
Design Optimization International Conference,
March 31- April 2 2004, Athens, Greece

STOCHASTIC AND DETERMINISTIC OPTIMIZATION
FOR TURBOMACHINERY APPLICATIONS BASED ON

THE ADJOINT FORMULATION

Dimitrios I. Papadimitriou⋆, Ioannis C. Kampolis⋆,

Kyriakos C. Giannakoglou⋆

⋆National Technical University of Athens,
Lab. of Thermal Turbomachines,

P.O. Box 64069, Athens 157 10, GREECE,
e-mail:design04@mail.ntua.gr,

Key words: Design, Optimization, Evolutionary Algorithms, Adjoint Formulation, Aeronau-
tics, Turbomachinery, Fluid Mechanics

Abstract. This paper investigates strategies for coupling adjoint methods, evolutionary algo-
rithms and artificial neural networks, in the context of shape optimization or inverse design
problems in the turbomachinery field. In the method this paper is mainly dealing with, the three
aforementioned components take on discrete roles. The evolutionary algorithm is in the leading
role, acting as the search method, seeking for the optimal solution. Surrogate models, in the
form of new radial basis function networks that have been recently proposed by the authors, are
employed for the (approximate) evaluation of candidate solutions. The adjoint equations solver
computes the gradient of the objective function at a number of design points which, together with
the objective function values at the same points, are used to train the surrogate evaluation model.
On– and off–line versions of the aforementioned synthetic optimization method are presented and
discussed. Besides, optimization using EAs with standard surrogate models, acting at the so–
called Inexact Pre–Evaluation phase (see previous works by the authors) as well as stand–alone
adjoint methods are shown. Two inverse design problems for turbine and compressor blades are
used for the demonstration of the proposed methods.

1 INTRODUCTION

Pros and cons of the most widely used shape optimization and inverse design methods for
airfoils, wings or turbomachinery blades, such as Adjoint Methods (AMs) and Evolutionary
Algorithms (EAs), are well known. Formulating and solving the adjoint to the flow problem
equations, in order to compute functional gradients that will then guide any ascent or descent
search algorithm, is an elaborate and often cumbersome task. The inability of AMs to cope
with the so-called inadmissible objectives and the risk of being trapped in local rather than
global optima, depending on the starting search point, are their major weaknesses. In contrast,
the indisputable advantage of AMs is that they are much less computationally expensive than
other rival optimization methods. On the other hand, the implementation of EAs with any
CFD analysis software and any objective function is straightforward; however, they are blamed

1

D.I. Papadimitriou, I.C. Kampolis, K.C. Giannakoglou

for high computing cost due to the great number of objective function evaluations (herein,
many calls to the CFD tool) they usually need. A known remedy to the latter is to replace as
many exact and costly CFD evaluations as possible by less expensive, approximate evaluations,
through surrogate modeling. This can be done in different manners, as this will be discussed
below.

Our group started working on the development and use of surrogate models long ago, [1],[2].
In [3], the authors proposed the use of EAs with local surrogate evaluation models, constructed
separately for each candidate solution by exploiting previously evaluated individuals. Surrogate
modeling through Artificial Neural Networks (ANNs) and, in particular, Radial Basis Function
(RBF) networks was preferably used. Though, in the past, the same group successfully tried
other surrogate modeling techniques such as multilayer perceptrons, [1], or kriging methods, [4],
there are good reasons for working with RBF networks. These reasons will become clear as the
paper develops. It is not difficult to differentiate between the method proposed in [3] and other
contemporary methods since the latter usually construct a single surrogate model for the entire
search space, prior to the evolution. Detailed comments on the above methods will be given
below, where different algorithmic variants will be used for the purpose of comparison.

Among the optimization strategies discussed in this paper, emphasis will be given to the one
which brings together AMs, EAs and RBF networks. The new method was first proposed in [5],
where this was tested in single– and multi–objective problems; here, this method is applied to
turbomachinery inverse design problems and compared with other optimization algorithms. The
key features of the new method are listed below: (a) the search for the optimal solution is carried
out through EAs, (b) for the evaluation of candidate solutions, the EAs use exclusively RBF
networks, (c) the RBF networks have a non-conventional formulation, constructed separately
using a number of points in the search space for which the objective function value and its
gradient have been computed, (d) the adjoint equations solver undertakes the computation of
the objective function gradient and (e) a small number of cycles is needed for locating the
optimal solution. The computationally expensive part of the method is the evaluation of the
training patterns and the computation of functional gradients. The EA cost is negligible since
it relies upon the computationally inexpensive surrogate model. In what follows, we will refer
to the new surrogate model as Gradient-Assisted RBF networks, abbreviated to GARBF, [6].

