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Abstract. Sculptured surface parts machining is a demanding task even though commercially 
available CAM software offers a variety of possible strategies and a number of machining 
planning functions. However, process optimization routines are seldom embedded in CAM 
software. The present work aims at proposing an optimization method that computes optimal 
process parameter values for sculptured surface rough machining. The objectives are 
minimum machining time and maximum material removal, subject to technological 
constraints imposed by the rough machining process. Optimization is based on multi-
objective evolutionary algorithms (EAs), assisted by surrogate evaluation models. In addition, 
a two-player Nash game optimization was programmed and tested. Software was developed 
for the interaction between the Application Program Interface (API) of a given CAM system 
and the optimization tool as well as for the calculation of objective function values. The 
proposed optimization process was applied to the machining of three parts consisting almost 
entirely of sculptured surfaces; a part in the form of a hip prosthesis and two turbomachinery 
blades. Emphasis is put on the quality of the optimal solution as well as its contribution to 
decision making. 
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1 INTRODUCTION 
Cost reduction in machining processes requires means (software or hardware) that can lead 

to products having improved accuracy and quality, in continuously reduced machining time. 
Most low-cost procedures involve empirical knowledge and machine intelligence after 
properly modeling the process. The relevant literature shows that optimization methods can be 
coupled with manufacturing processes, either in production preparation or during 
manufacturing. Evolutionary algorithms, artificial neural networks, expert systems, fuzzy 
logic, etc. have been implemented in order to reduce decision related burden as both processes 
and parts become more complicated and experience does not necessarily lead to concrete 
solutions that optimize production.  

New trends in machining operations optimization involve EAs used to compute optimal 
milling process parameters, for either analytical machining models or process-oriented 
models. In some cases, they are used for automatic G-code extraction [8], machining cost 
calculation stemming from various analytical cost functions [13], [2], [1], [7], optimal cutting 
conditions based on numerical and experimental data [3], etc. These applications were based 
on either custom EAs or ready off-the-shelf EAs, after determining the appropriate EA 
parameter values. 

The optimization tool used in the present work, namely code EASY 
(http://velos0.ltt.mech.ntua.gr/EASY/), is based on generalized Evolutionary Algorithms (EAs), 
and it has been developed and brought to market by NTUA. It handles three population sets, 
with µ parents, λ offspring and ε elites and employs various recombination, mutation and 
elitistic operators, for single- and multi-objective optimization problems. The latter are treated 
through the Pareto front concept. EASY includes and optionally employs on-line trained 
surrogate models or metamodels which, in the context of the so-called Inexact Pre-Evaluation 
(IPE) phase, screen out badly performing population members and avoid a great amount of 
unnecessary exact evaluations leading to a considerable economy to computing cost. 
Constraints are handled through penalizing the objective function values. A detailed overview 
of the algorithmic features of EASY and its additional capabilities can be found in [4]and [5]. 
In the present work, the use of EASY was also extended in order to form a two-player Nash 
game. Each player is assigned half of the optimization variables, performs its own evolution 
while regularly communicating good solutions with the other player and the games comes up 
with a simple optimal solution, i.e. the so-called Nash equilibrium [12]. 

2 ROUGH MACHINING PROBLEM MODELING 
Machining processes involve many parameters, each having a different impact on the 

product and the quality of the process. Though previous work has resulted in defining 
statistically significant process parameters with respect to the proposed quality characteristics 
[9], in this paper both significant and unimportant design variables have been accounted for in 
the model. This work addresses a few members of the family of sculptured surface parts, 
particularly those that are commonly manufactured through direct machining, as opposed to 
parts produced by using machined dies and processes such as casting, forging etc. The herein 
studied parts include a hip prosthesis, similar to those used in orthopedic surgery and two 
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turbomachinery blades (Fig. 1); the first is an industrial compressor blade and the second is an 
extruded form of a 2D compressor airfoil. 

