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Abstract— In this paper, three multilevel optimization strate-
gies are presented and applied to the design of isolated
and cascade airfoils. They are all based on the same
general–purpose search platform, which employs Hierarchi-
cal, Distributed Metamodel–Assisted Evolutionary Algorithms
(HDMAEAs). The core search engine is an Evolutionary Algo-
rithm (EA) assisted by local metamodels (radial basis function
networks) which, for each population member, are trained anew
on a “suitable” subset of the already evaluated solutions. The
hierarchical scheme has a two–level structure, although it may
accommodate any number of levels. At each level, the user
may link (a) a different evaluation tool, such as low or high
fidelity discipline–specific software, (b) a different optimization
method, selected amongst stochastic and deterministic algo-
rithms and/or (c) a different set of design variables, according to
coarse and fine problem parameterizations. In the aerodynamic
shape optimization problems presented in this paper, the three
aforementioned techniques resort on (a) Navier–Stokes and
integral boundary layer solvers, (b) evolutionary and gradient–
descent algorithms where the adjoint method computes the
objective function gradient and (c) airfoil parameterizations
with different numbers of Bézier control points. The EAs used
at any level are coarse–grained distributed EAs with a different
MAEA at each deme. The three variants of the HDMAEA can
be used either separately or in combination, in order to reduce
the CPU cost. The optimization software runs in parallel, on
multiprocessor systems.

NOMENCLATURE

DB Database (of already evaluated solution)
DEA Distributed EA
EA Evolutionary Algorithm
HDMAEA Hierarchical Distributed MAEA
HEA Hierachical EA
IPE Inexact Pre–Evaluation
MAEA Metamodel–Assisted EA
PEA Parallel EA
RBF Radial Basis Funstion (network)
SQP Sequential Quadratic Programming

I. INTRODUCTION

During the last two decades, the development of com-
putational methods for solving complex industrial design–
optimization problems has been boosted. Among the existing
methods, Evolutionary Algorithms (EAs) have gained partic-
ular attention since they are friendly and robust optimization
tools, suitable for discontinuous and multimodal objective
functions. None the less, it is hard to say that conventional
EAs are routinely being used to solve industrial problems,
due to the large number of calls to the evaluation software.
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In aerodynamic design, where the evaluation relies upon
computationally expensive CFD tools, the development of
design methods that minimize the use of the CFD software
is an area of active research.

According to the literature, possible remedies to this
problem are: (a) the use of Metamodel–Assisted Evolutionary
Algorithms (MAEAs), (b) the use of Parallel EAs (PEAs),
(c) the use of hierarchical evolutionary search and (d) the hy-
bridization of EAs with deterministic optimization methods.
All of them are ingredients of the proposed method and will
be discussed below. To avoid ambiguities, in what follows,
high fidelity model stands for the more accurate and costly
evaluation tool the designer selects for analyzing candidate
solutions and computing objective function values f , the low
fidelity model provides cheaper approximation of f based
on assumptions and simplifications (both might be referred
to as exact models since they are problem specific tools)
and a surrogate or metamodel stands for a mathematical
approximation to the analysis model. Surrogates of the high
or low fidelity models and the constraint functions can be
devised.

MAEAs rely on the smart management of calls to the
exact evaluation tool and its metamodel during the evolution,
leading to a considerable economy in CPU cost, [1]. EAs
may use metamodels trained on samples selected separately
from the evolution, [2], [3]; in this case, the metamodel
should be updated regularly depending on the deviation
between the f values computed on the metamodel and the
exact tool. On the other hand, EAs assisted by on-line
trained metamodels can be used. A locally valid metamodel
is constructed on the fly for each new individual, by training
it on previously evaluated neighboring individuals. Through
the metamodel–based evaluation, a few promising members
in each population are identified and only these are to be
re–evaluated on the exact tool. This will be referred to as
the Inexact Pre–Evaluation (IPE) technique, [4]. Among the
most frequently used metamodels, response surface methods,
polynomial interpolation and various types of artificial neural
networks, Gaussian processes, etc can be found. There is a
large literature on MAEAs, [1], [4], [5], [6], [7], [8], [9],
[10], [11] to mention only a few of the relevant papers.

