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�� SUMMARY
By extending a Navier	Stokes solution method for structured grids 
SGs�� a pressure�
correction� 
nite�volume formulation for the numerical solution of laminar� incompress	
ible� ��D �ows on unstructured grids 
UGs� with triangular elements has been deviced�
Since a co�located storage arrangement for all of the �ow variables is used� the velocity
and pressure 
elds should be arti
cially coupled� This is achieved through the straight	
forward extension of the Pressure�Weighted Interpolation Method 
PWIM�� successfully
used for SGs in the past� In the 
rst part of the paper� the method formulation for UGs
is analyzed� Then� the PWIM for UGs and the boundary conditions� implementation
along solid walls are investigated� on the basis of two �ow problems�

�� INTRODUCTION

In incompressible �ow calculations� the co�location of pressure and velocity variables is
the cause of spatial decoupling in the numerically predicted pressure 
eld� A way to
suppress the pressure wiggles is by adding arti
cial di�usion terms in the mass conserva	
tion equation� On a SG� these terms usually consist of fourth�order pressure derivatives
along the curvilinear coordinates 
Rhie and Chow ����� which result to a stabilizing 
ve�
node support stencil in each direction� The extension of the Rhie and Chow scheme to
UGs is� by no means� straightforward� An alternative remedy to the same problem is
through the PWIM� introduced by Majumdar ���� in order to compute velocities crossing
the 
nite�volumes� boundaries which are coupled with the local pressure gradient� The
momentum equations in a discrete form similar to that applied to the cell centers� but
with di�erent pressure gradient stencils� are employed to compute the aforementioned
velocities� For SGs� PWIM is proved to be equivalent to the Rhie and Chow scheme�

Even if the PWIM can be readily applied to UGs� its equivalence with a pressure di�usion
term and consequently its e�ectiveness needs to be investigated� This is the scope of the
present paper� extending the solver for SGs described in Giannakoglou and Politis ���
and ���� Besides� in a real UG some local pressure wiggles are likely to appear as a
consequence of boundary condition implementations which fail to correctly account for
the arbitrary shapes and sizes of the adjacent triangles� This issue is also addressed
herein�
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Fig� �� Control volume in an unstructured grid of triangular elements�

The are few papers in the literature� which report on the application of the pressure�
correction scheme on UGs� Thomadakis and Leschziner ��� employ semi�staggered con	
trol volumes for the momentum and the pressure�correction equations� Staggering veloc	
ities and pressure proved insu�cient to suppress the pressure wiggles and consequently
a small measure of arti
cial damping was also introduced� It is interesting to note that
all of the grids studied in ��� were pseudo�UGs� where the triangles have been generated
by post�processing SGs� Davidson ��� introduced a SIMPLE�like method for UGs and
employed the Rhie and Chow scheme in a co�located grid arrangement� Using �regular�
UGs� the pressure wiggles were not fully eliminated�

�� DISCRETIZATION OF THE MOMENTUM EQUATIONS
A 
nite�volume approximation to the momentum equations for laminar� ��D� incom	
pressible �ows� yields
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where ui� i � �� � stand for the Cartesian velocity components and � is the kinematic
viscosity� In eqs� 
��� the repeated index convention has been used� On an UG with all
�ow variables stored at the barycenters of the triangular elements� the control volumes

Fig� �� coincide with each triangle� So� in eqs� 
��� S is the boundary of the cell and
nj� j � �� � stand for its outward unit normal vector components�

The convection terms in eqs� 
�� are computed using a second order accurate upwind
scheme� According to this scheme� the convected 
eld at the midpoint m of any grid
segment separating two adjacent control volumes is calculated as

uijm � uijP � �rui
���
P
� �Pm� i � �� �� 
��

where� uijP and �rui
���
P
� i � �� �� stand for the velocity components and their gradient

at the barycenter P of the cell lying upwind of m� the criterion being the velocity vector
at m� �Pm is the vector connecting P and m 
Fig� ��� The velocity gradients at the cell
barycenters are computed by applying the Gauss theorem� This computation requires the
velocity values at the cell vertices� which are obtained by scatter�adding contributions
from the surrounding nodes�



For the dicretization of the di�usive �uxes through the boundaries of any control volume�
a four�node stencil is employed� It is formed by the two nodes�edges of each segment 
�
and �� in Fig� �� and the two barycenters of the adjacent triangles 
� and �� in the same

gure�� By employing the Gauss theorem over 
����� we get
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where 
����� stands for the area of the quadrilateral� Finally� in order to compute
the pressure terms in eqs� 
��� pressure values at the midfaces are to be calculated by
averaging the computed values at the adjacent barycenters�

