
5th GRACM International Congress on Computational Mechanics
Limassol, 29 June - 1 July, 2005

LOW MACH NUMBER PRECONDITIONING FOR 2D AND 3D
UPWIND FLOW SOLUTION SCHEMES ON UNSTRUCTURED GRIDS

V.G. Asouti, D.I. Papadimitriou, D.G. Koubogiannis, K.C. Giannakoglou

Lab. of Thermal Turbomachines,
National Technical University of Athens,
P.O. Box 64069, 15710, Athens, Greece,

e-mail: vasouti@mail.ntua.gr

Keywords: Preconditioning

Abstract. An existing method and the corresponding software for the numerical solution of the Euler and
Navier–Stokes equations in high–speed flows is extended to account for low–speed flows as well. This is
achieved through the multiplication of the governing equations by a precondition matrix which is defined
at each grid node in terms of the local Mach number and ensures adequately clustered eigenvalues and,
thus, optimal convergence characteristics at all flow speeds. A second–order upwind scheme is adapted
to the preconditioned system of equations through appropriate assumptions, which are clearly presented
in this paper. 2D or 3D, inviscid or turbulent flow problems are analyzed, in external aerodynamics and
turbomachinery.

1 INTRODUCTION
It is well known that the numerical solution of the compressible fluid flow equations for the low Mach

regime suffers from slow convergence and increased computing cost. It is also known that the main reason
for the performance degradation of the relevant software, based on time–marching schemes and the theory
of hyperbolic system of equations, is the large disparity between acoustic waves and fluid speeds. To
overcome this problem, completely different formulations for the prediction of low–speed or incompressible
flows such as pressure correction and pseudo–compressibility methods, have been developed. However,
maintaining and extending two different CFD tools by the same research group is, in fact, cumbersome.
The only way to use the same time–marching solution method regardless of the flow speed, is through
preconditioning.

Conceptually, preconditioning is based on the multiplication of the pseudo–time derivative by an appro-
priate precondition matrix without affecting the steady state solution. The precondition matrix is defined
in terms of the local Mach number [1], [2], [3] and degenerates to the unit matrix at sonic speed. According
to the hyperbolic system theory, the Jacobians of the convection terms are multiplied by the inverse of the
precondition matrix and this gives rise to much more clustered eigenvalues compared to those of standard
Jacobians. The selection of the precondition matrix depends on the vector of solution variables. In the
literature, different precondition matrices have been proposed depending on whether the flow equations
are solved in terms of −→Q = [p u v T ]T or −→

W = [� �u �v E]T (see [4] or [5] and [6], respectively).
The implementation of preconditioning in a numerical flow solver depends practically on the discretiza-

tion scheme used. The present method [7], [8] is based on the finite volume technique for unstrucured grids
with an upwind scheme for the discretization of convection terms. The latter are computed by sweeping
the grid edges and employing a 1D Riemann flow solver between the two edge nodes. To maintain the
existing formulation, a couple of assumptions concerning the management of the precondition matrix are
made. These assumptions concern even the residual of the iteratively solved equations and contribute to
the elimination of pressure oscillations that the conventional system of equations produce at low Mach
numbers, particularly close to the leading and trailing edges of airfoils.
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2 GOVERNING EQUATIONS AND LOW–MACH PRECONDITIONING
Though this paper is concerned with both 2D and 3D all–speed flows, for the sake of simplicity, the

analysis of the method will be restricted to 2D flows; any extension to 3D flows is straightforward and,
thus, omitted. The 2D Euler equations for compressible flows are written, in conservative form, as follows

∂
−→
W

∂ t
+

∂
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F

∂ x
+

∂
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G

∂ y
= 0 (1)
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Here � is the density, u and v the velocity components, E the total energy per unit volume and p the
pressure. Note that only steady flow simulations are of interest. Starting from eq. 1, the preconditioned
equations are obtained by multipliying the pseudo–time derivative term by the inverse of an appropriate
precondition matrix Γ, namely