PEAs are efficient variants of EAs which may directly
map onto the topology of a parallel computing platform,
[12], [13], [14]. PEAs are used as fine–grained (cellular)
and coarse–grained (distributed) EAs. In Distributed EAs
(DEAs), which will be used in this paper, a few popula-
tion subsets (demes) evolve in semi–isolation and regularly
exchange promising individuals, [15], [16]. By associating



different evolution parameters with each deme, diversity and
new species formation increase.

Another technique for increasing the efficiency of EAs,
without resorting to optimization methods other than EAs,
is to perform a hierarchical search (Hierachical EAs, HEAS,
[17], [18]). In HEAs, low and high fidelity models are used
with a certain hierarchy according to a multilevel (usually,
two–level) search structure: at the low level, the low fidelity
tool undertakes the exploration of the design space whereas,
at the high level, a restricted search based on the high fidelity
model performs practically on migrated promising solutions.
Alternatively, a two–level search can use different sets of
design variables at each level (some design variables at the
low level and full parameterization at the upper level), with
the same evaluation tool. In aerodynamic shape optimization
problems where shapes can be parameterized, for instance,
using Bézier curves or surfaces, we propose to maintain a
small number of design variables (Bézier control points) at
the low level and enrich them, using knot insertion theory,
when moving to the upper level. At each level of the
hierarchical or multilevel scheme, a distributed MAEA can
be used, giving rise to the so–called Hierarchical Distributed
Metamodel–Assisted Evolutionary Algorithm (HDMAEA).

Last but not least is the possibility to use different search
methods at the different levels. The idea to hybridize, for in-
stance, EAs and gradient–based search methods, is not a new
one. A series of papers appeared in the literature addressing
possible hybridization schemes, [19], [20], [21], [22], [23]. In
this paper, the hybridization of the distributed MAEAs with
gradient–based search methods (steepest–descent, conjugate
gradients or Newton–like methods supported by the adjoint
method to compute the gradient of the objective function,
[24]) is carried out within the multilevel scheme; the two
search tools are associated with different levels of the multi-
level scheme. Since EAs still undertake the key search role,
the hybrid method will be still referred to as HDMAEA.

II. THE PROPOSED MULTILEVEL OPTIMIZATION

As mentioned before, each level of the proposed multilevel
optimization algorithm can be associated with a different
evaluation tool (Multilevel Evaluation), different search al-
gorithm (Multilevel Search) and/or a different set of design
variables (Multilevel Parameterization). The practical imple-
mentation of the three proposed schemes are discussed in
this section. Emphasis is laid to the Inter–level Migration
policy, which is discussed in a separate subsection.

A. Multilevel Evaluation

We have already shed some light into the principles of
an HDMAEA employing the low fidelity model at the low
level and the high fidelity one at the high level. Such an
algorithm is schematically shown in fig.1, with L=2 levels.
We assume that, at each level, the search is undertaken by
a DMAEA. At the two levels, the number of demes and/or
their populations are not necessarily the same. It is usually
recommended that the low level uses a higher number of
demes than the high level, possibly with a higher population

High Level (1)
Costly, High−Accuracy Tool

Exploitation Oriented

Low Level (2)
Cheap, Low−Accuracy Tool

Exploration Oriented

Exchange of Elite Individuals

Fig. 1. Multilevel structure: The low level utilizes a low–CPU cost and
low–accuracy tool to explore the design space with a minimum impact to
the wall clock time. The high level, using the high fidelity, high–CPU cost
tool is restricted to exploiting the information from the low level.

per deme. This can be easily understood since the low level
is responsible mainly for searching in unexplored areas of the
search space with low cost. For this reason, higher mutation
probabilities (usually a 3−4%) and lower selection pressure
should be used at the low level. A two–way communication
between the two levels is used. Individuals that migrate
from one level to another are automatically (re)evaluated
using the destination level model. At the low level evolution
terminates, if it consistently fails to provide the upper level
with well performing solutions. In a well–tuned multilevel
evaluation HDMAEA, the gain in CPU cost is expected to
increase as the execution time ratio of the high and low
fidelity models increases.

A multilevel evaluation HDMAEA maintains separate
“databases”(DB) at each level. A DB gathers all the previ-
ously evaluated solutions (paired sets of design variables and
performances; the values of the constraint functions should
also be stored in the DB if there are not lumped into the
objective function using suitable weights) and is used to train
local metamodels for the IPE task (see below). At each level,
the metamodels are trained on datasets evaluated with the
level’s model. Parameters defining the use of metamodels or,
even, the metamodel type may differ from level to level.

