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Abstract. In this paper, the adjoint method, in both continuous and discrete formulation,
15 used to solve cascade airfoil inverse design problems, the target being a desired pressure
distribution along its boundaries, or optimization problems in which cascade airfoils with
minimum viscous losses are designed. For the purpose of demonstration, a turbine and a
compressor cascade, are analyzed. In the continuous adjoint method, the objective function
gradient is computed using a field independent formulation which avoids the calculation
of metrics variations over the computational domain. On the other hand, the discrete
adjoint method is programmed by considering computer memory requirements and CPU
time. An extra term is added to the augmented function in order to handle the geometrical
constraints of mimimum airfoil blade thickness. So, both structured and unstructured
grids are used; the Spalart—Allmaras one—equation model is employed for the turbulent
flow cases. A comparison of the first— and second—order discrete adjoint technique is also
presented.
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1 Introduction

During the last years, significant boast has been given to the development of computa-
tional tools capable of solving complex aerodynamic optimization problems. Evolutionary
[1] and deterministic optimization methods are in use. In deterministic optimization meth-
ods, it is important to compute objective function gradients with accuracy and low CPU
cost. The so—computed gradient can also be used as an extra information to train en-
hanced artificial neural networks, [2], for use in evolutionary optimization algorithms. The
most well known gradient computing technique is the adjoint technique, which is based
mainly on control and Lagrange multipliers theory. In the literature, two approaches
exist, namely the continuous and the discrete adjoint technique. In the continuous ap-
proach, the adjoint pde’s are first formed and then discretised and solved whereas, in the
discrete approach, the discrete adjoint equations are derived directly from the discretised
flow equations.

The continuous adjoint method was firstly introduced for potential flows by Pironneau,
[3], and Jameson, [4], extended the method to face transonic aerodynamic problems. The
method was extended by the same author to handle viscous flows and overall aircraft con-
figurations [5],[6],[7]. Giles was the first to deal with the strict mathematical/theoretical
aspect of the discrete adjoint formulation, [8]. Then, numerous scientists dealt with the
basic adjoint technique evolution. Anderson and Venkatakrishan [9] used both approaches
in inviscid and viscous flows using unstructured grids and, later, Nielsen and Anderson
applied the discrete approach on 3D viscous flows [10]. Elliot and Peraire [11] developed
discrete adjoint codes for Euler equations using 3D unstructured grids. Kim [12] used
a discrete adjoint technique for the optimization of wing body configurations in three
dimensional inviscid flows. Giles and Duta [13], [14] used the discrete approach in 2D
and 3D viscous and inviscid flows, including turbomachinery flows, steady and unsteady
applications [15].

This paper presents recent activities carried out in the Lab. of Thermal Turbomachines
of NTUA concerning the development and use of adjoint methods for the purpose of
designing or optimizing turbomachinery blades. Both discrete and continuous adjoint
methods, with different objective functions will be presented and used for the design—
optimization of a compressor and a turbine airfoil cascade. Some cases are analyzed
using structured and some other using unstructured grids, thanks to a unique formulation
which eliminates the effect of internal grid variation terms and computes derivatives using
exclusively boundary terms. The presentation covers inviscid, laminar and turbulent
flows without, however, considering the variation of turbulent viscosity computed by the
Spalart—Allmaras model. It is interesting to note that, in optimization problems, where
viscous losses should be minimized, mathematically different objective functionals are
used; the continuous adjoint method aims at minimizing the entropy generation over the
flow domain whereas the discrete one aims at minimizing total pressure losses between
the inlet and outlet of the flow domain.
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2 Objective Functions

The objective functions associated with any shape optimization problem can generally
be written as

/QFQ i + /m Fyo d (99) (1)

which should be minimized. In eq. (1),  and 0Q denote the flow domain and its
boundary, respectively; the shape of the latter is partially or totally controlled by the
design variables b . The objective function (1) is augmented by adding the flow equations
multiplied by the vector of ¥ costate variables. We, thus, come up with the so called
augmented objective function, whose variation is

§Fpy = /Q 5 Fod( + /Q Fos (d) + /a Faad (09)

+/m Fagé(d(aﬁ))—l—/ﬂﬁﬁé (872' a?“) 2)

6xi al‘l

In eq. (2), the last term stands for the steady flow equations for compressible fluids,
where %Z and f,; are the inviscid and the viscous fluxes, respectively. The repeated
index denotes summation.

