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Abstract. The wing shape of the booster stage of a two-stage-to-orbit Reusable Launch
Vehicle (RLV) is optimized by considering trajectory computations coupled with three 3-D
Navier–Stokes flow analyses around the complete booster configuration at three instances
of its flight, namely at supersonic, transonic and subsonic flow conditions. The four-
objective optimization is carried out using the Evolutionary Algorithms System (EASY
1.3) software. EASY 1.3 makes use of evolutionary algorithms and Artificial Neural
Networks (ANN). The role of the latter is to act as surrogate evaluation model for the
preliminary approximate evaluation of the population members, in each generation. The
role of the so-called Inexact Pre-Evaluation (IPE) phase is to pinpoint the most promising
individuals to be then evaluated using the Navier-Stokes solver. Using the IPE technique,
optimizations with “expensive” evaluation tools become affordable.
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1 INTRODUCTION

A key point concerning space utilization efforts is the reduction of the relevant costs.
One of the ways to achieve this goal is through the use of Reusable Launch Vehicles
(RLVs) to replace the expendable rocket systems currently in use.

In view of the above, this paper deals with the design of an optimal wing shape for
such an RLV. The RLV mission is to transport a 10t payload and put it into low earth
orbit. The two-stage-to-orbit (TSTO) RLV considered herein consists of the orbiter and
the booster stages, with liquid propellant rocket engine, vertical take-off and horizontal
landing. The booster should fly back to the launch site, so its aerodynamic performance
is of primary importance. This work focuses only to the design of the booster; the three-
dimensional wing shape will be optimized by considering a fixed fuselage geometry.

The complete analysis of the RLV flight requires the interaction of two kinds of analysis
tools: the first concerns trajectory computations whereas the second is based on 3D flow
analysis problems. The trajectory computation requires aerodynamic data computed from
the numerical solution of the Navier-Stokes equations around the vehicle at a number of
points along its path. On the other hand, the trajectory computing code provides the flow
conditions for the Navier-Stokes analyses. However, in this paper, the (strong) coupling
between trajectory computations and Navier-Stokes runs will be kept to the minimum,
so as to avoid extremely time consuming computations. We recall that (regardless of the
optimization method) the design process requires a great number of candidate solutions to
be evaluated, so the cost of each evaluation should be kept as low as possible. Thus, only
three 3D Navier-Stokes computations (using CFD tools developed in Tohoku University)
per candidate solution were carried out, at three instances of the vehicle trajectory, at
supersonic, transonic and subsonic flow conditions. The flow conditions for these runs
were kept constant, without being affected by the trajectory computation.

The optimization was carried out using a multi-objective optimization tool based on
evolutionary algorithms (EASY 1.3 , [1, 2], developed by NTUA). Among the several ca-
pabilities of this software, the use of low-cost surrogate evaluation models for the selection
of the most promising individuals in each generation, which will then be exactly evaluated,
should be mentioned. The use of the surrogate model (here, “locally” trained ANNs, in
particular radial basis function netwoks) results to economy in the computational cost and
is very useful in the current application where the evaluation cost per candidate solution
is extremely high.

2 DEFINITION OF THE AERODYNAMIC OPTIMIZATION PROBLEM

As previously mentioned, the reference mission of the two-stage-to-orbit RLV is to
transport a 10t payload into low-earth orbit. During a preliminary computation through
software developed by the National Space Development Agency of Japan (NASDA), the
booster sizing was obtained. Among the computed geometrical data, the minimum fuse-
lage diameter and the fuselage length were utilized during the entire design process, for
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each and every candidate solution. This practically means that the fuselage geometry
was fixed and only the wing shape was allowed to vary, according to the parameterization
system discussed in the following paragraph. The main reason for keeping the fuselage
geometry fixed is that, in liquid propellant rocket engines, the fuselage is filled with the
liquid propellant, so its shape can hardly be modified.

2.1 Definition of the wing shape

The design variables are related to the planform, the airfoil shapes and the wing twist
[4]. The wing planform is determined by five design variables as shown in Fig. 1. A kink
is placed on the leading edge because the lift increases due to the leading-edge separation.

Airfoil shapes are defined at the wing root, the kink and the tip, respectively, using three
thickness distributions and three camber lines. The thickness distributions were linearly
interpolated in the spanwise direction and they were represented by Bézier curves, with
eleven control points each. The camber line distributions, defined at the same location
as the thickness distributions, were parameterized using Bézier curves with four control
points each. The wing twist was modelled using B-splines with six control points. The
entire wing shape was, thus, defined using 71 design variables.

Once the wing was defined, the junction line between wing and fuselage was computed
and, by neglecting the part of the wing inside the fuselage, the final wing-fuselage geometry
was derived, [5]. Figure 2 shows a sample geometry along with a close-up view of the
unstructured 3D grid used for the Navier-Stokes computations.