 
Figure 1: The three parts under study: a hip prosthesis and two turbomachinery blades. 

 
For these parts 3-axis rough machining was implemented, using a commercially available 

CAM system. In many cases, sculptured surfaces are machined using 5-axis CNC milling 
machine tools, due to the requirement for constant normal (or near normal) positioning of the 
cutter axis and the surface tangent plane at the cutter contact point. However, 3-axis milling 
was considered sufficient, since 3-axis rough machining is sufficiently effective and does not 
exhibit orientation and collision problems often associated with 5-axis machining. Besides, 
surface finish is not an objective in roughing, as it aims at substantial material volume 
removal from an original raw material block at a reasonably high removal rate. 

The machining parameters (corresponding to the optimization variables) used in the 
present work are: 

1. Tool machining the sculptured surface part. For the present study, flat-end mills were 
employed due to their efficiency and increased productivity in 3-axis milling.  

2. Stepover: the distance in the x-y plane between two successive passes of the tool. 
3. Thickness: the mean distance between the part and the cutting edge of the tool. 
4. Stepdown: the distance between two successive passes of the tool in the z direction. 
5. Profiling: tool pass around the profile that cleans a specific z-slice. 
6. Raster angle: the angle of the raster pattern relative to x-axis. 
7. Allowance: offset surface of the machined part that the tool never penetrates. 
8. Infinite range: the distance that a tool travels between successive passes. “Infinite” 

means that any distance is acceptable for joining successive passes and these are 
produced automatically by the software. 

9. Feedrate: the relative (cutting) velocity between the tool and the part. 
10. Spindle speed: the rotating speed of the machine tool spindle in rpm. 
A tool database of flat-end mills was built, consisting of eight different tools with 

diameters ranging from 20 to 100 mm. These tools were selected from the SECO® tools 
catalogue [15]. The use of a specific tool database aims at simulating industrial practice, 
where a certain number of tools are available. In addition, any set of available tools can be 
used, as long as they have properly been registered in the database. This particular tool 
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diameter range was chosen according to the parts’ dimensions and operations the tools are to 
perform. Apart from tool geometry and dimensions, the database includes technical 
characteristics, such as insert types, number of inserts, power constraint, and a recommended 
value ranges for feedrate and cutting speeds etc. These characteristics are associated with each 
corresponding machining tool and used in the milling strategy definition. 

In order to accurately model the rough machining problem, it is essential to define all the 
physical and technological constraints. Α typical example concerns machining power demand 
being bounded by the available machine tool motor. These are referred to as technological 
constraints and implemented before the evaluation. The technological constraints are modeled 
through equations and value limits in the application and, thus, a solution is penalized if it lies 
outside the predefined field. Quality constraints refer to the quality of an objective with 
respect to the pre-set limits, e.g. total machining time is assigned upper and lower bounds, as 
a result of experience. Quality constraint checking is performed after each evaluation. 

Equation (1) expresses cutting power demand, Pc (in KW), [15], as function of some of the 
machining parameters. Part material for the present study was Al belonging to material group 
16 in [15], leading to the choice of tool insert. Cutting conditions have to be chosen so as not 
to conflict with tool characteristics, e.g. tool depth of cut, maximum rpm, etc. 

c
fep

c k
vaa

P ×
×

××
=

η60000000
 (1)

where 
pa   = depth of cut (mm)  

ea   = tool engagement (mm) 

fv   = cutting speed (mm/min) 
η   = efficiency of machine spindle motor 

ck   = cutting force per surface unit (N/mm²) depending on the part material type. 
In general, in machining processes, it is desired to obtain a final machined product with 

certain properties. Main desired properties comprise surface finish, dimensional tolerances in 
critical parts of the product, etc., provided that machining time or tool lifts are as small or as 
few as possible, etc. Thus, apart from results related to the product itself, quality requirements 
for machining processes involve process characteristics and performance, because of 
productivity demands imposed by industrial manufacturing. Nowadays, CAM systems offer a 
variety of functionalities and advanced features that improve performance of CNC machine 
tools in production. However, built-in optimization algorithms in either CAM systems or 
CNC machine tool control software operate as “local” optimization routines; although they 
optimize given functions, they fail to offer optimized solutions for the machining process, 
which is left to the CNC machine tool operators or the G-code programmers.  

