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Abstract. This paper summarizes progress, recently made in the Lab. of Thermal Tur-
bomachines of NTUA, on the formulation and use of the continuous adjoint methods in
aerodynamic shape optimization problems. The basic features of state of the art adjoint
methods and tools which are capable of handling arbitrary objective functions, cast in the
form of either boundary or field integrals, are presented. Starting point of the presentation
is the formulation of the continuous adjoint method for arbitrary integral objective func-
tionals in problems governed by arbitrary, linear or nonlinear, first or second order state
pde’s; the scope of this section is to demonstrate that the proposed formulation is general
without being restricted to aerodynamics. It is noticeable that, regardless of the type of
functional (field of boundary integral) the expressions of its gradient with respect to the
design variables include boundary integrals only. Thus, the derived adjoints can be used
with either structured or unstructured grids and there is no need for repetitive remeshing
or computation of field integrals which increase the CPU cost and deteriorate the com-
putational accuracy. Then, the presentation focuses on aerodynamic shape optimization
problems governed by the compressible fluid flow equations, numerically solved through a
time-marching formulation and an upwind discretization scheme for the convection terms.
Two design problems, namely the inverse design of a 2D cascade at inviscid flow condi-
tions (used as a test bed for the assessment of three descent algorithms based on the same
gradient information) and the design optimization of a 3D peripheral compressor cascade
for minimum viscous losses are presented. For the latter, the flow is turbulent and the field
integral of entropy generation, recently proposed by the same authors, is used as objective
function.
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1 INTRODUCTION

Historically, Lions1 was the first to handle, using control theory, a design problem gov-
erned by pde’s. Later, Pironneau2 introduced the adjoint method in design problems
governed by elliptic equations and Jameson3 extended it to transonic flows. Nowadays,
the relevant literature is large; it includes applications such as inverse design of airfoils
and wings,4,5 sonic boom reduction6,7 supersonic design,8,9 shock minimization10,11 and
turbomachinery designs for steady or unsteady flows.12–14

The so–called continuous adjoint method, where this paper focuses on, relies on a math-
ematical development which considers the variation in the augmented objective function
Faug; the latter is formed by the flow equations R multiplied by the Lagrange multipliers
(Ψ, the so–called adjoint or co–state variables) and added to the objective function F . By
eliminating the effect of variations in flow quantities on the variation in Faug, the adjoint
equations and their boundary conditions are derived. The remaining terms express the
gradient of the objective function with respect to the design variables which, after being
numerically computed, can be used to drive any descent method to the optimal solution.

Most of the published works on the adjoint techniques are tailored to either structured
or unstructured grids. Regardless of the discretization scheme, the grid type becomes
important whenever the objective functional is a field integral; in this case, the functional
gradient may include field integrals of the variations in nodal coordinates or other geomet-
rical quantities. The standard way to compute these terms is by bifurcating one design
variable at a time, defining the corresponding flow domain, remeshing it and numerically
integrating over the grid nodes. However, such a treatment introduces inaccuracies and
increases the computational cost. Recently, Jameson15–17 proposed an adjoint formulation
for inviscid flows with a unified gradient expression for structured and unstructured grids.
The herein presented method is a much more general grid type independent formulation
and, as it will be shown, is valid for both inviscid and viscous flows. Regardless of the
objective functional used, which might be an either surface or boundary integral, the
gradient expression consists only of surface integrals. The lack of field integrals is very
advantageous in terms of both computational cost and gradient accuracy.

For the purpose of maximum generalization, the adjoint formulation if first presented
for general pde’s (hypothetical state equations), before specializing in the Navier–Stokes
equations. The field integral of entropy generation, expressed in terms of temperature
and velocity gradients, serves as objective function in problems targeting at the design
of blades with minimum viscous losses. The adjoint formulation for the inverse design
of blades is also presented in brief. Two turbomachinery applications are demonstrated;
more applications, related to the design of isolated airfoils, ducts or turbomachinery
blades, can be found in other publications19–22 by the same authors.
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2 GENERAL ADJOINT FORMULATION

Let us consider a domain Ω ∈ Rn (with coordinates xi, i = 1, ..., n) and its boundary
S; The shape of S, or a part of it, is determined by the vector of design variables b,
associated with the parameterization scheme. Let us also consider that the governing
(state) equations are first–order linear pde’s in terms of the state variables U , namely

