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ABSTRACT
This paper presents an adjoint-based grid adaptation algorithm which, in turbomachinery

CFD, is capable of computing integral functionals with desiredaccuracy. Unstructured grid
enrichment, moving and smoothing strategies are employed,driven by a sensor that is based on
the functional error estimates. Their combined use allows the computation of integral quanti-
ties where the error is less than a user defined threshold, on grids with a “reasonable” number
of nodes. For the demonstration of the proposed method two integral functionals are used: the
first is the entropy generation field integral accounting forprofile losses in a cascade and the
second stands for the total pressure losses between the cascade inlet and outlet. The studies pre-
sented in the results section are concerned with losses associated with the laminar flow through
a compressor cascade. Turbulent flow cases are expected to behave similarly as long as the exact
discrete adjoint equations are used but this is beyond the scope of this paper.

INTRODUCTION
The role of the adjoint method in the optimization of aerodynamic shapes is widely known. The

formulation and numerical solution of adjoint equations provides the objective function’s gradient
with respect to the design variables, which drives descent algorithms to the optimal solution. A dif-
ferent application of the adjoint method is related to errorestimation in computing functional integrals
by post processing the outcome of the numerical solution of partial differential equations on a given
grid. This error can be used as a sensor for optimal grid refinement methods leading to adapted grids
on which the functional output has the desirable accuracy.

The method which is known as posteriori error estimation forfunctional correction and grid adap-
tation was proposed by Giles (1998); see also Giles and Pierce (1999, 2002), Giles and Suli (2002),
Pierce and Giles (2004) in external aerodynamics. Another variant of the method has been introduced
by Venditti and Darmofal (1999). They proposed the combineduse of two grids, namely a coarse
grid on which the flow and adjoint equations are solved and a fine one on which the functional is es-
timated. The method was first applied to quasi-one dimensional flows, Venditti and Darmofal (2000),
to compute the integral of the static pressure. Two dimensional applications can be found in Venditti
and Darmofal (2001, 2002), where the functional of interestis the airfoil lift or drag. Viscous effects
have been taken into account, Giles et al. (1997), Venditti and Darmofal (2003), and the method was
extended to 3D problems by Park (2002).

In the present paper, an extension of the method to turbomachinery applications is proposed. Two
functionals which quantify losses in turbomachinery blades are used. They correspond to the entropy
generation due to profile losses and the averaged total pressure losses between the inlet to and the
outlet from the cascade. Though the physical significance ofboth functionals is the same, they lead
to different adjoint problems; entropy losses are expressed as a field integral, in contrast to the total
pressure losses which are given by a boundary integral alongthe inlet and outlet cascade boundaries.
So, the difference between the functionals lies on the source terms appearing in the adjoint equations.

The programmed software was applied to the error estimationof the two functionals and the
subsequent grid adaptation over a 2D compressor cascade, inlaminar flow. The extension to turbulent
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flows is straightforward as long as an additional adjoint equation is formulated and solved, taking
into account the variation in turbulent viscosity (under progress). To the authors’ opinion, however,
testing the proposed method on laminar flows is adequately illustrative.

The flow solver used for the present work is a time–marching Euler/Navier–Stokes equations
solver for unstructured grids, based on the finite–volume technique and an upwind formulation, em-
ploying the Roe’ s approximate Riemann solver (Roe (1981)) with variables extrapolation to account
for second-order accuracy and the use of the van Leer–van Albada limiter (van Albada et al. (1982)).
The point–implicit Jacobi scheme is used for both the flow andadjoint equations.

