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ABSTRACT
This paper presents state-of-the-art techniques which enhance noticeably the efficiency of

evolutionary algorithms in aerodynamic shape optimization and, in particular, in turbomachin-
ery blade airfoil design problems. These techniques rely upon the combined use ofhierarchical
(more than one levels of search, using evaluation tools of different modeling accuracy and CPU
cost), distributed (simultaneously evolving population subsets, allowing the regular exchange
of promising solutions between them),metamodel-assisted(many non-promising individuals,
generated during the evolution, are filtered out during the inexact pre-evaluation phase, using
on-line trained artificial neural networks) evolutionary algorithms. Their combination in a sin-
gle search method, abbreviated to HDMAEA or HD(EA-IPE) and ported on a multiprocessor
computing platform, is presented. This method is applied to the design of the stator airfoil of a
highly-loaded compressor cascade. A flow turning of 45◦ at transonic flow conditions is achieved
with markedly low total pressure losses.

INTRODUCTION
In industrial design-optimization problems, particularly those requiring computationally demand-

ing evaluation software, such as Navier-Stokes equations solvers, the advantage of evolutionary al-
gorithms (EAs) in escaping local optima often becomes overshadowed by the excessive evaluations
required to reach the optimal solution(s). To alleviate this problem, several remedies have been pro-
posed. These can be used separately from each other or, as this paper presents, in combination so as
to maximize the reduction in CPU cost and/or wall clock time of the overall optimization task. Four
of these techniques, all of them being used in this paper, are summarized below:

Metamodel-Assisted Evolutionary Algorithms (MAEAs): Metamodels are surrogate evaluation
models which are trained on previously evaluated candidate solutions to the problem. They are
used within the EA to get rid of as many as possible calls to the exact and costly evaluation tool.
Polynomial-based response surfaces (Engelund et al., 1993), statistical methods (Ratle, 1999),
artificial neural networks (Pierret and Van den Braembussche, 1999; Giotis et al., 2000) are
among the most frequently used metamodels. In the literature, MAEAs in which the metamodel
is set up prior to launching the EA (Papila et al., 1999) can be found. Closer interaction between
the EA and the metamodel is achieved by using on-line trained metamodels (Giannakoglou,
1999, 2002; Emmerich et al., 2006). Since the latter are used for the Inexact Pre-Evaluation
of each generation members, this approach will be referred to as EA-IPE; in this paper, terms
MAEA and EA-IPE are used interchangeably. Note that particular attention should be paid
to the use of MAEAs in multi-objective optimization problems, as discussed in Karakasis and
Giannakoglou (2006).

Distributed EAs (DEAs): DEAs rely upon the evolution of a number of small sized sub-populations
or demes, rather than a single population. Optimal performance can be achieved by associating
differently tuned EAs, i.e. EAs with different exploitation and exploration mechanisms, with
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each deme. Demes evolve concurrently and communicate regularly through synchronous or
asynchronous migrations of promising individuals (Tanese, 1989), according to various com-
munication schemes.

Hierarchical EAs (HEAs): An hierarchical EA establishes a multilevel search mechanism with dif-
ferent evaluation tools at each level. By convention, the highest accuracy and CPU cost evalu-
ation software is associated with the highest level which is responsible for delivering the final
optimal solution. At the lower levels, cheaper evaluation tools based on simplified models are
used instead; the lower levels undertake the exploration of the search space and forward promis-
ing individuals to the highest level. Although MAEAs behave as a two-level HEAs, we refrain
from classifying them as such, since the low-level evaluation tool (metamodel) is not a flow
solver, to speak in terms of aerodynamics.

Parallelized EAs: The inherent ability of EAs to allow the concurrent evaluation of their population
members on multiprocessor platforms reduces the wall clock time of the overall optimization.

The combination of some or all of these enhancement techniques within a single EA was the
subject of previous works by the same group. In Karakasis et al. (2003), the distributed variant of
EA-IPE was proposed; multiple EAs, each employing IPE to filter out badly performing individuals,
were combined to form the demes of a distributed EA. In Karakasis et al. (2007), the hierarchical
distributed EA-IPE algorithm was first proposed and tested in internal and external aerodynamics.

The herein described HDMAEA scheme includes two levels of search. A Navier-Stokes time-
marching solver for unstructured grids (high level) and an integral boundary layer method coupled
with an external flow solver (low level) are used. A radial basis function (RBF) network acts as
metamodel. It is used in the local sense, i.e. it is trained on paired input-outputs collected during
the evolution. The training and use of metamodels at each level is carried out separately from the
other level. This means that previous evaluation results are kept in separate databases (DBs) at each
level. The two-level search tool was used for the design of the stator blade airfoil of a highly-loaded
compressor so as to give minimum total pressure losses.

