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Abstract. Despite its robustness, the design and optimization of aerodynamics shapes
using Genetic Algorithms and Computational Fluid Dynamics tools suffers from high com-
puting cost. A remedy to this problem is to replace part of the exact and thus costly
evaluations with cheaper, though inexact, ones. The method proposed herein employes an
inezxact pre—evaluation phase at each new generation, based on properly trained radial basis
function networks, to pin-point the most promising individuals which will solely undergo
exact evaluations. The method is enhanced through sensitivity analysis, by introducing the
so—called importance factors, computed from and used by the neural networks, in an auto-
catalytic way. The inexact pre—evaluation concept is also extended to Distributed Genetic
Algorithms and assessed using a number of test problems.
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1 INTRODUCTION

From the aerodynamic point of view, the design of single- or multi-element airfoils
is usually based on desirable pressure distributions defined over their contours — which
are likely the outcome of inverse boundary layer computations — or on the maximization
of their aerodynamic performance. The latter may call for the maximization of lift,
minimization of drag and other relevant requirements.

During the last decade, probabilistic search—optimization algorithms have gained par-
ticular attention in the fields of aeronautics and turbomachinery. Among them, Genetic
Algorithms (GAs, [1], [2]) are the most frequently used optimization tool. GAs are robust
enough and capable to accommodate any commercial or in-house evaluation software (a
Computational Fluid Dynamics, CFD, solver for the aerodynamic analysis of airfoils or,
perhaps, a finite-element solver for their structural analysis, etc.) without the slightest
modification. Provided that the involved parameters have been chosen carefully, GAs
are very effective search algorithms without getting stuck to local minima that usually
appear in complex multi-modal problems. However, a well-known drawback of GAs is
the high number of evaluations they require to reach the optimum solution. Since, in
aerodynamic shape optimization problems, the evaluations rely on CFD codes bearing
noticeable computing cost, the cost of GA-based design is high enough and research is
directed toward the reduction of the required number of evaluations.

In their previous works, these authors introduced and demonstrated the efficiency of
coupling GAs with the so—called Inexact Pre-Evaluation (IPE) phase ([3], [4], [5], [6], [7])
as a remedy to the aforementioned problem. The concept is quite simple: in the course of
the genetic evolution, each and every candidate solution that has been evaluated through
the costly CFD tool is kept in a database and used selectively to forecast the merit or cost
of new candidate solutions during the forthcoming generations. For each new individual,
local Radial Basis Function (RBF') networks are trained on the previously seen solutions
and provide inexact fitness scores at almost negligible computing cost. The RBF networks
are used along with the so—called importance factors (IFs), i.e. intrinsically computed
measures of the sensitivity of the objective function with respect to the design parameters.
More details about this method, which will be referred to as GA-IPE-IF, can be found
in the previously cited references, though a brief summary is provided in the next section
as well.

The goal of this paper is twofold. First, to demonstrate the efficiency of the proposed
method in a number of test cases and, second, to extend this concept to the Distributed
Genetic Algorithms (DGAs, [8]). Through a number of selected test problems, a fair com-
parison between GA-IPE-IF and its distributed variant D(GA — IPE — IF) is attempted.
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2 THE GA-IPE-IF TECHNIQUE
2.1 The IPE concept

Within each generation, the purpose of the IPE phase is to pre-evaluate the entire
population using approximate tools, so as to distiguish the most promising individuals
among them. It is evident that the pre—evaluation phase requires a very fast surrogate
evaluation tool. As such RBF networks ([9], [10]) are used. For each individual in
the current generation, an RBF network is formed and used to provide an estimation
of its fitness. The network is trained locally, using the closest entries in the database,
which is continuously enriched during the genetic evolution. The pre—evaluated population
members are ranked using their approximate fitness scores. Only a small percentage of
them, namely the most promising ones, will be re—evaluated through the costly CFD tool.
In this manner, less fit individuals evade undergoing exact evaluations and this contributes
to the reduction of the total computing cost.

The small size of training sets, used for each RBF network, makes the training proce-
dure of virtually no computing cost, since it calls only for the inversion of a small matrix.
Thus, the IPE computational cost could safely be neglected.

On the other hand, since in many optimization problems, not all of the design variables
are of equal importance, less important parameters introduce a kind of “noise” during the
training of RBF networks which may damage the quality of the network prediction. The
problem can be circumvented, to some extent, by the use of importance factors (IFs),
i.e. quantities that will be denoted by I,,, m = 1, M, where M is the number of design
variables. Their role is autocatalytic, since they can be considered as a by-product of the
RBF networks’ training whereas, in turn, affect any subsequent training and use of RBF
networks. The values of IFs are not known a priori, but they are dynamically computed
during the evolution of the GA. Initially, they all take on the same value

In=1/M, m=1,M (1)

so that >, I, = 1. As the GA evolves, IFs are regularly computed so that higher
IF values are associated with the most important design variables. A trained network
may guess the fitness function value as well as its derivatives with respect to the design
variables, using inexpensive post—processing. The basic formula for their calculation is
the following:
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where y stands for the fitness function and the subscript (b) denotes that computation at
the current best solution should be carried out. A link to previous IF values is ensured
through the use of a relaxation factor. For a detailed discussion on this issue, one can
resort to [5] and [7]. It would be useful to clarify that a design parameter with a low I,

(2)
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value at one design point could possess a higher importance elsewhere in the search space
and vice-versa.

