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Abstract—This paper is concerned with the solution of unit
commitment problems by means of a two–level Evolutionary
Algorithm (EA), handling the encoded operational states of
units. The EA is assisted by the augmented Lagrange relaxation
method to compute the optimal units’ loading, for each candidate
configuration. Emphasis is laid on the reduction of the CPU
cost of the proposed method and, for this purpose, a two–
level EA has been devised. At the first–preparatory level, the
time units (hours) are grouped, based on heuristics. This gives
rise to a coarse–grained optimization problem with a reduced
number of unknowns which can readily be solved using EAs,
without taking into consideration constraints related to units’
start–up and shutdown. The so–obtained, sub–optimal and, likely,
infeasible solution is then processed by the second level for
further refinement. At this level, instead of optimizing the unit
commitment over the whole period of time, a small number
of consecutive sub–periods are formed and the corresponding
optimization sub–problems are solved iteratively. For each sub–
problem, an EA coupled with chromosome repairing and cost
function penalization to account for inconsistencies between the
current sub–problem solution and those computed at the adjacent
sub–intervals.

I. INTRODUCTION

Unit Commitment (UC) is a constrained optimization prob-
lem seeking for the optimal schedule of a number of power
generating units, to cover a given power demand distribution
over a period of time, at minimum cost. The total operating
cost, which is usually the objective function, sums up fuel
cost, unit start–up and shut–down costs, as well as any other
relevant cost (such as maintenance costs, if any). Alternatively,
a second objective, that of solution robustness, can also
be introduced to account for a stochastically varying power
demand distribution. In UC problems, full enumeration is the
safest way to reach the global optimum; however, this cannot
be used to solve industrial problems, due to the computing
cost it entails.

In view of the above, various deterministic or stochastic
methods have been developed to solve the combinatorial UC
problem, [1], such as priority list, mixed integer–real linear
programming (MILP) [8], Lagrangian relaxation [3], dynamic
programming, simulated annealing [5], [6], tabu search and
evolutionary algorithms (EAs), [4], [2]. However, the need
to safely capture global optimal solutions at the minimum
CPU cost is vital, since all the aforementioned methods

have at least some known weaknesses. For instance, MILP
solvers require linear approximations of the objective function,
dynamic programming risks providing with a local optimum,
etc.

EAs have gained particular attention since they are friendly
single– and multi–objective optimization tools, suitable to
handle discontinuous and multimodal objective functions.
Nevertheless, they suffer from the high number of calls to
the evaluation software required in order to locate the optimal
solution. Also, the higher the number of design variables, the
slower conventional EAs become. In order to overcome these
weaknesses, this paper proposes a two–level EA customized
for the solution of UC problems with the following main
features:

• the first level acts as a low–cost preparatory phase,
capable of feeding the second optimization level with a
good initial solution;

• at the first level, a coarse–grained problem with relaxed
constraints is solved;

• the second level handles the full problem after, however,
splitting it into a small number of consecutive time
intervals, on which the optimization relies on EAs with
chromosome repairing;

• at the second level, the optimization is iterative and the
objective function associated with each time sub–interval
includes penalties due to possible inconsistencies with the
adjacent sub–intervals’ solutions.

Finally, let us stress that the proposed algorithm was inspired
by the concept of hierarchical EA–based optimization methods,
[7].

II. UC PROBLEM FORMULATION

Assume that M power generating units must be scheduled
over T time units (hours). The i-th unit, abbreviated to u i,
has minimum and maximum capacities Pmin,i and Pmax,i,
respectively. In general, φ

(j)
i denotes the (given or computed)

value of φ for ui at t(j), i.e. the j-th hour. A deterministic
power demand distribution (d(j), j ∈ [1, T ], in MW ) along
with the states (ON, OFF, during start–up, STUP, or shut–
down, SHDN) of all units at the beginning of the time interval,
the duration of STUP and SHDN procedures (T i and T i



for ui, respectively), the minimum time T̂i for ui to remain
in operating or non–operating condition, are inputs to the
problem. Needless to say that, basic objective is to cover the
power demand over the whole time interval at minimum cost.

A. Candidate solutions’ encoding

Binary coding of power generating units’ states, on hourly
basis, is used. The binary string for each unit is formed by
concatenated bits, denoted by s

(j)
i , where s

(j)
i =1 if ui is ON

and s
(j)
i = 0 otherwise (OFF or during SHDN and STUP).

