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1. SUMMARY

By extending a Navier-Stokes solution method for structured grids (SGs), a pressure—
correction, finite—volume formulation for the numerical solution of laminar, incompress-
ible, 2-D flows on unstructured grids (UGs) with triangular elements has been deviced.
Since a co-located storage arrangement for all of the flow variables is used, the velocity
and pressure fields should be artificially coupled. This is achieved through the straight-
forward extension of the Pressure-Weighted Interpolation Method (PWIM), successfully
used for SG's in the past. In the first part of the paper, the method formulation for UG's
is analyzed. Then, the PWIM for UGs and the boundary conditions’ implementation
along solid walls are investigated, on the basis of two flow problems.

2. INTRODUCTION

In incompressible flow calculations, the co—location of pressure and velocity variables is
the cause of spatial decoupling in the numerically predicted pressure field. A way to
suppress the pressure wiggles is by adding artificial diffusion terms in the mass conserva-
tion equation. On a SG, these terms usually consist of fourth—order pressure derivatives
along the curvilinear coordinates (Rhie and Chow [6]), which result to a stabilizing five—
node support stencil in each direction. The extension of the Rhie and Chow scheme to
UGSs is, by no means, straightforward. An alternative remedy to the same problem is
through the PWIM, introduced by Majumdar [5], in order to compute velocities crossing
the finite—volumes’ boundaries which are coupled with the local pressure gradient. The
momentum equations in a discrete form similar to that applied to the cell centers, but
with different pressure gradient stencils, are employed to compute the aforementioned
velocities. For SG's, PWIM is proved to be equivalent to the Rhie and Chow scheme.

Even if the PWIM can be readily applied to UG's, its equivalence with a pressure diffusion
term and consequently its effectiveness needs to be investigated. This is the scope of the
present paper, extending the solver for SG's described in Giannakoglou and Politis [3]
and [4]. Besides, in a real UG some local pressure wiggles are likely to appear as a
consequence of boundary condition implementations which fail to correctly account for
the arbitrary shapes and sizes of the adjacent triangles. This issue is also addressed
herein.



Fig. 1. Control volume in an unstructured grid of triangular elements.

The are few papers in the literature, which report on the application of the pressure—
correction scheme on UGs. Thomadakis and Leschziner [8] employ semi-staggered con-
trol volumes for the momentum and the pressure—correction equations. Staggering veloc-
ities and pressure proved insufficient to suppress the pressure wiggles and consequently
a small measure of artificial damping was also introduced. It is interesting to note that
all of the grids studied in [8] were pseudo-UG's, where the triangles have been generated
by post—processing SG's. Davidson [1] introduced a SIMPLE-like method for UG's and
employed the Rhie and Chow scheme in a co—-located grid arrangement. Using ‘regular’
UGS, the pressure wiggles were not fully eliminated.

3. DISCRETIZATION OF THE MOMENTUM EQUATIONS
A finite-volume approximation to the momentum equations for laminar, 2-D, incom-
pressible flows, yields
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where u;, + = 1, 2 stand for the Cartesian velocity components and v is the kinematic
viscosity. In eqgs. (1), the repeated index convention has been used. On an UG with all
flow variables stored at the barycenters of the triangular elements, the control volumes
(Fig. 1) coincide with each triangle. So, in egs. (1), S is the boundary of the cell and
n;, 7 = 1, 2 stand for its outward unit normal vector components.

The convection terms in eqs. (1) are computed using a second order accurate upwind
scheme. According to this scheme, the convected field at the midpoint m of any grid
segment separating two adjacent control volumes is calculated as

il L Pm, =12, (2)
where, w;|, and ﬁui‘P, 1 =1, 2, stand for the velocity components and their gradient
at the barycenter P of the cell lying upwind of m, the criterion being the velocity vector
at m. Pm is the vector connecting P and m (Fig. 1). The velocity gradients at the cell
barycenters are computed by applying the Gauss theorem. This computation requires the
velocity values at the cell vertices, which are obtained by scatter—adding contributions
from the surrounding nodes.



For the dicretization of the diffusive fluxes through the boundaries of any control volume,
a four-node stencil is employed. It is formed by the two nodes/edges of each segment (1
and 3, in Fig. 1) and the two barycenters of the adjacent triangles (2 and 4, in the same
figure). By employing the Gauss theorem over (1234) we get
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where (1234) stands for the area of the quadrilateral. Finally, in order to compute
the pressure terms in eqs. (1), pressure values at the midfaces are to be calculated by
averaging the computed values at the adjacent barycenters.