Γ−1 ∂
−→
W

∂ t
+

∂
−→
F

∂ x
+

∂
−→
G

∂ y
= 0 (3)

or

∂
−→
W

∂ t
+ ΓAx

∂
−→
W

∂ x
+ ΓAy

∂
−→
W

∂ y
= 0 (4)

where Ax = ∂ �F

∂ �W
and Ay = ∂ �G

∂ �W
are the Jacobian matrices for the conservative variables. Eq. 4 can also be

written in terms of the primitive variable array −→
V = [� u v p]T as follows

∂
−→
V

∂ t
+ Γ Ax

∂
−→
V

∂ x
+ Γ Ay

∂
−→
V

∂ y
= 0 (5)

where Ax and Ay are the corresponding Jacobian matrices, Ax = M−1AxM , Ay = M−1AyM , Γ =
M−1ΓM and M = ∂ �W

∂�V
.

As already mentioned in the introduction, the role of the precondition matrix Γ (and, subsequently,
the role of Γ ) is to alleviate the disparity between acoustic waves and the fluid speeds which characterize
the non–preconditioned (regular) system of flow equations and is the main reason for the slow convergence
of any numerical solution method applied to low Mach number flows. This paper adopts the precondition
matrix originally proposed by [6], namely

Γ =

⎡
⎢⎢⎣

1 0 0 − 1−a
c2

0 1 0 0
0 0 1 0
0 0 0 a

⎤
⎥⎥⎦ (6)

where a = min[1, M2] and M is the local Mach number; Γ can be obtained from Γ, since Γ = MΓM−1.
Through the application of the Gauss’ divergence theorem, the integration of eqs. 5 over any finite

volume cell leads to the integral of numerical fluxes crossing its boundary. Let �n = (nx, ny) denote the
normal vector to the boundary; the application of any upwind scheme to numerically compute these fluxes
as well as the convergence characteristics of the resulting solution method is determined by the eigenvalues
of the preconditioned directional Jacobian matrix

AΓ = Γ A = Γ(Axnx + Ayny) (7)

which are

λ1 = λ2 = �υ · �n
λ3,4 =

1
2
{(1 + a)�υ · �n ±

√
[(1 − a)�υ · �n]2 + 4ac2|�n|2} (8)



V.G. Asouti et al.

It can be shown that, for low Mach number flows, the eigenvalues, (eq. 8) are much more clustered
than those of the non–preconditioned system λ∗

1 = λ∗
2 = �υ · �n, λ∗

3 = λ∗
4 = �υ · �n + c |�n|, giving thus rise

to better convergence properties. Fig. 1 compares the ratio λ3/λ1 of the preconditioned and the non–
preconditioned system λ∗

3/λ∗
1 for two different ranges of the Mach number. It can clearly be observed that,

through preconditioning, eigenvalues become much more clustered as Mach number approaches zero.
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Figure 1: Comparison of the λ3/λ1 ratio for the preconditioned and the non–preconditioned system for
0.1 ≤ M ≤ 1 (left) and 0.01 ≤ M ≤ 0.1 (right).

3 DISCRETIZATION AND NUMERICAL SOLUTION
The preconditioned equations are integrated over vertex–centered finite volumes � defined in fig. 2 for

2D problems. To carry out the integration, the assumption that Γ stays out of the integral, which facilitates
considerably the subsequent development of equations, is made. The meaning of this assumption is that,
in any vertex–centered cell, Γ remains fixed and equal to that defined at the enclosed node P . So

∫ ∫
�

∂
−→
W

∂t
d� + Γ

∫
∂�

(−→F nx + −→
Gny) d∂� = 0 (9)

which, through further analysis of terms, yields

�P

Δ tP
δ
−→
WP + ΓP

∑
Q∈nei(P )

−→Φ PQ = 0 (10)

Figure 2: Control volume surrounding a node.

or, equivalently,

�P

Δ tP
δ
−→
WP + ΓP

∑
Q∈nei(P )

(Γ−1Γ−→ΦPQ) = 0 (11)

where nei(P ) is the set of grid nodes that are linked with P through grid segments and −→Φ PQ is the numerical
flux crossing the interface of the finite volumes defined around adjacent nodes P and Q. Between P and
Q, the 1D Roe approximate Riemann solver [9] is employed, according to which
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−→ΦPQ =
1
2
[H(−→WP , �nPQ) + H(−→WQ, �nPQ)] − 1

