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Abstract. The aim of this paper is to present and test an optimization method for the design of turbo-
machinery blade airfoils with optimal performance at given flow conditions and the additional requirement
that this performance remains (almost) constant even in the presence of slight manufacturing–assembling
errors or slight shape changes during the operation. The proposed method goes a step beyond standard
design tools ensuring the robustness of the designed shapes under uncertainties related to the design vari-
ables. The basic optimization tool is a multi–objective evolutionary algorithm, which cooperates with two
kinds of evaluation tools. All blade airfoils are evaluated, at the nominal flow conditions, using an integral
boundary layer method coupled with an inviscid flow solver. Changes in performance, due to changes in
shape are quantified through the “massive” use of inexpensive, surrogate evaluation models. The use of
surrogate models requires an initial database of evaluated samples. The sampling is carried out by means
of a new, kriging-based search algorithm aiming at minimizing the database size together with the relevant
CPU cost. In the course of this incremental algorithm, the new database point is the one for which kriging
yields the most uncertain prediction. The robust design of a compressor cascade airfoil is demonstrated.

1 INTRODUCTION

The design of shapes (wings, blades, airfoils, etc) with optimal aerodynamic performance at given flow
conditions starts once objectives and constraints have been defined. Constraints can be related either to
flow performance measures (such as a target lift) or the shape geometry itself (minimum thickness con-
straints). The shape should be parameterized and the design variables identified. An optimization tool,
based on flow simulation software for the aerodynamic evaluation of candidate shapes should be used to
compute the optimal solution(s). The cost of the optimization depends on the cost of aerodynamically
evaluating a single shape and the number of evaluations required to reach the optimal solution. Evolu-
tionary (EAs [1]) and deterministic algorithms (usually, descent algorithms based on adjoint techniques
[2]) are in use. Low–cost approximate evaluation tools (metamodels, such as artificial neural networks,
kriging, response surface models, etc) are often used to lower the overall CPU cost by replacing as many
as possible exact evaluations with fitness approximations [1].

However, even if all aforementioned tools are available and the design is carried out with reasonable
CPU cost, uncertainties related to any stochastic deficiency may occur. These uncertainties are expected
to affect the real performance of the manufactured shape. They are often due to manufacturing or
assembling errors, changes in shape or positioning, changes in operating conditions, etc. Other sources
of uncertainty are related to the physical model used, the relevant assumptions, discretization, solution
and round-off errors [3]. In the present work, only stochastic shape variations will be considered; the
flow model and solver as well as the flow conditions used will be considered as “credible”. So, it will
be assumed that there are no model form uncertainties. As the paper develops, it will become clear
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that the proposed method is robust in the sense that it produces solutions which are insensitive to
“reasonably” small changes in the design variables and remain reliable even in their presence. Let us
note that reliability–based methods have been used for many decades in civil engineering and are now
mandatory in aircraft engine design projects [4].

The robust design method proposed in this paper aims at designing cascade airfoils with minimal total
pressure losses at a given operating point. A constrained optimization problem is solved, where the first
constraint is related to the minimum allowed airfoil thickness and the second one imposes the minimum
desired flow turning. The N design variables are the coordinates of a Bezier–Bernstein polynomial
parameterization of the airfoil contour. This single–objective problem is handled as a two–objective
one: the second objective quantifies the mean performance degradation of 2N erroneously manufactured
airfoils, created by perturbing all design variables, one by one. It is evident that the cost for carrying
out 2N + 1 exact evaluations per candidate solution is too much! Thus, the proposed method utilizes
the exact evaluation tool (namely an integral boundary layer method, software MISES developed by M.
Drela [5]) only for the candidate airfoil whereas all perturbed airfoils are evaluated using a single, locally
trained radial basis function network (RBFN ).

The search is based on a multi–objective EA (code EASY , developed by NTUA) which provides the
front of Pareto optimal solutions in the two–objective space. However, even for the members of the
first generation, the second objective function computation calls for a database of previously evaluated
solutions. The search space needs to be sampled beforehand by selecting and evaluating a number of
samples. This number should be kept as small as possible for the sake of minimum CPU cost. Instead
of other known design-of-experiment techniques [6] a new method based on the kriging model has been
developed.