By virtue of egs. (2) and (3), the discretized form of egs. (1) for any node P reads
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where the summation is taken over its (three, in general) neighbours. The source terms
Cj, © = 1, 2 include contributions from any other node and the pressure gradient terms.
Introducing the under-relaxation parameter w, a delta—formulation of eqs. (4) gives
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The Jacobi scheme is used to solve egs. (5) and provides a provisional velocity field
uf, i = 1, 2, which, in general, does not satisfy the continuity equation. In eqs. (5), [m]
is the Jacobi iteration index.

4. THE PRESSURE-CORRECTION EQUATION

To obtain a divergence—free velocity field, a pressure—correction equation is formed and
solved. The so—called p’ field is used to iteratively update the pressure and the velocity
fields. The pressure—velocity coupling is enforced through the straightforward extension
of the PWIM to UGs. A relevant discussion will be taken up in a subsequent section.

According to the PWIM, it is assumed that the provisional velocity field satisfies the
discretized momentum equations at both the cell barycenters and the midfaces. Conse-
quently, at the midface m of a triangular cell, eqs. (4) still hold and read
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where the area (1234) is shown in Fig. 1. Also, S, i = 1, 2 stand for the C;, i = 1, 2
source terms excluding the pressure gradient terms, considered separately in eqs. (6).
The superscript (n) denotes velocities at the previous iteration level.

In order to form the pressure—correction equation, the continuity equation is integrated
over the triangular elements
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Fig. 2. Detalil of the real UG and computed wall-pressure distributions for T'C'1, Re = 20.

and it is also assumed that
Fm:FP9m+FM(1_gm)a (8)

where F), may stand for t, {Zizl Ajpuly, +Si'}m, or u;,,™, i = 1,2. In these
equations, g,, is the geometrical interpolation coefficient.

As in momentum equations, the Jacobi iterative scheme is used to solve for p’. Then,
the pressure field is updated as p™+" = p(™ 4 p'. The velocity components at both cell
barycenters and midfaces are also updated according to

A — L/ p'n;dS i=1,2. 9)
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5. IMPLEMENTATION OF SOLID WALL BOUNDARY CONDITIONS

Along the solid walls, a zero Neumann boundary condition for the pressure (dp/dn = 0)
is imposed. This condition links the pressure values calculated at the adjacent triangles’
barycenters to the midpoint values of the boundary segments. In a ‘real’ UG, the tri-
angles sharing an edge with the wall are arbitrarily shaped. A simple way to compute
the pressure over a boundary node or a boundary segment midpoint is to consider it as
equal to the pressure at the barycenter of the ‘nearest’ triangle in the normal direction.
This is a low-order accurate scheme that results to intense wiggles in the wall-pressure
distribution. These are communicated to the interior of the flowfield, as well. To demon-
strate this effect, the steady flow past a cylinder (T'C'1), for Rey = 20 (d is the diameter)
has been examined. Using the ‘real’ UG shown in Fig. (2), a non-smooth pressure
distribution (the one with the larger wiggles) is obtained, as shown in the same figure.

Treating the triangle, which is in contact to the wall, as a quadratic element improves a
lot the pressure decoupling problem. Assume that for the triangle 123 shown in Fig. 3,
which also ‘contains’ the normal to the wall direction at the node 1, the pressure values at
the grid nodes 2 and 3 and the midfaces 4, 5 and 6 have been computed by scatter-adding
computed pressures at the barycenters of the surrounding triangles. If k& = (3M)/(32)
then it can be proved that the Neumann type boundary condition at 1 reads

—3p1 - kp2 + (k‘ — 1)])3 + 4/€p4 + 4(1 — k‘)pg =0 (10)



Fig. 3. Numerical implementation of solid wall boundary conditions.

This relation can be solved for p; to update the wall pressure values. Using this relation,
the wall-pressure distribution is much smoother (see Fig. 2), though without entirely
suppressing the wiggles. Finally, the wiggles can be entirely suppressed if a layer of
‘structured’ triangles is used to cover the solid walls. In the so—called hybrid UG the
wiggles are eliminated, but the presentation of the corresponding results is deferred to a
subsequent section.