Just a few previous works with similarities to the paper in hand can be reported: the simpler
multilevel approach proposed by Sefrioui and Périaux (2000) and the finite-element method based
flywheel design optimization by Eby et al. (1998), which was based on an island genetic algorithm
with different levels of resolution per island. Note, however, that the present method additionally
employs metamodel-assisted search (the IPE screening) at each level.

THE HD(EA-IPE) SCHEME
The hierarchical optimization algorithm, figure 1, consists of two levels of distributed MAEAs.

At each level, the flow is numerically solved using a different tool, with different accuracy and com-
putational cost. In particular:

• At the high level, a Navier-Stokes (N-S) equation solver based on a time-marching, vertex-
centered finite volume method on unstructured grids with triangular elements is used (Koubo-
giannis et al., 2003). The quasi-3D equations, with variable streamtube thickness in the stream-
wise direction, are solved. The convection terms are discretized by means of Roe’s flux dif-
ference splitting, while for the diffusion terms the assumption of linearly distributed primitive
variables within each triangular element is made. Second order accuracy in space is obtained
through MUSCL extrapolation, while monotonicity is guaranteed by means of appropriate lim-
iters. The Shear Stress Transport (SST) variant of the blendedk−ω turbulence model (Menter,
1993) is used. The role of the high level is to scrutinize design subspaces pinpointed as promis-
ing by the low level search and capture flow features (such as flow separation) which cannot be
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Figure 1: A two-level Hierarchical Distributed Evolutionary Algorithm implemented on parallel
computing systems. Each level is associated with its own evaluation model, database and metamodel.

The metamodels are used according to the IPE concept, as described in the text.

modeled by the low level tool. It is obvious that the optimal solution can be delivered exclu-
sively by the high level.

• At the low level, a viscous-inviscid flow interaction tool is used. In particular, the MSES/MISES
code for external/internal aerodynamics (Giles and Drela, 1987; Drela and Giles, 1987) is em-
ployed. The Euler equations are discretized on a conservative streamline grid and coupled
to a two-equation integral boundary-layer method. Transition prediction is incorporated into
the viscous flow model. The entire discrete equation set is solved as a fully coupled nonlin-
ear system of equations, resulting to a fast code, unless strong flow separation exists. Strong
viscous-inviscid interactions and limited flow separation are successfully dealt with. The role
of the low level is to explore the design space at low CPU cost and, hence, assist the high level
EA by providing promising solutions to it.

The distributed search within each level and the intra-level exchange of information, figure 1,
looks like a normal D(EA-IPE) algorithm (Karakasis et al., 2003). The new feature in HD(EA-IPE) is
the inter-level communication. A level agent coordinates the communication between demes (intra-
level communication), gathers the elite individuals from all of them and, also, distributes the individ-
uals imported from the adjacent level (inter-level communication) to the demes. In particular, after a
predefined number of migrations between the level’s demes, the best individuals from all of them are
gathered and made available to the adjacent level. In return, the latter is requested to provide its own
elite members. Before any level of the HD(EA-IPE) incorporates immigrants originating from an ad-
jacent level, these individuals must be evaluated with the level’s flow analysis tool. It is important not
to merge objective function values computed using different evaluation tools, otherwise the selection
process might be misled. At the high level, an incoming individual from the low level replaces an
existing individual in a deme, only if it performs better than that. If the low level consecutively fails
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to provide the high one with useful individuals, its evolution is terminated. As soon as the inter-level
communication has been accomplished, the demes’ evolution resumes.

In figure 1, each box marked withEA-IPE (Island)represents the standard EA-IPE algorithm,
with µ parents andλ offspring. Its basic steps are described below:

Algorithm IPE (Inexact Pre-Evaluation).λ individuals are generated at random. A conventional
EA (exact evaluations, no metamodels) runs for a few generations (CPU demanding). By doing so,
the DB is populated by the minimum number of entries needed for the metamodel training.

IPE1. [Offspring evaluation] Once the DB contains a sufficient number of entries, IPE starts accord-
ing to the following steps:

IPE1a. [Inexact Pre-Evaluation] For each new population member, a local metamodel (RBFN)
is trained using the closest DB entries. The number of training patterns is not constant but
depends on their distribution in the design space (Giannakoglou et al., 2001; Karakasis
and Giannakoglou, 2004). The trained metamodel approximates the objective function
value for each individual.

IPE1b. [Selection for re-evaluation] Based on the objective function values provided by the
metamodel, theλe (usuallyλe' 0.1λ ) most promising individuals are singled out.

IPE1c. [Exact evaluation] Theλe selected individuals are exactly re-evaluated (CPU demand-
ing) and stored in the DB.

IPE2. [Fitness assignment] A fitness or cost value is assigned to each and every population member.
As such, the outcome of the approximate metamodel-based evaluation or, of course, that of the
exact evaluation is used.