2
|ÃPQ|Δ−→

WPQ (12)

where ÃPQ is the Roe–averaged Jacobian at the midnode between P and Q and Δ−→
WPQ = −→

WP −−→
WQ

For second order accuracy, −→WL = −→
WP + 1

2

−−→
PQ∇−→

WP and −→
WR = −→

WQ + 1
2

−−→
PQ∇−→

WQ should substitute for−→
WP and −→

WQ, respectively. The last term in eq. 12 is rewriten as follows:

|ÃPQ|Δ−→
W PQ = |Γ̃−1

PQΓ̃PQÃPQ|Δ−→
WPQ

� Γ̃−1
PQ|Γ̃PQÃPQ|Δ−→

WPQ

= Γ̃−1
PQ|ÃΓP Q |Δ−→

W PQ (13)

Here |ÃΓP Q | is defined by

|ÃΓP Q | = P̃ΓPQ |Λ̃ΓPQ |P̃−1
ΓP Q

(14)

where Λ̃Γ is the diagonal eigenvalue matrix of ÃΓP Q whereas P̃Γ and P̃−1
Γ are the diagonalization matrices

composed of the right and left eigenvectors, respectively. Subscript Γ denotes that the matrices are derived
from the preconditioned system and any quantity marked with ˜ is Roe–averaged. Through eqs. 13 and
14, eq. 12, becomes

−→Φ PQ =
1
2
[H(−→WP , �nPQ) + H(−→WQ, �nPQ)] − 1

2
Γ̃−1

PQ|ÃΓP Q |Δ−→
WPQ (15)

According the stability criteria applied for the preconditioned system, the local time step is

Δt =
CFL hT

1
2{(1 + a)|�υ| +

√
[(1 − a)|�υ|]2 + 4ac2|�n|2} (16)

which is simplified to Δt = CFL hT

|�υ|+c|�n| for the non preconditioned case (a = 1). In the 2D case, eq. 16 is used
to compute Δt at each triangle using its minimum height hT and the CFL number defined by the user.
Time steps are then scatter–added to nodes.

4 RESULTS AND DISCUSSION
A number of test problems has been selected to demonstrate the capability of the programmed software

to cope with all–speed flows. Our intention is not to demonstrate how accurate the computed results are,
but to convince the reader that, through preconditioning, one can exploit software based on the theory
of hyperbolic equations even in low Mach number flows where, by nature, time–marching methods are
slow. No comparison with experimental or other reference computational results is shown, since the non–
preconditioned method was adequately validated in the past at high subsonic and transonic flows. The
demonstration that follows is concerned with inviscid and viscous flows, around an isolated airfoil, in
a compressor cascade and around a complete aircraft. Any comparison concerning convergence speed is
presented as a function of iterations. The CPU cost per iteration of the preconditioned system of equations
is slightly higher than that of the non–preconditioned one, due to the excess number of floating point
operations it involves. However, the difference in CPU cost is almost negligible and, thus, the comparison
in terms of iterations can be interpreted as a comparison in terms of cost.

The first problem is concerned with the computation of the inviscid flow around the isolated NACA12
airfoil. The same unstructured grid (950 nodes, 1800 triangles) was used to predict the flow field at three
different infinite Mach numbers, namely M∞ = 0.1, 0.01 and 0.005, with the same infinite flow angle
α∞ = 5o. Fig. 3 compares the residual drop in terms of iterations. Note that no stopping criterion
was used, so any comparison between the performance of the non-preconditioned and preconditioned
equations can be objectively quantified, depending on the desired maximum allowed residual. In all cases,
preconditioning leads to better convergence characteristics; it is clear that the lower the Mach number the
lower the computing cost.

In the M∞ = 0.1 case, the gain achieved through preconditioning is not that important, though it
does exist. For higher M∞ values, both systems give very similar convergence characteristics and this can
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be explained by the precondition matrix form, eq. 6, which tends to the unit matrix. By comparing the
residual curves of the preconditioned equations in all three cases, it can be seen that they remain close to
each other whereas the convergence of the non-preconditioned equations drifts much more slowly as the
Mach number decreases. In the cases M∞ = 0.01 and 0.005, assuming a stopping criterion for the residual
equal to 10−10, preconditioning leads to convergence of about five to eight times lower CPU cost.
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Figure 3: Inviscid flow around the NACA12 airfoil. Convergence diagrams for M∞ = 0.1 (top–left),
M∞ = 0.01 (top–right) and M∞ = 0.005 (bottom).