6. THE PWIM ON UGs
6.1 Theoretical Formulation
The application of the PWIM on a 1-D node arrangement (see Fig. 4) is equivalent

to adding a fouth—order pressure diffusion term to the continuity equation. So, the
conservation of mass in the cell [3 7] reads

D o

= us =T~ = 3 Gl (11)
where overbars denote averaged values over the surrounding nodes and D is an ap-
propriate coefficient, resulting from the momentum equations. In 2-D problems, it is
convenient to analyze simple SG's and UG's with square and equilateral triangles of unit
side-lengths, as in Fig. 4. On a SG, without the extra damping of the PWIM, pressure
values at ‘odd’ and ‘even’ nodes are decoupled. On an UG, the equivalent pattern is the
decoupling of the pressure values at upright and inverted triangles.

It is a simple matter to show that in a 2-D grid, for any node P (in a SG, assume the
node (4, 7)) the PWIM is equivalent to the following symbolic equation

V-V=V-V| =AD|pp+ MY p+20Y 0|, (12)
P neii neis
where
A | neiy A1 | neiy Ao
SGS 4 (1+17J)7 (i_laj)a (17J+1)7 (laJ'l) _% (1+27J)7 (i_27j)7 (17J+2)7 (laJ'Q) %
UGs | Y2 | 1,23 —114,56,7,89 o

By comparing the coefficients of the previous table, one may remark the similarity be-
tween the artificial diffusion support stencils in SG's and UGs. This is why pseudo-UG's
(i.e. triangulated SG's) give very smooth pressure fields (see results by Thomadakis and
Leschziner [8]). Smooth results, not shown here in the interest of space, have been also
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Fig. 4. Computational stencil in 1-D (left, upper) and 2-D (left, lower) structured and in
2-D unstructured grids (right) for the calculation of artificial diffusion.

obtained by the present method applied on pseudo-UGs. Nevertheless, in real UGs
minor wiggles may locally appear in some irregular situations (for example when a node
is surrounded by a different number of triangles than its neighbours). To improve this
slight decoupling, PWIM needs further investigation and there is ongoing research in this
direction.

6.2 Validation
In order to isolate the boundary conditions effect on the velocity—pressure decoupling,

the test cases that will be analyzed below are all using hybrid UG's, as previously defined.
Computations have been performed and results are shown here for TC'1. So, the static
pressure coefficient distributions along the cylinder surface, for Re = 20, 40 and 100, are
illustrated in Fig. (5). The pressure coefficient is defined as

P—Dt

Cp=+—5

%p‘/;i f
where p, is the pressure at the front stagnation point. Computational results from
Fornberg et al. [2] and the results obtained using a SG (Giannakoglou and Politis [3])
are also included in the figure. In all cases, a good agreement between calculations and
the reference results is observed and the pressure field is very smooth.

The second test case examined (T'C2) concerns the flow in NACA-12 airfoil cascade, at
—10, 0 and +10° incidence angles. The cascade exhibits a unity solidity and it is placed
in 30° stagger angle. In all three cases examined, the Reynolds number of the flow was
equal to 1000, based on the axial velocity, the airfoil chord and the kinematic viscosity.
A unique hybrid UG has been used and this is shown in Fig. (6). The structured part of
the grid consists of a zone that surrounds the airfoil with four layers of triangles. In the
region off the first zone, a regular unstructured grid was generated, resulting in a total
number of about 10000 nodes.

In Fig. (6), the distribution of the static pressure coefficient along the airfoil is presented
for all cases examined. The static pressure coefficient is defined as

P — D
Opzli,
2 PV
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Fig. 5. Detail of the hybrid UG and computed wall—pressure distributions for TC'1. Clockwise

from top: Re = 20, 40 and 100. Full lines: present calculation, broken lines: Giannakoglou

and Politis [3], symbols: Fornberg [2].

where p; to the total pressure at the inlet to the cascade. The present calculations are
compared with numerical predictions using a SG of 128%21 nodes in the streamwise
and the pitchwise direction respectively (Giannakoglou and Politis [4]) and the reference
results of Rosenfeld and Wolfshtein [7], obtained by a vorticity—stream function method.

7. CONCLUSIONS

In this paper, a pressure—correction method for incompressible, laminar, 2-D flows us-
ing unstructured grids with triangular elements was presented. The decoupling of the
pressure and velocity fields was circumvented by extending the PWIM, originally devel-
oped for SGs. It was shown than in real UG's, when wall-pressure boundary conditions
are obtained directly from the corresponding cells’ barycenters a non—-smooth pressure
distribution appears. This cituation was partially circumvented using hybrid UGs and
finally the pressure wiggles were fully suppressed using hybrid UG's. On the other hand,
it has been shown why the PWIM behaves similarly on SGs and ‘pseudo’™-UG's, and was
underlined the need for further investigation of the adequacy of the PWIM for real UG's.
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