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Abstract. This paper presents a technique which when used with Evolutionary 
Algorithms (Genetic Algorithms, Evolutionary Strategies) reduces noticeably the 
computational cost by decreasing the number of exact evaluations required to reach 
the optimal solution. This technique is based on the use of “local” surrogate 
evaluation models, namely radial basis function networks which are trained and used 
during the evolution. Two engineering applications, namely the inverse design of an 
airfoil and the optimization of an optical filter layout, are used to demonstrate the 
gain offered by the proposed technique. 
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1  EVOLUTIONARY ALGORITHMS – PROS AND CONS 

Effective and efficient optimization tools are nowadays needed in all fields of 
engineering applications. Especially in high-dimensional and multiobjective 
problems, stochastic optimization methods like Evolutionary Algorithms (EAs)[1] 
are nowadays well established.  They are robust and may readily accommodate 
existing analysis tools  for the evaluation of candidate solutions. However, compared 
with traditional methods, EAs are known to need a large number of Objective 
Function Evaluations (OFEs) prior to reaching the optimal solution. The total 
computing cost for using EAs depends mainly on that of a single OFE. Thus, the 
former can be reduced by cutting down the number of OFEs required.  

Techniques for reduc ing the cost of EAs through the use of less exact and thus 
less computationally demanding OFE models can be classified to those using 
surrogate physical models (with lower modeling accuracy than the standard OFE 
tool) and those based on surrogate approximation models (such as Response Surface 
Methods, RSMs, or Artificial Neural Networks , ANNs). In both of them, a database 
containing previously or purposely evaluated individuals is to be available. In the 
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past, ANNs have been used by some of the authors as surrogate models for reducing 
the cost of Genetic Algorithms (GAs) [2, 3, 4]. The aim of this paper is to extend their 
use to Evolution Strategies (ESs)  [5] as well. The reason is that recent ES variants, 
(either (µ, ?) or (µ+?), where µ and ? stand for the number of parental and offspring 
individuals) with sophisticate d step-size control mechanisms to adapt the shape of 
individual mutation distributions , are robust global optimization procedures and may 
also benefit from the use of surrogate models.  

2 LOW - COST E VOLUTIONARY ALGORITHMS 

Both GAs and ESs may incorporate surrogate models in a conceptually similar 
way. In previously proposed low-cost GAs [2, 3, 4], ANNs were used to single out the 
most promising population members in each generation, i.e. those that worth 
undergoing exact evaluations. Such a technique reduces the number of exact OFEs 
per generation from ? to s ·? where 0 < s  =1 (typically s  ~ 0.1). Though more 
generations are required, the gain in computing cost is considerable. 

There are good reasons for choosing Radial Basis Function Networks  (RBFNs) [6] 
as surrogate models. In the proposed method, RBFNs are trained “locally” and 
separately for each new individual using a small number of previously evaluated 
individuals; these should lie in the vicinity of the new individual according to 
distances measured in the parametric space. The sets of parametric values paired 
with the corresponding fitness or cost functions, evaluated through the exact OFE 
software and used for the training of the RBFNs are restored from a database which 
is dynamically updated during the evolution. The training and use of a RBFN bears 
almost zero computing cost since it requires the inversion of a small symmetric 
matrix and this is carried out once for each new individual even in multi-objective 
optimization. The algorithm starts with either a randomly generated population that 
keeps evolving for a few generations using exact OFEs or with some systematically 
chosen individuals (through the so-called “design of experiments” technique) that 
are evaluated exactly in order to get database entries. 

The use of RBFNs as surrogate models with any population based technique is 
illustrated in Figure 1. 
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Figure 1: Population-based EAs coupled with RBFNs. 



 A . P. GIOTIS et al.  /  Low -cost stochastic optimization for engineering applications 

 
 

3

3 APPLICATIONS 

3.1 Inverse  Design of an Airfoil 

In this study, the aim is to find the airfoil shape that produces a given pressure 
distribution along its contour (Figure 2), at given flow conditions. 

The target distribution was calculated in advance through the same software used 
also for OFEs for a known airfoil profile, thus the goal is indeed to reconstruct the 
known profile (Figure 3). The parameterization of the airfoil is carried through 
Bezier curves for the suction and pressure side , with seven control points each, 
giving a total of 14 design variables. 

The gain in the computing cost by employing the surrogate model to GA (with a 
population size µ=?=40) or a (5+10) -ES is demonstrated in Figure 4 and Figure 5 
respectively for various s  values. Each curve is the average of five computations, 
thus despite the stochastic nature of EAs the reader could place much reliance on 
that each conclusion drawn is admitting of generalization. Note that in these figures, 
the horizontal axis stands for the number of OFEs, which is a direct measure of 
computing cost. In Figure 4, the GA was allowed to run for 2000 OFEs which 
yielded 50 generations (for s =100%, i.e. the conventional GA) or 240 generations 
(GA with s =20%) giving an extremely faster convergence in terms of comput ing 
cost. The improvement of the ESs was not that pronounced since the convergence of 
the conventional ES was already satisfactory. In the GA run, many parameters (such 
as the mutation rate) were not adjusted to optimal values since this requires a lot of 
experiments. However, the convergence plots for s =20% were similar. 
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Figure 2: The target and best computed 
pressure coefficient distributions along the 

airfoil contour. 
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Figure 3: Reconstruction of the target airfoil profile 
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Figure 4: Airfoil Design: Convergence history 
(computing cost) of the GA for various s  values. 
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Figure 5: Airfoil Design: Convergence history of a 
(5+10)-ES for various s  values. 

3.2 Optical Filter layout optimization 

The optical filter test-case proposed by Aguilera et al [7, 8] is a mixed integer 
optimization problem. The design variables are the thicknesses and the number of up 
to 21 layers, consisting subsequently of two different substances (germanium and 
zinc sulfide with refractive indices 4.2 & 2.2 respectively in the wavelength region 
7.7-12.3µm) as shown in Figure 6. The objective is to minimize the reflection mean 
square func tion, measuring the distance from a specified target reflectance profile 
(Figure 7).  In this study the mixed integer problem has been re-stated as a 
continuous problem by assuming that if the thickness of a layer is lower than a small 
threshold value, this layer is made to disappear completely. This enables a smooth 
introduction and elimination of layers. The fitness function landscape is multimodal 
as shown in Figure 8 by limiting the outer left and right optical thicknesses in the 
range 0-20 µm.  

As in the previous test-case, the average convergence histories of 5 computations 
are illustrated in Figure 9 and Figure 10 for various s values. The population size of 
the GA was 25 individuals and a (5+10) -ES with local discrete recombination of the 
object variables and local intermediate recombination of the step-size variables were 
used. The use of the surrogate model was beneficial for both EAs. 
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Figure 6: Optical filter with layers of Ge and ZnS  
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Figure 7: Target reflectance profile 
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Figure 8: Landscape of the fitness function 
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Figure 9: Optical filter: Convergence history of the 

GA for various s values . 
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Figure 10: Optical Filter: Convergence history 
of a (5+10)-ES for various s values. 

4 CONCLUSIONS 

The scope of this paper was to extend the use of RBFNs as surrogate evaluation 
models to ES and assess the computational gain in a number of engineering 
applications. It was concluded that the gain in computing cost is important if only a 
small part of the population is exactly evaluated whereas all the other are evaluated 
by the surrogate model. This is appealing since, by doing so, EAs coupled with 
surrogate models can readily be used in industrial designs, with non-prohibitive 
computational cost! 
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