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Abstract

Transonic airfoil design problems are solved using a Genetic Algorithm (GA) based
optimizer. At the desired operating point, the minimum drag and constant lift targets are
achieved through either a scalarized objective function, involving an arbitrary weighting
factor, or the Pareto technique. For the optimization of an airfoil at two operating points,
similar approaches are used. The CPU cost of the optimizer is kept low through Artifi-
cial Intelligence. A multilayer perceptron is trained using already evaluated individuals
and provides good, though approximate, fitness predictions. With the regularly trained
network, the direct flow solver calls are noticeably reduced.

1 Introduction

The search for optimum aerodynamic shapes is a major problem in aeronautics. The airfoil
shape optimization requires a geometrical model fot its contour, which defines the set of
control-parameters. A fitness or objective function is then defined, which should be driven
to its minimum or maximum value. The minimization of drag is the usual objective in high-
speed civil transport. This should be achieved with predefined lift and, often, by satisfying
constraints relevant to the airfoil cross-section. Computational Fluid Dynamics (CFD) plays
an important role since it is capable to enlight flow phenomena around complex shapes that
are aerodynamically evaluated without resorting to costly experiments.

Numerical optimization, usually through iterative gradient-based methods, is a widely
used tool. Rival to the aforesaid methods are stochastic optimizers and soft-computing tech-
niques. Their major advantage is the capability to locate global optima. Among them, GAs,
[1], are based on the concept of natural selection and their robustness has been proved in a
variety of applications, including problems that can be hardly solved using gradient informa-
tion. However, the shape optimization through standard GAs is time consuming due to the
great number of CFD evaluations it involves. In the past, ways to reduce the CPU cost have
been proposed by the second author. These were based on (a) the concurrent treatment of the
individuals on parallel computing platforms [2] and/or (b) Artificial Intelligence [3]. In the
second approach, artificial neural networks (ANNs) are first trained to correlate shapes and
fitness scores and then used to evaluate new candidate solutions, without always resorting to
CFD computations.

The present paper extends the method previously used for inverse design turbomachinery
problems, to the airfoil shape optimization problem in aeronautics. The imposed require-
ments (on the lift and the drag) have been used in both the single- and the multi-objective
optimization fagshion. Single- and multi-point designs at transonic flow conditions, have been
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worked out. For the multi-objective problem the Pareto front method has been programmed
and its convergence speed was enhanced also through the ANNs.

2 Design through GAs

A GA starts by randomly generating a population of individuals, each of which stands for
a candidate shape-solution with a binary or real number coding. Herein, the former was
implied by concatenating the binary strings (bits) of the control-parameters. The popula-
tion size Npop, which does not alter during the genetic evolution, determines its exploration
capabilities along with the computing cost per generation. About 40-60 individuals are prac-
tically used. These are all evaluated using CFD tools and their fitness scores are deduced
by post-processing the numerical results. Using various selection criteria, reproductive trials
are allocated to the individuals, with some bias toward the fittests. A mating pool is thus
formed and this constitutes the first step for the evolution to the next generation, by applying
the parent recombination operators. The recombination task gives rise to a new generation
with possibly improved mean and best fitness scores. The evolutions stop if no improvement
appears during the last few generations.

2.1 Profile Parameterization

The parameterization of the airfoil contour is carried through Bezier-Bernstein polynomials.
The x- (optional) and y-coordinates of the Bezier points are the free-parameters controlled
by the GA. Optionally, circular arcs at the leading (LE) and trailing (TE) edges can be
superimposed to the polynomial curves. If the airfoil chord-length is kept fixed, Fig. 1, the
use of circular arcs introduces the angular position of their centers (¢rr and/or ¢rg) and
their radii (Rrg and/or Rrg) as extra control parameters.