RΩ = EΩ
i

∂U

∂xi

+ HΩU = 0 (1)

for the interior of Ω and

RS = ES
i

∂U

∂xi
+ HSU = 0 (2)

along its boundary S. EΩ
i , HΩ, ES

i , HS are independent of U . Our target is to find b that
minimizes a functional F (U) subject to eqs. (1) and (2). In general, F may consist of a
field and a boundary integral,

F = FΩ + FS =
∫
Ω

(
BΩ

i

∂U

∂xi
+ CΩU

)
dΩ +

∫
S

(
BS

i

∂U

∂xi
+ CSU

)
dS (3)

where BΩ
i , CΩ, BS

i , CS are independent of U . Note that xi = xi(b) and U = U(xi(b), b).
The augmented functional is formed by introducing field and boundary Lagrange multi-
pliers ΨΩ and ΨS,

Faug = FΩ + FS +
∫
Ω

ΨΩRΩdΩ +
∫

S
ΨSRSdS (4)

and its variation with respect to the design variables yields

δFaug =
∫
Ω

[
BΩ

i δ

(
∂U

∂xi

)
+ CΩδU

]
dΩ +

∫
Ω

(
BΩ

i

∂U

∂xi
+ CΩU

)
δ(dΩ)

+
∫

S

[
BS

i δ

(
∂U

∂xi

)
+ CSδU

]
dS +

∫
S

(
BS

i

∂U

∂xi
+ CSU

)
δ(dS)

+
∫
Ω

ΨΩ

[
EΩ

i δ

(
∂U

∂xi

)
+ HΩδU

]
dΩ +

∫
S

ΨS

[
ES

i δ

(
∂U

∂xi

)
+ HSδU

]
dS (5)

Since

δU = δU(xi(b), b) =
∂U

∂xk
δxk +

∂U

∂b
δb

its spatial derivative yields

∂(δU)

∂xi

=
∂2U

∂xi∂xk

δxk +
∂U

∂xk

∂(δxk)

∂xi

+
∂

∂xi

(
∂U

∂b

)
δb (6)

3



Dimitrios I. Papadimitriou and Kyriakos C. Giannakoglou

Also

δ

(
∂U

∂xi

)
=

∂2U

∂xi∂xk

δxk +
∂

∂b

(
∂U

∂xi

)
δb (7)

The last terms on the r.h.s. of eqs. (6) and (7) are equal so, by subtracting them, we get

δ

(
∂U

∂xi

)
=

∂(δU)

∂xi
− ∂U

∂xk

∂(δxk)

∂xi
(8)

Using eq. (8) and the Gauss’ divergence theorem, terms such as
∫
Ω BΩ

i δ
(

∂U
∂xi

)
dΩ, in eq.

(5), can be transformed to∫
Ω

BΩ
i δ

(
∂U

∂xi

)
dΩ =

∫
S

BΩ
i δUnidS +

∫
Ω

BΩ
i

∂2U

∂xi∂xk
δxkdΩ −

∫
S

BΩ
i

∂U

∂xk
δxknidS (9)

Another “disturbing” field integral in eq. (5) is that depending on δ(dΩ). The last term,
which stands for the variation in “internal” finite volumes or areas due to boundary vari-
ations, will be analyzed on a 2D structured grid, using the associated metrics. However,
the resulting expression is general and can be applied to either structured or unstructured,
2D or 3D, grids.

So, at a 2D structured grid node, dΩ = Jdξdη, where J = xξyη − xηyξ is the Jacobian of
the transformation. Since dξ and dη are invariant quantities, δ(dΩ) = (δJ)dξdη, where

δJ = (δx)ξyη + xξ(δy)η − (δx)ηyξ − xη(δy)ξ

The relation between covariant and contravariant grid metrics gives

δJ = J [(δx)ξξx + (δx)ηηx + (δy)ξξy + (δy)ηηy] = J [(δx)x + (δy)y]

or, in general

δ(dΩ) =
∂(δxk)

∂xk
dΩ (10)

Eq. (10) is metrics free and is, therefore, a general relation valid for both structured and
unstructured grids.