This coding is suitable for evolutionary optimization. Since
s
(j)
i = 0 encodes three possible operating states, one may

distinguish among them by taking previous or next u i states
into consideration.

The hourly load of each unit (denoted by x
(j)
i ,

Pmin,i

Pmax,i
≤

x
(j)
i ≤ 1) is not involved in the binary chromosome. Once

s
(j)
i , i∈ [1, M ] have been determined for a specific j value,

the x
(j)
i , i∈[1, M ] values for the operating units are computed

by solving an optimization problem (separately for each hour).
For its solution, the augmented Lagrange multipliers method
(ALM, [10]) is used. It is evident that for non–operating units
(s(j)

i =0), x
(j)
i =0 by default.

B. Objective function

The UC problem objective is the minimization of the total
operating cost (TOC, in MW ), which sums up fuel, STUP
and SHDN costs. For each ui, the cost of a single STUP or
SHDN (Ci or C i, respectively) as well as the hourly fuel
consumption F

(j)
i (x(j)

i ), as a function of the unit load x
(j)
i , are

all known. In the present applications, F (j)
i (x(j)

i ) is a quadratic
polynomial in x

(j)
i . Based on the aforementioned definitions,

UC can be envisaged as an optimization problem associated
with the minimization of an objective function, defined as
follows:

TOC=
T∑

j=1

M∑
i=1

OC
(j)
i +

T∑
j=1

Φ(Δd(j)) (1)

where OC
(j)
i (in MW ) is the operating cost of ui at t(j) and

Φ(Δd(j)) are penalty terms activated if the given demand is
not exactly satisfied. The operating cost of u i at t(j) depends
on the ui’s state and load x

(j)
i and is given by

OC
(j)
i =

⎧⎨⎩ai

(
x

(j)
i

)2

+bix
(j)
i +ci+Ci

′
, s

(j)
i =1

Ci

′
, s

(j)
i =0

(2)

where (ai,bi,ci), ∀ i∈[1, M ] are known coefficients and

Ci
′
=

{
0, s

(j−1)
i =1

Ci, s
(j−1)
i =0

Ci

′
=

{
0, s

(j−1)
i =0

Ci, s
(j−1)
i =1

(3)

Thus far, a single–objective problem formulation has been
set–up. However, the demand distribution is, in fact, stochastic
and follows a probability distribution. In order to take into
account uncertainties related to the power demand, the same
problem can be handled as a two–objective one, where the

second objective quantifies the risk of not covering ”reason-
able” demand variations. The new objective is expressed as
the possibility the power demand (at any time) falls outside
the range covered by the current configuration. This range is
defined by summing up the minimum/maximum capacities of
the currently operating units. A normal distribution is associ-
ated with each power demand value (i.e. d(j)is considered to
be the average demand value). Since the normal cumulative
function Q gives the probability of a standard normal variate
to be found inside a desired interval, the following expression
gives the failure risk R(j):

R(j)=1−Q(j), ∀j∈[1, T ]

Q(j)=
1√
2π

∫ ∑
M

i=1
s
(j)
i

pmaxi∑
M

i=1
s
(j)
i

pmini

expt2/2 dt, ∀j∈[1, T ]
(4)

In view of the above, the second objective is given by:

R=
T∑

j=1

R(j) (5)

and could optionally be taken into account during the solution
of the UC problem.

C. Constraints

The UC problem is an optimization problem subject to a
set of constraints, as follows:

• All committed units must comply with their known states
at the beginning of the time interval under consideration.
Any encoded (binary) schedule that fails to satisfy this
constraint should be repaired accordingly.

• The generated power should match the power demand,
on an hourly basis. For candidate solutions that do not
satisfy this requirement, the objective function should be
penalized. The penalty function is the sum of hourly
penalty terms Φ(Δd(j)). The latter are expressed in
terms of a second degree polynomial of the deviation
Δd(j) = |d(j)−p(j)|, where p(j) is the hourly power
production in MW and

Φ(Δd(j))=

{
e1Δd(j)2+e2Δd(j)+e3, Δd(j) �=0

0, Δd(j)=0
(6)

where (e1,e2, e3) are user defined coefficients.
• Minimum STUP, SHDN and ”state–change delay” time

intervals (T , T , T̂ ) should be taken into account during all
transient phases. Binary strings which fail to satisfy these
rules, should be repaired. Practically, bit positions are
changed from 0 to 1, whenever a sequence of consecutive
0′s is insufficient to include a SHDN process followed
by a STUP one. Opposite changes (from 1 to 0) are not
allowed. Chromosome repair is made according to the
following scheme:

sj+1
i −sj

i=

⎧⎨⎩0

1 ⇒sj+k
i =1, ∀k∈[1, T i+T̂i]