A geometrical model that is often used consists of two circular arcs (242 control param-
eters) and two Bezier curves with Nps = Ngg = 5 points per airfoil side (5-2+5-2 = 20
control parameters, if both Cartesian coordinates are free). Thus, the total number of control
parameters is Npp = 24. Note that, at the junction points between Bezier curves and circular
arcs, curve continuity and smoothness are automatically preserved.

2.2 Objective Function

Optimum or inverse design problems can be solved by the proposed method, provided that
an appropriate objective or fitness function is defined. In the inverse design problems, the
sought for airfoil should yield a desired pressure distribution over its contour at specified flow
conditions. In this case, the objective is to minimize the deviation between actual and desired
pressure distributions. Examples of inverse designs using different acceleration techniques can
be found in [2] and [3]. In the optimum airfoil design problem, profiles giving maximum or
known lift C; and minimum drag Cy are sought for.



Herein, we will be dealing with the re-design problem; an initial airfoil is provided which
generally defines the search space for the Npp control-parameters. This profile will be re-
designed aiming at the minimum Cj for the same C; = C;*9* (at the same flow conditions).
Geometrical constraints will not be implied in the present studies. For a single-operating

point, this can be carried out in two ways:

1. using a single objective function and the arbitrary factor b, as

min F' = min{(Cl — O 4 p. C’d} (1)

2. through a multi-objective optimization, by separately considering min(C; — Cllt argety2
and min(Cy) in order to provide the Pareto front, as discussed in the next section.
Multi-point optimizations, at two flow conditions through the Pareto front technique
will be also demonstrated.

The evaluation of the candidate shapes is undertaken by a primitive variable 2-D un-
structured grid, flow solver [4]. The inviscid flow equations are solved using a vertex-centered
finite-volume technique and a second order upwind scheme. The numerical solution is based
on Jacobi-preconditioned GMRES techniques and requires about 40 sec on an Intel Pentium
IT 400MHz processor (for a typical grid of about 3000 nodes, convergence to 6 orders of
magnitude; the cost increases to about 60 sec if grid adaptation is used).

Prior to the numerical solution, an unstructured grid is generated using an automated
procedure. Its computing cost can be safely neglected.

2.3 Multi-objective optimization using the Pareto technique

In multi-objective optimization, a Pareto front [5] is the subset of candidate solutions obtained
by eliminating any other solution for which an absolutely superior one (with respect to the
ensemble of objective functions) can be found. According to the previous definition, the
Pareto front consists of the so-called nondominated (or Pareto-optimal) solutions, in the
sense that none of them is absolutely superior to any other constituent of the front. Thus,
all of them are equally acceptable solutions to the problem and the choice of one of them
requires a deep knowledge of the particular problem.

In order to obtain the Pareto front, a single-objective GA should be enriched by non-
dominated sorting and sharing. For each candidate solution in the current generation, scores
for all of the objectives are first computed. The solutions are then ranked on the basis of
nondomination among them and a number of fronts is thus formed. The first front is the
Pareto-optimal front and its members are given a unit dummy cost function (Fyy, = 1).
The reproduction task is based on the Fy,,, values, after sharing is applied to each front
separately. Sharing aims to spread the solutions all over the front by penalizing clustered
ones and this is achieved by modifying the Fj,,, values. Starting from the Pareto-front, the

sharing factor
NPOP

m; = Y Sh(d(i, 7)) (2)
7j=1
is computed for its i member. The function Sh(d) is defined as
0 if d(Z,j) > Oshare

Sh(d(l,])) = { 1-— (i) if d(’L,j) < Oshare

Oshare



where 0 < ogpare < 1, and i, j are in the same front. Their Euclidian distance d(i,j) is
computed either in the variables’ or in the objectives’ space as follows.

Ny i J 2
di,j) = | > L : (4)
’ = \max;=1 .~ (v}) — mini—1,__ ~,(v})

where v stands for the variables or the objectives respectively, N, the total number of variables
(or objectives) and Ny the number of individuals belonging to the current front.