Fig. 4 shows a close up view of the unstructured grid used and the Mach number contours computed
through the preconditioned equations around the airfoil, for M∞ = 0.005.

Figure 4: Inviscid flow analysis for NACA12 airfoil. Mach number contours for M∞ = 0.005, and Mach
number increment ΔM = 0.0002.

Fig. 5 compares the pressure distribution around the airfoil, produced by the preconditioned and
non–preconditioned solver with the same computing cost. Close to the leading and trailing edges, the
preconditioned equations eliminate non–physically accepted pressure kinks, thanks to the modified last
term in eq. 12 which acts as smoothing term.
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Figure 5: Inviscid flow analysis for NACA12 airfoil. Pressure coefficient distribution (M∞ = 0.1).

The second problem examined is that of the inviscid flow analysis in a 3D compresor cascade. The
exit isentropic Mach number equals to 0.1 or 0.3 and a1 = 47o. A 2D unstructured grid (1800 nodes,
3300 triangles) was generated at first which was then stacked in the spanwise direction to create the
3D unstructured grid with 40000 tetrhedra and 9000 nodes. Symmetry conditions were employed over
the upper and the lower plane in the spanwise direction. Fig. 6 shows the residual convergence history
for M2,is = 0.3 and 0.1. In the high Mach case, both solvers, either with or without preconditioning,
converge easily ; however, the preconditioned equations converge faster. In the low Mach number case, the
preconditioned equations solver converges within 400 iterations (the stopping criterion for the residual is
the same as in the previous case); on the other hand, without preconditioning, even 4000 iterations do not
suffice to get an adequately converged solution.
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Figure 6: Inviscid flow in a 3D compressor cascade. Convergence diagrams for M2,is = 0.3 (left) and
M2,is = 0.1 (right).

The turbulent flow over the same linear cascade was also analysed. The 2D grid consists of 5000
nodes and 9400 triangles, which results to a 3D grid with 170000 tetrahedra and 34700 nodes. The
Spalart–Allmaras one–equation turbulence model [10] was used along with the wall function technique; in
particular, a non zero (slip) velocity was allowed to occur over the blade nodes through assuming that
the real solid wall is located at distance δ from the boundary node; δ is a user-defined parameter so that
boundary nodes be in the logarithimic region of the boundary layer. Fig. 7 shows the calculated Mach
number contours and compares the convergence of the preconditioned and non–preconditioned equations
for Re = 100000 and M2,is = 0.1. With the maximum allowed residual value be equal to 10−5, the
preconditioned equation converge at half the CPU cost of the conventional solver. The lower the stopping
residual threshold, the more important the CPU gain.
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Figure 7: Turbulent flow in a 3D compressor cascade (Re = 100000). Mach number contours of the
preconditioned system (left) and convergence diagram (right).

Last case is that of the computation of the inviscid flow around a complete aircraft. The computational
grid generated around half of the aircraft (due to symmetric flow conditions) consists of 256000 tertahedra
and 45000 nodes.

This case was studied for M∞ = 0.1 and α∞ = 0o. Fig. 8 shows the convergence curves for the
preconditioned and non–preconditioned equations and the iso–Mach contours over the aircraft surface.
The preconditioned equations converge faster and the gain in CPU is expected to increase at lower Mach
numbers.
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Figure 8: Inviscid flow around an aircraft. Convergence diagram (left) and iso–Mach contours for M∞ = 0.1
(right).

5 CONCLUSIONS
The implementation of low–Mach preconditioning in a time–marching, primitive variable flow solver can

increase its robustness, yielding equally satisfactory convergence at all flow speeds. A couple of assumptions
is made during this implementation in the contest of a second–order upwind scheme, as demonstrated in
this paper. These assumptions often affect positively the accuracy of the predictions by improving the
quality of the solution in areas close to leading and trailing edge of an airfoil. The proposed method leads
to a considerable economy in CPU cost which becomes more important as the Mach number decreases.
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