(7)



sj+1
i −sj

i=−1 iff sj+k
i =0, ∀k∈[1, T i+T̂i] (8)

i∈[1, M ], j∈[1, T ]

III. THE TWO–LEVEL OPTIMIZATION ALGORITHM

In a UC problem with a long time interval and/or many
units, the encoded chromosome (MT bits) becomes too
lengthy to handle it by means of EAs. Thus, the CPU cost
for solving such a problem becomes almost prohibitive; also,
despite the high computing cost, sub–optimal solutions may
arise. In order to circumvent this problem, a two–level opti-
mization algorithm is proposed.

The first level is a low–cost preparatory phase which,
through a coarsening procedure, manages to find a ”solution”
to the coarse–grained problem which, although sub–optimal
and usually infeasible, is amenable to refinement at reasonable
extra CPU cost. This refinement is carried out at the second
optimization level. In order to reduce, as much as possible, the
CPU cost of the second level task, the entire time interval is
partitioned to a (usually small) number of consecutive sub–
intervals. Thus, a series of optimizations over these sub–
intervals, should be carried out; EAs are also in use for this
purpose with a modified objective function to account for
the matching conditions at their interfaces. The two–level
algorithm is described below, in more detail:

1) First Level Optimization: The first level optimization
consists of two sub–phases, namely the coarsening and the
optimization of the coarsened problem. Given the power
demand distribution, the coarsening procedure requires, for
each time unit (hour), a call to the Mixed Integer Linear
Programming software (MILP, branch and bound technique),
which is capable of determining the units which should be up
in order to cover the demand. Needless to say that, each one of
the T calls to this software is extremely fast and that it does not
account any restriction related to the preceding states of units.
Practically, the objective function is nothing more than the fuel
cost for t(j), j∈[1, T ], penalized by Φ(Δd(j)), as previously
described. Since an optimization method for linear problems
is used and the objective function is a quadratic one, the latter
is linearized. In general, such a linearization is harmless, given
the role of the first level optimization, which is nothing more
than to provide a good initial solution to the second level.

Having obtained ”indicative” solutions for the T hours, the
coarsening procedure follows. Consecutive time units, which
are given the same solution during the previous sub–phase,
are grouped together to form a coarser time unit. Additional
grouping is possible and should be carried out (by grouping
together consecutive time units or already formed groups
of them, which are given ”similar” solutions) aiming at the
desirable coarse problem size. Practically, the user defines the
upper bound of the number of coarse time units and, then,
heuristics are employed. When this preparatory or coarsening
step comes to an end, Tc (Tc�T ) coarse time units, generally
with different size each, have been defined.

The second and final sub–phase, within the first level,
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Fig. 1. Flowchart of the proposed algorithm.

is concerned with the optimization of the coarse–grained
problem. This optimization is based on EAs with binary
encoding (handling an MTc bit string) and without considering
constraints related to the transient phases (STUP or SHDN).
The small bit string size makes this computation very fast. In
general, the final solution might be infeasible since, as men-
tioned before, constraints have not been taken into account.

2) Second Level Optimization: The optimal schedule com-
puted at the first level for the coarsened problem is first
expanded to cover the entire interval of time (T time units). At
this stage and according to what has already been presented
in a previous section of this paper, the optimal solution should
be repaired to account for the STUP, SHDN and ”state–
change delay” constraints. The outcome of the repairing phase
is probably a worse, though feasible, solution to the (real)
problem. This is the good starting solution that should be
injected into the EA algorithm, which will undertake the
optimization at the first level.

When the UC problem is handled with a stochastic demand
distribution (i.e. as a two–objective problem) the outcome of
the first level is the Pareto front solutions of the coarsened
problem which are to be transferred to the second level.

Next step is to partition the entire time interval to K sub–
intervals of the same or almost the same size. For each sub–
interval, an EA with a modified objective function, in the
sense that this additionally takes into account the matching
with the previous and next sub–interval solutions should be
used. The optimization is iterative and terminates when all
matching conditions, at the interfaces between sub–intervals,
are satisfied. By the way of example, the UC problem over a
period of 72 hours could be solved by splitting it into 3 sub–
problems with 24 hours each, or 6 sub–problems with 12 hours
each and so forth. The bit string used by the EAs employed
over each sub–interval consists of TM/K bits. A schematic
representation of the proposed algorithm is given in Figure 1.

