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Abstract. The use of surrogate evaluation models or metamodels in multi-objective
Evolutionary Algorithms with computationally expensive evaluations for the reduction of
computational cost, through controlled approximate evaluations of generation members,
is presented. The metamodels assist the Evolutionary Algorithm by filtering the poorly
performing individuals within each generation and subsequently by allowing only the most
promising among them to be exactly evaluated. Radial-Basis Function Networks with self-
organized selection of centers are employed as metamodels, since they prove to possess
the good generalization capabilities that Multi-Objective optimization necessitates. The
result is a marked improvement of the metamodel-assisted multi-objective Evolutionary
Algorithm in both efficiency and robustness.
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1 INTRODUCTION

Real-word problems such as aerodynamic shape designs can be solved using either
gradient-based or global search (Evolutionary Algorithms, Simulated Annealing, etc.)
methods. In the literature, adequate evidence concerning advantages and disadvantages of
both can be found [1]. This paper deals exclusively with Evolutionary Algorithms (EAs).
Despite the convenience of using EAs, which can readily accommodate any ready-to-
use evaluation software, their utilization in optimization problems becomes prohibitively
expensive if a single evaluation is computationally expensive.

A known remedy to the aforementioned drawback is through the use of surrogate
evaluation models or metamodels. Metamodels require training and, for this purpose, an
adequate set of already evaluated solutions must be available. The metamodel type along
with the training set determine its prediction abilities and the training cost. In the context
of the so-called metamodel-assisted EAs, the way the metamodels should be employed
during the evolution is of particular importance. The first class of metamodel-assisted
EAs utilizes a metamodel which is trained in advance, separately from the evolution,
after generating the necessary training data. The evolution,which relies on the off-line
trained metamodel, produces an ‘optimal’ solution. This needs to be cross-validated and,
depending on the associated error, the metamodel might be updated to support a new
search cycle [2, 3] and so forth. The second class uses on-line trained metamodels and the
exact evaluation tool to selectively support the evolution. The metamodel is continuously
retrained during the evolution and, thus, it profits of the most recently collected data
[4, 5, 6]. A method for employing metamodels as substitutes for the exact model has also
been proposed by the authors for single-objective optimization (SOO) problems [7, 8, 9].

A distinguishing feature of this method is the Inexact Pre-Evaluation (IPE) task. With
the exception of the very first (usually one to three) generations, which are based on the
exact evaluation tool in order to start populating the training set, in any subsequent
generation and for each new candidate solution a local metamodel is trained on the avail-
able information in its neighbourhood. So, all population members are approximately
evaluated using local metamodels and only the most promising among them are then
re-evaluated using the exact tool. The latter are, of course, recorded and can be used as
training patterns in the forthcoming generations.

In what follows this filtering process of IPE is incorporated into Multi-Objective EAs
(MOEAs) and the gain in both efficiency and robustness is demonstrated through appro-
priate test-cases.

2 FILTERING THE INDIVIDUALS OF A MULTI-OBJECTIVE EVOLU-
TIONARY ALGORITHM

The purpose of using inexact pre-evaluations is to filter the poorly performing individ-
uals in the population of each generation and to direct only the promising ones to the
exact evaluation tool. The implementation of IPE in a MOEA can be abridged to the
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Figure 1: The Inexact Pre-Evaluation in Multi-Objective Evolutionary Algorithms.

following steps (cf. Fig. 1):

Step 1 [Offspring evaluation] In a conventional MOEA, all offspring need to be exactly
evaluated. Instead, IPE introduces the following substeps:

Step 1a Evaluate all offspring using locally built metamodels.

Step 1b Evaluate the non-dominated among them with the exact model.

Step 1c If any non-dominated inexactly evaluated individuals still exist and a
maximum permitted number of exact evaluations per generation has not been
exceeded, repeat from Step 1b.

Step 2 [Evolution] Form the next generation as though it were a conventional EA [10,
11], by indiscriminately treating exact and inexact objective function values:

1. Assign a cost function value to every individual, based on either sharing tech-
niques [12, 13, 14] or the strength concept [15, 16, 17].

2. Update the elit front and apply elitism.
3. Select parents.
4. Recombine parents and mutate their offspring.

Step 3 [Termination] Proceed to Step 1, unless a termination criterion is met.
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Figure 2: A self-organized Radial-Basis Function Network.

An important point in applying IPE in MOEAs is the selection of the individuals to be
exactly evaluated after a pre-evaluation has been obtained, which is not as straightforward
as in single-objective EAs. Steps 1a to 1c above imply a loop from which a non-predefined
number of exact evaluations per generation results. It depends rather on the approxima-
tion error of the metamodels. This scheme is generally more computationally demanding
than the one obtained by assigning a provisional cost value by a sharing or strength tech-
nique and exactly evaluating a predefined percentage of the best fit individuals [18, 19].
It turns out, however, to be more robust in cases where the metamodels are confronted
to a considerable number of failures of the exact evaluation tool. These failures do occur
in real-world optimization problems, especially in combination with wide variable ranges,
necessary at early design stages, and may be due to severe constraint violations or failures
in grid generation, solver convergence etc.

3 RADIAL-BASIS FUNCTION NETWORKS AS PRE-EVALUATORS

The role undertaken by the metamodels in MOO, where a front of non-dominated
solutions is sought, is considerably harder than in SOO. The reason lies in the fact that the
population remains spread over a relatively extended area of the search domain throughout
the evolution [18]. Radial-Basis Function Networks (RBFNs) possess valuable attributes
for function approximation [20, 21, 22] and in the context of IPE, by employing local
metamodels, they can be trained fast.