A POSTERIORI ERROR ANALYSIS
Our objective is to compute an integral quantityf (U), whereU is the vector of the flow variables,

with the desired accuracy and the lowest possible CPU cost, i.e. using a grid of minimum size. As
proposed by Venditti and Darmofal (1999), an iterative scheme utilizing two computational grids per
cycle can be used: acoarseone (indexH; UH for instance, denotes the flow variables computed on
the coarse grid nodes), on which flow equationsRH(UH) = 0 and functionalfH(UH) are computed
with low accuracy and at low cost, and afine one (indexh) on which we refrain from performing
computations. Instead, whatever needed on the fine grid is interpolated from the coarse one using
the prolongation operatorI ; either linear or quadratic interpolation can be used basedon nodal in-
formation from the segment vertices to interpolate data on the new segment midnode. The quadratic
operator interpolates data on the midnode using nodal values and gradients. The operator which was
chosen for the present work was quadratic due to higher accuracy. Thusfh(UI) = fh(IUH). From

fh(Uh) ≈ fh(UI)+
∂ fh
∂Uh

|UI (Uh−UI) (1)

Rh(Uh) ≈ Rh(UI)+
∂Rh

∂Uh
|UI (Uh−UI) = 0 (2)

where ∂ fh
∂Uh

|UI and ∂Rh
∂Uh

|UI are computed usingUI , which leads to the functional estimate

fh(Uh) ≈ fh(UI)−
∂ fh
∂Uh

|UI

[

∂Rh

∂Uh
|UI

]−1

Rh(UI) = fh(UI)−ΨT
h Rh(UI) (3)

where
[

∂Rh

∂Uh
|UI

]T

Ψh =

(

∂ fh
∂Uh

|UI

)T

(4)

To circumvent the numerical solution of eq. 4 on the fine grid,we solve

[

∂RH

∂UH

]T

ΨH =

(

∂ fH
∂UH

)T

(5)

on the coarse grid and, then, prolongateΨH on the fine grid, by means of a prolongation operatorJ,
to getΨJ = JΨH . By doing so, the functional is approximated by

f̃h(Uh) ≈ fh(UI)−ΨT
J Rh(UI) (6)
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FUNCTIONALS FOR TURBOMACHINERY APPLICATIONS
(a) The first functional expresses the entropy generation over the flow domainΩ

f (U) =

∫

Ω
ρui

∂s
∂xi

dΩ =

∫

Ω

1
T

τi j
∂ui

∂x j
dΩ (7)

whereτi j is the stress tensor. In contrast to functionals used in previous similar works (such as the lift
or drag), this functional is a field integral over the whole flow domain.
(b) The second functional accounts for total pressure (t) losses and is expressed as the difference in
area averagedpt between the cascade inlet and outlet. We define

f (U) =
∫

Sin

ptdS−
∫

Sout

ptdS (8)

but since the inletpt is fixed and known, the first integral is eliminated.

GRID ADAPTATION
This section presents two adaptation strategies employed during the numerical computations. The

first one is grid embedding adaptation (h-refinement) according to the sensor described in the subse-
quent subsection; it is the same sensor that drives the grid moving adaptation strategy, used as either
alternative or complementary adaptation technique.

Grid Embedding Adaptation
Starting from eq. 3, the estimated error in the functionalf (U) can be related to the local residual

of the primal (R(U)) or the adjoint (RΨ(Ψ)) solutions, as follows

fh(Uh)− fh(UI) = ΨT
J Rh(UI)+(Ψh−ΨJ)

T Rh(UI) (9)

or

fh(Uh)− fh(UI) = ΨT
J Rh(UI)+

(

RΨ
h (ΨJ)

)T
(Uh−UI) (10)

where the residual of the adjoint equations on the fine grid is

RΨ
h (Ψ) ≡

[

∂Rh

∂Uh
|UI

]T

Ψ−

(

∂ fh
∂Uh

|UI

)T

(11)

The last terms in eqs. 9 and 10 stand for the error in the computed correction of the functional.
Venditti and Darmofal (2002, 2003) recommend the followingadaptation parameterηk = εk

eo
where

eo = e0
Nh

, e0 is a user-defined threshold for the integral output error,Nh is the number of fine grid nodes
andεk is the adjoint based estimate of the error, computed over thefine grid nodes as follows

εk =
1
2

{

| [QhΨH −LhΨH ]Tk [Rh(LhUH)]k |+ | [QhUH −LhUH]Tk

[

RΨ
h (LhΨH)

]

k
|
}

(12)

with Lh andQh being linear and quadratic extrapolation operators, accordingly. In a grid enrichment
method, the nodalηk is scatter added to the grid edges and those marked withηk > 1 should be re-
fined. The h-refinement used is a triangle embedding technique presented by Giotis et al. (2001) and
terminates when the global error in the computed correctiondrops below the predefined threshold.