Since minimization problems are considered, the Fy,,, value of each solution is recomputed
by multiplying it with m;. On the next front, Fg,,, is first set equal to the worst score in the
previous front plus a small quantity and then sharing applies, as previously.

In the genetic evolution, parent selection applies on the basis of the so-computed Fiyy,
values.

3 Acceleration using Artificial Neural Networks

The overall design cost can be considerably reduced if some individuals are evaluated with-
out resorting to the costly CFD model. For this purpose ANNs, [6], are used, provided that
a training set, i.e. a sufficient number of profile shapes - fitness scores is available. Such
availability is certain since the GA continuously evaluates new candidate solutions. An ANN
should be trained on the input (shape) - output (fitness) mapping, through supervised learn-
ing. This entails additional CPU cost but, afterwards, the prediction of the fitness of any
new shape is straightforward.

A multilayer perceptron (MLP), as the one used herein, is a feedforward ANN with its
neurons arranged in layers [6]. All neurons in a layer are connected to all neurons in the
adjacent layers using links associated with synaptic weights. A neuron in all but the first
layer has many inputs but a single output. The synaptic weights act as signal multipliers on
the corresponding links. In our case, as many neurons as the number of free parameters (Npp)
constitute the first layer. The output layer neurons are equal to the number of objectives
and practically, 2-3 intermediate or hidden layers are used. The number of neurons in these
layers should be as high as possible to increase the efficacy of the network, but as low as
possible to reduce the training cost. The back error propagation (BEP) algorithm is used to
compute the synaptic weights by repetitively presenting the network with the training set.

In general, the ANN guesses are not dependable. Nevertheless, they can be used to
distinguish the promising solutions in the current generation which will be then accurately
evaluated using the CFD tool. Our rule of thumb is to re-examine the top ~ 40%Np,, of
individuals in each generation through the Euler solver. Considering that the network training
costs as much as a direct flow solution, the overall computing cost is expected to reduce about
60%, thanks to the ANN implementation. When the ANN is used in conjunction with the
Pareto method, all new individuals in the Pareto-optimal front need to be evaluated by the
flow solver. If these are less than 40%N,,, more individuals that belong to consecutive fronts
are evaluated.

4 Analytical test case

A simple multi-objective problem, the simultaneous minimization of two analytical functions,
is first solved and results with and without ANN acceleration are compared with the analytical
solution. It should be stressed that, the computational cost of the analytical functions is
negligible and the use of ANNs is only for demonstration purposes. In fact, the economy by



no means outweighs the cost to train the ANN (built with one input for x and two outputs
for O1,02). The two objectives are min(O1, Os), where:

1
C VI0—z+Vz—5

O1 , Oy =0.04(z —8)* +0.3 (5)
in the range of z € [5, 10]. The two objectives along with the GA solutions, are plotted in fig.
2. The results with or without the use of ANN are identical. The Pareto front (fig. 3) is also
the same, though the point distribution is different. Instead of using the Pareto technique, a
linear combination of the two objectives is possible, min(O; +b05). Results of various single-
objective optimizations are also included in the same figure for various b values. Figs. 4 and
5 present the increase of the Pareto front members and the total number of computations
performed in each generation. During the evolution, dominated individuals are removed and
new nondominated ones are inserted into the Pareto front. With the ANN acceleration, fewer
individuals enter the optimal front in each generation. As only a percentage (40% Npop) is
accurately evaluated in each generation determining the maximum number of entries in the
optimal front, this is reasonable side-effect. To get the same size of the Pareto front, more
generations are needed. Nevertheless, the economy is still important, as one may see by
summing up the accurate evaluations used.
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5 Optimization of a transonic airfoil

In this section, the optimization of the RAE-2822 isolated profile, under inviscid flow condi-
tions will be analyzed.