In most cases, CAM system users must develop their own software in order to fully exploit 
the system’s capabilities and to tailor it according to their production needs. In this sense, the 
present authors developed an optimization environment that interacts with a CAM software, 
feeding it with proper input, calculating functions and extracting information regarding the 
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machining statistics, e.g. machining time, number of tool lifts, toolpath length, etc, and the 
resulting product geometry. The outputs were utilized to evaluate machining parameters 
efficiency in obtaining the machining goal that was decided beforehand. In the present study, 
the goal was twofold; to minimize (a) the machining time and (b) the remaining material 
volume after machining simulation. 

3 OPTIMIZATION METHODS 
In multi-objective problems, the most popular optimization principle is Pareto optimality. 

There are several variations and methods [16], [14], which are based on this principle. In the 
same sense, there are previously proposed methods which achieve a reduction of the 
computational cost, notably artificial neural networks (ANNs) [4]. In the present work the 
multi-objective optimization was based on conventional EAs, EAs supported by ANNs and 
the, still EA-based, “n-player game” (n – number of objectives) - introduced by John Nash 
[11]. The principle of Nash theory is a non-cooperative game in which n different players 
strive to optimize n different objectives. The same optimization problems were addressed 
through the use of two methods which produce a Pareto front (EAs, EAs assisted by IPE) and 
a method which produces a single point (EAs – Nash, equilibrium point). 

The three optimization approaches have been implemented using the EA optimization 
software EASY. The optimization software was used in combination with the evaluation 
software of geometry nature (Fig. 2). The evaluation process incorporates machining 
simulation software which comes up with the machining time and a model in the form of a 
surface triangular mesh representing the rough machined part. The remaining material volume 
is calculated by subtracting the volume of the final sculptured part from the rough machined 
model's volume. 

The optimization software stands for a generalization of Genetic Algorithms and Evolution 
Strategies with several add-on features and, for this reason, it will be referred to as an 
Evolutionary Algorithm. The EA is characterized by 3 numbers (µ, κ, λ) which denote the 
evolution from the parent population of µ individuals to the offspring population of λ 
individuals, while allowing maximal life span of individuals equal to κ generations. A set of ε 
elite or archival individuals is maintained during the evolution. 

A comparison is made between conventional EAs, EAs assisted with computational cost 
reduction techniques [5] and an EA based on Nash’s theory for a two-player non-cooperative 
game. The formation of the two-player game required additional software for handling the 
communication between players, the assignment of variables and objectives. The design 
variables and objectives are divided between the two players and each player performs its 
own search based on its own objective function with the values of the other player’s variables 
kept fixed. Upon completion of the so-called cycle, during which there is no communication 
between players, these exchange the best so-far computed values, Fig. 3. Thus, the optimizer 
is invoked twice during each cycle, once for each player. The next cycle continues after 
replacing the fixed values of the previous cycle with the updated ones provided by 'the other' 
player. The optimization process ends up with convergence to the Nash equilibrium point. 
Although the concept of merging EAs and Nash theory (NT) has also been used in the past 
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[12], it is useful to make a comparison with other more tested techniques. 

 
Figure 2: Flowchart of the evaluation steps that need to be carried out for each and every candidate solution, 

regardless of the optimization method used. 
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Figure 3: Two-player Nash game: exchange of information after search tasks held in isolation. 

4 PRACTICALITIES 
All variables handled by the EA were binary encoded. Taking into account the 10 free 

variables of the problem at hand, a suitable population size was selected, with µ = 10 parents, 
λ = 50 offspring and ε = 20 elites. The number of parents, offspring and elites was the same in 
all test problems.  