2.2 The GA-IPE-IF Algorithm

After the short description of the IPE concept and the use of IFs, the implementation
of the GA-IPE-IF scheme, with population size equal to IV, can be outlined as follows:

Phase 1: The starting population keeps evolving for a few generations, using exact evaluations
and data-results of these computations are all stored in the database. All of the
importance factors are given initial values, eq. 1.

Phase 2: During the subsequent generations and for each individual:

(2a) A local RBF network is trained, using the most recent IF values.

(2b) The trained RBF network provides an inexact cost function value for this
individual.

Phase 3: (3a) The 0Ny, (0 < ¢ < 1), best individuals in the pre-evaluated generation
undergo exact evaluations using the CFD tool; the database is further enriched.

(3b) The I, values are updated, as previously exposed, each time a new global
optimum is computed.

Phase 4: N,,, new offspring are created by means of the well-known genetic operators using
mixed up exact and inexact fitness scores. Phases 2 to 4 are repeated up to the final
convergence.

3 THE GA-IPE-IF TECHNIQUE IMPLEMENTED AS A DGA

The above described concept of IPE can be readily ported to a Distributed Genetic
Algorithm (DGA). The latter consists of multiple GAs, the populations of which can be
referred to as demes, which evolve independently and exchange information regularly by
performing a migration cycle ([8]). Hence, the migration procedure acts as a barrier that
synchronizes the genetic evolution of demes. The IPE-IF scheme can be applied to each
of the constituent GAs, which perform a pre—evaluation of their own deme. However,
all demes share a common database to store results from the exact evaluations and to
retrieve patterns for training the RBF networks. For this reason, we use to denote the
proposed scheme by D(GA — IPE — IF).

To achieve maximum efficiency and flexibility, the algorithm has been implemented as a
multi-thread application, with each GA evolving in its own thread taking thus, advantage
of the inherent concurrency of DGAs. All the constituent GA threads asynchronously
post requests for exact evaluations to a server thread. The latter controls a number of
slave processes, using the PVM interface, which usually run on an available computer and
evaluate the candidate solutions.
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As far as migration is concerned, different scenarios have been tested. While the
emigrants are always the best members of a deme, the replaced individuals in the host
deme may be either the worst ones or some randomly chosen individuals. In the latter
case, one can exclude the one or two best individuals of the host deme from replacement
letting thus genetic operators decide about the survival of the fittest.

4 METHOD APPLICATION

The present section aims at demonstrating the indisputable superiority of the GA-
IPE-IF scheme over the conventional GA and to compare it with its D(GA — IPE — IF)
variant. For a more detailed evaluation of the GA-IPE-IF method one could refer to [7].

The method has been applied to two design problems. For the first one, a simple
flow model, the panel method, [11], for incompressible, irrotational airfoil flows was used.
Though such an evaluation tool is very fast and the use of the GA-IPE-IF technique is
redundant, the panel method was used, since it allows an adequate number of runs, in
order to verify the results and “tune” the algorithm. For the second test-case a time—
marching Euler equations’ solver for unstructured grids, [12], was used. Both cases have
been cast in the form of minimization problems.

4.1 Reconstruction of the NACA 4412 profile

The aim of this test-case was to design an airfoil that yields a given pressure distri-
bution, at certain flow conditions. As target, the pressure coefficient of the NACA 4/12
profile at zero incidence was set, calculated also by the panel method.

The airfoil shape was parameterized by two Bezier curves, one for each side. The two
of the six control points of each curve were fixed on the leading and the trailing edges.
The abscissas of the leading edge and of the closest to it Bezier control point were equal,
on both curves, in order to achieve a rounded edge. Therefore, the free design parameters
were 2-(1-143-2) = 14.

The purpose is to compare the best given solution by a conventional GA, which per-
forms N, exact evaluations per generation, to the GA-IPE-IF and the D(GA—IPE—IF)
schemes, with the same computing cost.

The basic parameters, related to the genetic operators and used by both the conven-
tional GA and the GA-IPE-IF, are listed in Table 1.