2.2 Aerodynamic evaluation

The aerodynamic evaluation of the booster requires the generation of an unstructured
mesh [6] around its geometry and the flow analysis which was performed using a Reynolds-
averaged Navier-Stokes equations solver, using a finite-volume, cell-vertex scheme. The
numerical fluxes were computed with the Harten-Lax-van Leer-Einfeldt-Wada Riemann
solver[7]. The Lower-Upper-Symmetric Gauss-Seidel (LU-SGS) implicit method[8] was
used for time integration. The modified Spalart-Allmaras (S-A) one-equation turbulence
model by Dacles-Mariani et.al. [9] was implemented and unstructured hybrid meshes [10]
were used to treat turbulent boundary layers in high Reynolds number viscous flows. The
flow conditions for the Navier-Stokes solutions at the three flight instances at which the
flow was to be analyzed are tabulated in Table 1.

2.3 The objective functions

Based on the mission mentioned above, the trajectory analysis [3] around a typical
TSTO-RLV configuration is shown in Fig. 3. In the same figure, the Mach number at
each point over the trajectory is also shown. The separation of the booster and orbiter
takes place at about 30 km height, at Mach number 3. Then, the booster stage turns
over, slows down, cruises at transonic and lands at subsonic speed. Note that the major
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part of its crossrange is in the transonic region.
In the present study, the following four objective functions were defined and used:

• Obj.1: Minimization of the shifting of the aerodynamic center between supersonic
and transonic flights, F1 = |Csupersonic

Mp − Ctransonic
Mp |.

A significant control problem related to the RLV flight is the large variation of the
aerodynamic center between supersonic and transonic flight conditions. It is, then,
desirable to design wing geometries which yield small changes in the aerodynamic
center when shifting from supersonic to transonic flight so that the necessary control
mechanisms be reduced along with the vehicle weight.

• Obj.2: Minimization of the pitching moment at the transonic flight conditions,
F2 = |Ctransonic

Mp |.
It is known that the arrow wing used in the present study ensures high aerody-
namic performance but, unfortunately, with large pitching moment. Thus, at tran-
sonic flight conditions, the pitching moment should be minimized for flight stability
purposes.

• Obj.3: Minimization of the drag at the transonic flight conditions, F3 = Ctransonic
D .

The trajectory analysis shows that the range of RLV is mostly covered by the tran-
sonic flow conditions. Thus, the transonic drag should be minimized in order to
increase the flight range.

• Obj.4: Maximization of the lift at the subsonic flight conditions, F4 = Csubsonic
L .

To reduce the required runway distance, the lift obtained at the subsonic flight
conditions should be maximized.
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Figure 1: Planform shape definition along with some of the major design parameters.
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Table 1: Flow conditions for the three Navier-Stokes computations.

Flying Condition Mach number Angle of Attack Reynolds number

Supersonic flight 1.2 0.0 6× 106

Transonic flight 0.8 8.0 6× 106

Subsonic flight 0.3 13.0 6× 107

Figure 2: RLV geometry and close-up view of the volume grid near the leading edge at x/L = 0.6.
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Figure 3: A typical flight trajectory (left) and its crossrange data (right) of the glideback TSTO using
the X-34 aerodynamic characteristics [3].
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3 THE OPTIMIZATION METHOD

The EASY 1.3 optimization software should be considered a generalization of the most
frequently used EA variants (Genetic Algorithms [11], [12] and Evolution Strategies [13])
for single- and multi-objective problems. In addition EASY 1.3 offers the possibility of
using ANNs as built-in surrogate evaluation models, in order to reduce the number of
exact (CFD-based) evaluations required for the same solution quality [1], [2].

The notation symbols used for the description of the multi-objective optimization
method are the standard ones used in Evolution Strategies. So, (µ, κ, λ) denotes an
EA with µ parents and λ offspring, where the maximum allowed life span for parent indi-
viduals is equal to κ generations. Let Sg,µ and Sg,λ denote the set of parents and offspring
in the g-th generation. An additional archival set, denoted as Sg,a, is continuously up-
dated and used during the evolution. In multi-objective optimization, Sg,a contains the
nondominated solutions (Pareto front) computed thus far and helps preserving elitism
during the evolution.

At first, let us make clear that the evolution starts with a small number of generations
(usually two or three) during which the exact (CFD) evaluation model is exclusively used.
Data and results of exact evaluations are stored in a database which will later be used to
build local surrogate models (ANNs).

In the subsequent generations, the first step is the so-called IPE phase. For each one
of the λ individuals, a local ANN is built and trained using the closest database entries.
The so-computed approximate objective function values for the population members yield
temporary cost values φ∗, using domination criteria. The φ∗ value of any individual is
set equal to the number of the Sg,a members which dominate it minus the number of Sg,a

members it dominates. Since Sg,α contains only the nondominated solutions, individuals
with φ∗ ≤ 0 are absolutely nondominated by the current archival front. Recall that this
is a comparison between approximate and exact cost values. Upon completion of the IPE
phase, the Sg,λ members are rank sorted using the so-computed φ∗ values and only a small
percentage of them is selected for exact evaluations using the CFD tool.

