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Abstract. This text describes the outcome of modern research activities which
serve to reduce the computing cost of any stochastic optimization method that
works with populations of candidate solutions, rather than a single individual. The
proposed technique is based on Computational Intelligence and its application will be
demonstrated along with Genetic Algorithms (GAs). A particular class of Artificial
Neural Networks (ANNs), the so—called Radial Basis Function (RBF') networks, will
be used to pre—evaluate the entire population and indicate a few individuals that
deserve to undergo costly, exact evaluations. Besides, the same network(s) will be
used to estimate the cost function gradient at the current best solution(s), which
may improve further these solutions using a simple descent scheme.
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1 INTRODUCTION

Genetic Algorithms (GAs, [1], [2]) are probably the most widely used stochastic
optimization method, in various scientific and industrial areas. GAs operate on
populations. Starting from a randomly selected initial population of candidate so-
lutions, the population is free to evolve by means of stochastic transition rules and
encoded natural processes (parent selection, crossover, mutation, etc.). During the
evolution, individuals associated with their own payoff values, compete and the fitter
are likely to contribute more offspring in the next generation.

The most prominent advantage of GAs is that they are difficult to fool even in
complex, multimodal solution landscapes. On the other hand, their only drawback
is that a great number of cost function evaluations is needed. Let us make clear
that, roughly speaking, the computing cost of the genetic operations is zero. What
costs is the evaluation of the would—be solutions. As a typical example, in the
field of aeronautics or turbomachinery, the optimization or the inverse design of
an airfoil calls for Computational Fluid Dynamics (CFD) tools. Unfortunately,
although modern CFD tools, with sophisticated turbulence models, may enlight
and quantify complex flow phenomena, they are very costly. Therefore, the need for
minimizing the number of evaluations required by the GA for a given level of solution
accuracy, is pressing. Through solving this problem, GAs with low computing cost
and high competitiveness will be available.

In view of the above, enhanced versions of GAs have been devised in the past,
3], [4], [5], [6], based on cheap, inexact pre—evaluation (IPE) techniques. Working
with GAs, the IPE technique is used in order to skip a great part of unnecessary
evalutions in each generation. Using artificial intelligence and the previously seen
solutions, individuals that are likely to die out are identified and treated without
resorting to costly exact evaluations. Conceptually, the already examined solutions
with their payoff values form a hypersurface, which is used to approximate the fitness
of any new individual. The “interpolation” tool, which is the heart of the IPFE tech-
nique is based on trained Radial Basis Function (RBF') networks. Recent activities
and tests demonstrated that the RBF networks, with “local” training, outperform
the standard multilayer perceptron employed in the aforementioned papers. In the
present method, the role of the RBF networks is dual. First, to (inexactly) evaluate
a new individual, without resorting to the exact but costly evaluation tool if this
individual does not seem to be a promising solution. Second, to guess cost function
derivatives, that will be used to further improve the best individuals in the current
generation. We give emphasis to the second role of the RBF networks, which is the
novel point in this work.



2 ABOUT GENETIC ALGORITHMS

GAs are optimization methods based on the mechanics of natural selection and
natural genetics. GAs seek global optimal solutions, by making use of previous
information from already examined search points to speculate on new ones with
improved performance, [1]. There are good reasons for the widespread use of GAs
in various application domains. The most important are listed below:

(a) they are robust and may capture the global optimum solution, without being
trapped to local optima,

(b) the only information they require is one payoff value per objective for each
candidate solution, according to a predefined cost function,

(c) they may readily incorporate any existing evaluation software, like CFD, CEM,
etc solvers, with the minimum user effort,

(d) they can be easily parallelized, so that different members of the current popu-
lation may run concurrently on different networked processors and

(e) they may handle either single- or multi-objective problems.

We do not intend to present a detailed analysis of GAs (see [1], [2], etc.) but
we will rather stick with their enhancement using the IPE technique and especially
with the descent of the current best solution using inexactly computed gradients.
We recall that the ANN-based IPE acts as an auxiliary tool supporting the genetic
search.

As stated in the Introduction, GAs handle populations of candidate solutions.
Let N,o, be the population size, i.e. the number of candidate solutions examined
within each generation. Regardless of the coding procedure (binary or real coding
can be used), the i-th candidate solution z()) . m = 1,M , i = 1, Npop is an
array formed by the values of the M free-parameters. In particular, if the decision
variables are coded as some finite-length binary strings, formed by 0s and 1s, the GA
operates on (head-to-tail) concatenated strings. The formation of the mating pool
for the next generation, along with two important genetic operators, crossover and
mutation, are the steps that help guide a directed search for improvement. During
these operations, only payoff values, i.e. the cost or fitness function values, are
necessary.