3



Grid Moving Adaptation
Apart from grid embedding, the computational accuracy off (U) can be improved using adapta-

tion based on a fixed number of grid points and fixed connectivity among them, i.e. the so-called grid
moving adaptation. With the availableηk values, grid nodes are moved using a weighted modified
Laplacian filter (Liakopoulos and Giannakoglou (2006)). For each internal node, a surrounding poly-
gon is defined according to the shortest edge emanating from this node, fig. 1. The position vectors
of the polygon vertices are given by

−→r j ′ = −→r i +ρi,min

−→r i j

|−→r i j |
, ρi,min = min(|−→r i j |) (13)

Each grid node moves according to the following expression (ω=relaxation factor)

−→
r∗ i = (1−ω)−→r i +ω

∑ni
j=1ηk

−→r j ′

∑ni
j=1ηk

(14)

towards the centroid of its surrounding polygon; its vertices act as point sources with intensity pro-
portional toηk so as to reduce the distance between nodes in areas where the error is high. Due to eq.
14, grid smoothing is implicit to the previously described grid moving adaptation.

i

j

j’ i

j

Figure 1: Grid moving adaptation. The new constrained surrounding polygon (dashed line). The
feasible area lies within the surrounding polygon even in extreme cases.

METHOD APPLICATION
The use of the proposed algorithm is demonstrated in the numerical prediction of the subsonic

flow in a compressor cascade (αin = 47◦, Mout,is = 0.37). In our attempt to get results which are
not affected by errors due to the omitted adjoints to the turbulent model equations (this omission is
actually, the standard practice), the flow is considered to be laminar (Re= 1000). The algorithm’s
behavior is examined using different values for the error threshold and four different scenarios for the
adaptation. In conformity with figure captions, these are:

• Scenario A: grid adaptation is restricted to grid embedding, i.e. theηk basedh–refinement.

• Scenario B: grid adaptation includes alternating use of grid moving and h–refinement adapta-
tion between cycles.

• Scenario C: stands for the most "aggressive" approach, where both gridmoving andh–refinement
are applied at each cycle.

• Scenario D: similar to Scenario A, after employing the smoothing technique proposed by Li-
akopoulos and Giannakoglou (2006) to the initial grid.
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• Uniformly Refined: the flow equations are solved directly on a sequence of uniformly refined
grids, each generated from the previous after splitting each parent triangle into four triangles.

In order to assess the gain in CPU cost, figs. 2 and 3 compare results obtained using scenarios
A,B,C and the uniformly refined grids with the entropy generation acting as the integral functional.
Convergence plots and results with different preset error thresholds are shown. Since, apart from CPU
cost, memory requirements are also of concern, let us state that the adjoint adaptation procedure has
higher memory requirements than the numerical solution of the flow equations, increased by a factor
of approximately 1.9.

In addition, Richardson extrapolation was applied to the two values obtained by the last two
uniformly refined grids so as to get a reference value to compare with. The same procedure was also
followed for the calculation of total pressure losses and the associated errors. The functional values
plotted in figs. 2 and 3 include the correction imposed by eq. 6, the effect of which can be clearly
seen in fig. 4, where the corrected values come closer to the asymptotic limit. Applying h-refinement
and grid moving adaptation alternatively seems to stagnatethe convergence curve since, at the grid
moving cycle, the solution of the adjoint equations imposesadditional CPU cost without significantly
improving the accuracy. However, applying both h-refinement and grid moving adaptation at all
cycles (Scenario C) yields faster convergence than scenarios A or B.