Inverse design problems, dealing with the design of airfoils or ducts which reproduce a
target pressure distribution py,,(s) over their solid walls S,,, make use of

1

F=35| (0= pa)ds (3)

whereas the search of airfoils with minimum viscous losses is based on, [16],

8uZ
—T; 4
/ T ax] (4)
in which a term which is equivalent to the entropy generation is expressed as a volume
integral. 7" is the temperature, 7;; the viscous stress tensor components

TZJ—M<ax]+axZ>+)\62]a—xk ,)\——gu (5)

and u; the Cartesian velocity components. As it will become clear below, expression (4)
is useful only in the continuous adjoint approach. For the same problem, the discrete
adjoint formulation is alternatively based on

fsiptds _ fsoptds
S; So

F = (6)

which involves the total pressure integrals over the input (.S;) and output (S,) boundaries
of 2.
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3 The Discrete Adjoint Formulation

The gradient of the objective function F' argi the discretized flow equations denoted by
= 0 with respect to the design variables b read

dF OF 0T L OF
db  oU0bL 001
iR dR0U OFR

dD T 0T 071 (7)

The derivative of the augmented function with respect to the design variables yields

dFuy _ dF | ~rdB  (OF . @Taﬁ oU  OF . VY @
T v b 0T 00 T b

_|_
db db db 2 0D
The first term on the r.h.s. is eliminated by formulating and solving the adjoint equations
T
OR| & _ _ la F ] !
0T 0T

so, the final expression for the gradient of F' becomes

(9)

dFuyg _ OF 1O R (10)
iy 0b o
which can be used to support any descent algorithm. For the solution of the flow equations,
on either structured or unstructured (with triangular elements) grids, a time-marching
Navier—Stokes equations solver based on the finite—volume technique is used. The dis-
cretization of the flow equations is carried out through the Roe’s approximate Riemann
solver, where second—order accuracy is obtained by means of variables’ extrapolation.

From the computational point of view, the Jacobian 2% of the flow equations appears in

0
both the flow and adjoint equations, on their l.h.s. and r.h.s. For the numerical solution,

the point-implicit Jacobi method is used, where only the first—order %; terms are used
B
in the Lh.s. of the delta formulation of the direct equations

[g{ AT = B T T aAT” (1)
0(Az)

The corresponding scheme applied to the adjoint equations yields

[aﬁ R

T
v, T =T AT (12

7l

0(Ax)

ov PN

0(Az2)
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Working with unstructured grid, the storage of l%l is cumbersome, since it corre-
a (Az?)
sponds to an extended computational stencil compared to that formed by any node and its
adjacent ones. To avoid excess storage requirements, only the coefficients of l%]
? Y Joax)

are stored and the supplementary second—order terms are recomputed at each iteration
of the adjoint equations solver.

Figure 1: The flux crossing the finite—volume boundary part associated with edge PQ depends on the
flow variables at node P, its neighboring nodes (including Q) as well as the neighbors of Q.

4 The Continuous Adjoint Formulation—Inviscid Terms

This section gives the key points of the continuous adjoint method used in inverse design
problems in which the target is a given pressure distribution and the objective function
is that of eq. (3). From the viewpoint of body—fitted structured grids and the associated
coordinate transformation (z,xs) <— (£1,&?), the variation of transformation metrics is

og\ _  0¢ 0 (0x )

which can be used to express the variation of the divergence of the inviscid fluxes, [17]

(a?) _207) a7, <a§j> _0(57) 970 (m)

14
0x; 0x; 8@ 0x; o0x; ox, O0x (14)

Since, in the last expression, metrics are not present, this can be generalized to cover

problems handled using either structured or unstructured grids. Thus, eq. (14) can be

used in the development of the continuous adjoint equations regardless of the grid type.
For the Euler equations ( f,; = 0), the last term in eq. (2) yields

v,

[F(50) a0 = - [ (457 ) s [ W1 51000)

5
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+ /S UinidpdsS + /S <\Ifip— E?T?l) 5 (nidS)
+ [ U (ATW)ds (15)

Si,0

Through the Green—Gauss theorem and the necessary rearangement of terms, the variation
in Fy,, takes the form

1 aﬁ —T
5Faug:§/s (p—ptar)25(d5) S 8—xkA T kd5+/ Vigp— W 7i)5(nid5) (16)

Eq. 16 can be derived once the adjoint equations have been satisfied

o _ A-T‘ﬁ =0 (17)
ot ’ 3@3 N

with inlet / outlet boundary conditions given by
ST (ATT) =T (18)
and the solid wall condition cast in the form