In order to form the mating pool and create new offspring, the members of each
generation compete. In the GA variant used herein, parent selection is based on
linear ranking (for the 15% of the population) and on probabilistic tournament (for
the rest of it). One-point crossover per variable is used with possibility 85%. Binary
coding is employed, where bits are allowed to mutate with a small probability (about
or less than 0.1%).



Figure 1: An RBF network with a single output unit.

3 ABOUT ARTIFICIAL NEURAL NETWORKS

3.1 The RBF Networks — Definitions

An RBF network, [7], [8], can safely be used as a surface approximation method in
a high-dimensional space, and so does an ANN of any other kind. The reasons for
selecting the RBF networks for this purpose will become clear as the paper devel-
ops. An RBF network, after being trained on a number of paired inputs-outputs, is
capable of guessing the output value of any new input which does not belong to the
training set. The accuracy of the RBF outputs depends on several parameters: the
shape of the hypersurface that is to be approximated, the availability of a represen-
tative number of data for the network training and the basic characteristics of the
network itself. In general, ANNs used for this purpose may consist of multiple layers
(at least one, over and above the input and output layers) with varying numbers of
processing units on the so—called hidden layers. On the contrary, an RBF' network
possesses three layers in total. These are the input layer with M sensory units, the
hidden layer with N processing units and the output layer with a single unit, if a
single function is to be approximated. Such a typical network is illustrated in fig. 1.
According to this structure, a nonlinear mapping (R™ — RY) from the input units
to the hidden ones is then followed by a linear one (R — R!) to the output unit.
Crucial parameters affecting its performance are the number N of hidden units and
the so-called RBF centers associated with them. No weight factors are associated
with the connections between the input and the hidden units. On the other hand,
N weight factors (¢,,n = 1, N) are given to the links that end to the output units
and these should be computed during the training.
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The training of the RBF network on a complex input-output mapping, like that
between the M geometrical parameters defining an aerodynamic shape (according
to a parametric modelling that relies often on Bezier or other polynomial curves,
[3]) and its performance (drag, lift, deviation from a prescribed pressure or velocity
distribution along its walls, etc.), allows new shapes to be evaluated at no cost at all.
This evaluation is, of course, approximate but it should be considered as sufficient
for the less important individuals in a generation.

3.2 Training the RBF Networks

Let x%), m = 1,M,t = 1,T be the components of the T input patterns which have
been selected for training the network. For each one of them, the corresponding
output value y,¢ = 1,T is also known. In a genetic optimization, the input—
output pairs are available from evaluations that took place during the preceding
generations. Without loss in generality, we may assume that the number of hidden
units equals the size of the training set (N = T'). As it will be analyzed below, in
the proposed method this is feasible, since the training examples are a subset only of
the available information, selected through proximity criteria, [5]. Once T of them
are selected, the number of hidden units N is fixed (N =T).

Each one of the N = T hidden units is given a M—dimensional array, which is
called the RBF center. Let &™,n = 1, N be these centers. With N = T, the evident
choice is

d =70 ot =1T, m=1,M (1)

Y

The mapping (RM — RY) to the hidden units computes the n' hidden unit
value h(!) using a nonlinear activation function ®, as follows

,o7n) (2)

Various activation functions can be used, which in general perform differently. Here,
the

0= o 0 - )

®(u,r) = exp(—u?/r?) (3)

has been used with constant r,, = r. This function is plotted in fig. 2, for two differ-
ent values of r. Then, the output of the network is computed using the (unknown,
during the training) weights ,,,n = 1, N, as follows

(O =4, bV (4)

where summation applies to the repeated index n.
The weights ,,,n = 1, N are computed by requiring

(W=y®  t=1T (5)
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Figure 2: The activation function of eq. 3, for two values of r.

It is a simple matter to show that in order to compute the ¢ values, the inversion
of a square (T' x N) (if T = N) matrix is required. This matrix, which will be
referred to as H is formed by the h{") coefficients. Each row of H corresponds to
a learning example, whereas each column to an RBF' center. We purposely choose
T to be small (practically, between 10 and 20), so that the inversion of H through,
for instance, the modified Gram-Schmidt technique, is non—costly. Also, a major
advantage of the use of RBF networks is related to multi-objective optimization
problems. Regardless of the number of outputs, a single H matrix is formed, so
that a single inversion is needed. In practice, the training of an RBF network for
multiple outputs costs as much as its training for a single output.