Through eq. (10) and the Gauss’ divergence theorem, the term
∫
Ω BΩ

i
∂U
∂xi

δ(dΩ) yields∫
Ω

BΩ
i

∂U

∂xi
δ(dΩ) = −

∫
Ω

BΩ
i

∂2U

∂xi∂xk
δxkdΩ +

∫
S

BΩ
i

∂U

∂xi
δxknkdS (11)

By adding eqs. (9) and (11), so as to form (a part of) eq. (5), the two field integrals on
their r.h.s. are eliminated. By further developing eq. (5), it takes the form
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δFaug =
∫
Ω

(
−EΩ

i

∂ΨΩ

∂xi
+ HΩΨΩ + CΩ

)
(δU − ∂U

∂xk
δxk)dΩ︸ ︷︷ ︸

FAE

+
∫

S

(
BS

i + ES
i ΨS

) ∂(δU)

∂xi
njdS︸ ︷︷ ︸

ABC

+
∫

S

(
BΩ

i + EΩ
i ΨΩ + CS + HSΨS

)
δUnidS︸ ︷︷ ︸

ABC

−
∫

S
BΩ

i

∂U

∂xk

δxknidS︸ ︷︷ ︸
BSD

+
∫

S
BΩ

i

∂U

∂xi

δxknkdS︸ ︷︷ ︸
BSD

+
∫

S
CΩUδxknkdS︸ ︷︷ ︸

BSD

−
∫

S
EΩ

i ΨΩ
∂U

∂xk
δxknidS︸ ︷︷ ︸

BSD

+
∫

S
BS

i

∂U

∂xi
δ(dS)︸ ︷︷ ︸

BSD

+
∫

S
CSUδ(dS)︸ ︷︷ ︸

BSD

(12)

After satisfying the Field Adjoint Equation (FAE) over Ω

− EΩ
i

∂ΨΩ

∂xi
+ HΩΨΩ + CΩ = 0 (13)

and the Adjoint Boundary Conditions (ABC) over S

(BS
i + ES

i ΨS)
∂(δU)

∂xi
nj = 0

(BΩ
i + EΩ

i ΨΩ + CS + HSΨS)δUni = 0 (14)

the remaining terms give the Boundary Sensitivity Derivatives (BSD)

δFaug = −
∫

S
BΩ

i

∂U

∂xk
δxknidS +

∫
S

BΩ
i

∂U

∂xi
δxknkdS +

∫
S

CΩUδxknkdS

−
∫

S
EΩ

i ΨΩ
∂U

∂xk
δxknidS +

∫
S

BS
i

∂U

∂xi
δ(dS) +

∫
S

CSUδ(dS) (15)

Further development of eq. (15) so as to derive the gradient of F (or Faug) with respect
to b, depends on the chosen parameterization.

The presence of nonlinearities, in either the state equations or F , is not a problem at all.
For instance, by adding an extra field integral such as

Fn =
∫
Ω

GΩ
ij

∂U

∂xi

∂U

∂xj
dΩ (16)

to the objective function, eq. (3), its variation is written as

δFn =
∫

Ω
GΩ

ijδ(
∂U

∂xi
)
∂U

∂xj
dΩ +

∫
Ω

GΩ
ij

∂U

∂xi
δ(

∂U

∂xj
)dΩ +

∫
Ω

GΩ
ij

∂U

∂xi

∂U

∂xj

∂(δxk)

∂xk
dΩ
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or

δFn = − 2
∫
Ω

GΩ
ij

∂2U

∂xj∂xi
(δU − ∂U

∂xk
δxk)dΩ︸ ︷︷ ︸

FAE

+
∫

S
GΩ

ijδU
∂U

∂xj

nidS︸ ︷︷ ︸
ABC

+
∫

S
GΩ

ijδU
∂U

∂xi

njdS︸ ︷︷ ︸
ABC

−
∫

S
GΩ

ij

∂U

∂xk

∂U

∂xj

δxknidS︸ ︷︷ ︸
BSD

−
∫

S
GΩ

ij

∂U

∂xk

∂U

∂xi

δxknjdS︸ ︷︷ ︸
BSD

+
∫

S
GΩ

ij

∂U

∂xi

∂U

∂xj

δxknkdS︸ ︷︷ ︸
BSD

(17)

with evident contributions to the field and boundary adjoint equations as well as the
functional gradient; note that the latter includes only boundary integrals.

