by concatenating the binary strings �bits� of the control�parameters� The popula�
tion size Npop� which does not alter during the genetic evolution� determines its exploration
capabilities along with the computing cost per generation� About ����� individuals are prac�
tically used� These are all evaluated using CFD tools and their �tness scores are deduced
by post�processing the numerical results� Using various selection criteria� reproductive trials
are allocated to the individuals� with some bias toward the �ttests� A mating pool is thus
formed and this constitutes the �rst step for the evolution to the next generation� by applying
the parent recombination operators� The recombination task gives rise to a new generation
with possibly improved mean and best �tness scores� The evolutions stop if no improvement
appears during the last few generations�

��� Pro�le Parameterization

The parameterization of the airfoil contour is carried through Bezier�Bernstein polynomials�
The x� �optional� and y�coordinates of the Bezier points are the free�parameters controlled
by the GA� Optionally� circular arcs at the leading �LE� and trailing �TE� edges can be
superimposed to the polynomial curves� If the airfoil chord�length is kept �xed� Fig� �� the
use of circular arcs introduces the angular position of their centers ��LE and�or �TE� and
their radii �RLE and�or RTE� as extra control parameters�

A geometrical model that is often used consists of two circular arcs �
�
 control param�
eters� and two Bezier curves with NPS � NSS � � points per airfoil side �� � 
 � � � 
 � 
�
control parameters� if both Cartesian coordinates are free�� Thus� the total number of control
parameters is NFP � 
�� Note that� at the junction points between Bezier curves and circular
arcs� curve continuity and smoothness are automatically preserved�

��� Objective Function

Optimum or inverse design problems can be solved by the proposed method� provided that
an appropriate objective or �tness function is de�ned� In the inverse design problems� the
sought for airfoil should yield a desired pressure distribution over its contour at speci�ed �ow
conditions� In this case� the objective is to minimize the deviation between actual and desired
pressure distributions� Examples of inverse designs using di�erent acceleration techniques can
be found in �
	 and ��	� In the optimum airfoil design problem� pro�les giving maximum or
known lift Cl and minimum drag Cd are sought for�






Herein� we will be dealing with the re�design problem� an initial airfoil is provided which
generally de�nes the search space for the NFP control�parameters� This pro�le will be re�
designed aiming at the minimum Cd for the same Cl � C

target
l �at the same �ow conditions��

Geometrical constraints will not be implied in the present studies� For a single�operating
point� this can be carried out in two ways

�� using a single objective function and the arbitrary factor b� as

minF � min
n
�Cl � C

target
l �� � b � Cd

o
���


� through a multi�objective optimization� by separately considering min�Cl � C
target
l ��

and min�Cd� in order to provide the Pareto front� as discussed in the next section�
Multi�point optimizations� at two �ow conditions through the Pareto front technique
will be also demonstrated�

The evaluation of the candidate shapes is undertaken by a primitive variable 
�D un�
structured grid� �ow solver ��	� The inviscid �ow equations are solved using a vertex�centered
�nite�volume technique and a second order upwind scheme� The numerical solution is based
on Jacobi�preconditioned GMRES techniques and requires about �� sec on an Intel Pentium
II ���MHz processor �for a typical grid of about ���� nodes� convergence to � orders of
magnitude� the cost increases to about �� sec if grid adaptation is used��

Prior to the numerical solution� an unstructured grid is generated using an automated
procedure� Its computing cost can be safely neglected�

��� Multi�objective optimization using the Pareto technique

In multi�objective optimization� a Pareto front ��	 is the subset of candidate solutions obtained
by eliminating any other solution for which an absolutely superior one �with respect to the
ensemble of objective functions� can be found� According to the previous de�nition� the
Pareto front consists of the so�called nondominated �or Pareto�optimal� solutions� in the
sense that none of them is absolutely superior to any other constituent of the front� Thus�
all of them are equally acceptable solutions to the problem and the choice of one of them
requires a deep knowledge of the particular problem�

In order to obtain the Pareto front� a single�objective GA should be enriched by non�
dominated sorting and sharing� For each candidate solution in the current generation� scores
for all of the objectives are �rst computed� The solutions are then ranked on the basis of
nondomination among them and a number of fronts is thus formed� The �rst front is the
Pareto�optimal front and its members are given a unit dummy cost function �Fdum � ���
The reproduction task is based on the Fdum values� after sharing is applied to each front
separately� Sharing aims to spread the solutions all over the front by penalizing clustered
ones and this is achieved by modifying the Fdum values� Starting from the Pareto�front� the
sharing factor

mi �

NpopX
j��

Sh�d�i� j�� �
�

is computed for its ith member� The function Sh�d� is de�ned as

Sh�d�i� j�� �

�
� if d�i� j� � �share

�� d�i�j�
�share

if d�i� j� � �share
���
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where � � �share � �� and i� j are in the same front� Their Euclidian distance d�i� j� is
computed either in the variables� or in the objectives� space as follows�

d�i� j� �

vuut NvX
k��

�
vik � v

j
k

maxi�������Nf
�vik��mini�������Nf

�vik�

��

���

where v stands for the variables or the objectives respectively� Nv the total number of variables
�or objectives� and Nf the number of individuals belonging to the current front�

Since minimization problems are considered� the Fdum value of each solution is recomputed
by multiplying it with mi� On the next front� Fdum is �rst set equal to the worst score in the
previous front plus a small quantity and then sharing applies� as previously�

In the genetic evolution� parent selection applies on the basis of the so�computed Fdum
values�

� Acceleration using Arti�cial Neural Networks

The overall design cost can be considerably reduced if some individuals are evaluated with�
out resorting to the costly CFD model� For this purpose ANNs� ��	� are used� provided that
a training set� i�e� a su�cient number of pro�le shapes � �tness scores is available� Such
availability is certain since the GA continuously evaluates new candidate solutions� An ANN
should be trained on the input �shape� � output ��tness� mapping� through supervised learn�
ing� This entails additional CPU cost but� afterwards� the prediction of the �tness of any
new shape is straightforward�

A multilayer perceptron �MLP�� as the one used herein� is a feedforward ANN with its
neurons arranged in layers ��	� All neurons in a layer are connected to all neurons in the
adjacent layers using links associated with synaptic weights� A neuron in all but the �rst
layer has many inputs but a single output� The synaptic weights act as signal multipliers on
the corresponding links� In our case� as many neurons as the number of free parameters �NFP �
constitute the �rst layer� The output layer neurons are equal to the number of objectives
and practically� 
�� intermediate or hidden layers are used� The number of neurons in these
layers should be as high as possible to increase the e�cacy of the network� but as low as
possible to reduce the training cost� The back error propagation �BEP� algorithm is used to
compute the synaptic weights by repetitively presenting the network with the training set�

In general� the ANN guesses are not dependable� Nevertheless� they can be used to
distinguish the promising solutions in the current generation which will be then accurately
evaluated using the CFD tool� Our rule of thumb is to re�examine the top � ���Npop of
individuals in each generation through the Euler solver� Considering that the network training
costs as much as a direct �ow solution� the overall computing cost is expected to reduce about
���� thanks to the ANN implementation� When the ANN is used in conjunction with the
Pareto method� all new individuals in the Pareto�optimal front need to be evaluated by the
�ow solver� If these are less than ���Npop more individuals that belong to consecutive fronts
are evaluated�

� Analytical test case

A simple multi�objective problem� the simultaneous minimization of two analytical functions�
is �rst solved and results with and without ANN acceleration are compared with the analytical
solution� It should be stressed that� the computational cost of the analytical functions is
negligible and the use of ANNs is only for demonstration purposes� In fact� the economy by
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no means outweighs the cost to train the ANN �built with one input for x and two outputs
for O�� O��� The two objectives are min�O�� O��� where

O� �
�p

��� x�
p
x� �

� O� � �����x � ��� � ��� ���

in the range of x � ��� ��	� The two objectives along with the GA solutions� are plotted in �g�

� The results with or without the use of ANN are identical� The Pareto front ��g� �� is also
the same� though the point distribution is di�erent� Instead of using the Pareto technique� a
linear combination of the two objectives is possible� min�O�� bO��� Results of various single�
objective optimizations are also included in the same �gure for various b values� Figs� � and
� present the increase of the Pareto front members and the total number of computations
performed in each generation� During the evolution� dominated individuals are removed and
new nondominated ones are inserted into the Pareto front� With the ANN acceleration� fewer
individuals enter the optimal front in each generation� As only a percentage ���� Npop� is
accurately evaluated in each generation determining the maximum number of entries in the
optimal front� this is reasonable side�e�ect� To get the same size of the Pareto front� more
generations are needed� Nevertheless� the economy is still important� as one may see by
summing up the accurate evaluations used�
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� Optimization of a transonic airfoil

