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ABSTRACT

This paper presents an adjoint-based grid adaptation algathm which, in turbomachinery
CFD, is capable of computing integral functionals with desiredaccuracy. Unstructured grid
enrichment, moving and smoothing strategies are employedyiven by a sensor that is based on
the functional error estimates. Their combined use allowstie computation of integral quanti-
ties where the error is less than a user defined threshold, orrigls with a “reasonable” number
of nodes. For the demonstration of the proposed method two tegral functionals are used: the
first is the entropy generation field integral accounting for profile losses in a cascade and the
second stands for the total pressure losses between the cade inlet and outlet. The studies pre-
sented in the results section are concerned with losses assted with the laminar flow through
a compressor cascade. Turbulent flow cases are expected tdage similarly as long as the exact
discrete adjoint equations are used but this is beyond the spe of this paper.

INTRODUCTION

The role of the adjoint method in the optimization of aeraaiyinc shapes is widely known. The
formulation and numerical solution of adjoint equationsyides the objective function’s gradient
with respect to the design variables, which drives desdgotithms to the optimal solution. A dif-
ferent application of the adjoint method is related to eesirmation in computing functional integrals
by post processing the outcome of the numerical solutioradigd differential equations on a given
grid. This error can be used as a sensor for optimal grid nefme methods leading to adapted grids
on which the functional output has the desirable accuracy.

The method which is known as posteriori error estimatioridactional correction and grid adap-
tation was proposed by Giles (1998); see also Giles andd{@899, 2002), Giles and Suli (2002),
Pierce and Giles (2004) in external aerodynamics. Anotaeant of the method has been introduced
by Venditti and Darmofal (1999). They proposed the combinge of two grids, namely a coarse
grid on which the flow and adjoint equations are solved andeadire on which the functional is es-
timated. The method was first applied to quasi-one dimeasitows, Venditti and Darmofal (2000),
to compute the integral of the static pressure. Two dimeraiapplications can be found in Venditti
and Darmofal (2001, 2002), where the functional of inteieste airfoil lift or drag. Viscous effects
have been taken into account, Giles et al. (1997), Vendittiarmofal (2003), and the method was
extended to 3D problems by Park (2002).

In the present paper, an extension of the method to turbamerghapplications is proposed. Two
functionals which quantify losses in turbomachinery bkades used. They correspond to the entropy
generation due to profile losses and the averaged totalypeekssses between the inlet to and the
outlet from the cascade. Though the physical significandsotf functionals is the same, they lead
to different adjoint problems; entropy losses are expikasea field integral, in contrast to the total
pressure losses which are given by a boundary integral akeniglet and outlet cascade boundaries.
So, the difference between the functionals lies on the saigrons appearing in the adjoint equations.

The programmed software was applied to the error estimatiahe two functionals and the
subsequent grid adaptation over a 2D compressor cascddmiimar flow. The extension to turbulent
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flows is straightforward as long as an additional adjointagiqun is formulated and solved, taking
into account the variation in turbulent viscosity (undeogress). To the authors’ opinion, however,
testing the proposed method on laminar flows is adequatestriative.

The flow solver used for the present work is a time—marchintpriavier—Stokes equations
solver for unstructured grids, based on the finite—volurohrigyue and an upwind formulation, em-
ploying the Roe’ s approximate Riemann solver (Roe (1981t}) variables extrapolation to account
for second-order accuracy and the use of the van Leer—vaadalbmiter (van Albada et al. (1982)).
The point—implicit Jacobi scheme is used for both the flow aalidint equations.

A POSTERIORI ERROR ANALYSIS

Our objective is to compute an integral quantity) ), whereU is the vector of the flow variables,
with the desired accuracy and the lowest possible CPU cestusing a grid of minimum size. As
proposed by Venditti and Darmofal (1999), an iterative sebeitilizing two computational grids per
cycle can be used: @oarseone (indexH; Uy for instance, denotes the flow variables computed on
the coarse grid nodes), on which flow equati®pgUy ) = 0 and functionalfy (Uy) are computed
with low accuracy and at low cost, andfiae one (indexh) on which we refrain from performing
computations. Instead, whatever needed on the fine gridaspolated from the coarse one using
the prolongation operatdr, either linear or quadratic interpolation can be used basedodal in-
formation from the segment vertices to interpolate datehemew segment midnode. The quadratic
operator interpolates data on the midnode using nodal saned gradients. The operator which was
chosen for the present work was quadratic due to higher acgurhusfy(U;) = f,(IUy). From
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To circumvent the numerical solution of eq. 4 on the fine gnid,solve
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on the coarse grid and, then, prolongd#e on the fine grid, by means of a prolongation operator
to getW; = JWy. By doing so, the functional is approximated by

fa(Un) & fa(U1) — WIR(U)) (6)



FUNCTIONALS FOR TURBOMACHINERY APPLICATIONS
(a) The first functional expresses the entropy generation ¢nefidw domain

oui
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whererij is the stress tensor. In contrast to functionals used inque\similar works (such as the lift
or drag), this functional is a field integral over the wholenvldomain.