Both cases examined are 3D inverse design problems, governed by the inviscid flow equations.
The analysis (CFD) tool is a 3D Euler equations solver for structured grids, based on the finite-
volume technique and a time-marching upwind formulation, employing the Roe’s approximate
Riemann solver [7] with variables extrapolation to account for second-order accuracy.

2 EAs WITH SURROGATE MODELING

Nowadays, EAs with cheap surrogate evaluation models (known, also, as ”metamodels”) are
in widespread use. Regardless of how surrogate modeling is employed, the concept is the same:
create and use inexact, inexpensive models instead of the costly, exact evaluation tool. Methods
proposed in the literature can be categorized depending on: (a) the type of metamodel used,
(b) the definition space of the metamodel (global or local one), (c) the way training data have
been collected and (d) the strategy for coupling EAs with the surrogate model.

A first important classification of metamodel–assisted EAs is to those using on–line or off–

2

D.I. Papadimitriou, I.C. Kampolis, K.C. Giannakoglou

line trained surrogate models. In EAs with off–line trained metamodels, the latter are built at
the initial stage of the optimization and, for this purpose, more or less sophisticated Design–
of–Experiment (DoE) techniques are used. Under the DoE abbreviation one might consider
even grid techniques or the generation of the training set at random. In multivariate problems,
the former might lead to huge (2d) training sets whereas the latter is often inadequate. The
evaluation of training patterns takes place separately from the EA and is the computationally
expensive part of the algorithm. The EA seeks for the optimal solution using the previously
trained, global surrogate model. The almost negligible cost of the evaluation makes the opti-
mization phase extremely fast. The outcome of the optimization is usually referred to as the
”optimal” solution (the quotation marks show that this solution was evaluated using the meta-
model). The ”optimal” solution needs to be exactly evaluated and, depending on a termination
criterion, this point is added to the training set. Other points can be added too, according to
various selection schemes. The surrogate model is built anew (full or incremental training can
be used) and the EA–based optimization is repeated. This algorithm is illustrated in fig. 2,
where the inner cycle is the metamodel assisted EA that computes the ”optimal” solution.

Figure 1: EAs coupled with on-line trained surrogate models.

Optimization based on EAs supported by on–line trained surrogate models, fig. 1, has been
proposed by the third author [1]. Recently, similar works appeared in the literature, [8],[9],[10].

3

D.I. Papadimitriou, I.C. Kampolis, K.C. Giannakoglou

Distinguishing figures of all of them are: (a) the construction of a different metamodel valid in
the vicinity of each new candidate solution, (b) the use of a subset only of the available patterns
for the metamodel training and (c) the way the approximate fitness values computed by the
surrogate models are used by the EA.

Figure 2: EAs coupled with off-line trained surrogate models.

At this point, we should make clean that the terms on–line training and local metamodeling
are not necessarily identical. For instance, the algorithm illustrated in fig. 2 can be used with
local metamodels by merely subdividing the search space into subspaces and associating each
one of them with a different local metamodel. However, this seems to be of minor interest. In
what follows, on–line trained metamodels supporting EAs will necessarily be local ones. In the
sake of fairness, let us note that the on–line metamodel used in [1] was global.

In EAs assisted by on–line trained metamodels, at each generation of the EA and for each
individual separately, the neighboring entries in the training set are selected for the metamodel
training. Practically, as many metamodels as the population size are needed. However, the
total training cost is low since, each training sub–set is small. Each new population member is
evaluated using its own metamodel and the population is rank sorted using approximate fitness
values. Then, the top small percentage of the population is evaluated using the exact evaluation
tool. By doing so, the CPU cost per generation is considerably cut down. Practically, the

4

D.I. Papadimitriou, I.C. Kampolis, K.C. Giannakoglou

algorithm just described (shown in fig. 1) trains and uses local metamodels for screening out
less promising evaluations and restricts exact evaluations only to the most promising among
them.