Population size 50
Two-point crossover probability 90%
Mutation probability 2.5%
Binary tournament probability — 85%

Coding type Gray binary

Table 1: Basic GA parameters

Additional parameters for the GA-IPE-IF algorithm are the number of exact evalu-
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ations before the first use of RBF networks, fixed to 100, and the percentage, o (Sec-
tion 2.2), of the population that is exactly evaluated, set to 10%.

The D(GA — IPE — IF) algorithm was configured as in Table 2. Each emigrant was
replacing the worst individual in the host deme. For the single GA components, o was still
10%, but the minimum number of exact evaluations before the first use of RBF networks
was reduced to 20. The mutation probability was increased to 3.0%.

Number of single GAs (demes) 5

Demes’ population size 10
Migration step (generations) 2
Migrants 1

Table 2: Basic DGA parameters
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Figure 1: NACA4412: Convergence history.

The convergence history of the three algorithms is depicted in Fig. 1. For all of them,
the maximum allowed number of exact evaluations was set to 2000. The horizontal axis
stands for exact evaluations, i.e. a direct measure of the computing cost. It is evident
that the GA-IPE-IF scheme prevails over the conventional GA, by reducing the cost by
more than 10 times. Given the maximum permitted number of exact evaluations, the
IPFE technique increases considerably the number of generations for which the GA keeps
evolving, resulting thus into a better exploration of the search space. The distributed
version of the GA-IPE-IF technique performs slightly better.
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Figure 2: NACA4412: Target and best computed pressure coefficient distribution along the airfoil contour.

The target pressure coefficient distribution is compared to the best solution located by
the D(GA — IPE — IF) algorithm in Fig. 2. The airfoil shape that yields this distribution
is compared to the original NACA 4412 profile in Fig. 3.

Target airfoil shape --------
Best solution by D(GA-IPE-IF)

T

Figure 3: The typical NACA4412 profile compared to the best located solution.

4.2 Optimization of a Three-Element Configuration

The second test case aims at maximizing the lift produced by a three—element, high—lift
configuration, at a given angle of attack. The configuration is composed of a main element,
a slat and a flap. All three components have fixed shapes and the main element location
was also fixed. Thus, the design parameters are those determining the relative position of
the slat and flap with respect to the main element. These are: the relative location of a
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characteristic point of the slat and flap with respect to a main element reference point and
the angles formed between the slat or flap chords and a reference direction (the horizontal
or the main element chord). So, a small number of free parameters (only six) is used.
The cost function is F' = —C}, where (] is the lift coefficient of the entire configuration.
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Figure 4: Three—element Configuration: Convergence history.

The convergence history of the three algorithms is shown in Fig. 4. For sake of com-
parison, the maximum number of exact evaluations was set to 900 for all the algorithms.
The parameters of GA-IPE-IF and D(GA — IPE — IF) were the same as in the previous
test-case, except that the emigrant replaces an individual in the host deme at random.
The superiority of the GA-IPE-IF technique with respect to the conventional GA is ev-
ident in this case as well. The more complex landscape of this problem’s cost function
pushes forward the better exploration capability of the D(GA — IPE — IF) scheme. The
best solution computed by the D(GA — IPE — IF) scheme is presented in Fig. 5.

However, the small size of demes used in the D(GA—IPE— IF) scheme makes it vulner-
able to premature convergence when the selective pressure is increased. The convergence
of D(GA— IPE— IF) presented above, in Fig. 4, and noted as curve 1 in Fig. 6 is compared
to slightly different configurations of the same algortithm. In the D(GA — IPE — IF) of
Fig. 4, the emigrant just provides “genetic material” to the host deme. Even if it is better
than every other individual, it is not transferred automatically to the next generation (no
elitism after migration). If this option is reversed, the increased selective pressure gets the
algorithm stuck in a local minimum (curves 2 and 3 in Fig. 6). In curve 2 the emigrant
replaces the worst individual in the host deme, while in curve 3 it replaces a random one,



Marios K. Karakasis, Alexios P. Giotis, and Kyriakos C. Giannakoglou

Figure 5: Three—element Configuration: Constant Mach Number Contours.

but not the best.
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Figure 6: Three-element Configuration: Different D(GA — IPE — IF) configurations (see description of
curves in the text.
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5 CONCLUSIONS

This paper focused on the evaluation of the so—called GA-IPE-IF and D(GA—IPE—IF)
techniques, as tools that are capable of reducing the computing cost either of GAs (the
former) or their distributed variants, i.e. the DGAs (the latter). Both are based on
the replacement of a great amount of costly exact evaluations with approximate and
thus inexpensive pre—evaluation, using surrogate tools, namely properly trained RBF
networks. On top of that, noisy information is cut down using sensitivity analysis. As
demonstrated in the results session, the GA-IPE-IF scheme is much faster than the
conventional GA. The distributed version of the GA-IPE-IF technique seems to be of
even higher exploration ability, especially in problems with a more complex objective
function landscape.
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