Similarly, in the presence of any second–order term, the variation in the second–order
derivative should be transformed to the second–order derivative of the variation. By
computing the second–order derivative of δU

∂2(δU)

∂xi∂xj
=

∂2

∂xi∂xj
(
∂U

∂b
)δb +

∂3U

∂xi∂xj∂xk
δxk +

∂2U

∂xi∂xk

∂(δxk)

∂xj

+
∂2U

∂xj∂xk

∂(δxk)

∂xi
+

∂U

∂xk

∂2(δxk)

∂xi∂xj

the variation in the second–order derivative

δ(
∂2U

∂xi∂xj
) =

∂3U

∂xi∂xj∂xk
δxk +

∂

∂b
(

∂2U

∂xi∂xj
)δb

and eliminating the common terms, we get

δ(
∂2U

∂xi∂xj
) =

∂2(δU)

∂xi∂xj
− ∂2U

∂xi∂xk

∂(δxk)

∂xj
− ∂2U

∂xj∂xk

∂(δxk)

∂xi
− ∂U

∂xk

∂2(δxk)

∂xi∂xj
(18)

By means of eq. (18) and the Gauss’ divergence theorem, the second–order adjoint equa-
tions and boundary conditions can be derived.

3 AERODYNAMIC SHAPE OPTIMIZATION

3.1 Flow Equations

The state equations in vector form for a compressible fluid flow, (i=1,2 in 2D and i=1,2,3
in 3D), are

�R(�U, xk, b) =
∂�U

∂t
+

∂ �f inv
i

∂xi
− ∂ �f vis

i

∂xi
= �0 (19)
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where xk stand for the Cartesian coordinates and �U =
[
ρ, �V , E

]T
is the vector of conser-

vative variables, �V is the velocity and E = ρe + 1
2
ρu2

i is the total energy per unit volume.
The inviscid and viscous fluxes are given by

�f inv
i =

⎡
⎢⎣ ρui

ρui
�V + p�δi

ui(E + p)

⎤
⎥⎦ , �f vis

i =

⎡
⎢⎣ 0

�τi

ujτij + qi

⎤
⎥⎦ (20)

where �τi are the viscous stresses, with

τij = µ(
∂ui

∂xj
+

∂uj

∂xi
) + λδij

∂uk

∂xk
, λ = −2

3
µ (21)

�δi, δij are the Kronecker symbols and qi = k ∂T
∂xi

.

3.2 Objective Functionals

Inverse design problems in which a desirable pressure distribution over the blade surfaces
Sw (or a part of it) is specified can be handled through the standard objective functional

F =
1

2

∫
Sw

(p − ptar)
2dS (22)

In this case, it is convenient that F is defined over the part of the domain boundary that
is also associated with the shape parameterization. The corresponding development has
been presented elsewhere19 and will be omitted in the interest of space. Thanks to the
theory presented in the previous section, the gradient of F is free of field integrals.

The objective functional19 that is also used in this paper is a field integral expressing the
viscous losses due to the boundary layer formation. It is written in terms of entropy s
generation as

F =
∫
Ω

ρui
∂s

∂xi
dΩ (23)

It can be shown that eq. (23) is equivalent to the difference in mass averaged entropy s
between the inlet to and the outlet from the flow domain. Note that eq. (23) is restricted
only to profile losses in a cascade of duct. According to Denton,18 who used eq. (23) to
estimate losses in cascade flows, F is also expressed in terms of temperature and velocity
gradients as

F =
∫

Ω

τij

T

∂ui

∂xj
dΩ (24)

and, after using eqs. (8) and (10) while assuming that the spatial derivatives of the
viscosity coefficient are negligible, its variation reads

δF = −
∫
Ω

τij

T 2

∂ui

∂xj

(
δT − ∂T

∂xk

δxk

)
dΩ − 2

∫
Ω

∂

∂xj

(
τij

T

)(
δui − ∂ui

∂xk

δxk

)
dΩ

− 2
∫

Sw

τij

T

∂uj

∂xk
niδxkdS +

∫
Sw

τij

T

∂ui

∂xj
δxknkdS (25)
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3.3 The Adjoint Problem

The variation in the augmented objective functional reads

δFaug = δF +
∫
Ω

�ΨT δ

⎛
⎝∂ �f inv

i

∂xi

− ∂ �f vis
i

∂xi

⎞
⎠ dΩ (26)

where

∫
Ω

�ΨT δ

⎛
⎝∂ �f inv

i

∂xi

⎞
⎠ dΩ = −

∫
Ω

⎛
⎝δ�UT − ∂�U

∂xk

T

δxk

⎞
⎠
⎛
⎝AT

i

∂�Ψ

∂xi

⎞
⎠ dΩ

+
∫

Ω

�ΨT ∂

∂xk

⎛
⎝∂ �f inv

i

∂xi

⎞
⎠ δxkdΩ −

∫
Sw

∂�U

∂xk

T

An
T �ΨδxkdS +

∫
Sw

Ψi+1niδpdS

+
∫

Sw

(Ψi+1p − �ΨT �f inv
i )δ(nidS) +

∫
Si,o

δ�UT (AT
n
�Ψ)dS (27)

