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Abstract: An overview of modern optimization methods, including Evolutionary Al-
gorithms (EAs) and gradient–based optimization methods adapted for Cluster and Grid
Computing is presented. The basic tool is a Hierarchical Distributed Metamodel–Assisted
EA supporting Multilevel Evaluation, Multilevel Search and Multilevel Parameterization.
In this framework, the adjoint method computes the first and second derivatives of the
objective function with respect to the design variables, for use in aerodynamic shape
optimization. Such a multi–component, hierarchical and distributed scheme requires par-
ticular attention when Cluster or Grid Computing is used and a much more delicate
parallelization compared to that of conventional EAs.

1. FROM PARALLEL CFD TO PARALLEL OPTIMIZATION

During the last decade, the key role of CFD-based analysis and optimization methods in
aerodynamics has been recognized. Concerning the flow analysis tools, adequate effort has
been put to optimally port them on multiprocessor platforms, including cluster and grid
computing. Nowadays, there has been a shift of emphasis from parallel analysis to parallel
optimization tools, [1]. So, this paper focuses on modern stochastic and deterministic
optimization methods as well as hybrid variants of them, implemented on PC clusters
and enabled for grid deployment.

The literature on parallel solvers for the Navier–Stokes is extensive. Numerous relevant
papers can be found in the proceedings of the past ParCFD and other CFD–oriented
conferences. We do not intend to contribute further in pure parallel CFD, so below we
will briefly report the features of our parallel flow solver, which is an indispensable part
of our aerodynamic shape optimization methods and the basis for the development of
adjoint methods. Our solver is a Favre–averaged Navier–Stokes solver for adaptive un-
structured grids, based on finite–volumes, with a second–order upwind scheme for the
convection terms and parallel isotropic or directional agglomeration multigrid, [2]. For a
parallel flow analysis, the grid is partitioned in non-overlapping subdomains, as many as
the available processors. The grid (or graph) partitioning tool is based on a single-pass
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multilevel scheme including EAs, graph coarsening algorithms and heuristics, [3]. This
software is as fast as other widely used partitioning tools, [4], and produces optimal par-
titions with evenly populated subdomains and minimum interfaces. An updated version
of the software overcomes the restrictions of recursive bisection and is suitable for use in
heterogeneous clusters.

The aforementioned Navier–Stokes solver is used to evaluate candidate solutions in the
framework of various shape optimization methods, classified to those processing a single
individual at a time and population–based ones. It is evident that the parallelization
mode mainly depends upon the number of candidate solutions that can simultaneously
and independently be processed. Optimization methods which are of interest here are the
Evolutionary Algorithms (being by far the most known population–based search method)
and gradient–based methods. EAs have recently found widespread use in engineering
applications. They are intrinsically parallel, giving rise to the so–called Parallel EAs
(PEAs). Metamodel–Assisted EAs (MAEAs,[5], [6]) and Hierarchical Distributed MAEAs
(HDMAEAs, [6]) are also amenable to parallelization. We recall that MAEAs are based
on the interleaving use of CFD tools and surrogates for the objective and constraint
functions, thus, reducing the number of calls to the costly CFD software and generate
optimal solutions on an affordable computational budget. On the other hand, this paper
is also concerned with adjoint–based optimization methods. The adjoint approaches serve
to compute the gradient or the Hessian matrix of the objective function for use along
with gradient–based search methods, [7], [8]. These approaches can be considered to be
either stand–alone optimization methods or ingredients of HDMAEA. Since substantial
progress has been made in using hybridized search methods, it is important to conduct a
careful examination of their expected performances on multiprocessor platforms.

2. PARALLEL EVOLUTIONARY ALGORITHMS (PEAs)–AN OVERVIEW

The recent increase in the use of EAs for engineering optimization problems is attributed
to the fact that EAs are general purpose search tools that may handle constrained multi–
objective problems by computing the Pareto front of optimal solutions at the cost of a
single run. When optimizing computationally demanding problems using EAs, the CPU
cost is determined by the required number of evaluations. In the next section, smart ways
to reduce the number of costly evaluations within an EA will be presented. Reduction of
the wall clock time is also important and one might consider it as well. PEAs achieve this
goal on parallel computers, PC clusters or geographically distributed resources, by parti-
tioning the search in simultaneously processed subproblems. PEAs can be classified into
single–population or panmictic EAs and multi–population EAs. In a panmictic EA, each
population member can potentially mate with any other; standard way of parallelization
is the concurrent evaluation scheme, with centralized selection and evolution (master–
slave model). A multi–population EA handles partitioned individual subsets, according
to a topology which (often, though not necessarily) maps onto the parallel platform and
employs decentralized evolution schemes; these can be further classified to distributed and
cellular EAs, depending on the subpopulations’ structure and granularity.