2 THE PROPOSED ROBUST DESIGN ALGORITHM

In the Introduction, the basic characteristics of the proposed robust design algorithm have been
described . In this section, the method will be analyzed, step by step. The various tools used are
discussed in subsequent sections. However, we will refrain from presenting the flow analysis sofware [5];
we should just mention that the CPU cost of a single evaluation is about 1.5 min. on a modern personal
computer.

Initial Sampling: The search space Ω ∈ �N , as defined by the lower and upper bounds of the N
design variables, is sampled. The sampling includes two discrete phases. During the first phase,
a simple factorial design with only two levels for each factor, is employed. For small N values,
the 2N factorial design, which is the main building block in many response surface designs, with
the addition of the center point, can be used. Otherwise, a fractional factorial design can be used
instead [6]. The so–collected L1 first samples are evaluated and their performances y(i), i = 1, L1

recorded. Then, the L2 = LDB −L1 remaining samples (let LDB be the desired database size) are
computed, one by one through L2 steps, using the kriging model. During the k-th step, the kriging
model is trained on the available L1 + k − 1 samples and the new sample is located as the point
in Ω which exhibits the maximum Mean Squared Error (MSE ) in prediction. A single-objective
EA is used for the training of the kriging model as well as during the search of each new sample.
The evaluation of the new point is necessary before passing to the next search. At the end of this
phase, LDB patterns �x(i) ∈ �N and the corresponding responses y(i) become available. A simple
demonstration of the proposed sampling method is shown in fig. 1.

Optimization Phase: This phase is based on the two–objective EA, the exact (integral boundary layer
method) and the surrogate evaluation tools (RBFNs). For each population member �x, after being
exactly evaluated, its closest P neighbors in the database are selected. Closeness is measured in
terms of distances in Ω. By also considering the current individual (P + 1 patterns, in total), a
local RBFN is trained. This is used to compute approximate responses yRBF for the 2N perturbed
shapes (±ε for each component of �x). An auxiliary computation provides the yLSQ values for
the perturbed shapes, through a least-squares fitting of yRBF . The standard deviation σnei of
yRBF − yLSQ constitutes the second objective function which quantifies the “robustness” of �x.
Using y and σnei as the two targets, an EA computes the Pareto front of optimal solutions.

Cross–Validation: The finally computed Pareto front members are cross-validated by cross-checking
pieces of information computed using the inexact model (RBFN ).
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Figure 1: The proposed sampling method is demonstrated through a one–dimensional example. The aim
is to generate data points along the x–axis (0≤x≤1) which, when used to train kriging, approximate
accurately the curve y(x)=cos

(
15 exp( −0.4

x+0.1 )
)
. The three initial sampling points were x = 0.1, 0.4 and

0.8. This figure presents six snapshots during the sequential point generation algorithm. In each one,
the average curve predicted by kriging as well as the average±3σ curves (σ is also predicted by kriging)
are illustrated. The latter define the confidence of the kriging–based prediction at any x. As expected,
the two curves meet at the training (marked with previous) data points. The existing as well as the new
data point are clearly marked.

3 THE MULTI–OBJECTIVE EA

A multi–objective EA which simultaneously evolves three population sets is used. Let index g be
the generation counter. Then, Sg,µ and Sg,λ denote the actual parent and offspring sets, with µ and λ
members, respectively; the third set, which will be referred to as the elite or archival set, collects the
non-dominated solutions (in the Pareto sense) in each generation. In each generation, Sg+1,α collects the
elite members of Sg,λ ∪ Sg,α.

The search starts (g = 0) by randomly selecting λ individuals �x(i) ∈ Sg,λ ⊂ �N , which are evaluated
with respect to all objective functions, �y(i) = �F

(
�x(i)

)
. This population is ranked on the basis of

an individual’s nondomination and a provisional Pareto front Sg+1,α∗ is formed. Using the �y(i) values,
i ∈ Sg,µ∪Sg,λ∪Sg+1,α∗ (note that S0,µ = ∅), a unique cost value φ(i) is assigned to each individual using
the concept of strength [7],[8]. Practically, all Sg+1,α∗ members are first assigned a cost value proportional
to the number of the Sg,µ ∪ Sg,λ individuals dominated by them. The φ value of each of the Sg,µ ∪ Sg,λ

members is set equal to 1 plus the sum of strengths of the Sg+1,α∗ individuals which dominate it. The
final φ value is the previously computed value plus a contribution proportional to the local density of
individuals. Once the φ(i) values have been computed, standard single–objective evolution operators can
be used for the selection of parents and the creation of the next generation.