and19

∫
Ω

�ΨTδ

⎛
⎝∂ �f vis

i

∂xi

⎞
⎠ dΩ =

−
∫
Ω

⎛
⎝δ�U − ∂�U

∂xk
δxk

⎞
⎠T ⎛⎝AT

i

∂�Ψ

∂xi

⎞
⎠ dΩ −

∫
Ω

⎛
⎝δ �W − ∂ �W

∂xk
δxk

⎞
⎠T

�KdΩ

+
∫
Ω

�ΨT ∂

∂xk

⎛
⎝∂ �f inv

i

∂xi
− ∂ �f vis

i

∂xi

⎞
⎠ δxkdΩ −

∫
Sw

∂�U

∂xk

T

(Ai
T ni)�ΨδxkdS

+
∫

Sw

ΨiniδpdS +
∫

Sw

(Ψip − �ΨT �f vis
i )δ(nidS) +

∫
Si,o

δ�UT (AT
n
�Ψ)dS +

+
∫

Sw

δui

[
µ

(
∂Ψj+1

∂xi
+uj

∂Ψm

∂xi
+

∂Ψi+1

∂xj
+ui

∂Ψm

∂xj

)
+λδij

(
∂Ψk+1

∂xk
+uk

∂Ψm

∂xk

)
−Ψmτij

]
njdS

+
∫

Sw

δT

(
k
∂Ψm

∂xi
ni

)
dS −

∫
Sw

Ψmδ(qjnjdS) +
∫

Sw

Ψmqjδ(njdS)

−
∫

Sw

Ψi+1

ni

[δτijninj + τijδ(ninj)]dS +
∫

Sw

Ψi+1

ni

τijδ(ninj)dS −
∫

Sw

uiΨmδτijnjdS

−
∫

Sw

∂ui

∂xl

[
µ

(
∂Ψj+1

∂xi

+uj
∂Ψm

∂xi

+
∂Ψi+1

∂xj

+ui
∂Ψm

∂xj

)
+λδij

(
∂Ψk+1

∂xk

+uk
∂Ψm

∂xk

)]
δxlnjdS

+
∫

Sw

∂T

∂xk

(
k
∂Ψm

∂xi

)
δxknidS −

∫
Sw

⎛
⎝�ΨT ∂ �f vis

i

∂xk

⎞
⎠ δxknidS (28)

where m = 4 for 2D flows and m = 5 for 3D flows. The variation in Faug is finally written
as