(b) The second functional accounts for total pressyréoéses and is expressed as the difference in
area averagep: between the cascade inlet and outlet. We define

F(U) :/ odS— [ pds ®)
n Sout
but since the inlepy is fixed and known, the first integral is eliminated.

GRID ADAPTATION

This section presents two adaptation strategies emplayeagthe numerical computations. The
first one is grid embedding adaptation (h-refinement) adogrib the sensor described in the subse-
guent subsection; it is the same sensor that drives the gnding adaptation strategy, used as either
alternative or complementary adaptation technique.

Grid Embedding Adaptation
Starting from eq. 3, the estimated error in the functioi&l ) can be related to the local residual
of the primal R(U)) or the adjoint R¥(W)) solutions, as follows

fn(Un) — fa(U1) = WIR(U)) + (Wh — W3)T Ry(U)) (9)

or

fo(Un) — fi(U1) = WTR(U1) + (RE(W)) (Un—U) (10

where the residual of the adjoint equations on the fine grid is
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The last terms in eqs. 9 and 10 stand for the error in the caedpedrrection of the functional.
Venditti and Darmofal (2002, 2003) recommend the followadgaptation parametey = ;—z where

€ = ,%, o is a user-defined threshold for the integral output eMgis the number of fine grid nodes
andg Is the adjoint based estimate of the error, computed ovdirteegrid nodes as follows

& = % {\ [QnWh — LaWh]x [Ra(LaUn)]| + | [QnUH — LaUn]g [RFP(LhWH)] k‘} (12)

with L, andQy, being linear and quadratic extrapolation operators, atagly. In a grid enrichment
method, the nodaty is scatter added to the grid edges and those markednyith 1 should be re-
fined. The h-refinement used is a triangle embedding tecbrpgesented by Giotis et al. (2001) and
terminates when the global error in the computed correatiops below the predefined threshold.



Grid Moving Adaptation

Apart from grid embedding, the computational accuracy (@f ) can be improved using adapta-
tion based on a fixed number of grid points and fixed connégtarnong them, i.e. the so-called grid
moving adaptation. With the availabig values, grid nodes are moved using a weighted modified
Laplacian filter (Liakopoulos and Giannakoglou (2006))r €ach internal node, a surrounding poly-
gon is defined according to the shortest edge emanating fiamade, fig. 1. The position vectors
of the polygon vertices are given by

Ty=T +pi7min‘;>—:;‘a Pi,min = Min(| 7ij |) (13)

Each grid node moves according to the following expressigrré¢laxation factor)
N —
— =1 Ty
r‘i=1-w) T -|—ooz'r}i7J
2 j=1"k

towards the centroid of its surrounding polygon; its vasi@act as point sources with intensity pro-
portional tony so as to reduce the distance between nodes in areas whereothis Bigh. Due to eq.
14, grid smoothing is implicit to the previously describedignoving adaptation.

>1
Figure 1. Grid moving adaptation. The new constrained surroundidggom (dashed line). The
feasible area lies within the surrounding polygon even tnesie cases.

(14)

j

METHOD APPLICATION

The use of the proposed algorithm is demonstrated in the ncah@rediction of the subsonic
flow in a compressor cascadei{ = 47°, Mouis = 0.37). In our attempt to get results which are
not affected by errors due to the omitted adjoints to theulert model equations (this omission is
actually, the standard practice), the flow is consideredettaininar Re= 1000). The algorithm’s
behavior is examined using different values for the erroeghold and four different scenarios for the
adaptation. In conformity with figure captions, these are:

e Scenario A grid adaptation is restricted to grid embedding, i.e.fh®&ased-refinement.

e Scenario B grid adaptation includes alternating use of grid movingd arefinement adapta-
tion between cycles.

e Scenario C stands for the most "aggressive" approach, where bothmgridng andrefinement
are applied at each cycle.

e Scenario D similar to Scenario A, after employing the smoothing tegbe proposed by Li-
akopoulos and Giannakoglou (2006) to the initial grid.
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¢ Uniformly Refined: the flow equations are solved directly on a sequence of umlforefined
grids, each generated from the previous after splittingy @acent triangle into four triangles.

In order to assess the gain in CPU cost, figs. 2 and 3 comparksrebtained using scenarios
A,B,C and the uniformly refined grids with the entropy getieraacting as the integral functional.
Convergence plots and results with different preset elmasholds are shown. Since, apart from CPU
cost, memory requirements are also of concern, let us $tatelte adjoint adaptation procedure has
higher memory requirements than the numerical solutioheflow equations, increased by a factor
of approximately 1.9.