In the next step, Sg,α is updated to Sg+1,α by taking into account only the exactly
evaluated subset of Sg,λ. However, if Sg+1,α is overcrowded, (according to a user-defined
maximum allowed population) an iterative thinning process, that eliminates one of its
members at a time and finally reduces the population size to α, is employed, [14]. The in-
exactly evaluated individuals of Sg,λ are not allowed to enter Sg+1,α, not even to eliminate
any individual from Sg,α.

Using the values of the objective function, a unique cost value φ(i), i ∈ Sg,µ∪Sg,λ∪Sg+1,α

per individual is computed. Through this assignment, standard single-objective evolution
operators can be used. There is a large literature on the assignment of cost (or fitness)
values ([14, 15]), based on domination criteria and the concept of the Pareto front. In
the present analysis, a front ranking based method was used being one the numerous
algorithmic variants offered to the users of EASY . The Sg,µ ∪ Sg,λ ∪ Sg+1,α members are
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ranked in fronts using a repetitive procedure. Note that the first front (front 0) with the
absolutely nondominated solutions is already known (Sg+1,α). Its members are initially
given the same lowest φ value. Then, in order to promote diversity, these values are
penalized using sharing functions (niching). The cost assignment algorithm ensures that
the φ value of any individual over the j-th front is greater than the highest φ value over
the (j−1)-th front. This method is conceptually similar to the one proposed in [15], with
certain modifications.

Aiming at preserving elite solutions in the active population, a small random fraction
of Sg+1,α is copied to Sg,λ, by replacing an equal number of the worst individuals. The
new Sg+1,µ set is created from the Sg,λ ∪ Sg,µ individuals. First, individuals that reached
the maximum allowed life span are eliminated from Sg,µ. Then, the members of Sg,λ∪Sg,µ

are rank sorted in terms of their φ values and the µ top individuals form Sg+1,µ. The new
offspring set Sg+1,λ is created by applying the parent selection operators to Sg+1,µ∪Sg+1,α.
Parent individuals are randomly selected from Sg+1,µ (with probability pps) or Sg+1,α

(with probability 1 − pps). Whenever additional selective pressure needs to be exerted,
the possibility of selecting parents with lower cost values increases using schemes such
as the probabilistic tournament selection. The number of candidates participating in the
tournament and the probability of selecting the candidate with the smaller cost value are
user–defined parameters. Once two (or more) parents have been selected, recombination
and mutation operators are applied to create a new offspring to be inserted into Sg+1,λ.

4 RESULTS AND CONCLUSIONS

An EA with µ = 8, λ = 25, κ = 2 and real coding was used in the present study. Each
offspring was created by applying the discrete recombination operator with probability
90% on three parent individuals selected from Sg,µ through binary tournament with low
probability (65%). Standard deviations were adapted using a generalized intermediate
recombination operator. Since evaluations were extremely time consusing, a total of only
70 exact evaluation was allowed. The IPE phase was activated at the end of the second
generation (after the first 50 exact evaluations) thus, allowing only two more generations
in which ANNs and CFD were both used for the evaluation.

The wall clock time for each evaluation is about 8 hours. During the first 1.5h pre-
processing including grid generation takes place sequencially on an SGI ORIGIN2000
scalar machine. Then, three flow analyses, through the numerical solution of the Navier-
Stokes equations at predefined flow conditions are performed simultanesouly on different
processors of a NEC SX-5 vector machine.

Though, the use of the ANN significantly reduces the number of exact evaluations
required, the total number of 70 evaluations is considered small. Nevertheless, the results
show an excellent trend towards optimal solution.

Since we are dealing with a four-objective optimization problem, the visualization of
the obtained solutions is cumbersome. We summarized everything in two figures, Fig. 4
and 5. Fig. 4 presents four two-objective plots in order to have a better understanding
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of the correlation between the objectives. For instance, Fig. 4(a) shows that there is
an almost linear relation between F3 and F4. However, this does not mean that these
two objectives are non-conflicting because F3 should be minimized and F4 should be
maximized. Fig. 5 presents 3D plots using F1, F2 and F3 along the three vertical axes.
We purposely eliminated F4, first for visualization purposes and, second, since the F4

values could be estimated using the correlation depicted in Fig. 4(a) On the left part of
Fig. 5, all the evaluated solutions are illustrated. On the right part of the same figure,
the non-dominated Pareto front is shown, by still taking into account only the F1, F2 and
F3 objective function values. It consists of eight solutions which split into two groups.
The left-most part of the front has low F1 and F2 values. The right-most part of the front
yields low F3 values.

To summarize, an extremely time-consuming, the solution of a four-objective opti-
mization problem, which involves three 3D Navier-Stokes computations per candidate
solution, was made possible using evolutionary algorithms enhanced with artificial neural
networks. This is a very good example to show that EA, enhanced through surrogate
evaluation models, is a promising optimization tool.
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