8
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δFaug = −
∫
Ω

τij

T 2

∂ui

∂xj

(
δT − ∂T

∂xk
δxk

)
dΩ︸ ︷︷ ︸

FAE

− 2
∫
Ω

∂

∂xj

(
τij

T

)(
δui − ∂ui

∂xk
δxk

)
dΩ︸ ︷︷ ︸

FAE

− 2
∫

Sw

τij

T

∂uj

∂xk

niδxkdS︸ ︷︷ ︸
BSD

+
∫

Sw

τij

T

∂ui

∂xj

δxknkdS︸ ︷︷ ︸
BSD

−
∫

Sw

∂�U

∂xk

T

(Ai
T ni)�ΨδxkdS︸ ︷︷ ︸

BSD

−
∫
Ω

⎛
⎝δ�U − ∂�U

∂xk
δxk

⎞
⎠T ⎛⎝AT

i

∂�Ψ

∂xi

⎞
⎠ dΩ

︸ ︷︷ ︸
FAE

−
∫
Ω

⎛
⎝δ �W − ∂ �W

∂xk
δxk

⎞
⎠T

�KdΩ

︸ ︷︷ ︸
FAE

+
∫

Sw

ΨiniδpdS︸ ︷︷ ︸
BCW

+
∫

Sw

(Ψip − �ΨT �f inv
i )δ(nidS)︸ ︷︷ ︸

BSD

+
∫

Si,o

δ�UT (AT
n
�Ψ)dS︸ ︷︷ ︸

BCIO

+

+
∫

Sw

δT

(
k
∂Ψm

∂xi
ni

)
dS︸ ︷︷ ︸

BCW

−
∫

Sw

Ψmδ(qjnjdS)︸ ︷︷ ︸
BCW

+
∫

Sw

Ψmqjδ(njdS)︸ ︷︷ ︸
BSD

−
∫

Sw

Ψi+1

ni
[δτijninj + τijδ(ninj)]dS︸ ︷︷ ︸

BCW

+
∫

Sw

Ψi+1

ni
τijδ(ninj)dS︸ ︷︷ ︸
BSD

−
∫

Sw

uiΨmδτijnjdS︸ ︷︷ ︸
BCW

−
∫

Sw

∂ui

∂xl

[
µ

(
∂Ψj+1

∂xi
+uj

∂Ψm

∂xi
+

∂Ψi+1

∂xj
+ui

∂Ψm

∂xj

)
+λδij

(
∂Ψk+1

∂xk
+uk

∂Ψm

∂xk

)]
δxlnjdS︸ ︷︷ ︸

BSD

+
∫

Sw

∂T

∂xk

(
k
∂Ψm

∂xi

)
δxknidS︸ ︷︷ ︸

BSD

−
∫

Sw

⎛
⎝�ΨT ∂ �f vis

i

∂xk

⎞
⎠ δxknidS

︸ ︷︷ ︸
BSD

(29)

The Field Adjoint Equations (FAE) are written as

∂�Ψ

∂t
− AT

i

∂�Ψ

∂xi
− M−T �K − M−T �L = �0 (30)

where �K = (K1, Kr+1, Km)T , �L = (L1, Lr+1, Lm)T , r = 1, 2(3), and

K1 =−T

ρ

∂

∂xi

(
k
∂Ψm

∂xi

)

Kr+1 =
∂

∂xj

[
µ

(
∂Ψj+1

∂xr
+uj

∂Ψm

∂xr
+

∂Ψr+1

∂xj
+ur

∂Ψm

∂xj

)
+λδrj

(
∂Ψk+1

∂xk
+uk

∂Ψm

∂xk

)]
−τrj

∂Ψm

∂xj

Km =
T

p

∂

∂xi

(
k
∂Ψm

∂xi

)

9
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L1 =
1

T 2
τij

∂ui

∂xj

(
− p

ρ2(γ − 1)

)

Lr+1 = 2
∂

∂xj

(
µ

T
τrj

)

Lm =
1

T 2
τij

∂ui

∂xj

1

ρ(γ − 1)

Along the solid walls, homogeneous Dirichlet conditions are imposed for Ψr+1. Also
Ψm = 0 for constant wall temperature, or ∂Ψm

∂n
= 0 for adiabatic walls (terms marked with

BCW ). The inlet, outlet conditions (BCIO) are defined so as to eliminate δ�UT (AT
n
�Ψ) = 0.

The remaining terms (BSD) provide the objective function gradient as follows

δFaug = −
∫

Sw

(
�ΨT �f inv

i

)
δ(nidS) −

∫
Sw

∂�U

∂xk

T

(Ai
T ni)�ΨδxkdS +

∫
Sw

⎛
⎝�ΨT ∂ �f vis

i

∂xk

⎞
⎠ δxknidS +

∫
Sw

Ψ4qjδ(njdS) −
∫

Sw

∂ui

∂xl

[
µ

(
∂Ψj+1

∂xi
+uj

∂Ψm

∂xi
+

∂Ψi+1

∂xj
+ui

∂Ψm

∂xj

)

+ λδij

(
∂Ψk+1

∂xk
+uk

∂Ψm

∂xk

)]
δxlnjdS −

2
∫

Sw

τij
∂uj

∂xk

niδxkdS +
∫

Sw

1

T
τij

∂ui

∂xj

δxknkdS (31)

which is independent of field integrals, although the functional was, in fact, a field integral.

4 METHOD APPLICATION

4.1 Inverse Design of a Symmetric Cascade–Inviscid Flow

The first problem is concerned with the inverse design of a symmetric cascade at zero
stagger angle, fig. (1) The flow is considered to be inviscid with axial inlet flow and exit
isentropic Mach number equal to M2,is = 0.3. The airfoil is parameterized using seven
Bezier control points per side, including the leading and trailing edges. The chordwise
locations of all control points are fixed and symmetric around midchord. A coarse 61×21
H-type structured grid is used.

A target pressure distribution is defined over the airfoil contour and the objective function
is that of eq. (22) The target pressure distribution was created beforehand, by solving the
Euler equations for a cascade with a known airfoil shape created using the same parame-
terization scheme. Iso–Mach contours and grid within the target geometry are shown in
fig. 1, left.