In their simple form, however, where they merely interpolate the training patterns, are
inadequate for use in MOO. The reason is the poor generalization performance. More
elaborate variants can be used instead, which permit a self-organized placement of the
RBF centers and subsequently the RBF radii determination. Such variants can be created
by coupling RBFNs with Self-Organizing Maps or Growing Neural Gas models [23, 24,
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Figure 3: Positioning the Radial-Basis
Function centers with the Neural Gas
(NG) model.

25, 26, 27] and in what follows will be denoted as self-organized RBFNs to distinguish
them from the simple RBFNs that interpolate the training patterns. The notion of the
self-organized RBFN is depicted in Fig. 2. An example of positioning the RBF centers
with the Neural Gas model is illustrated in Fig. 3. Note that the RBF centers are not
neccessarily placed at the high pattern density areas but where it is needed to improve
the RBFN performance, monitored by the testing patterns.

4 APPLICATION IN MULTI-OBJECTIVE OPTIMIZATION

The impact of using metamodels in MOEAs on the computational cost will be demon-
strated in the following test-cases, one numerical and one in the field of turbomachinery.
The effect of using self-organized RBFNs will be put forward in contradistinction to the
use of simple RBFNs as metamodels, in order to stress the importance of the metamodel
generalization capability in MOO.

To assess the front quality, the objective space is overlaid with a grid of 200 points per
objective. As quality measure of a front, the number of grid points that are not dominated
by the front members is used. Apparently, the lower the measure, the better the front.

4.1 Numerical example

The first case, defined in INGENET (EU Thematic Network), consists in the mini-
mization of the following multimodal functions:

Fj(x) = 4

√√√√ 1

n

n∑
i=1

{(xi − aj)2 − 10 cos[2π(xi − aj)]} , j = 1, 2

with
a1 = 0.0, a2 = 1.5, x ∈ [−5, 5]n, n = 30
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(a) Front assessment by counting the non-
dominated grid points by each front.
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Figure 4: Numerical example: Convergence history and fronts after 2000 exact evaluations.

The improved performance of the self-organized RBFNs results in more effective fil-
tering of the population individuals within each generation and consequently in higher
quality front with the same computational cost as a conventional EA (Fig. 4). Note that
the same efficiency is not achievable with metamodels with low generalization capability,
such as simple RBFNs (Fig. 4(a)).

4.2 Shape optimization of a compressor cascade

The second case aims at minimizing the total pressure losses of a controlled diffusion
compressor cascade airfoil, while maintaining acceptable performance at off-design inlet
flow angles. These two confronting objectives have been formulated as the minimization
problem of

F1 = ωβ1,DOP
=

p01 − p02

p01 − p1

F2 = 104 ·
noff∑
i=1

(ωβ1,i
− ωβ1,DOP

)2

where indices 1, 2 refer to the inlet and outlet planes respectively and DOP to design
operating point. noff denotes the number of off-design points examined.

The design operating conditions of the reference airfoil were: M1 = 0.62, β1,DOP = 47o

and Re = 8.41 · 105. Two off-design points were computed for each airfoil design, namely
at β1,1 = 43o and β1,2 = 51o. The flow field was computed with an integral boundary
layer method (MISES, [28]).

Design variables were the positions of the NURBS control points of the parametrized
airfoil, as illustrated in Fig. 5. Geometrical constraints were (a) the max. airfoil thickness
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Figure 5: Compressor cascade: The reference cas-
cade profile parametrized with NURBS, along with
the bound boxes of the design variables.

0 500 1000 1500 2000

2,00x103

3,00x103

4,00x103

5,00x103

6,00x103

7,00x103

 

 

N
on

-d
om

in
at

ed
 g

rid
 p

oi
nt

s

Exact evaluations

 Conventional EA
 EA-IPE, simple RBFNs
 EA-IPE, self-organized RBFNs

Figure 6: Compressor cascade:
Convergence history.

(not less than 10% of the chord), (b) the airfoil thickness at 80% of the chord, (c) the
curvature of pressure/suction sides (PS/SS) at the leading edge (LE), (d) the angle be-
tween the first PS/SS control points and the LE. Aerodynamic constraint was the flow
exit angle β2, which should be between 19o and 21o. All constraints were imposed via
penalty function multipliers.

Compared to the previous case, additional difficulties arise due to the numerous con-
straints and the inability of the flow solver to compute (massively) separated flows, which
are likely to occur at off-design conditions. These difficulties result in a high number of
failing evaluations; indeed, approximately 350 out of the 2000 evaluations failed. Never-
theless IPE was not inhibited from reducing the computational effort required for a given
front quality, as Fig. 6 shows. In Fig. 7 the front obtained from EA-IPE is superposed to
the one achieved by a conventional EA and a number of representative solutions belonging
to the front are presented.
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Figure 7: Compressor cascade: Fronts after 2000 exact evaluations and representative solutions obtained
by an Evolutionary Algorithm using Inexact Pre-Evaluations.

5 CONCLUSIONS

The use of inexact pre-evaluations through appropriately on-line trained metamodels
to single out the promising individuals of each generation, in order only these to be exactly
evaluated, increases markedly both the efficiency and the robustness of multi-objective
Evolutionary Algorithms. Due to the nature of multi-objective optimization treated with
the Pareto front approach, the role undertaken by the metamodels is much harder com-
pared to single-objective optimization. Good generalization properties are indispensable
on behalf of the metamodels, and these should be attained by keeping the training cost
low. Radial-Basis Function Networks with self-organized selection of centers fulfil this
requirement and proved to assist successfully multi-objective Evolutionary Algorithms.
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