Distributed (DEAs) rely upon a small number of medium–sized population subsets
(demes) and allow the regular inter–deme exchange of promising individuals and intra–
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deme mating. By changing the inter–deme communication topology (ring, grid, etc.), the
migration frequency and rate as well as the selection scheme for emigrants, interesting
variants of DEAs can be devised. To increase diversity, different evolution parameters and
schemes at each deme can be used (nonuniform DEAs). Cellular EAs (CEAs) usually
associate a single individual with each subpopulation. The inter–deme communication
is carried out using overlapping neighborhoods and decentralized selection schemes. The
reader is referred to [9], [10] for a detailed overview of PEAs. A list of popular communi-
cation tools for PEAs and a discussion on how PEAs’ parallel speedup should be defined
can be found in [11]. These excellent reviews, however, do not account for what seems to
be an indispensable constituent of modern EAs, namely the use of metamodels.

3. METAMODEL–ASSISTED EAs (MAEAs)

Although PEAs are capable of reducing the wall clock time of EAs, there is also a need
to reduce the number of calls to the computationally expensive evaluation software (se-
quential or parallel CFD codes), irrespective of the use of parallel hardware. To achieve
this goal, the use of low–cost surrogate evaluation models has been proposed. Surrogates,
also referred to as metamodels, are mathematical approximations (response surfaces, poly-
nomial interpolation, artificial neural networks, etc.) to the discipline–specific analysis
models; they can be constructed using existing datasets or knowledge gathered and up-
dated during the evolution. The reader should refer to [12] for general approximation
concepts and surrogates and to [5] for the coupling of EAs and metamodels. There is, in
fact, a wide range of techniques for using metamodels within EAs, classified to off-line
and on–line trained metamodels, [5].

In EAs assisted by off-line trained metamodels, the latter are trained separately from
the evolution using a first sampling of the search space, based on the theory of design of
experiments. The deviation of the fitness values of the “optimal” solutions resulting by
an EA running exclusively on the metamodel from those obtained using the “exact” CFD
tool determines the need for updating the metamodel and iterating.

In EAs assisted by on-line trained local metamodels, for each newly generated indi-
vidual a locally valid metamodel needs to be trained on the fly, on a small number of
neighboring, previously evaluated individuals. Evaluating the generation members on
properly trained metamodels acts as a filter restricting the use of the CFD tool to a small
population subset, i.e. the top individuals as pointed by the metamodel. This will be
referred to as the Inexact Pre–Evaluation (IPE) technique; IPE has been introduced in
[5], [13] and then extended to DEAs, [14], and hierarchical EAs (HEAs), [6]. Note that,
the first few generations (usually no more than two or three) refrain from using metamod-
els and once an adequate piece of knowledge on how to pair design variables and system
performances is gathered, the IPE filter is activated.

Let us briefly describe the IPE technique for multi–objective optimization problems.
Consider a (µ, λ) EA with µ parents, λ offspring, n design variables and m objectives.
The EA handles three population sets, namely the parent set (Pµ,g, µ = |Pµ,g|), the
offspring (Pλ,g, λ = |Pλ,g|) and the archival one (Pα,g) which stores the α = |Pα,g| best
individuals found thus far. At generation g, λ local metamodels are trained and, through
them, approximate objective function values f̃(x) ∈ Rm for all x ∈ Pλ,g are computed.
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Any approximately evaluated offspring x is assigned a provisional cost value φ(x) =
φ(f̃(x), {f̃(y) | y ∈ Pλ,g \ {x}}) ∈ R where φ can be any cost assignment function, based
on either sharing techniques, [15], or strength criteria, [16]. The subset Pe,g = {xi, i =
1, λe : φ(xi) < φ(y), y ∈ Pλ,g \ Pe,g} of the λe<λ most “promising” individuals is singled
out. For the Pe,g members, the exact objective function values f(x)∈Rm are computed;
this, practically, determines the CPU cost per generation and, consequently, this all we
need to parallelize. A provisional Pareto front, P̂α,g, is formed by the non-dominated,