By virtue of eqs� 
�� and 
��� the discretized form of eqs� 
�� for any node P reads

�AP ui P �
�X

k��

Ai k ui k � Ci � �� i � �� �� 
��

where the summation is taken over its 
three� in general� neighbours� The source terms
Ci� i � �� � include contributions from any other node and the pressure gradient terms�
Introducing the under�relaxation parameter �� a delta�formulation of eqs� 
�� gives
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The Jacobi scheme is used to solve eqs� 
�� and provides a provisional velocity 
eld
u�i � i � �� �� which� in general� does not satisfy the continuity equation� In eqs� 
��� �m�
is the Jacobi iteration index�

�� THE PRESSURE�CORRECTION EQUATION

To obtain a divergence�free velocity 
eld� a pressure�correction equation is formed and
solved� The so�called p� 
eld is used to iteratively update the pressure and the velocity

elds� The pressure�velocity coupling is enforced through the straightforward extension
of the PWIM to UGs� A relevant discussion will be taken up in a subsequent section�

According to the PWIM� it is assumed that the provisional velocity 
eld satis
es the
discretized momentum equations at both the cell barycenters and the midfaces� Conse	
quently� at the midface m of a triangular cell� eqs� 
�� still hold and read
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where the area 
����� is shown in Fig� �� Also� Si
�� i � �� � stand for the Ci� i � �� �

source terms excluding the pressure gradient terms� considered separately in eqs� 
���
The superscript 
n� denotes velocities at the previous iteration level�

In order to form the pressure�correction equation� the continuity equation is integrated
over the triangular elements
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Fig� �� Detail of the real UG and computed wall�pressure distributions for TC�� Re � ���

and it is also assumed that

Fm � FP gm � FM 
�� gm�� 
��

where Fm may stand for �
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equations� gm is the geometrical interpolation coe�cient�

As in momentum equations� the Jacobi iterative scheme is used to solve for p�� Then�
the pressure 
eld is updated as p�n��	 � p�n	 � p�� The velocity components at both cell
barycenters and midfaces are also updated according to

u
�n��	
i P or m � u�i P or m �

�

AP or m

Z
S or S�

p� ni dS i � �� �� 
��

�� IMPLEMENTATION OF SOLID WALL BOUNDARY CONDITIONS
Along the solid walls� a zero Neumann boundary condition for the pressure 
dp�dn � ��
is imposed� This condition links the pressure values calculated at the adjacent triangles�
barycenters to the midpoint values of the boundary segments� In a �real� UG� the tri	
angles sharing an edge with the wall are arbitrarily shaped� A simple way to compute
the pressure over a boundary node or a boundary segment midpoint is to consider it as
equal to the pressure at the barycenter of the �nearest� triangle in the normal direction�
This is a low	order accurate scheme that results to intense wiggles in the wall�pressure
distribution� These are communicated to the interior of the �ow
eld� as well� To demon	
strate this e�ect� the steady �ow past a cylinder 
TC��� for Red � �� 
d is the diameter�
has been examined� Using the �real� UG shown in Fig� 
��� a non�smooth pressure
distribution 
the one with the larger wiggles� is obtained� as shown in the same 
gure�

Treating the triangle� which is in contact to the wall� as a quadratic element improves a
lot the pressure decoupling problem� Assume that for the triangle ��� shown in Fig� ��
which also �contains� the normal to the wall direction at the node �� the pressure values at
the grid nodes � and � and the midfaces �� � and � have been computed by scatter	adding
computed pressures at the barycenters of the surrounding triangles� If k � 
�M��
���
then it can be proved that the Neumann type boundary condition at � reads

��p� � kp� � 
k � ��p� � �kp� � �
�� k�p
 � � 
���
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Fig� �� Numerical implementation of solid wall boundary conditions�

This relation can be solved for p� to update the wall pressure values� Using this relation�
the wall�pressure distribution is much smoother 
see Fig� ��� though without entirely
suppressing the wiggles� Finally� the wiggles can be entirely suppressed if a layer of
�structured� triangles is used to cover the solid walls� In the so�called hybrid UG the
wiggles are eliminated� but the presentation of the corresponding results is deferred to a
subsequent section�

�� THE PWIM ON UGs
��� Theoretical Formulation
The application of the PWIM on a ��D node arrangement 
see Fig� �� is equivalent
to adding a fouth�order pressure di�usion term to the continuity equation� So� the
conservation of mass in the cell �� 	� reads
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where overbars denote averaged values over the surrounding nodes and D is an ap	
propriate coe�cient� resulting from the momentum equations� In ��D problems� it is
convenient to analyze simple SGs and UGs with square and equilateral triangles of unit
side�lengths� as in Fig� �� On a SG� without the extra damping of the PWIM� pressure
values at �odd� and �even� nodes are decoupled� On an UG� the equivalent pattern is the
decoupling of the pressure values at upright and inverted triangles�

It is a simple matter to show that in a ��D grid� for any node P 
in a SG� assume the
node 
i� j�� the PWIM is equivalent to the following symbolic equation
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By comparing the coe�cients of the previous table� one may remark the similarity be	
tween the arti
cial di�usion support stencils in SGs and UGs� This is why pseudo�UGs

i�e� triangulated SGs� give very smooth pressure 
elds 
see results by Thomadakis and
Leschziner ����� Smooth results� not shown here in the interest of space� have been also
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Fig� �� Computational stencil in ��D �left� upper� and ��D �left� lower� structured and in
��D unstructured grids �right� for the calculation of arti	cial di
usion�

obtained by the present method applied on pseudo�UGs� Nevertheless� in real UGs
minor wiggles may locally appear in some irregular situations 
for example when a node
is surrounded by a di�erent number of triangles than its neighbours�� To improve this
slight decoupling� PWIM needs further investigation and there is ongoing research in this
direction�

��� Validation
In order to isolate the boundary conditions e�ect on the velocity�pressure decoupling�
the test cases that will be analyzed below are all using hybrid UGs� as previously de
ned�
Computations have been performed and results are shown here for TC�� So� the static
pressure coe�cient distributions along the cylinder surface� for Re � ��� �� and ���� are
illustrated in Fig� 
��� The pressure coe�cient is de
ned as

CP �
p� pt
�
�
�V �

inf

where pt is the pressure at the front stagnation point� Computational results from
Fornberg et al� ��� and the results obtained using a SG 
Giannakoglou and Politis ����
are also included in the 
gure� In all cases� a good agreement between calculations and
the reference results is observed and the pressure 
eld is very smooth�

The second test case examined 
TC�� concerns the �ow in NACA��� airfoil cascade� at
���� � and ���o incidence angles� The cascade exhibits a unity solidity and it is placed
in ��o stagger angle� In all three cases examined� the Reynolds number of the �ow was
equal to ����� based on the axial velocity� the airfoil chord and the kinematic viscosity�
A unique hybrid UG has been used and this is shown in Fig� 
��� The structured part of
the grid consists of a zone that surrounds the airfoil with four layers of triangles� In the
region o� the 
rst zone� a regular unstructured grid was generated� resulting in a total
number of about ����� nodes�

In Fig� 
��� the distribution of the static pressure coe�cient along the airfoil is presented
for all cases examined� The static pressure coe�cient is de
ned as

CP �
p � pt
�
�
�V �

��ax

�
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Fig� �� Detail of the hybrid UG and computed wall�pressure distributions for TC�� Clockwise
from top� Re � ��� �
 and �

� Full lines� present calculation� broken lines� Giannakoglou
and Politis ���� symbols� Fornberg ����

where pt to the total pressure at the inlet to the cascade� The present calculations are
compared with numerical predictions using a SG of ������ nodes in the streamwise
and the pitchwise direction respectively 
Giannakoglou and Politis ���� and the reference
results of Rosenfeld and Wolfshtein ���� obtained by a vorticity�stream function method�

	� CONCLUSIONS
In this paper� a pressure�correction method for incompressible� laminar� ��D �ows us	
ing unstructured grids with triangular elements was presented� The decoupling of the
pressure and velocity 
elds was circumvented by extending the PWIM� originally devel	
oped for SGs� It was shown than in real UGs� when wall�pressure boundary conditions
are obtained directly from the corresponding cells� barycenters a non�smooth pressure
distribution appears� This cituation was partially circumvented using hybrid UGs and

nally the pressure wiggles were fully suppressed using hybrid UGs� On the other hand�
it has been shown why the PWIM behaves similarly on SGs and �pseudo��UGs� and was
underlined the need for further investigation of the adequacy of the PWIM for real UGs�
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