Then, the archival front Sg+1,α is computed. If its size does not exceed a threshold value α, Sg+1,α∗ is
merely copied to Sg+1,α; otherwise, an iterative thinning process, [8], which maintains individuals lying
along the edges of the archival front is employed. Aiming at preserving elite solutions, a small fraction
of the topmost solutions in Sg+1,α is directly copied to Sg,λ.

All Sg,µ members that exceed the maximum allowed life span of κ generations are eliminated. The
new parental set Sg+1,µ is formed from Sg,λ ∪ Sg,µ.

The new offspring set Sg+1,λ is created by applying parent selection operators to Sg+1,µ ∪ Sg+1,α.
Parent individuals are randomly selected from Sg+1,µ (with probability pps) or Sg+1,α (with probability
1 − pps). Compared to SPEA2, this is an important difference of the present method since in SPEA2
parents are selected only from Sg+1,α. Finally, recombination and mutation operators are utilized to
create a new offspring to be inserted into Sg+1,λ.

The same procedure is repeated after setting g := g + 1, unless the stopping criterion is met.
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4 THE KRIGING MODEL

Kriging [9] assumes that the function being interpolated is an observation of a stochastic process. The
“system” is modeled as a stochastic (usually Gaussian) process with expected value µ and correlation
function R. Kriging can estimate the expected response and its MSE at any new point, which does
not belong to the training set. For the training points themselves, it exactly reproduces the response
and zeroes MSE. We recall that, in the proposed method, kriging is used for the formation of the initial
database. Among its two possible outputs (expected response and MSE ), only MSE is of interest. Kriging
is briefly described below.

Having L available data points along with their responses (�x(i) ∈ �N , y(i), i = 1, 2, ..., L), the aim of
kriging is to approximate the expected response ŷ and its MSE at any new solution �x. ŷ is expressed as
the sum of a drift function and a covariance function, namely

ŷ = µ̂ + z (�x) (1)

Here, the expected value µ̂ is chosen to be the drift function. The covariance function z (�x), ∀�x ∈ �N ,
is supposed to have zero mean and a “known” correlation function R with any other point in �N . A
common choice for this correlation between two points �x(i) and �x(j) is

R
(
�θ, �x(i), �x(j)

)
=

N∏
n=1

exp{−θn

(
x(i)

n − x(j)
n

)2

} (2)

where the values of �θ = (θ1, θ2, ..., θN
) ∈ �N are to be computed.

The optimal value of µ̂ is given by µ̂ = argminµMSE[ŷ (�x)], i.e. corresponds to the minimum MSE
between the predicted and actual values of y; it is given by

µ̂ =
−→1 T

L
[R]−1−→y

L

−→1 T

L
[R]−1−→1

L

(3)

where [R] is the L × L correlation matrix for the training patterns and Rij = R
(
�θ, �x(i), �x(j)

)
. The

estimation function finally becomes

ŷ = µ̂ + −→r T (�x) [R]−1
(−→y

L
−−→1

L
µ̂
)

(4)

where −→y
L

= (y1, y2, ..., yL), −→1 L = (1, 1, ..., 1) ∈ �L and −→r T (�x) is the tranpose of the vector of correla-
tions between �x and any of the training points �x(i), i = 1, 2, ..., L, i.e.

−→r T (�x) =
(
R(�θ, �x(1), �x),R(�θ, �x(2), �x), ...,R(�θ, �x(L), �x)

)
(5)

The optimal �θ∗ = (θ1
∗, θ2

∗, ..., θ
N

∗) values are computed through the maximum likelihood theory, as

�θ∗ = argmin�θ{L ln(σ2(�θ)) + ln(det[R(�θ)])} (6)

where det[R(�θ)] is the determinant of the correlation matrix and

σ2 =

(
�y

L
−−→1

L
µ̂
)T

[R]−1
(
�y

L
−−→1

L
µ̂
)

N
(7)

Eq. 6 is solved using EAs. The MSE value for a new point �x is given by

s2 (�x) = σ2{1 −−→r T [R]−1−→r +
(1 −−→1 T

L
[R]−1−→r )2

−→1 T

L
[R]−1−→1

L

} (8)