10
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The objective function gradient values obtained for the initial airfoil are compared with
the outcome of central finite–differences, which are considered to give “reference” values
for the gradient components. With five degrees of freedom (i.e. the pitchwise coordinate
of the five internal control points for the one of the sides of the symmetric airfoil), the
finite–difference computation required 2×5 = 10 flow analyses. The design variable value
increment (±ε in the central–difference quotient) was set to 10−7 and the flow solver was
allowed to converge up to machine accuracy, with double precision calculations. The com-
parison shown in fig. 1, right, is excellent.

-0.0008

-0.00075

-0.0007

-0.00065

-0.0006

-0.00055

-0.0005

 9  10  11  12  13

y

x

Adjoint
Finite Differences

Figure 1: Inverse Design of a 2D Cascade–Inviscid Flow. Left: Iso–Mach contours and grid in the targeted
geometry. Right: Objective function gradient values obtained using the present adjoint formulation and
a central finite–difference scheme, for the initial airfoil shape.

The convergence of the objective function value is shown in fig. 2, left. Three different
algorithms are used: the steepest descent algorithm with constant stepsize η = 100, the
Fletcher–Reeves conjugate gradient algorithms with η = 100 and the BFGS quasi–Newton
algorithm with η = 1. In fig. 2, right, the reference, initial and optimal control points are
shown using the three aforementioned algorithms.

From fig. 2, we conclude that all three algorithms converge to the global optimal solution.
However, the superiority of QN over the other two and of CG over SD are obvious. BFGS
converges to machine accuracy (the cost function value is lowered to 10−20) in 45 cycles
only. CG lowers the cost function value by eight orders in 100 cycles but, after the 40th
cycle, its convergence becomes dramatically slow. SD requires 40 cycles before stagnating
at 10−10 (starting from a cost of about 10−5). Fig. 2, right, shows the optimal control
points computed after 100 cycles. Despite the different convergence level, the finally com-
puted airfoils are almost identical or, at least, without visible differences. The reference
control points’ error which refer to the global optimum are equal to 10−8, 10−3, 10−2 for
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Figure 2: Inverse Design of a 2D Cascade–Inviscid Flow. Left: Convergence of the objective function
using the Steepest–Descent (SD), the Fletcher–Reeves Conjugate–Gradient (CG) and the BFGS Quasi–
Newton (QN) algorithms. Right: Reference, initial and optimal Bezier control points. Symmetry across
the horizontal and vertical mid–axis can be seen.

the three methods, respectively (with the same CPU cost).

Due to both chordwise and pitchwise symmetry, the design variables can reduce to three.
However, for better visualizing the convergence behavior of the optimization algorithms,
we selected only two of them as design variables while the third one took on its reference
value. Using the three aforementioned algorithms the solution paths are shown in fig. 3.
The shape of the iso–cost curves on the design variable space, which directly determines
the direction and value of the cost function gradient, explains the different convergence
behaviours of the three methods tested.
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Figure 3: Inverse Design of a 2D Cascade–Inviscid Flow. Solution path plotted on the design variables’
space using the Steepest–Descent (SD), left, the Fletcher–Reeves Conjugate–Gradient (CG), middle and
the BFGS Quasi–Newton (QN), right, algorithms. Iso–cost curves are also plotted.

According to these figures, QN and CG converge to the global optimum (machine accu-
racy) in 23 and 90 cycles respectively, whereas SD reduces the cost function value by 7
orders in 100 cycles and continues to drift slowly. The SD convergence rate cannot be
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improved by just increasing the stepsize, as shown by computational experiments (not
shown here).

4.2 Optimization of a 3D Compressor Cascade–Losses Minimization

The design of optimal compressor blades for a 3D peripheral cascade, aiming at minimum
entropy generation due to profile losses within the flow passage is the second problem to
be presented. The isentropic exit Mach number is 0.42, the inlet flow angles are 50o (pe-
ripheral) and 0o (radial) and the chord–based Reynolds number is 105. The cascade has
a (radially constant) stagger angle of 29 deg. An H–type structured grid of 745.855 nodes
is used, generated through elliptic equations. Turbulence is modeled using the Spalart–
Allmaras model; the variation in turbulent viscosity, during the adjoint formulation, is
however neglected.