In [5], the authors proposed to use new RBF networks trained on both objective function
values and gradients. To accommodate the additional information, the mathematical formula-
tion of standard RBF networks should be changed by introducing new tuning parameters. The
adjoint equations solver is used sequentially after the flow equations solver for each candidate
solution. Since the CPU cost of the adjoint equations’ solver is almost equal to the CPU cost of
the flow equations, the new algorithm has twice as much computing cost per individual. On the
other hand, the trained network is expected to be much more accurate than the one constructed
using exclusively known responses. Or, for the same prediction error, much less training patterns
are needed.

It should become clear that figs 1 and 2 may also describe the new method. It suffices to
replace Evaluations using the Exact Model with Evaluations and Gradient Computation using
the Exact Model and the Adjoint System.

3 THE ADJOINT FORMULATION

This section presents the continuous adjoint method developed for the calculation of the ob-
jective function gradient, [11]. The development was based on an existing Euler equations solver
for rotating cascades with constant rotational speed ω, as briefly described in the introduction.
Starting point for the formulation of the adjoint equations is the functional which should be min-
imized. Dealing with inverse design problems, where the target is to capture a given pressure
distribution ptar over the blade surface (w), the objective function reads,

min F =

∫ ∫

(w)
(p − ptar)

2ds (1)

On a Cartesian (x,y,z) frame, where z coincides with the rotation axis, the Euler equations
are written in vector form as

∂
−→
U

∂t
+

∂
−→
f

∂x
+

∂−→g

∂y
+

∂
−→
j

∂z
+ −→q =

−→
0 (2)

with
−→
U = [ρ ρu ρv ρw E]T , E = ρe + 1

2ρ
(
u2 + v2 + w2

)
being the total energy per unit volume.

For the sake of completeness, we just repeat the source term

−→q =
[

0,−ρ(2ωv + ω2x), ρ(2ωu − ω2y), 0, 0
]T

(3)

By multiplying the Euler equations with the adjoint variables
−→
Ψ and integrating over the

flow domain, the augmented cost functional Faug is defined as

Faug = F −

∫ ∫ ∫

Ω

−→
Ψ

T

(

∂
−→
f

∂x
+

∂−→g

∂y
+

∂
−→
j

∂z
+ −→q

)

dΩ (4)

After some rearrangements, the variation of the augmented cost functional gives

5

D.I. Papadimitriou, I.C. Kampolis, K.C. Giannakoglou

δFaug =
1

2

∫ ∫

(w)
(p − ptar)

2δ(ds)

︸ ︷︷ ︸

S.D.

+

∫ ∫

(w)
(p − ptar)δpds

︸ ︷︷ ︸

C.R.

+

∫ ∫ ∫

Ω
δ
−→
U

(

A
∂
−→
Ψ

∂x
+ B

∂
−→
Ψ

∂y
+ C

∂
−→
Ψ

∂z
−−→q a

)T

dΩ

︸ ︷︷ ︸

A.E.

−

∫ ∫

(in)

−→
Ψ

T
Anδ

−→
U ds −

∫ ∫

(out)

−→
Ψ

T
Anδ

−→
U ds

︸ ︷︷ ︸

A.E.B.C

−

∫ ∫

(w)

−→
Ψ

T
(δ
−→
f nx + δ−→g ny + δ

−→
j nz)ds

︸ ︷︷ ︸

C.R.

−

∫ ∫

(w)

−→
Ψ

T
(
−→
f δ(nxds) + −→g δ(nyds) +

−→
j δ(nzds))

︸ ︷︷ ︸

S.D

(5)

where

−→q a =
[

0,−(2ωΨ3 + ω2xΨ1), (2ωΨ2 − ω2yΨ1), 0, 0
]T

(6)

and (nx, ny, nz) are the components of the outward normal to the domain boundary vector.