With respect to the proposed incremental algorithm for the formation of the starting database, eq. 6 is
first solved by considering all the available sample points and an EA searches the design space to locate
the point with maximum MSE i.e. the point with the maximum uncertainty concerning the kriging–based
prediction of response. This is the next point to be added to the training set.
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5 THE APPROXIMATE EVALUATION TOOL - RBFNs

In each generation of the EAs, the individuals are evaluated using the exact evaluation tool (i.e.
the flow solver, at the nominal flow conditions). However, as described in a previous section, 2N more
evaluations of slightly perturbed shapes are needed in order to quantify the robustness of the actual
design. To this end, each geometrical design variable is perturbed by ±ε (ε being a user–defined, small
valued, fixed quantity). The 2N perturbed airfoil shapes are evaluated using RBFNs. For each new
individual created by the EA, a single local RBFN is trained, based on its closest entries in the database.
All 2N evaluations are carried out using the same RBFN. RBFNs [10] are described below.

An RBFN, fig. 2, is a three layer network which performs a non-linear mapping from the input layer to
the hidden layer (�N → �M ) and a linear mapping from the hidden layer to the output layer (�M → �1)
which produces the network response. The hidden units are associated with the so-called RBF centers,
�c (i) ∈ �N , i = 1, M . The choice M = P (P is the training set size) and �c (i) = �x (i), i = 1, P , where
�x (i) are the training patterns, allows the RBFN to perform exact interpolations.

The hidden unit value h
(t)
m which corresponds to input �x (t) is computed through a nonlinear expression

which is based on the distance between �x (t) and �c (m), namely

h(t)
m = Φ

(∥∥∥�x (t) − �c (m)
∥∥∥

2
, rm

)
(9)

where rm stands for the radius associated with the m − th center. The nonlinear function Φ performs
the mapping �N → �. A possible choice is Φ(u, r) = exp(−u2/r2). The network output is given by∑M

i=1 wm h
(t)
m . The presentation of the P input patterns to the network (along with their responses),

results to the formation of a linear system of P equations, the unknowns being the weights wm associated
with the links between the hidden and output units. Any direct inversion method can be used for the
computation of the unknown weights.

...
...

w1 w2 w3 w4
wM

h1 h2 h3 h4 hM

x1 x2 x3 xN

o

Figure 2: Radial Basis Function Network.

6 APPLICATION: ROBUST DESIGN OF A COMPRESSOR AIRFOIL

The robust design of a compressor cascade airfoil is presented. We are concerned with the design of an
airfoil which yields minimum total pressure losses at nominal flow conditions: inlet flow angle a1 = 50o,
inlet Mach number M1 = 0.27, chord–based Reynolds number Rec = 4 × 105. The flow is characterized
by non–unit axial velocity density ratio, namely AV DR = 1./0.93.

As said before, the total pressure loss coefficient is used as the main (first) objective. Its value is
computed by the integral boundary layer method and penalized to account for the minimum thickness
constraint (0.072C, C is the chord) and the minimum flow turning requirement (34o which corresponds
to maximum outlet flow angle equal to 16o). A candidate airfoil violating any of the constraints is given
a penalty factor. This is expressed as an exponential function of the deviation between the current and
threshold values. The exponential function is used only for slight and mild constraint violations; the death
penalty method is employed for shapes which violate “considerably” any of the constraints (minimum
thickness less than 0.067C, turning less than 34o).

The shape of the airfoil pressure side was fixed; the N = 8 design variables used correspond to the
ordinates of the eight Bezier control points used to parameterize the suction side, fig. 3.

The second objective corresponds to the standard deviation of the estimated total pressure losses of
the 2N perturbed airfoils plus the current one (2N + 1 in total); it is used as a measure of the curvature
of the response surface close to the current airfoil. In the Pareto front, fig. 4, computed using the two–
objective EA, the abscissa (marked with “1/robustness”) quantifies the second objective and stands for
the standard deviation of losses (minus the least squares estimation, see comments in section 2) computed
at 2 × 8 + 1 = 17 points in the vicinity of any Pareto optimal solution.
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The initial database consists of LDB = 275 airfoils, selected using the kriging model in accordance
with the proposed sampling algorithm. The EA uses µ = 50 parents and λ = 200 offspring. The archival
set Sg,α was allowed to keep up to 50 elite members. Fig. 5 shows the evolution of the optimal front
population. The crossover probability was set to 95% and the mutation probability to 3.5%.