IPE3. [Evolution operators] Parent selection, recombination and mutation of resulting offspring are
performed.

IPE4. [Termination] The algorithm terminates, if a criterion based on either the maximum number
of exact evaluations or that of idle generations is satisfied; otherwise, the evolution continues
from step IPE1a.❚

In the previous algorithm, the two tasks that areCPU demandingare clearly marked. Within each
level, the local metamodels are trained on the outcomes of evaluations carried out using the level’s
flow analysis tool. Working with DEAs, the IPE algorithm is applied to each deme, in the same sense
as previously described for the case of a single population (Karakasis et al., 2003).

In this work, RBFNs are used as metamodels. They consist of a single hidden-neuron layer to per-
form a two-stage mapping: a nonlinear one from the design to the hidden layer’s space followed by a
linear mapping to the objective space. With appropriate selection of the RBF centers, the simplicity
of their architecture reduces their training to the solution of a linear algebraic system of equations
or a linear least-squares problem (Poggio and Girosi, 1990). RBFNs possess valuable properties for
function approximation. Since these are trained on a small subset of the DB entries (local metamod-
els), their training cost is negligible compared even to the cost of an integral boundary layer method.
The training patterns can either be interpolated or approximated, depending on the required network’s
generalization capability (Karakasis and Giannakoglou, 2004).

The HD(EA-IPE) algorithm is implemented so as to take advantage of a multiprocessor system.
The requests for evaluation with a specific flow analysis tool are addressed from all levels to a sin-
gle evaluation server, which assigns accordingly the available computing resources. The evaluation
results are stored in appropriate DBs, one for each level. The use of a multiprocessor system by the
two-level HD(EA-IPE) is also schematically shown in figure 1.
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Figure 2: Parameterization of the optimal profile with a B-spline curve and a 4-control point Bézier
patch curve at the trailing edge (TE) region.

DESIGN OF A HIGHLY-LOADED COMPRESSOR CASCADE
The HD(EA-IPE) method is used for the design of a highly-loaded compressor airfoil, with

minimum total pressure losses at given flow conditions. The flow conditions are: isentropic exit
Mach number M2,is = 0.496, inlet flow angleα1 = 45.0◦, Reynolds number based on airfoil chord
Re= 8.41·105 and inlet turbulence intensityτu = 1.3%. The cascade has fixed axial velocity density
ratio at the value AVDR= 0.907; this corresponds to constant streamtube thickness before the leading
or after the trailing edge and a linear variation between them. It is desirable to have an inlet Mach
number M1 in the range between 0.70 and 0.75 and flow turningα1−α2 of about 45◦ with fully
attached flow. The last two requirements are imposed as constraints, as explained below.

The objective is to minimize the total pressure (pt) loss coefficient

ω =
pt1− pt2

pt1− p1
,

subject to the following geometrical or flow-related constraints:
1. Concerning the airfoil thickness:

• maximum thicknesstmax should exceed 0.10c (c stands for the chord length),
• minimum thicknesst75 in the range 0.65≤ x/c≤ 0.85 should exceed 0.022c and
• minimum thicknesst90 in the range 0.85≤ x/c≤ 0.95 should exceed 0.017c.

2. The maximum curvatureκLE at the airfoil leading edge should not exceed 3.5·102c.
3. The exit flow angle must be -0.5◦ ≤ α2 ≤ 0.5◦.
4. The flow must remain attached, thuscf ≥ 0.0 over the entire airfoil contour.

Note that the fourth constraint intends to strengthen the requirement for attached flow, although flow
separation, if this occurs, affects the objective function, too. All the above constraints were imposed
via exponential penalty function multipliers, increasing the value of the objective function. The meta-
models approximate the penalized objective function.

The airfoil is parameterized using a single 4th-order B-spline curve based on 14 control points.
The trailing edge region is parameterized by a Bézier curve patch with 4 control points (viz. a cubic
polynomial, figure 2). The latter was automatically attached to the B-spline airfoil profile so as not
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to introduce excessive design variables to model a “conventionally shaped” training edge. Design
variables are the B-spline control point coordinates, the stagger angleγ and soliditys/c (i.e. 14·2+
2 = 30 design variables). The latter are allowed to take on values in the rangeγ ∈ [15◦,35◦] and
s/c∈ [0.60,0.70], respectively.