(P — Prar) + ¥iyin; =0 (19)

5 The Continuous Adjoint Formulation—Viscous Terms

Starting from eq. (14), written for the viscous rather than the inviscid terms, and after
some lengthy algebraic manipulations, the last term integral in eq. (2), that corresponds
to the viscous terms, takes the form

/prT (azj,) dQ:—/ (W_@(Sxk) Kdo — /Q_”aik (@3’:’) 2 d) +

8\Ilj+1 8\I/m 8\I/i+1 8\11 8\Ifk+1 8\Ilm
/Swéuz lu( B, +u, ar, + oz, +u; 8@7) )\5”< Dy +uy, e U,y | n;dS +

o,
/S 5 (k - )dS— /Sw W, 6(q;n;dS) +/Sw W, q;0(n;dS) —

2
\IJH»I \Iji+1

[07i;min; + 7,50 (ning)]|dS + T Tij(S(ninj)dS—/S u;W407;5m,;dS —

1
ou; [M<8\Ifj+1 ov, 8‘~Ifi+1+ OV, ) A6y, (3‘I’k+1+u OV,

/;w
/sw ox; ox; R ox; + 0x; i 0x; oy, F oxy,
G_T ka\h

Gxi

)] dxn;dS +

0
) oxpn;dS — \_I}T ?“
Sw 8xk

5, O dxpn;dS (20)
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where

T 0 A
K =— k
! p 0x; ( 8:@-)

0 oV ; ov ov ov ov ov ov
Kz‘ _ v j+1 ) m i+1 u; m )\62 ) k+1 my|l s _4
i 0z [M< ox; i ox; + 0z tu 0z A% oxy, Uk oy, 7ij 0z

T 0 A
K,=—
4 p 0x; <k8x2>

and W = \7 T is the vector of non—conservative variables
In inverse de51gn problems, aiming at the minimization of function (3), the variation
in Fgy, gives

1 U;
O Fpug = 5/S(p—pm,n)Zé(dS)+/S(‘~Ifip—@T’?i)é(nidS)+ 70 (niny)dS+G - (21)

Sw T

where

or "

—>T87>m
G=—[ 5o @ n,)\IlcSa:de—i-/ ( o ) 6xknid5+/5w Uuq;0(n;dS)  (22)

an 8\11j+1 oV, a\IIH-I ov, a\pk—l—l v
Sw Oy [M< 0 i Ox; " O " ’axj>+M”< oz, T kax Owin;dS

The adjoint variable field is computed by satisfying the adjoint equation

%—f - AiTg;I: MTR =T (23)
where M = 27 18 the transformation matrix from the non-conservative to the conservative
variables. At the inlet and outlet, the condition

5T (ALT)ds = T (24)
should be satisfied whereas over the wall boundaries
Uiip = —(p—Ptar)ni ,i=1,2 (25)

The wall boundary condition for ¥4 depends on the type of temperature conditions and
is written as

oW,
on

for constant temperature or adiabatic conditions respectively.

v, =0 or

=0 (26)
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For design with minimum viscous losses, according to objective function (4), the vari-
ation in F,,, gives

5 Fy = — /( 7ﬂ (n:dS) — _%g7mww+/—ﬁwww+G (27)
Lk

where G is still given by eq. (22). The adjoint equation is

- -
OV _ gr9% =R M =T (28)
ot ox;

where vector L = (L1, Ly, Ly, Ly)T is defined by

orT 1 9T 0 [u 10T
L= mRos L= mRo o (LRy) | Li= R

T2 0p Ou; 0z OF
and
ou; ou ou; 4. Ouy
R=r1;;— Ry = 0; 2(1 — ;) —2 — =6;; —
Tjﬁxj ’ =201+ ])ax] +2( ])axi 3% 5

The imposed boundary conditions are given by eqs. (24),(26) and (27); zero Dirichlet
conditions should be imposed for Wy, W3, instead of eq. (25).