During the evolutionary search, for each new candidate solution, the number of neighbors used to
train the local RBFN was equal to 15 (plus the current point, so P = 15 + 1 = 16). The RBFN training
required the solution of a 16 × 16 symmetrical linear problem which can be carried out with almost
negligible computing cost.
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y/

C

x/C

Figure 3: Parameterization of the airfoil suction side using Bezier polynomials; the lower and upper
bounds of each design variable are shown (vertical segments). The airfoil is parameterized at zero stagger
angle.
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Figure 4: In the Pareto front, left, the abscissa is inversely proportional to the robustness of the design;
small values correspond to very robust airfoils. Three Pareto optimal solutions, corresponding to three
optimally performing airfoils are marked with A, B and C. For instance, compared to A, C yields
higher total pressure losses at the nominal conditions but with smaller performance deterioration under
manufacturing or assembling errors. The contours of these three airfoils are also plotted (right). The
performance of the three airfoils is analyzed, in more details, in fig. 6.

Figs. 4 and 6 summarize the obtained results (see comments in their captions). Three optimal airfoils
(A, B and C), members of the Pareto front, are further analyzed. To comment on their performance,
they were perturbed and evaluated using the integral method (instead of the RBFN utilized during the
optimization). The comparison of A and B follows: both have almost equal total pressure losses. Their
contours present a lot of similarities, fig. 4, with some discrepancies at about 0.35C. Despite the fact that
the Bezier polynomials are global parameterization tools, we may assume that this difference is mostly
attributed to the third and fourth control points; the design variables xA

3 and xB
3 (similarly, xA

4 and xB
4 )

are far apart. These two airfoils have, however, quite different robustness. For instance, from fig. 6, it is
clear that the reduction in xA

3 leads to a noticeable increase in losses, which is not the case in airfoil B.
So, by neglecting the small difference in losses between A and B, B (instead of A) should preferably be
selected.
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Figure 5: The number of optimal front members stored at each generation.

On the other hand, airfoil B is thinner than C and yields lower losses. However, the robustness of B
is lower than that of C. According to fig. 6, the curves corresponding to some design variables of B (xB

4 ,
xB

5 and especially xB
6 ) are not that flat as the corresponding curves of C.

7 CONCLUSIONS - COMMENTS

A method for the robust design of turbomachinery blade airfoils was presented and demonstrated.
In the present application, a single–objective problem is transformed to a two–objective one in which
the second objective is a measure of the airfoil performance robustness. In real, K–objective problems
(K > 1), one might either duplicate the number of objectives (i.e. each real objective will give rise
to an additional objective related to its robustness with respect to stochastic deficiencies in the design
variables) or utilize a single robustness for all objectives. Depending on this choice, a problem with 2K
or K+1 objectives should be solved.

The use of an approximate evaluation model for the perturbed shapes aims at reducing the opti-
mization cost. RBFNs have been used for this purpose; however, other known metamodels can be used
instead. For instance, the evaluation of perturbed geometries could be carried out through kriging, i.e.
the same tool previously used to create the initial database. The reason for not using kriging for the
approximate evaluations is that the RBFNs are faster; the extra CPU cost of kriging is affordable if MSE
needs to be computed, which is not the case herein. Note that, under certain assumptions, it could be
readily shown that kriging and RBFNs are two equivalent, distance–based interpolation models, [11].

This paper also presents a new sampling method based on the kriging model. Starting from a “basic”
sampling, extra points are identified over the search space, at locations where kriging operates with
maximum uncertainty. The proposed algorithm should be considered as a problem–customized sampling
technique, in the sense that each new sample is added using criteria affected by the application in hand.
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Figure 6: For each of the three optimal airfoils of fig. 4, marked with A, B and C, the integral boundary
layer method was used to evaluate its robustness when perturbing one design variable at a time. Starting
from the optimal airfoil, say A, with design variables xA

i , i = 1, 2, ..., 8, eleven airfoils have been generated
by varying xi around xA

i (xA
i + j∆x, j = −5, . . . , 5 with ∆x = 0.001C), while at the same time any other

design variable was kept constant. All eleven airfoils were evaluated using the integral boundary layer
method. It is evident that the sixth point on each curve refers to the corresponding optimal airfoil (A,
B or C).
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