B. Multilevel Search

It aims at increasing the overall efficiency of the design
platform by employing different search algorithms at each
level. At the low level, a MAEA is usually chosen so as to
quickly detect near–optimum regions. Elite individuals of the
MAEA are transferred to the upper level, which employs a
local search technique (often, but not necessarily, a gradient–
based search algorithm; a stochastic local search method
could be used instead) so as to “refine” them at low cost.
The regular backward migration (from the high to the low,
MAEA–based level) is also allowed to increase the selective
pressure at near–optimum regions of the design space. In
backward migration, some of the high level elite members
migrate to the low level. A multilevel search mode that
uses gradient–based optimization requires the availability of
a low–cost software to compute the gradient of f . Multi–
objective problems can also be handled by concatenating the
objectives in a single utility function. In this case, however,



the cost of computing the gradient of f at many non–
dominated solutions is not negligible at all.

The local search methods supported by our platform are:
(a) steepest descent, (b) conjugate gradient and (c) trust
region SQP, where the Hessian matrix is approximated using
the BFGS method. The adjoint method is used to compute
the gradient of f (this is an in–house tool, [24], associated
with the in–house Navier–Stokes solver).

C. Multilevel Parameterization

This mode allows the association of each level with a dif-
ferent set of design variables. The low level solves a problem
in a reduced dimension search space and locates a near–
optimum solution, at low cost. Through migration followed
by a suitable transformation, elite individuals stemming from
the low level enter the high level population. The inverse
transformation is used for individuals migrating from the
high level. As it will be shown in the results section, the
same evaluation model is employed at both levels; due to the
small number of design variables it handles, the low level is
much more efficient.

The use of a multilevel parameterization MAEA requires
a couple of practical problems to be solved. By way of
example, assume that the aerodynamic shapes are param-
eterized using Bézier (or NURBS) curves, [25]. Then, the
corresponding knot insertion (during upward migrations) and
knot removal theory (during downward migrations) can be
employed. When an elite airfoil from the low level (described
by a few control points) migrates to the upper level, a new
control point can be added (the N+ 1 points become N+ 2),
as follows:

�R0 =�r0

�Ri =
i

N + 1
�ri−1 +

(
1 − i

N + 1

)
�ri, 0 < i < N + 1

�RN+1 =�rN

where �r and �R denote the position vectors of the initial
and resulting curves. By successively applying eq.1 (N1−N2

consecutive times, where N1 and N2 are the numbers of
control points at the high and low level, respectively) the
transformation of parameterization is accomplished. How-
ever, what is not obvious is the definition of the search
space at the high level, given the lower and upper bounds
of the small number of control point coordinates used at
the low level (and vice–versa). Empirical algorithms have
been devised to solve this problem; we believe it is beyond
the scope of this paper to analyze them in detail. Note that,
when an immigrant joints the high level, the coordinates of its
design variables may fall outside the bounds currently used.
In such a case, the bounds are readapted and all population
members are transformed, accordingly.

D. Inter–level migration

The inter–level agent, which is responsible for all migra-
tions between two adjacent levels, runs in its own thread
waiting for the synchronization barrier for both levels to

notify that a certain generation has been reached. Once
this signal is received, the synchronization starts gathering
elite individuals from both levels, transforming individuals
according to the parameterization at the destination level (if
needed; this is the case of multilevel parameterization) and
re–evaluating (if a different evaluation software is associated
with each level). This procedure is described in pseudocode,
listing 1. During migration, evolution at all levels is sus-

whi le ( Running )
{

W a i t U n t i l G e n e r a t i o n R e a c h e d ( ) ;
G a t h e r E l i t e s F r o m L e v e l s ( ) ;
i f ( D i f f e r e n t P a r a m e t e r i z a t i o n s )

T r a n s f r o m P a r a m e t e r i z a t i o n s ( ) ;
R e E v a l u a t e E l i t e s ( ) ;
S e n d E l i t e s T o L e v e l s ( ) ;
S i g n a l L e v e l s ( ) ;

}

Listing 1. The inter–level migration agent in pseudocode.