exactly evaluated individuals of Pe,g ∪Pα,g. A cost value φ(x) = φ(f̂(x), {f̂(y) | y ∈
Pλ,g∪Pµ,g∪P̂α,g\{x}}) is assigned to each individual x ∈ Pλ,g∪Pµ,g∪P̂α,g, where f̂(x) = f̃(x)

or f(x). The new set of non-dominated solutions, Pα,g+1, is formed by thinning P̂α,g

through distance-based criteria, if its size exceeds a predefined value amax, [16]. The new
parental set, Pµ,g+1, is created from Pλ,g∪Pµ,g by selecting the fittest individuals with
certain probabilities. Recombination and mutation are applied to generate Pλ,g+1. This
procedure is repeated until a termination criterion is satisfied. It is important to note
that the number λe of exact and costly evaluations per generation is neither fixed nor
known in advance (only its lower and upper bounds are user–defined). So, care needs to
be exercised when parallelizing MAEAs based on the IPE technique (see below).

4. HIERARCHICAL, DISTRIBUTED MAEAs (HDMAEAs)

We next consider the so–called Hierarchical and Distributed variant of MAEAs (HD-
MAEAs), proposed in [6]. An HDMAEA is, basically, a multilevel optimization technique,
whereby the term multi–level implies that different search methods, different evaluation
software and/or different sets of design variables can be employed at each level. Any
EA–based level usually employs DEAs (or, in general PEAs) as explained in the previous
sections; also, within each deme, the IPE technique with locally trained metamodels is
used (MAEAs). Multilevel optimization algorithms can be classified as follows:

(a) Multilevel Evaluation where each level is associated with a different evaluation soft-
ware. The lower levels are responsible for detecting promising solutions at low CPU cost,
through less expensive (low–fidelity) problem–specific evaluation models and delivering
them to the higher level(s). There, evaluation models of higher fidelity and CPU cost
are employed and the immigrated solutions are further refined. HDMAEAs are multilevel
evaluation techniques using PEAs at each level.

(b) Multilevel Search where each level is associated with a different search technique.
Stochastic methods, such as EAs, are preferably used at the lower levels for the exploration
of the design space, leaving the refinement of promising solutions to the gradient–based
method at the higher levels. Other combinations of search tools are also possible.

(c) Multilevel Parameterization where each level is associated with a different set of
design variables. At the lowest level, a subproblem with just a few design variables is
solved. At the higher levels, the problem dimension increases. The most detailed problem
parameterization is used at the uppermost level.

Given the variety of components involved in a multilevel algorithm (the term HDMAEA
will refer to the general class of the multilevel algorithms, since EAs are key search
tools) and the availability of parallel CFD evaluation software, parallelization issues of
the optimization method as a whole needs to be revisited.
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5. ADJOINT–BASED OPTIMIZATION METHODS & PARALLELIZATION

Although gradient–based methods assisted by the adjoint approach are stand-alone
optimization methods, they are herein considered one of the components of the afore-
mentioned general optimization framework. They require the knowledge of the first and
(depending on the method used) second derivatives of the objective function F with re-
spect to the design variables bi, i = 1, N . The adjoint method is an efficient strategy to
compute ∇F and/or ∇2F , [7], [17].

In mathematical optimization, it is known that schemes using only ∇F are not that
fast. So, schemes that also use∇2F (approximate or exact Newton methods) are preferred.
However, in aerodynamic optimization, the computation of the exact Hessian matrix is a
cumbersome task, so methods approximating the Hessian matrix (the BFGS method, for
instance) are alternatively used. We recently put effort on the computation of the exact
Hessian matrix with the minimum CPU cost and, thanks to parallelization, minimum
wall clock time. Our method, [8], [18], consists of the use of direct differentiation to
compute ∇F , followed by the adjoint approach to compute ∇2F . The so–called discrete
direct–adjoint approach is presented below in brief. An augmented functional F̂ is first
defined using the adjoint variables Ψ̂n, as follows

d2F̂

dbidbj

=
d2F

dbidbj

+ Ψ̂m
d2Rm

dbidbj

(1)

where d2F
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d2Φ

dbidbj

=
∂2Φ

∂bi∂bj

+
∂2Φ

∂bi∂Uk

dUk

dbj

+
∂2Φ

∂Uk∂bj

dUk

dbi

+
∂2Φ

∂Uk∂Um

dUk

dbi

dUm

dbj

+
∂Φ

∂Uk

d2Uk

dbidbj

(2)

where Φ stands for either F or Rm =0,m=1, M ; Rm are the discrete residual equations,
arising from some discretization of the flow pde’s; M is the product of the number of grid
nodes and the number of equations per node. From eq. 1, we obtain
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The last term is eliminated by satisfying the adjoint equation