In this section� the optimization of the RAE�
�

 isolated pro�le� under inviscid �ow condi�
tions will be analyzed�

Single�point Designs Two di�erent problems have been analyzed� In the �rst� denoted

by A� the �ow conditions were Minf � ����� a � 
o and the Ctarget
l was that of the standard

�starting� pro�le Ctarget
l � ������ For point A� the following computations have been carried

out �a� six computations using the single�objective function � at di�erent b values �b �
�� �� ��� 
��� Some of them used the stand�alone genetic optimizer and some other the ANN�
based acceleration� The latter are marked by ANN� in the �gures� captions� �b� two multi�
objective optimizations� using the Pareto technique with and without ANNs�

The same airfoil was separately optimized at the B �ow conditions �Minf � ����� a �
����o�� where Ctarget

l � ������ as a single�objective optimization with b � � and as a multi�
objective one with the Pareto technique� For point A� all the obtained results are shown in
Fig� �� Only a part of the Pareto front �the outer left one� has been drawn� The Pareto�
optimal fronts with and without ANNs are quite close to each other� especially in the almost
vertical part of this �gure� where the Cl value is close to the target one� Each single�objective
computation added a point in this �gure� which was in general aligned with the Pareto
front points� Table � shows the Cl and Cd values of the optimum pro�les according to the
single�objective optimizations�
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Cl ����� ����� ����� ����� ����
 �����
Cd ����

 �����
 ������ ������ ������ ������

Table � Cl and Cd of the re�designed airfoils �Operating point A� single�objective optimiza�
tion�

Multi�point Design For the multi�point design� two objective functions for each operating
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point� A and B have been devised� each of them using eq� �� The case was studied without
the ANN acceleration�

Fig� � illustrates the starting pro�le and the optimum airfoil shapes obtained using
b � �� �� ��� It is worth noting that the x� and y� axes are in di�erent scales� Fig� � presents
the convergence of the single�objective GA in terms of the �ttest individual score� A quite
similar convergence with and without ANNs was obtained� though the costly stand�alone GA
optimizer slightly outperforms its economic version �with the ANNs��

For the operating point B� similar plots to those shown for A can be drawn� but these
will be omitted in the interest of space� The two�point design �minimization of eq��� at both
the A and B �ow conditions� carried out through the Pareto technique is plotted in Fig� ��
The Pareto�optimal front contains �ve entries� which correspond to �ve di�erent shapes� In
the same �gure� the computed optimum solutions for points A and B separately �b � � in
all cases� are also included� For the optimum pro�le at point A� two solutions are shown�
one with and the other without the ANN acceleration� In all these single�point optimization
results the direct �ow solver applied to the optimum geometry in order to calculate the �ow
�eld and the corresponding �tness score at the other operating point� As expected� the
single�point optimum solutions are located at the top�left �for point A� and the bottom�right
�for point B� parts of the �gure� These should be conceived as the theoretical edges of the
Pareto front�
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� Conclusions

The goal of this paper was to demonstrate the use of Genetic Algorithms in the airfoil
optimization problem and to propose acceleration methods that increase their e�ciency� The
main conclusions of this work are listed below

�� Multilayer perceptrons can reduce the CPU cost of design methods based on GAs� With
a multilayer network that has been trained on the shape��tness pairs resulting from the
genetic evolution� a great part of the work volume� i�e� of the required CFD computa�
tions� is overcome� The CFD tool is only used to re�evaluate the �ttest individuals on
the basis of the ANN predictions�


� The ANN can be also used with the Pareto technique� for the purpose of multi�objective
optimization� In this method� a single network with as many outputs as the number of
objectives has been used� An alternative way would be to train as many networks as
the number of objectives� all of them with a single output neuron�

�� The Pareto technique along with an ANN yields fewer entries into the Pareto�optimal
front per generation� compared to the stand�alone GA� Although more generations are
required to reach a front of the same population� the total CPU cost is quite lower�

�� Through the ANNs� economy of the order of ��� can be achieved without damaging
the quality of the obtained results�
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