During the design of realistic aerodynamic shapes, such as isolated or cascade airfoils,
care subject to a number of geometrical constraints (C; <0 ,i =1,---,n), often related to
the thickness of the shape. These constraints are handled by setting up a new augmented
function

Fc,aug = Laug + Fc (29)

where F, is a functional expressing the degree of geometrical constraints violation. For
inequality constraints, F, is expressed by [18]

S n(Ci+2) + X %(Cmsz)Z (30)

i=1,n i=1,n

Z? = max [0, — (% + O)] (31)

In each step (k) of the steepest descent algorithm, the Lagrange multiplier \; is updated
as follows

where

P (Clk + zf) (32)
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6 Results and Discussion—Conclusions

The previously described adjoint methods are used in a series of shape optimization
and inverse design problems, related to compressor and turbine blade airfoils. In both
cases, reference and/or starting shapes are selected and the cascade geometries are defined
by determining stagger angles (30° for both compressor and turbine) and pitch—to—chord
ratios (0.55 for the compressor, 0.8 for the turbine). In what follows, these cases are
handled through either structured or unstructured grids; the latter are generated using
advancing front routines with structured layers of triangular elements around the airfoil
contour.

The parameterization of the airfoil is based on Bezier—Bernstein polynomials. The
leading and trailing edges are fixed and the pressure and suction contours are separately
modelled. For the parameterization of each compressor/turbine airfoil side 14/13 control
points are used. All but the leading and trailing control points are allowed to vary. In
the compressor case, these points are located at fixed chordwise positions and allowed to
vary only along the normal-to—the—chord direction. The turbine control points are free
to vary in either direction (both chordwise and normal-to—the—chord). Thus, compared
to the compressor case, the turbine involves about twice as many design variables.

The flow conditions are: o, = 50° and M, ;s = 0.32 for the compressor and o, = 0°
and My, ;s = 0.50 for the turbine cascade. As previously stated, inviscid, laminar and
turbulent flow problems will be presented. In the laminar flow, the chord—based Reynolds
number is Re. = 2000. In the turbulent case, supported by the Spalart—Allmaras one—
equation turbulence model, Re, = 10°.

0.004 T T T T 0.008 T T T T T
0.002 | | | | - N B |
0.006 - Discrete Adjoint
0 o] Finite Difference -------
$ -0.002 - - $ 0.004
2 2
£ -0.004 i 2 0.002
2 -0.006 B : : : 1 3
-0.008 W\ Discrete Adjoint - e 0
%4 Finite Difference -------
-0.01 - "Approx". Discrete Adjoint ------ b 20.002
-0.012 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 0 10 20 30 40 50 60
control points control points

Figure 2: Inverse design of the compressor Figure 3: Inverse design of the turbine cascade,
cascade, inviscid flow, unstructured grid: Ob- inviscid flow, unstructured grid: Objective func-
jective function gradient computed using the tion gradient computed using the discrete adjoint
exact (second-order accurate) discrete adjoint method and finite—differences.

method, the “approximate” discrete adjoint

method (second—order accuracy in the direct

solver, first—order in the adjoint equations) and

finite—differences.

Figures 2 to 6 show the objective function gradient values computed using the discrete
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and continuous adjoint techniques in comparison to those estimated using central finite—
differences. In general, the agreement is satisfactory. The only exception is the turbulent
case, where the observed deviation between the two curves (fig. 6) can be attributed to
the fact that the variation of the turbulent viscosity coefficient du; was not taken into
account. In the turbulent case, it is also worth noting that the finite—difference step used

was selected “arbitrarily”, i.e.

without performing a parametric study as in the other

cases; this was due to the high computational cost needed for such a study. However,
despite the discrepancy between adjoint and finite—difference gradient components, the
so computed derivatives support effectively the steepest descent method and lead to the

optimal solution.
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Figure 4: Losses minimization in the turbine cascade, laminar flow: Objective function gradient computed
using the continuous adjoint method (left), the discrete adjoint method (right) and finite—differences.
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Figure 5: Inverse design of the turbine cascade,
laminar flow: Objective function gradient compo-
nents computed using the discrete adjoint method
and finite—differences.
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Figure 6: Losses minimization in the compressor
cascade, turbulent flow: Comparison of the ob-
jective function gradient components computed

using the discrete
differences.

adjoint method and finite—

The discrete adjoint method, especially if unstructured grids along with the finite—

volume method are used, requires the storage of the transpose of %;. As explained in

a previous section, maintaining second—order accuracy in

10

o R
oU

0

increases storage require-
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o R

ments which could be avoided if a first—order discretization was used. Note that the ?
P

matrix is involved only in the L.h.s. term of the direct equations, so its level of accuracy
does not affect the flow solution quality. However, this is not the case from the point of
view of the adjoint method. This is the reason of comparing (fig. 2) the accuracy of the

computed gradient using first—order (%) and second—order (%) matrices
oU J o(ax) U J o(ax?)