IV. CASE STUDIES

The proposed two–level UC optimization algorithm was
tested on two problems. The core optimization tool within the



TABLE I
CASE I: PROBLEM DEFINITION.

i Pmin,i Pmax,i F
(j)
i (x

(j)
i ) Ci Ci T i T i T̂i s0

1 20 40 80x
(j)
i

2
+40 120 100 2 2 1 ON

2 30 70 108x
(j)
i

2
+69x

(j)
i +63 180 150 2 2 1 ON

3 50 100 169.6x
(j)
i

2−5.6x
(j)
i +266 240 200 2 2 1 ON

4 60 120 180x
(j)
i

2
+312 240 200 2 2 1 ON
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Fig. 2. Case I: Power demand distribution.

TABLE II
CASE I: CLASSIFICATION OF THE DEMAND INTO GROUPS (FIRST LEVEL).

k Pmink Pmaxk s1 s2 s3 s4

1 62 69 0 1 0 0

2 72 110 1 1 0 0

3 116 140 1 0 1 0

4 142 169 0 1 1 0

5 171 210 1 1 1 0

6 211 230 1 1 0 1

7 233 255 1 0 1 1

 1
 2
 3
 4
 5

 0  10  20  30  40  50  60  70O
pt

im
al

 S
en

ar
io

Hours [h]

(a)

 1
 2
 3
 4
 5

 0  10  20  30  40  50  60  70O
pt

im
al

 S
en

ar
io

Hours [h]

(b)

 1
 2
 3
 4
 5

 0  10  20  30  40  50  60  70O
pt

im
al

 S
en

ar
io

Hours [h]

(c)

Fig. 3. Case I: The sequential coarsening procedure up to the desired
maximum number of groups (in this case, this was set to 9).

customized UC optimization platform is software EASY [11],
a software developed and brought to market by the National
Technical University of Athens.

A. Case I

The first problem is concerned with a four unit system and a
scheduling period of T=72 hours. Unit capacities, cost models
and constraints for the first problem have been all included in
Table I. Fig. 2 shows the power demand distribution for the
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Fig. 4. Case I: Optimal solutions computed at (a) the first and (b) second
optimization level the solution to the coarse problem has been expanded and
repaired, accordingly.
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Fig. 5. Case I: Convergence of the second level optimization. The fourth
cycle solution is identical to the 3rd cycle one.

T=72 hour period. According to Table I, all units are ON at
the beginning of this time period.

At the first level, after solving 72 optimization problems
through the MILP method, we came up with 72 hourly
solutions, which can easily be classified to seven combinations
of si, as shown in Table II. For instance, (s1, s2, s3, s4) =
(0, 1, 0, 0) means that only u2 is ON and so forth. In the
same table, one may also find the minimum and maximum
power demand (in MW ) associated with each one of these
seven operating scenarios. The reader should follow, step–by–
step, the coarsening procedure, in Fig. 3. Fig. 3(a) shows the
”optimal” scenarios computed for the 72 hours; although there
are only seven different scenarios, the demand distribution
varies strongly and, therefore, 19 groups of small duration (of



TABLE III
CASE II: PROBLEM DEFINITION.

i Pmax,i Pmin,i F
(j)
i (x

(j)
i ) Ci Ci T i T i T̂i Initial State s0

1 60 20 5x
(j)
i

2−10x
(j)
i +7 120 100 2 2 1 ON

2 80 30 4.5x
(j)
i

2−9x
(j)
i +7.5 180 150 2 2 1 ON

3 100 40 5.3x
(j)
i

2−9x
(j)
i +8 240 200 2 2 1 ON
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Fig. 6. Case II: Power demand distribution.

1 up to 11 hours each) have been created. Such a coarsening is
inadequate and heuristics are needed for further grouping. This
is, in fact, a sequential coarsening/grouping procedure which
identifies isolated groups of small size and incorporates them
to the adjacent group, provided that the corresponding differ-
ence in power demand is not high enough. In our case, three
sequential coarsening steps have been carried out and these
are shown in figs. 3(b) and 3(c). At the end of this procedure,
the entire time period was formed by to nine groups, Fig.3(c).
Note that their sizes are completely different due to the power
demand distribution we are dealing with. The minimum and
maximum power values for each group presented in Table II
have been computed according to outcome of the sequential
coarsening scheme shown in Fig.3. Given this nine group
coarsening, in a four unit system, a bit string of 36 digits
encoded all possible solutions and was readily solved using
EAs. Fig.4 (a) shows the optimal solution computed for the
coarse–grained problem; in the same figure, the operating units
which are up are marked with a thick horizontal line (bottom).
The coarse problem solution fails to satisfy the power demand
only at the 20th hour with deficiency of power.