Trained RBF networks are capable of providing not only inexact cost function
values but also their derivatives. During its exploitation, a trained network which
is presented with 7(*) estimates an output

¢ = o, & (Hf(*) _ E(H)‘

,o7n) (6)

and, after a few mathematical manipulations, M partial derivatives, as follows

oC™)

0T,

N ()
:—QZC (x(*)—c,(ﬁ)) , m=1,M (7)

Eq. 7 is valid only for the activation function given by eq. 3. Particular treatment
is needed if 7*) = &™),

3.3 Comments

The function



f(z) = e " sin(4rz) + 2 (8)

will be used to demonstrate the use of RBF networks as an interpolation tool as
well as a tool for forecasting derivatives. Two cases have been examined, both with
the same training set size (7" = 21). With x € [0, 1], the input patterns were first
clustered toward x = 0 and x = 1 , using a simple sinusoidal distribution. This case
is presented on the left column of fig. 3. On the right column of the same figure,
this problem is analyzed with T" equidistant training examples. The value r = 0.1
was used. Regardless of the data—point distribution, the function is quite accurately
captured.

Interesting conclusions can be drawn by examining the % values computed by the
trained network. In the first case, the clustered data—points near the edges provide
accurate derivative values in these areas. On the contrary, slight discrepancies exist
away from the two edges. The network which has been trained using equidistant x’s
fails to reproduce the analytical expressions for the derivatives close to x = 0 and
x = 1. However, it performs very accurately in the middle.

It is interesting to comment on these different behaviors. At the bottom of fig.
3, the basis functions used in both cases have been plotted. These should be viewed
as building elements which, scaled by the ¢ factors and superimposed, create the
final approximation curve. With equidistant basis functions (i.e. equidistant data)
the two edges of the curves may benefit of a few basis function only, since the rest
locally tend to zero. The low number of building elements make the approximation
less flexible in this area. Any point close to the edges is described by almost half of
the basis functions that are available in the interior. Even if differences are not so
visible for the function itself, the derivatives show slight discrepancies (left column).
The quality of predictions for both the function f(z) and its derivative, improves if
more data—points are used in this area (right column). Unfortunately, as expected,
the improvement of quality at the edges deteriorates slightly the accuracy in the
middle.

4 THE PROPOSED OPTIMIZATION ALGORITHM

As explained, in detail, in the preceding sections, the role of the RBF networks in
the context of a GA-based optimization is to provide cheap (and hence inexact)
fitness function values for the individuals along with approximate values for their
derivatives with respect to the design variables.

In view of the above, the proposed optimization algorithm is given below. We
recall that we handle minimization problems.

Phase 1: The starting population which consists of V,,, randomly selected individuals
F,m=1,M, i=1,Ny, is formed.

m
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Figure 3: Example of the use of an RBF network to compute a function (upper)
and its derivative (mid). On the lower part, the RBF functions are illustrated.
Training set size T' = 21. Left: Learning examples concentrated toward the edges.
Right: Equidistant learning examples. (Points: Training set, continuous line: RBF
network output)

Phase 2: The starting population keeps evolving for a few generations, during which the
entire population undergoes exact evaluations. The so—evaluated individuals
and their cost function values are stored in a database (DB). The number of
generations recommended for Phase 2 depends on the population size N,,. It
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Phase 3:

Phase 4:

Phase 5:

5

could be stated that, about 100/NN,,, initial generations should be evaluated
accurately prior to the implementation of the IPE scheme.

During the subsequent generations and for each individual, a “local” RBF
network is formed and trained. For the training, the 7" DB—entries which lie
closer to the current individual are selected and used. The trained “local” net-
work is used to pre-evaluate the candidate solution, by practically performing
a multivariate interpolation. The approximate cost function value as well as
its derivatives, both computed by the RBF network, are associated with the
individual.

Using the previously computed N,,, inexact cost function values, the 0N,
inividuals with the best scores are selected in order to be re-evaluated exactly,
using the CFD tool. The inexact cost function values for these individuals
are replaced with exact ones. The DB is enriched by individuals which have
undergone exact evaluations.

The standard genetic operators are applied to the entire population, by merg-
ing exact and inexact scores. N, offspring are thus created. Then, the best
K of them, are further modified through the steepest descent scheme, based
on inexactly computed gradient components. The updated individuals are

Znev  — fcurrent o nvgcurrent (9)

where n > 0. Replace 7" with "¢ if

f(a—j»new) < f(a—j»current)

Phases 2 to 5 are repeated up to the final convergence.