Basic concern in such an optimization problem is to prevent the algorithm from being trapped
into local minima, due to a premature homogenization of the EA population. To avoid this, a high
number of demes is used at both levels of the HD(EA-IPE), although this might cause convergence
deceleration. In particular, 5 demes withµ =λ =40 are used at the low and 3 demesµ =λ = 30 at
the high level. Within each deme, theλe = 0.1λ individuals chosen during the IPE phase are exactly
evaluated. The IPE filter initiates automatically once 100 exact evaluations have been performed; by
doing so, adequate DB entries for the metamodel training are available. The main configuration of
the inter-level communication is outlined below:

High level Low level
Migration frequency (total generations of all demes) 8 120
Elite individuals imported for the first time 30 6
Elite individuals imported otherwise 10 6
Exactly evaluated immigrants 50% 100%

The imported individuals are randomly distributed to the level’s demes, where they replace their
worst members. Especially, at the high level, the replacement occurs only if the imported individual
outperforms the one to be replaced. To save evaluation time during inter-level communication, the
imported individuals at the high level are also pre-evaluated by the metamodel and only the best half
of them are exactly re-evaluated through the N-S solver.

In figure 3 the convergence of HD(EA-IPE) is compared to that of a conventional EA with a
single population ofµ = λ =90 individuals, using the N-S solver as evaluation tool. Even the first
migration of individuals upwards (from the low to the high level) provides a solution which is by
∼ 25% better than that of a conventional EA at just 1/5 of the computational cost. Allowing further
evolution of the HD(EA-IPE) scheme leads to optimal solution improved by∼ 50% compared to
that of the conventional EA. The same figure shows that the additional use of IPE within a HDEA is
advantageous; the corresponding convergence outperforms that of a HDEA with the same population
size but without assistance by the metamodels.

In all previously compared algorithms, the parameterized shape of an industrial cascade airfoil,
designed to operate at different conditions without respecting all of our constraints, has been injected
into the starting population, on purpose. By doing so, one may follow the adaptation of an individual
to its new environment. This initial cascade (a) and indicative intermediate designs during the evolu-
tion are presented in figure 4. It should be noted that airfoils (b) and (c) have practically been located
by the low level tool. The final one, profile (d), was the outcome of search-evolution at the high level.

The optimal airfoil, along with the corresponding control points, has already been shown in fig-
ure 2. For this airfoil, the stagger angle isγ = 15.4◦ and the soliditys/c = 0.699. Figure 5 shows the
computational grid (consisting of 13743 nodes and 26910 triangles) around the optimal cascade and
the computed iso-Mach number contours. The isentropic Mach number distribution in the optimal
cascade is shown in figure 6(a), indicating a shockless flow. In figure 6(b), the friction coefficient is
shown, indicating that no separation occurs (at least according to the turbulence model used). The
optimal cascade turns the flow toα2 = 0.02◦ with total pressure lossesω = 1.75%. Finally, all the
geometrical constraints are respected and in particulartmax = 0.10c, t75 = 0.023c, t90 = 0.017c and
κLE = 3.3·102c.
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Figure 3: Convergence history. The total pressure loss coefficient, penalized to account for the
violation of constraints (if any), of the best solution provided by the higher level is monitored in
terms of CPU cost. Each cost unit is equivalent to the computational cost of solving the Navier-
Stokes equations in a typical cascade geometry. The cost of the evolution of the lower level is also

taken into account.

(a) Geometry:s/c= 0.680,γ = 30.0◦. Flow:
M1 = 0.640 and M2 = 0.487, α2 = 21.2◦,
ω = 2.45%.

(b) Geometry:s/c= 0.748,γ = 25.0◦. Flow:
M1 = 0.708 and M2 = 0.489, α2 = 11.6◦,
ω = 1.42%.

(c) Geometry: s/c = 0.605, γ = 20.8◦.
Flow: M1 = 0.722 and M2 = 0.487, α2 =
5.51◦, ω = 2.15%.

(d) Geometry:s/c= 0.699,γ = 15.4◦. Flow:
M1 = 0.732 and M2 = 0.487, α2 = 0.02◦,
ω = 1.75% (final).

Figure 4: Evolution of the optimal solution.
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(a) Unstructured grid or low-Reynolds number turbulence model compu-
tations.
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Figure 5: Grid and iso-Mach lines in the optimal cascade.

CONCLUSIONS
The design of a highly-loaded optimal airfoil, with 45◦ turning at transonic flow conditions was

made possible using a hierarchical distributed metamodel-assisted evolutionary algorithm. Several
flow related or geometrical constraints have been imposed using penalty multipliers. With a two-level
hierarchical search, using a viscous-inviscid flow interaction method for the exploration of the search
space and a Navier-Stokes equation solver at the high level, the optimal solution can be found with a
considerable economy in CPU cost, compared to EAs without or with just some of the aforementioned
“enhancements”. The use of metamodels within each level and their on-line training on the results of
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Figure 6: Isentropic Mach number and friction coefficient distributions of the optimal cascade flow,
giving M2 = 0.487,α2 = 0.02◦ andω = 1.75%.
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previous evaluations at the same level proved to be one of the keys for reducing the CPU cost.
The studies presented in this paper have been carried out using the optimization softwareEASY v1.5

(EvolutionaryAlgorithmsSYstem)) developed and brought to market by NTUA (EASY, 2006).
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