∂F

∂Uk

+ Ψ̂n
∂Rn

∂Uk

= 0 (4)

and the remaining terms in eq. 3 give the expression for the Hessian matrix elements.
However, to implement the derived formula, we need to have expressions for dUn

dbj
. These

can be computed by solving the following N equations (direct differentiation)

dRm
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=
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+
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= 0 (5)
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Figure 1. Optimization of a compressor cascade using exact– and quasi–Newton method,
based on parallel adjoint and direct solvers (eight design variables). Left: Hessian matrix
values computed using the direct–adjoint approach and finite differences; only the lower
triangular part of the symmetric Hessian matrix is shown. Mid: Convergence of the exact–
and quasi–Newton (BFGS) methods, in terms of optimization cycles; the computational
load per cycle of the former is 10 times higher. Right: Same comparison in terms of
(theoretical) wall clock time on an eight–processor cluster; the flow and the adjoint solvers
were parallelized using subdomaining (100% parallel efficiency is assumed) whereas the
eight direct differentiations were run in parallel, on one processor each.

for dUk

dbi
. To summarize, the total CPU cost of the Newton method is equal to that of

N system solutions to compute dUn

dbj
, eqs. 5, plus one to solve the adjoint equation, eq. 4

and the solution of the flow equations (N +2 system solutions, SSs, per step, in total).
In contrast, BFGS costs 2 SSs per descent step. The application of the method (as
stand alone optimization tool) on the inverse design of a compressor cascade is shown and
discussed in fig. 1.
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Figure 2: Parallelization of a Newton cycle
based on the direct-adjoint method.

Working with either discrete or contin-
uous adjoint approaches and any paral-
lel flow solver (such as the aforementioned
one, [2]), the parallelization of the adjoint
solver for ∇F is based on subdomaining in
a similar manner to that used for the as-
sociated flow solver. At this point and in
view of what follows, this will be consid-
ered as fine–grained parallelization. What
is new and interesting is the paralleliza-
tion of the proposed adjoint method for
the computation of ∇2F . Among the N+2
SSs needed, N of them corresponding to
the computation of dUk

dbi
(direct differenti-

ation, eqs. 5) may run concurrently, due
to the independence of the N equations
(coarse–grained parallelization; needless to
say that subdomaining can additionally be
used if more processors are available). The

remaining two system solutions (for the adjoint and flow equations) are fine–grained par-
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allelized using subdomaining. The process is illustrated in fig 2.

6. PARALLELIZATION OF HDMAEA

6.1. HDMAEAs and Cluster Computing
In small commodity clusters, one may use a customized configuration for each appli-

cation; this case is of no interest in this paper. In larger clusters or HPC systems, the
presence of a local resource manager that keeps an updated list of the available processors
along with their characteristics, becomes necessary. Using these pieces of information, the
Local Resource Management Software (LRMS) allows the optimal use of the cluster, by
assigning each evaluation request to the appropriate computational resource(s) according
to user–defined specifications (i.e. RAM, CPU etc.).

The deployment of the optimization software within a cluster requires linking it to the
LRMS. In this respect, DEAs or HDMAEAs use a central evaluation manager allowing
concurrent job submissions from any deme. The evaluation manager executes in a sep-
arate thread inside the optimization algorithm process and receives evaluation requests
from all demes. These requests are submitted to the centralized LRMS first–in–first–out
queue and each new job is assigned to the first node that becomes available and meets
the requirements set by the user. Condor middleware was chosen as LRMS, [19]. The
DRMAA library was used to interface the optimization software with Condor, by commu-
nicating arguments related to file transfer, I/O redirection, requirements for the execution
host etc.

In a distributed optimization scheme (DEA , HDMAEA), upon the end of an evaluation,
the evaluation manager contacts the corresponding deme and updates the objectives’ and
constraints’ values of the evaluated individual. Therefore, all evaluation specific details
are hidden from the EA core. A unique database (per evaluation software) for all demes
is maintained to prevent the re-evaluation of previously evaluated candidate solutions.