At the second level, three sub–intervals of 24 hours each
were defined and solved by means of EAs with (if matching
conditions were not satisfied) penalized objective function at
their interfaces. The proposed method was able to find the
global optimum (the one shown in Fig.4 (b)) after 18000 evalu-
ations, each of which corresponds to a 24 hours (sub–interval)
problem. So, this CPU cost is equal to approximately 4500
full problem evaluations. The algorithm converged after three
cycles, each of which includes the sequential optimization of
the three partitions. Fig.5 presents the objective function value
of the optimal solution at the end of each intermediate cycle.

B. Case II

The second test case is concerned with the optimal schedule
of a three unit system for a period of T = 72 hours and
was handled using both one and two–objectives. The system

TABLE IV
CASE II: CLASSIFICATION OF THE DEMAND INTO GROUPS (FIRST LEVEL).

k Pmink Pmaxk s1 s2 s3

1 35.5 60.9 1 0 0

2 62.1 80.0 0 1 0

3 81.0 140.0 1 1 0

4 153.0 153.2 0 1 1

5 162.0 216.0 1 1 1
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Fig. 7. Case II: The sequential coarsening procedure up to the desired
maximum number of groups (in this case, this was set to 6). Note that between
(a) and (b) some scenarios have been ”disappeared”.

features are given in Table III, whereas Fig. 6 shows the power
demand distribution. The latter has been considered as fixed
in the one–objective problem, or as the expected value in the
two–objective one.

At the first level, the 72 hours were classified to five differ-
ent operating scenarios, as shown in Table IV. Four sequential
coarsening steps were carried out, shown in figs. 7(a) to 7(d),
and ended up with a six group partition, shown in Fig.7(d).
Therefore, the chromosome of the coarse–grained problem
consists of only 18 digits. Fig.8(a) shows the optimal solution
to the coarsened problem, computed by means of an EA
whereas Fig.8(b) illustrates the global optimum computed at
the second level. The latter was reached after 3800 evaluations,
which corresponds to the 24–hour sub–problem, since on the
second level three sub–intervals of 24 hours each were used.

The same problem was re–examined by considering that
the power demand distribution is a stochastic one. A Gaussian
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Fig. 8. Case II: Optimal solutions computed at (a) the first and (b) second
optimization level, accordingly.
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Fig. 10. Case II: Two extreme solutions selected from the optimal Pareto
front solutions of Fig.9

distribution was assumed, with mean values the ones shown in
Fig.6 and a variance of 1.5% of the mean value. The SPEA2
[9] method was used to compute the utility function within
the same EA algorithm.

The non–dominated solutions at three instants of the evo-
lution (after 1000, 2500 and 5000 evaluations) along with the
Pareto front computed for the coarse problem are shown in
Fig. 9. Figure 10(a) and 10(b) present the ”extreme” solutions
over the Pareto front (Fig.9), denoted as A and B respectively.
Solution A is less risky but more costly than B. Notice that a
possible demand surplus at the 37th hour (d(37)=140MW )
cannot be handled out by the first two units, which may
together produce 140 MW at most. For this reason, in solution
A the third unit turns ON at the 35th hour. On the other
hand, B ”takes the risk” to keep u3 OFF, despite the risk.

Similarly, A turns OFF u1 at the 47th hour, because of the
possible demand reduction (beneath 50 MW , which can be
produced u1 and u2, operating at minimum load). Solution B
takes the risk to keep both u1 and u2 ON, in favor of less fuel
consumption, needed for shutting–down u 1.

V. CONCLUSIONS

An efficient two–level optimization algorithm for the so-
lution of unit commitment problems has been presented and
demonstrated on two test problems. The proposed method is
based on evolutionary algorithms, coarsening heuristics and
repairing schemes. The first level provides a good starting
solution which is further refined at the second level. The
latter is based on the partitioning of the time–interval and
the iterative –sequential solution over each sub–interval, up
to convergence. The proposed algorithm has also been used
to solve two–objective optimization problems as well, by
accounting for uncertainties in the power demand distribution.
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