Single-point Designs: Two different problems have been analyzed. In the first, denoted
by A, the flow conditions were M;,,; = 0.73, a = 2° and the Clmrget was that of the standard
(starting) profile C;*"9* = 0.780. For point A, the following computations have been carried
out: (a) six computations using the single-objective function 1 at different b values (b =
1,5,10,20). Some of them used the stand-alone genetic optimizer and some other the ANN-
based acceleration. The latter are marked by ANN, in the figures’ captions. (b) two multi-
objective optimizations, using the Pareto technique with and without ANNs.

The same airfoil was separately optimized at the B flow conditions (M;,; = 0.75, a =
3.199), where C’lmrget = 0.997, as a single-objective optimization with b = 1 and as a multi-
objective one with the Pareto technique. For point A, all the obtained results are shown in
Fig. 6. Only a part of the Pareto front (the outer left one) has been drawn. The Pareto-
optimal fronts with and without ANNs are quite close to each other, especially in the almost
vertical part of this figure, where the C) value is close to the target one. Each single-objective
computation added a point in this figure, which was in general aligned with the Pareto
front points. Table 1 shows the C; and Cjy values of the optimum profiles according to the
single-objective optimizations.
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Figure 6: Operating point A, multi-objective optimization: The Pareto-optimal fronts along
with optimum solutions from the single-objective studies.

Case b=1 b=5 b=1 ANN b=5 ANN b=10 ANN | RAE2822
Cr| 0774  0.765 0.781 0.731 0.702 0.780
Cq | .00622 .00632 00777 .00637 .00507 0.0180

Table 1: C; and Cjy of the re-designed airfoils (Operating point A, single-objective optimiza-
tion)

Multi-point Design: For the multi-point design, two objective functions for each operating




point, A and B have been devised, each of them using eq. 1. The case was studied without
the ANN acceleration.

Fig. 7 illustrates the starting profile and the optimum airfoil shapes obtained using
b =1,5,10. It is worth noting that the x- and y- axes are in different scales. Fig. 8 presents
the convergence of the single-objective GA in terms of the fittest individual score. A quite
similar convergence with and without ANNs was obtained, though the costly stand-alone GA
optimizer slightly outperforms its economic version (with the ANNs).

For the operating point B, similar plots to those shown for A can be drawn, but these
will be omitted in the interest of space. The two-point design (minimization of eq.1, at both
the A and B flow conditions) carried out through the Pareto technique is plotted in Fig. 9.
The Pareto-optimal front contains five entries, which correspond to five different shapes. In
the same figure, the computed optimum solutions for points A and B separately (b = 1 in
all cases) are also included. For the optimum profile at point A, two solutions are shown,
one with and the other without the ANN acceleration. In all these single-point optimization
results the direct flow solver applied to the optimum geometry in order to calculate the flow
field and the corresponding fitness score at the other operating point. As expected, the
single-point optimum solutions are located at the top-left (for point A) and the bottom-right
(for point B) parts of the figure. These should be conceived as the theoretical edges of the
Pareto front.
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Conclusions

The goal of this paper was to demonstrate the use of Genetic Algorithms in the airfoil
optimization problem and to propose acceleration methods that increase their efficiency. The
main conclusions of this work are listed below:

1. Multilayer perceptrons can reduce the CPU cost of design methods based on GAs. With
a multilayer network that has been trained on the shape-fitness pairs resulting from the
genetic evolution, a great part of the work volume, i.e. of the required CFD computa-
tions, is overcome. The CFD tool is only used to re-evaluate the fittest individuals on
the basis of the ANN predictions.

2. The ANN can be also used with the Pareto technique, for the purpose of multi-objective

optimization. In this method, a single network with as many outputs as the number of
objectives has been used. An alternative way would be to train as many networks as
the number of objectives, all of them with a single output neuron.

3. The Pareto technique along with an ANN yields fewer entries into the Pareto-optimal

front per generation, compared to the stand-alone GA. Although more generations are
required to reach a front of the same population, the total CPU cost is quite lower.

4. Through the ANNs, economy of the order of 60% can be achieved without damaging

the quality of the obtained results.
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