Flow variable variations are eliminated by enforcing
−→
Ψ to satisfy the field adjoint equations

∂
−→
Ψ

∂t
− A

∂
−→
Ψ

∂x
− B

∂
−→
Ψ

∂y
− C

∂
−→
Ψ

∂z
+ −→q a =

−→
0 (7)

the boundary conditions for the inlet/outlet

δ
−→
U

T
(An

T−→Ψ) =
−→
0 (8)

and the compatibility relations over the blade surface

(p − ptar) − (Ψ2nx + Ψ3ny + Ψ4nz) = 0 (9)

What remain in δFaug, are the terms depending on the variation of geometrical quantities

δFaug =
1

2

∫ ∫

(w)
(p − ptar)

2δ(ds)

+

∫ ∫

(w)

−→
Ψ

T
(
−→
f δ(nxds) + −→g δ(nyds) +

−→
j δ(nzds)) (10)

Further rearrangement of the terms appearing in eq. 10 depends on the blade parameterization.
Though eq. 2 was written in the Cartesian frame, the control points are defined using cylindrical

6

D.I. Papadimitriou, I.C. Kampolis, K.C. Giannakoglou

coordinates. The reason for doing this is that, quite often, the (zi, ri) coordinates for each control
point are kept constant and only their peripheral position rθi is allowed to vary. Here, a fixed
grid of control points on the (zi, ri) plane is assumed, which corresponds to their projection on
the meridional plane.

The gradient computed using the adjoint technique is employed in an iterative steepest de-
scent method updating the control variables

−→
b

n+1
=

−→
b

n
− η∇F (

−→
b

n
) (11)

With different targets, such as a desirable velocity distribution Vtar on (w), different compat-
ibility relations can be derived, namely

(V − Vtar) + ρV (Ψ2nx + Ψ3ny + Ψ4nz) = 0 (12)

by assuming that δp = − ρV δV .

4 THE NEW GARBF NETWORK

In the new GARBF network [5], the response is given by

ζ =
N∑

i=1

(bi +
M∑

m=1

ai,m[1 + (xm − ci,m)]) exp(−σi) (13)

where

σi = M

M∑

m=1

Ii,m(xm − ci,m)2 (14)

The N coefficients bi and the N×M coefficients ai,m are the unknown parameters that should
be computed using responses and M gradient components known at the M training patterns.

5 METHOD APPLICATIONS AND CONCLUSIONS

In this paper, we first focused on evolutionary and deterministic optimization methods and,
then, on their combined use (hybridization), in particular those supported by new surrogate
models. Two turbomachinery inverse design problems have been analyzed and will be demon-
strated below using four of the proposed algorithms. In the comparisons which follow, we do not
intend to the direct (quantitative) comparison of the four methods. Such a comparison might
lead to conclusions that are strongly case–dependent. For instance, the pure steepest descent
method (driven by the adjoint technique) is expected to be (and is, in fact) faster than the evo-
lutionary tools but its success depends on the starting point. Also, any meaningful conclusion
about the performance of EAs using off–line trained metamodels depends on the patterns used
to train the metamodel (this important issue is beyond the scope of this paper).

5.1 Inverse Design of 3D Turbine Peripheral Cascade

For the inverse design of a turbine peripheral cascade blade, pressure distributions over the
pressure and suction surfaces of an existing blade were first computed and then used as targets.

7

D.I. Papadimitriou, I.C. Kampolis, K.C. Giannakoglou

The target shape was built using the same parameterization, through two Bezier surfaces with
33 control points on each of them. Both pressure and suction surfaces used 3×11 control points
(in the radial and axial direction, respectively), as shown in fig. 3. Among them, only the rθ

coordinates of the control points per blade side were allowed to vary.

Figure 3: 3D Turbine Peripheral Cascade: Parameterization of the pressure and suction blade surfaces
using Bezier surfaces. A total number of 3 × 11 = 33 control points are defined on each surface.

The evaluation tool and the adjoint equations solver were based on the Euler equations; for
each blade–candidate solution, a 3D structured grid of about 12000 nodes was generated before
solving the flow equations on it. The cost for the grid generation and numerical solution of the
flow equations was about 5 minutes on an Intel P4 2.4GHz processor. The cost for solving the
adjoint equations is considered to be something less than 5 minutes; however, in what follows,
direct and adjoint equations solvers will be considered to be equally expensive; the cost for each
one of them will be referred to as the cost for an ”equivalent flow solution”.