METHOD EVALUATION — RESULTS

The proposed method will be used for the re-design of two airfoils, using prespecified
pressure coefficient distributions along their solid walls. The first test geometry was
the well-known NACA12 isolated profile, whereas the second was a NACA66-010
airfoil used in turbomachinery cascades. In both studies, a simple flow model,
namely the panel method [9] for incompressible, irrotational airfoil flows was used.
The reason for selecting such a simple model is that this was indeed a very fast
evaluation tool; so, within the same wall clock time, the same problem was examined
several times and the results presented herein are “average” results and “average”



code behaviour, i.e. the outcome of a great number of runs. It should be stated,
of course, that the economy in computing time (number of evaluations required)
offered by the present method does not depend on the flow model approximation;
so, similar results are expected using more sophisticated flow models.

The isolated NACA12 airfoil was examined at zero incidence. As it is symmetric,
the pressure coefficient was symmetric too. The target distribution was computed
using the same flow model and the conventional NACA12 profile. The target and
best computed pressure coefficient distributions using (any variant of) the proposed
optimization method are shown in fig. 4. In the same figure, one may also see the
standard NACA12 profile shape and best computed one. Pressure distributions and
geometries are in excellent agreement.

The convergence history of the conventional GA, the GA with IPE and the
present enhanced method (GA with IPE and descent of the better individual(s)
using gradient computed by means of the trained RBF networks) are all shown
in in fig. 5. The GA with IPFE is much faster than the conventional GA. In this
case, Npop = 50, 0 = 0.20, and the IPE technique was first employed at the third
generation. Additional speed—up can be obtained through the steepest descent im-
provement of the best individual (K = 1) in each generation. The value n = 0.02
was used. The training set size was constant and equal to T" = 20.
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Figure 4: Re—design of NACA12, using the pressure coefficient distribution along
the solid walls as target. Left: Target and best computed pressure coefficient distri-
butions. Right: Target (standard NACA12) and best computed airfoil shape.

In the second problem, a two-dimensional cascade airfoil, the NACA66-010 one
with 30° stagger angle, 60° camber angle and solidity equal to 1 was re—designed.
The flow angle was equal to 45° and, as in the previous case, the target distribution
was obtained using the same flow model (the evaluation tool). It should be pointed
out that the geometrical modelling was done at zero stagger angle and the airfoil
was rotated to the proper stagger angle at a pre—processing level within the evalu-
ation software. The target and best computed pressure coefficient distributions are
shown in fig. 6. The same figure illustrates also the standard NACA66-010 profile
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Figure 5: Re—design of NACA12: Convergence history of the conventional GA, the
GA with IPE and the present method (GA with IPE and descent of the better
individual(s) using the RBF network—computed gradient.

shape and best computed one. Pressure distributions and geometries are in perfect
agreement.

As in the previous case, fig. 7 illustrates the convergence history of the conven-
tional GA, the GA with IPE and the GA with IPE and steepest descent of the best
individual in each generation. The GA with IPE is much faster than the conven-
tional GA, and the present methods outperforms both of them, especially toward
convergence, where the training set is adequate for a satisfactory training of the
RBF network. The same parameters, as in the previous run, have been used.
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Figure 6: Re—design of NACA66-010, using the pressure coefficient distribution
along the solid walls as target. Left: Target and best computed pressure coefficient
distributions. Right: Target (standard NACA66-010) and best computed airfoil
shape.
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Figure 7: Re—design of NACA66-010: Convergence history of the conventional GA,
the GA with IPE and the present method (GA with IPE and descent of the better
individual(s) using the RBF network—computed gradient.

6 CONCLUSIONS

A technique has been proposed which can be incorporated in any conventional ge-
netic optimization method in order to reduce the number of evaluations required to
reach the optimum solution. The so—called IPE technique consists of a “cheap” pre—
evaluation phase, based on “locally” trained RBF networks and has been presented
in the past by the same author. The inexact and non—costly evaluation method dis-
tinguishes the most promising individuals which undergo costly exact evaluations.
The contribution of this paper is that introduces a new speed—up mechanism in
the aforementioned IPE technique. The RBF networks are used also to provide
inexact values of the cost function gradient. Using this approximate gradient, the
most promising individuals can be ”pushed” toward the optimum solution, using
the steepest descent technique. The analyzed test problems demonstrated the su-
periority of the proposed method. The profit from the use of this method is visible
toward convergence, where the RBF networks become ready to provide ”less inex-
act” gradient information.
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