Concerning the utilization of the Inexact Pre-Evaluation (IPE) phase, local Radial Basis 
Function (RBF) [6] networks were used as surrogate evaluation tools with the number of 
exact evaluations per generation varying between 10 and 25. The IPE technique was activated 
after having evaluated 200 individuals, generated during the first EA generations. 

 During the Nash game optimization each variable was assigned to a single player. The 
variable assignment and their lower and upper bounds are depicted in Table 1. Variable IDs 
correspond to the assignment of Section 2. Among the 10 design variables there are those 
which take on integer values, encoded using 1-3 bits each (Vars. 1, 5, 8) and those which take 
on real values encoded with 10 bits each (Vars. 2, 3, 4, 6, 7, 9 and 10). The variable bounds 
and their assignment to players was the same in all test problems. 

During the two-player game, a choice was made about the number of internal single 
objective generations; in the present work, this is equal to five. Any number larger than that 
increased significantly the computational cost and any number less than that did not achieve a 
significant proximity to the Pareto front. 
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Variable ID Lower Bound Upper Bound Player 1 Player 2
1 1 8 x  
2 0.1 99.9 x 
3 0.5 3.0 x 
4 0.1 6.0 x  
5 1 4 x  
6 0.1 90.0 x  
7 0.1 2.7 x 
8 0 1 x 
9 0.0 1.0 x 

10 10.0 6000.0 x  
 

Table 1 : Variables’ value fields and player assignment. 

During the machining process, each turbomachinery blade was treated as made of two 
sculptured parts, one forming the pressure side and the other the suction side. Thus, all in all, 
five (5) optimization problems had to be solved.  

The chosen machining strategy was raster machining, as this is the most common strategy 
in 3-axis operations (see Fig. 4). Note that the excessive material at the two sides of the 
sculptured part represents part clamping on the machine tool bed. Software developed by the 
authors controls the CAM system while it passes arguments and drives the software to 
execute machining functions. Moreover, it performs checks for all the arguments ensuring 
consistency of the code and realistic results. The application inputs ten values that define a 
certain machining strategy and outputs two values, as mentioned before (machining time and 
remaining volume). 

 
Figure 4: (a) Raster toolpath strategy at a given z-height for the suction side of the turbomachinery blade. (b) A 

typical rough machining result. 

5 METHOD APPLICATION – RESULTS AND DISCUSSION 
The optimization process, when based on standard EAs, is quite costly as it takes up to one 

full day run on a Pentium IV computer. Aiming at lowering the overall optimization time, the 
process was streamlined through the Inexact Pre-Evaluation (IPE) phase in order to avoid a 
great amount of unnecessary computations. Through the use of IPE, the number of exact 
evaluations is significantly reduced. 
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Figure 5: Hip prostheses testcase: Nash equilibrium along with Pareto fronts (EAs -3018 evaluations, EAs – IPE 

2220 evaluations, EAs – Nash 1550 evaluations)   
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Figure 6: Industrial compressor  - Nash equilibrium and Pareto fronts– (a) Pressure side(EAs -2418 evaluations, 
EAs – IPE 1185 evaluations, eAs – Nash 1050 evaluations), (b) Suction side(EAs -3000 evaluations, EAs – IPE 

1929 evaluations, EAs – Nash 1050 evaluations). 
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Figure 7: Extruded 2D turbomachinery blade - Nash equilibrium and Pareto fronts– (a) Pressure side(EAs -2447 

evaluations, EAs – IPE 1282 evaluations, EAs – Nash 1050 evaluations), (b) Suction side(EAs -2439 
evaluations, EAs – IPE 1165 evaluations, EAs – Nash 1050 evaluations). 
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Through the use of the optimization tool for the design of the machining process, a Pareto 
front was computed for each of the five test cases. Results are depicted in Fig. 5-7 and 
compared with the performance of EAs assisted by IPE. The gain by the IPE assisted code is 
obvious as the Pareto was captured after a fraction of the computational time that is required 
for the evaluation of each individual of the population. The number of evaluations required 
through the use of IPE ranges from 40 up to 65 per cent of the total evaluations that would be 
required without the use of IPE.  