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0 100 200 300 400 500 600 700 800

C
os

t V
al

ue

Equivalent Flow Solutions

IPE_RBF(15,50,10)
IPE_GARBF(15,50,10)

Steepest Descent
GARBF_OFFLINE_DB

Figure 4: Inverse Design of a 3D Turbine Peripheral Cascade: Convergence of the four optimization
methods.

Fig. 4 summarizes the convergence behaviour of the four tools used. The pure steepest
descent method, driven by the objective function gradient as computed by the adjoint method
yields a monotone convergence within 80 cycles (i.e. 160 equivalent flow solutions). A decrease of

8

D.I. Papadimitriou, I.C. Kampolis, K.C. Giannakoglou

about two orders of magnitude is observed. The second design method was EA supported by off–
line trained GARBF. Its convergence plot is marked by GARBF–OFFLINE–DB. To initiate the
run, a database with 100 solutions, randomly selected within the search space, was formed. For
these training patterns, objective function values and gradient components have been computed;
the corresponding cost was about 200 equivalent flow solutions. In the convergence plot, the
200 first units in the abscissa have been paired with the rank sorted cost function values of the
database entries. As previously described, this method requires a small number of outer loops
for the cross–checking of the GARBF–based evaluations at the so–called ”optimal” solutions.
Each time the ”optimal” solution was exactly evaluated, this point was added to the database
together with one more point, placed at the most unexplored area of the search space. A simple
algorithm was devised to locate this point using a simplified distance–based criterion and a non–
time–consuming search tool. The last two methods used, plotted also in fig. 4, are EAs using
the IPE technique with conventional RBF and gradient–assisted RBF networks as the inexact
pre–evaluation tool, i.e. the surrogate model. These are marked by IPE–RBF and IPE–GARBF,
respectively. The population size was µ = 15 and λ = 50. A two order of magnitude convergence
was obtained in about 500 equivalent flow solutions with both tools. However, it should be noted
that this CPU cost corresponds to 500 evaluated individuals in IPE–RBF and only half of them
in IPE–GARBF. The different correspondence between number of evaluations and CPU cost
(or equivalent flow solutions), is reflected upon the convergence. A careful examination of the
convergence behaviour shows that IPE–GARBF is more costly during the starting phase, since a
minimum number of individuals should be evaluated for building a database being representative
of the search space. But, later on, thanks to the additional information (gradient) the network
is using, better convergence for the IPE–GARBF is observed.

5.2 Inverse Design of 3D Compressor Peripheral Cascade

The second case examined is that of the inverse design of a compressor rotor blade. The
corresponding stator blade was analysed by the authors in [5]. Here, the blade surfaces were
parameterized using two Bezier surfaces which meet along the leading and trailing edges. Each
blade side was parameterized using 4 × 5 = 20 control points (4 in the radial and 5 in the
axial direction). Only 6 per surface out of them were allowed to vary. A view of control point

Figure 5: 3D Compressor Peripheral Cascade: Parameterization of the pressure and suction blade surfaces
using Bezier surfaces. 5 × 4 = 20 control points were defined on each surface.

9

D.I. Papadimitriou, I.C. Kampolis, K.C. Giannakoglou

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0 10 20 30 40 50 60 70 80 90

C
os

t V
al

ue

Equivalent Flow Solutions

Steepest Descent

Figure 6: 3D Compressor Peripheral Cascade: Convergence history of the steepest–descent method
supported by the adjoint method for the objective function gradient computation.

 1e-07

 1e-06

 1e-05

 0 100 200 300 400 500 600

C
os

t V
al

ue

Equivalent Flow Solutions

IPE_RBF(10,50,2)
IPE_GARBF(10,50,2)

Figure 7: 3D Compressor Peripheral Cascade: Convergence history of two EAs, both using the IPE
technique: Conventional RBF and Gradient–Assisted RBF networks were used as surrogate models, in
each one of them.

locations is shown in fig. 5.
The convergence plot of the adjoint–steepest descent method is show in fig. 6. The final cost

value is not that low as in the EA–based designs (fig. 7) due to the step size η values which did
not allow the refinement of the finally computed solution. The off–line trained GARBF network
converged in about 250 equivalent flow solutions, starting with a database with 100 entries
(as in the turbine problem). Its convergence is not included in these figures. Fig. 7 shows
the convergence plots for EAs with IPE–RBF and IPE–GARBF, used with (µ, λ) = (10, 50)
population sizes. Like the turbine case, the IPE–GARBF needs twice as many equivalent flow
solutions to start up; later, however, it becomes faster convergent, for the reasons already exposed
in the previous case.