As expected, the use of low error threshold results in a more accurate estimate of the functional,
though CPU and memory requirements increase accordingly. Even for higher accuracy (e0 = 5×
10−5) the method proves to be better than solving on a very fine grid, both in terms of memory and
CPU cost. Indicatively, computing the functional with an error tolerance of 10−4 costs about 2300
CPU seconds and yields a finally adapted grid of 22968 nodes. Also, the cost for meeting an error
tolerance of 5×10−5 is 2800 CPU seconds and the final grid possesses 32075 nodes. Note that, in
all figures, the horizontal axis is in logarithmic scale. Comparing the three adaptation approaches
(Scenarios A,B and C) in terms of final grid size does not lead to definite conclusions about the
superiority for any of them.
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Figure 2: Integral functional : corrected field integral of entropy generation – error threshold
e0 = 10−4. Error convergence plots for scenarios A,B and C versus CPU cost and grid size. Here
and in all subsequent figures as well as the ensuing discussion, A,B and C correspond to the corrected

functional values according to eq. 6, if not stated differently.
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Figure 3: Integral functional : corrected field integral of entropy generation – error threshold
e0 = 5×10−5. Error convergence plots for scenarios A,B and C versus CPU cost and grid size.

A second series of tests are concerned with the method application to the prediction of total pres-
sure losses in the same cascade, figs. 5 and 6. In all cases, thefinal grid size obtained by the adaptation
method is about four times less than that of the uniformly refined grids which provides the reference
- asymptotic solution. The CPU cost follows the same trend, falling four to six times below that
required by the uniformly refined grids. In this case, Scenario B behaves poorly and converges to a
value which is notably different than the asymptotic limit.

Finally, when the initial grid was smoothed prior to its adaptation, the method is faster and the
computed value is closer to the asymptotic limit, regardless of the threshold used (e0 = 10−4 or
e0 = 5×10−5, fig. 7)

In figure 8 the starting grid and two of the final grids, properly adapted to reduce the error in
entropy generation and total pressure losses prediction, are presented. In both cases, the proposed
method causes intense adaptation of the grid inside the boundary layer and wake.

In all cases the memory requirements (taking into account the 1.9 factor) of the a posteriori adap-
tation starting from a coarse grid is less than the memory required to solve the flow equations on the
corresponding fine grid, which has four times as many elements.

A comment on how the so-called asymptotic limit values are approached, in all cases examined, is
due. Note that the starting grid is not adequate for laminar flow computations; this grid is unacceptably
coarse close to the airfoil contour and in the wake. So, for the initial grid as well as those resulted
from the very first adaptation cycles, although entropy generation constantly increases (figs. 2, 3,
4), total pressure losses decrease (figs. 5, 6). This is attributed to (a) numerical solution errors due
to the locally coarse grid (b) integration errors for the same reason. Once the adapted grid becomes
“acceptable” for laminar flow computations, the convergence curves for the two functionals behave
similarly (both entropy and total pressure losses increase; see for instance figs. 5 and 6, after the
second adaptation cycle).

CONCLUSIONS
A posteriori error analysis (which, thus far, has almost exclusively been used in external aero-

dynamics) together with h-refinement and grid movement was successfully applied to the accurate
prediction of two integral functionals, related to the flow developed within a 2D compressor cascade.
These functionals are the entropy generation due to profile losses and the total pressure losses. The
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Figure 4: Integral functional : corrected field integral of entropy generation – error threshold
e0 = 5×10−5. Effect of correction on the estimated functional error.

solution of the adjoint equations provided corrections to the estimated functionals, while further im-
provements in accuracy were achieved through the combined use of grid embedding and moving.
Similar beneficial effects were obtained by smoothing the initial grid prior to the adaptation proce-
dure. The method’s extension to turbulent and three–dimensional flows is under progress.
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Figure 6: Integral functional : corrected total pressure losses – error thresholde0 = 5×10−5. Error
convergence plots for scenarios A and C versus CPU cost and grid size.
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Figure 7: The effect of smoothing the starting grid prior to the adaptation procedure. The threshold
used iseo = 10−4 for the estimation of the entropy generation andeo = 10−5 for the total pressure

losses.
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Figure 8: Starting grid (top), intermediate and finally adapted gridsfor accurately predicting entropy
generation (left),pt losses (right). Note that the starting grid is far from beingadequate for the

numerical solution of the laminar cascade flow.

Figure 9: Close-up view of the final grid, close to the leading and trailing edge of the airfoil; this is
the outcome of the total pressure losses based adaptive algorithm.
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