The blade pressure and suction sides are parameterized using NURBS functions with 13
control points in the longitudinal direction and 5 in the radial one. Only the control
points placed along the hub and tip are directly controlled. The interior control points
in the spanwise direction are obtained by linearly interpolating between those at the hub
and tip. Among all control points, only the peripheral coordinates are free to vary. The
final number of the free variables to be optimized is equal to 28. Constraints are imposed
with respect to the minimum allowed blade thickness ti at n locations .

The algorithm converges in 40 cycles. Fig. 4, left, shows the evolution of the entropy
generation value during the cycles, which, as expected, presents some oscillations during
the first cycles since some infeasible shapes (i.e. thin blades) are produced. This can be
explained by examining fig. 4, right, where the sum of values of the violated geometrical
constraint values

∑
i=1,n max(t̃i − ti , 0) is plotted. During the first cycles, the violation

of the constraints is frequent. Afterwards, close to convergence, some slight violations of
the constraints that inevitably appear can be neglected.

As a consequence of the minimization of entropy generation, the total pressure loss coef-
ficient in the cascade reduces from ω = 0.032 to ω = 0.023. This noticeable improvement
(28%) can be attributed to the fact that the imposed constraints practically allowed a
“reasonable” reduction in blade thickness (10% reduction compared to the initial blade).
The pressure distribution over a part of the peripheral cascade is illustrated in fig 5, right.

The initial and optimal set of control points and the blade contours for the blade hub, fig.
6, and tip airfoils, fig. 7, are also shown. These figures reveal the same tendency for the
blade geometry and control points. The blade contour slope right after the leading edge
becomes milder and the blade tends to become thinner; however any further reduction in
its thickness is avoided due to the constraint imposition.

13



Dimitrios I. Papadimitriou and Kyriakos C. Giannakoglou

 0.00148

 0.0015

 0.00152

 0.00154

 0.00156

 0.00158

 0.0016

 0.00162

 0  5  10  15  20  25  30  35  40  45

E
nt

ro
py

 G
en

er
at

io
n

Cycle

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0  5  10  15  20  25  30  35  40  45

C
on

st
ra

in
t

Cycle

Figure 4: Optimization of a 3D Compressor Cascade. Left: Convergence of entropy generation rate.
Right: Sum of geometrical constraints,

∑
i=1,n max(t̃i − ti , 0), quantifying the violation of constraints at

each cycle.

Figure 5: Optimization of a 3D Compressor Cascade. Left: Mach number distribution for the initial (top)
and the optimal (bottom) blade at midspan. Maximum Mach=0.95, increment=0.0475. 3D computa-
tional grid and pressure distribution over the blade and hub surfaces of the optimal peripheral cascade.
Minimum P=1.4bar, maximum P=2.5bar, increment=0.055bar.

Comments on the convergence trend of the optimization algorithm and the physical mean-
ing of the final solution can be given using fig. 8. The derivatives of the objective func-
tional F measuring the entropy generation with respect to the NURBS control points of
the suction side, are positive at both hub and tip (14 first values); in contrast, the corre-
sponding derivatives for the pressure side control points are negative. Thus, generally, the
blade tends to become thinner. Higher gradient values are computed next to the leading
edge, on both sides, so the front part of the blade tends to become quite thin. Since,
however, the optimization method is constrained by the minimum blade thickness, the
constraint imposition finally leads to a blade of reasonable thickness.
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Figure 6: Optimization of a 3D Compressor Cascade. Initial and optimal control points and blade
contours for the blade hub.
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Figure 7: Optimization of a 3D Compressor Cascade. Initial and optimal control points and blade
contours for the blade tip.
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Figure 8: Optimization of a 3D Compressor Cascade. Objective functional gradient components corre-
sponding to each one of the design variables. The first 14 variables parameterize the suction side (7 for
the tip and 7 for the hub). The remaining ones correspond to the pressure side.
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5 CONCLUSIONS

The continuous adjoint formulation for aerodynamic shape optimization problems was
presented in a grid type independent manner. Even if the objective functional was a
field integral, such as the one used for designing cascades (or ducts) with minimum en-
tropy generation due to viscous losses, the expressions for its gradient with respect to
the design variables are surface integrals. The advantage is important: the gradient is
computed without the extra numerical error caused by field integrals and without extra
computational cost due to remeshing, etc. The presented formulation is general and can
be extended, apart from fluid flow applications, to any problem for which the state equa-
tions are linear or nonlinear pde’s of any order and for any integral objective functional,
as clearly shown above.
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