Let us lend some more insight into the role of the evaluation manager by comparing
evaluation requests launched by a conventional EA and the HDMAEA. In a conventional
(µ, λ) EA, λ evaluations must be carried out per generation; they all have the same hard-
ware requirements and, theoretically, the “same” computational cost; this is in favor of
parallel efficiency. In contrast, maintaining a high parallel efficiency in hierarchical opti-
mization (Multilevel Evaluation mode) is not straightforward, due to the use of evaluation
tools with different computational requirements. For instance, in aerodynamic optimiza-
tion, a Navier–Stokes solver with wall functions on relatively coarse grids can be used at
the low level (for the cheap exploration of the search space) and a much more accurate
but costly flow analysis tool with a better turbulence model on very fine grids at the high
level. The latter has increased memory requirements. In such a case, given the maximum
amount of memory available per computational node, a larger number of subdomains may
be needed. In heterogeneous clusters (with different CPU and RAM per node), a different
number of processors might be required for the same job, depending on the availability
of processors by the time each job is launched. In the case of synchronous inter–level
communication, a level may suspend the execution temporarily, until the adjacent level
reaches the generation for which migration is scheduled and this usually affects the assign-
ment of pending evaluations. Also, the IPE technique in a MAEA changes dynamically
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the number of “exact” evaluations to a small percentage of the population (as previously
explained, the percentage λe/λ is not constant but changes according to the population
dynamics), limiting thus the number of simultaneous evaluation jobs and causing some
processors to become idle. For all these reasons, the use of an evaluation manager in HD-
MAEAs is crucial. Note that any call to the adjoint code within a HDMAEA (Multilevel
Search mode) is considered as an “equivalent” evaluation request.

6.2. Grid Enabled HDMAEAs
The modular structure of the HDMAEA and the utilization of an evaluation manager

allows its deployment in the Grid, leading to a Grid Enabled HDMAEA (GEHDMAEA).
Grid deployment requires a link between the cluster and the grid level. A middleware
which is suitable for this purpose must: (a) match grid resources to job–specific require-
ments, (b) connect the LRMS to the grid framework to allow job submission using security
certificates for user authentication and (c) allow grid resource discovery by collecting in-
formation regarding resource types and availabilities within the clusters. In the developed
method, this is accomplished via Globus Toolkit 4 (GT4, [20]).
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Figure 3. Optimization of an axial compressor stator using the Grid Enabled HDMAEA.
Left: Convergence history. Right: History of the number of submitted jobs to each cluster.

The execution of a job through the Globus Toolkit starts with the verification of user’s
credentials before submitting a job to a grid resource. A user may submit a job to a cluster
in two different ways. The submission can be made through either the front-end of the
cluster and, then, passed on to the LRMS, or through a gateway service by submitting a
job from a host that has GT4 installed to a remote grid resource. For the second option,
the user’s credentials are also transmitted for authentication to the remote resource (via
GT4) before the job is accepted for execution.

All grid resources that have GT4 installed publish information about their character-
istics which can be accessed using the http protocol. The discovery and monitoring of
resources via a tool that probes all resources for their characteristics by accessing the
corresponding information service of the GT4, i.e. a Meta–Scheduler, is needed. The
Meta–Scheduler unifies the grid resources under a common queue and associates each job
submitted to the queue with the first available grid resource satisfying the requirements
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set by the user. Herein, GridWay, [21], was used as Meta–Scheduler. GridWay has an
API that enables GEHDMAEA to forward all job requests from the evaluation server to
the common grid queue. GridWay collects information regarding the available resources
from the information services of the GT4 installed on each resource and keeps the com-
plete list available to all authorized users. When submitting jobs to GridWay, each job
is forwarded from the global grid queue to the GT4 of the matched grid resource and,
then, to the LRMS, if this resource is a cluster. The LRMS (Condor) performs the final
matchmaking between the job and the available resources within the cluster, followed by
the job execution.

The optimization process in a grid environment is carried out the same way as within a
cluster. For illustrative purposes we present a design problem of an axial compressor stator
with minimum total pressure loss coefficient ω, at predefined flow conditions (more details
on this case are beyond the scope of this paper). A number of constraints were imposed
regarding the minimum allowed blade thickness at certain chordwise locations as well
as the flow exit angle (by, consequently, controlling the flow turning). The convergence
history of the optimization process is presented in fig. 3. The grid environment in which
the optimization software was deployed consists of two clusters. The description of the
clusters along with the number of jobs submitted, during the airfoil design, per cluster is
given below. The number of submitted jobs to each cluster are shown in fig. 3 (right).

Host types Number of Hosts Jobs Submitted
Cluster1 PIII and P4 up to 2.4GHz 14 154
Cluster2 P4 and Pentium D up to 3.4GHz 30 550
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