in the adjoint equation (the former is marked with “Approx.” Discrete Adjoint, in the
figure’s caption). It can be seen that the first—order adjoint gives quite accurate deriva-
tives; however, the second—order one performs much better and reproduces satisfactorily
the values computed by means of finite—differences. The second—order discrete adjoint
method is also used in the turbine case, fig. 3, where the finite-difference computed
gradients are exactly reproduced by the adjoint method, using unstructured grids.
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og L nital : 08 TR, S1e-007
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X X iteration number

Figure 7: Inverse design of the turbine cascade, inviscid flow, unstructured grid. Left: reference, initial
and optimal cascade shape , Middle: target, initial and optimal pressure distribution, Right: Convergence
history.
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Figure 8: Inverse design of the compressor cascade, inviscid flow, unstructured grid. Same as fig. 7.

In the case of minimization of losses in the compressor cascade at laminar flow con-
ditions, the gradient values computed using the adjoint technique are also compared to
those computed by finite—differences, fig. 4. On the left, the continuous approach was
used for the minimization of entropy generation while on the right the discrete adjoint
method was employed for the minimization of total pressure losses. The comparison with
finite—differences is quite reasonable; the observed small deviations do not affect the mini-
mization algorithm convergence. In addition, there is a qualitative similarity between the
derivatives for both objective functionals which, both theoretically and practically, are
considered to be equivalent.

11
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Figure 9: Inverse design of the turbine cascade, laminar flow. Same as fig. 7.
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Figure 10: Inverse design of the compressor cascade, laminar flow. Same as fig. 7.

In the case of inverse design of the turbine cascade at laminar flow conditions, an
even better coincidence of the gradient values computed with either the discrete or the
continuous approach and those using finite-differences is observed in fig. 5. Finally, in
the case of turbulent flow, fig. 6, although discrepancies can be observed in the computed
derivatives, they can still be used successfully for the minimization of losses.

In figs. 7 to 10, one can observe the reference, initial and optimal blade contour (left),

0.6

0.5
0.4

0.3
0.2

0.1 |45
0

Initial

Optimal

Friction Coefficient

-0.1

-0.1 0 0.10.20.30.40.50.60.70.80.9

X

0.00195
0.0019

0.00185

0.0018 v\
0.00175

Pt Losses

0.0017

Entropy Generation

0.00165

0 10 20 30 40 50 60

Cycle
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cascade shapes, Top Middle: initial and optimal friction coefficient distribution, Top Right: thickness
deviations. Bottom from left to right : Entropy generation, total pressure losses and flow turning.
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Figure 12: Losses minimization in the compressor cascade, turbulent flow. Same as in fig. 11.

the target, initial and optimal pressure distribution (middle) and the convergence history
(right) for the inverse design of the compressor and the turbine blade in inviscid and
laminar flow conditions.

In all cases, the reference blade geometry is totally reconstructed with the target and
optimal pressure distributions being almost identical. The objective function is reduced
by about three or four orders of magnitude. The excessive number of iterations required
for convergence is due to the selection of the steepest descent step value; the main part
of the reconstruction is completed within the first few iterations while the subsequent
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Figure 13: Losses minimization in the turbine cascade, laminar flow. Same as in fig. 11.

13



D.I. Papadimitriou, A.S. Zymaris and K.C. Giannakoglou

iterations yield only minor improvements.
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Figure 14: Losses minimization in the turbine cascade, turbulent flow. Same as in fig. 11.

Figures 11 to 14, refer to the viscous (laminar and turbulent) losses minimization
cases, for the flow through the compressor and turbine cascades. In the top row, one may
see: the initial and optimal cascade shapes, the initial and optimal friction coefficient
distributions and the evolution of the term 3=, , , max (fi — ,O), that expresses the
difference between the thickness of the blade airfoil and the minimum acceptable thickness
(geometrical constraints). The bottom row shows the convergence histories of the entropy
generation, total pressure losses and flow turning. Depending on the particular case, the
entropy generation or the total pressure losses is used as the objective function and the
gradient was computed using both the continuous and discrete adjoint method. One
approach is shown for each case, for the sake of economy in space.

In all cases, a noticeable improvement in the friction coefficient distribution can be
observed. Moreover, in the compressor cases, the flow separation on the initial airfoil is
reduced or even disappears. The convergence history of both functionals presents the same
tendency observed by the gradient values; regardless of the adjoint approach chosen, both
functionals reduce their values in the same manner and show identical oscillations. These
oscillations are due to the constraint violation and disappear after the final functional
convergence. Note that the flow turning is just monitored without taking it into account
during the optimization.
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