The initial, target and converged Mach number distribution over the turbine and compressor
blades (computed through steepest descent) are shown in fig. 8.

10

D.I. Papadimitriou, I.C. Kampolis, K.C. Giannakoglou

Figure 8: Inverse Design of 3D Turbomachinery Bladings (Left:Turbine Stator, Right: Compressor Rotor).
Mach number distribution over the cascade. Top: Target, Center: Initial, Bottom: Converged solutions
(using steepest descent).

5.3 Conclusions–Discussion

The above studies didn’t intend to lead to definite conclusions about the superiority of any
method. We rather intended to make clear that the objective function gradient is an information

11

D.I. Papadimitriou, I.C. Kampolis, K.C. Giannakoglou

which can be exploited in many different ways (other than the standard descent algorithms). EAs
with the Inexact Pre–Evaluation (IPE) technique can be driven by gradient–assisted metamodels
(such as GARBF networks). The capabilities of the new algorithms, which bring together many
traditionally ”rival” methods (EAs, adjoint methods, computational intelligence), should be
further investigated using more test problems with complex, multimodal solution landscapes.

Support from Program Thales of the National Technical University of Athens is acknowledged.

REFERENCES

[1] Giannakoglou, K.C., Designing Turbomachinery Blades Using Evolutionary Methods,
ASME Paper 99-GT-181, 44th ASME Gas Turbine and Aeroengine Congress, Indianapolis,
IN, USA, June 7-10, 1999.

[2] Giannakoglou, K.C., Design of Optimal Aerodynamic Shapes using Stochastic Optimization
Methods and Computational Intelligence, Progress in Aerospace Sciences, 38, pp. 43-76,
2002.

[3] Giotis, A.P., Giannakoglou, K.C., Periaux, J., A Reduced-Cost Multi-Objective Optimiza-
tion Method Based on the Pareto Front Technique, Neural Networks and PVM, ECCOMAS
2000, European Congress on Computational Methods in Applied Sciences and Engineering,
Barcelona, 2000.

[4] Emmerich, M., Giotis, A., Ozdemir, M., Back, T., Giannakoglou, K.C., Metamodel-Assisted
Evolution Strategies, 7th Intern. Conf. on Parallel Problem Solving from Nature, PPSN
2002, Granada, Spain, 2002.

[5] Kampolis, I.C., Papadimitriou, D.I., Giannakoglou, K.C., Evolutionary Optimization using
a new Radial Basis Function Network and the Adjoint Formulation, Inverse Problems,
Design and Optimization (IPDO) Symposium, Rio de Janeiro. Brazil, 2004.

[6] Kampolis, I.C., Karangelos, E.I., Giannakoglou, K.C., Gradient–assisted Radial Basis Func-
tion Networks: Theory and Applications, Applied Mathematical Modelling, 28, pp. 197-209,
2004.

[7] Roe, P., Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes, Jour-
nal of Computational Physics, 43, pp. 357-371, 1981.

[8] Ong, Y.S., Nair, P.B., Keane, A.J., Evolutionary Optimization of Computationally Expen-
sive Problems via Surrogate Modeling, AIAA Journal, Vol. 41, No. 4, April 2003.

[9] Ong, Y.S., Lum, K.Y., Nair, P.B., Shi, D.M. Zhang, Z.K., Global Convergence of Uncon-
strained and Bound Constrained Surrogate–Assisted Evolutionary Search in Aerodynamic
Shape Design, CEC 2003, Australia, 2003.

[10] Ulmer, H., Streichert, F., Zell, A., Evolution Strategies assisted by Gaussian Processes with
improved Pre–Selection Criterion, CEC 2003, Australia, 2003.

[11] Jameson, A., Optimum Aerodynamic Design using CFD and Control Theory, AIAA Paper
95-1729-CP, 1995.

12