The results of the two-player game implementation can be evaluated by comparing the 
Nash equilibrium point with the corresponding Pareto fronts. As shown in Figs. 5-7, the two-
player game has an advantage over typical EAs with respect to computing cost. The 
convergence to the Nash equilibrium point is very fast resulting in a solution compared to the 
Pareto fronts which were computed after twice as many evaluations. When the two-player 
game is compared with the Pareto fronts computed through EAs assisted by IPE, the 
computational costs for both are of the same order.  

In order to compare Pareto fronts computed through the use of EAs with and without IPE a 
“front of fronts” was formed by merging the two fronts and eliminating dominated solutions. 
In Figs 8-9, a magnified view of the “front of fronts” for the hip prostheses testcase can be 
seen along with the fronts for the extruded airfoil testcase. 
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Figure 8: Hip prosthesis part testcase - Computed “front of fronts” (EAs + EAs-IPE) 
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Figure 9: Extruded 2D turbomachinery blade testcase – Computed “front of fronts” – (a) Pres. side, (b) Suc. side. 

The optimization methods used result to a set of optimal machining solutions for each of 
the studied cases. In each of the above diagrams, there are three discrete areas of solutions as 
far as rough machining is concerned; the first is the series of solutions appearing parallel to 
the “volume” axis, the second parallel to the “time” axis, and the third near the origin. When 
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these optimal solutions are translated back in terms of machining process parameters, these 
three areas clearly share common characteristics. The first area refers to machining with the 
goal of minimal machining time, the second with the goal of minimal remaining volume. In 
the third area, arbitrary solutions dwell, which simultaneously minimize machining time and 
remaining volume. The first two areas appear to be connected to a different cutting tool 
varying from case to case, while the third area favors greater variety of tools. Moreover, some 
variables seem to reach a specific value and vary very little around it, a typical example being 
spindle speed, with encountered values in the range 5700 to 5950 rpm. Other variables vary 
across their whole range in all three areas. 

As can be seen in Figs 5-7, the Nash equilibrium point seems to lie in the first area, where 
machining time is minimal. The criterion for distributing the input variables to the two players 
was near-equality of the sum of the 'statistical influences' of each player’s variables, as this 
was calculated in [9]. It is likely that, for a different distribution of variables, if one player 
takes up all the influential and the other all the non-influential variables, the Nash equilibrium 
point might have lied in other areas of the Pareto fronts. These three areas allow the machinist 
to choose a (group of) solution(s), in order to achieve his goal. Should this goal be more 
oriented towards one of the two directions – reflected by the two objectives, then, it would be 
wise to properly weigh the objectives. E.g. if machining time minimization is the critical and 
remaining volume is a secondary target, (this might be the case if a semi-finishing machining 
operation follows) a candidate weighing could be 2/3 and 1/3 for the two objectives, 
respectively. The choice of proper weights is dependent on the machinist’s experience and his 
suggestions on the process planning. 

6 CONCLUSIONS 
The use of optimization methods for rough machining parameter selection enables realistic 

and practical application of the latter. The use of EAs offers the ability to choose from a 
variety of non-dominated solutions. Concerning computational cost, the use of IPE improves 
performance a lot. Nash game is as fast as EAs with IPE, but results in a single equilibrium 
point. In the particular applications studied, EAs with IPE proved to be a practical tool 
offering a variety of possibilities linked to the user's personal preference towards less 
remaining material volume or less machining time. This methodology can be extended to 
finish machining of sculptured parts using an appropriate process model, redefined objectives 
and new quality characteristics. 
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