In addition, Richardson extrapolation was applied to the talues obtained by the last two
uniformly refined grids so as to get a reference value to coenwéh. The same procedure was also
followed for the calculation of total pressure losses aredatsociated errors. The functional values
plotted in figs. 2 and 3 include the correction imposed by egh® effect of which can be clearly
seen in fig. 4, where the corrected values come closer to yimegstic limit. Applying h-refinement
and grid moving adaptation alternatively seems to stagih@&eonvergence curve since, at the grid
moving cycle, the solution of the adjoint equations impasdditional CPU cost without significantly
improving the accuracy. However, applying both h-refinetreerd grid moving adaptation at all
cycles (Scenario C) yields faster convergence than saenAror B.

As expected, the use of low error threshold results in a moearate estimate of the functional,
though CPU and memory requirements increase accordinglgn Eor higher accuracye§ = 5 x
10~°) the method proves to be better than solving on a very fing bdth in terms of memory and
CPU cost. Indicatively, computing the functional with amcertolerance of 10* costs about 2300
CPU seconds and yields a finally adapted grid of 22968 nodés, e cost for meeting an error
tolerance of 5¢< 10~° is 2800 CPU seconds and the final grid possesses 32075 nodgsthit, in
all figures, the horizontal axis is in logarithmic scale. Quamng the three adaptation approaches
(Scenarios A,B and C) in terms of final grid size does not leaddfinite conclusions about the
superiority for any of them.
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Figure 2: Integral functional : corrected field integral of entropyngeation — error threshold

ep = 1074, Error convergence plots for scenarios A,B and C versus CG#dt/and grid size. Here

and in all subsequent figures as well as the ensuing diseygsi® and C correspond to the corrected
functional values according to eq. 6, if not stated difféigen
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Figure 3: Integral functional : corrected field integral of entropyngeation — error threshold
e = 5x 107°. Error convergence plots for scenarios A,B and C versus GRtJand grid size.

A second series of tests are concerned with the method apiphdo the prediction of total pres-
sure losses in the same cascade, figs. 5 and 6. In all casésatlggid size obtained by the adaptation
method is about four times less than that of the uniformlynefigrids which provides the reference
- asymptotic solution. The CPU cost follows the same treatinf four to six times below that
required by the uniformly refined grids. In this case, ScenBrbehaves poorly and converges to a
value which is notably different than the asymptotic limit.

Finally, when the initial grid was smoothed prior to its atidjn, the method is faster and the
computed value is closer to the asymptotic limit, regaslietthe threshold usedq = 10~ or
e =5x 107>, fig. 7)

In figure 8 the starting grid and two of the final grids, propeatlapted to reduce the error in
entropy generation and total pressure losses predictrerpr@sented. In both cases, the proposed
method causes intense adaptation of the grid inside thedaoytayer and wake.

In all cases the memory requirements (taking into accownit factor) of the a posteriori adap-
tation starting from a coarse grid is less than the memonyired to solve the flow equations on the
corresponding fine grid, which has four times as many elesnent

A comment on how the so-called asymptotic limit values ag@g@ched, in all cases examined, is
due. Note that the starting grid is not adequate for laminar domputations; this grid is unacceptably
coarse close to the airfoil contour and in the wake. So, ferititial grid as well as those resulted
from the very first adaptation cycles, although entropy gatien constantly increases (figs. 2, 3,
4), total pressure losses decrease (figs. 5, 6). This ibatid to (a) numerical solution errors due
to the locally coarse grid (b) integration errors for the saason. Once the adapted grid becomes
“acceptable” for laminar flow computations, the convergeaarves for the two functionals behave
similarly (both entropy and total pressure losses incresse for instance figs. 5 and 6, after the
second adaptation cycle).

CONCLUSIONS

A posteriori error analysis (which, thus far, has almostiesieely been used in external aero-
dynamics) together with h-refinement and grid movement wasessfully applied to the accurate
prediction of two integral functionals, related to the floevdloped within a 2D compressor cascade.
These functionals are the entropy generation due to profileels and the total pressure losses. The
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Figure 4: Integral functional : corrected field integral of entropyngeation — error threshold
ep = 5 x 102, Effect of correction on the estimated functional error.

solution of the adjoint equations provided correctionsh® éstimated functionals, while further im-
provements in accuracy were achieved through the combisediigrid embedding and moving.
Similar beneficial effects were obtained by smoothing thiingrid prior to the adaptation proce-
dure. The method’s extension to turbulent and three—dimapakflows is under progress.
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Figure 9: Close-up view of the final grid, close to the leading anditmgikedge of the airfoil; this is
the outcome of the total pressure losses based adaptivetiaigo
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