pended. This is accomplished by the implementation of a
generic agent–client system inside each level, as in listing 2.
Regarding the inter–level migration, two markers are associ-

I n i t i a l i z e L e v e l ( ) ;
g e n e r a t i o n =0;
whi le ( NotConverged )
{

E v a l u a t e C a n d i d a t e S o l u t i o n s ( ) ;
C a l c u l a t e S t a t i s t i c s ( ) ;
N o t i f y A g e n t s ( g e n e r a t i o n ) ;
Wai tForAgen ts ( ) ;
C r e a t e N e w I n d i v i d u a l s ( ) ;
g e n e r a t i o n ++;

}

Listing 2. Actions performed by every level.

ated with each level: (a) the generation after which the first
migration occurs and (b) the migration frequency, measured
in terms of number of generations. The level that first reaches
the synchronization barrier suspends its evolution until the
same happens for the other. Then, the thread of the migration
agent resumes execution in order to carry out the inter–
level migration, as described before. Throughout the entire
optimization process, the migration between two successive
levels behaves differently. In the beginning, there is a large
deviation between the fitness values of the elites of the two
levels. The low level provides better performing solutions,
due to the higher number of generations that have evolved.
The information is, however, propagated to the high level,
which eventually catches up, evolving for a significantly
lower number of generations that correspond to a reduced
CPU cost. Towards the end of the process, the elites of
both levels represent individuals associated with almost equal
fitness values; in case of large deviations between high and
low level, due to the simplifications of the low level tool, the
evolution of the low level is terminated.



III. MAEAS; THE IPE TECHNIQUE

EA is the key search engine used in this work. This is,
herein, used in the form of MAEA which exhibits the same
effectiveness without requiring a large number of calls to
the exact model. In this paper, radial basis function (RBF)
networks are used [26].

A MAEA implementing the Inexact Pre–Evaluation (IPE)
techinque starts as a conventional EA. In each generation, all
the population members are evaluated on the exact model and
recorded in the DB. The continuously augmenting DB is the
pool from which datasets for the training of local metamodels
are selected. Once the DB has been filled with a sufficient
number of entries (this is a user–defined parameter), the
population members are first evaluated on metamodels. For
each member, its closer entries are selected from the DB.
The user defines the minimum and maximum number of
training patterns; this allows each metamodel to be trained on
a slightly different number of patterns, the criterion being the
“structure” of the available information in its neighborhood.
The reader should refer to [16] for a detailed description. A
much more sophisticated algorithm should be used in multi–
objective optimization, as described in [27].

At the end of the IPE phase, all offsprings are sorted with
respect to their approximate fitness value. Only the most
promising among them (usually 5− 10% of their population
size) are re–evaluated using the exact model and added to the
DB. Since the evaluation using the exact model is the only
computationally intensive task, the CPU cost per generation
is proportional to the number of individuals evaluated on the
exact model.

IV. APPLICATIONS: RESULTS & DISCUSSION

Design problems in external aerodynamics and turboma-
chinery have been worked out using the proposed multilevel
optimization platform. The demonstration covers all three
multilevel techniques, used separately on different test prob-
lems. The exact evaluation model (the high fidelity one in
multilevel evaluation) is a CFD code. This is an in–house
Navier–Stokes (N/S, [28]) flow solver based on a time–
marching, vertex–centered, finite volume formulation for
adapted unstructured meshes, employing a second–order ac-
curate Riemann solver and the Spalart–Allmaras turbulence
model, [29]. As low fidelity model (or the only exact tool,
in some cases), a viscous–inviscid flow interaction method
coupled with an integral boundary layer solver (V-II, [30])
is used.

A. Design of a Transonic Compressor Cascade using Mul-
tilevel Evaluation

This two–objective constrained optimization problem is
concerned with the design of a 2D transonic compressor
cascade for min. total pressure losses (ω=(pt1−pt2)/.5ρ1V1

2),
objective 1) and max. static pressure rise (p2/p1, objective 2).
Indices 1 and 2 denote that this quantity measured at the inlet
or outlet, respectively. The flow conditions were: isentropic
exit Mach number M2,is =0.6, inlet angle a1 = 55.4◦ and
Reynolds number based on the chord length Re=170000.

The cascade airfoil was parameterized using two Bézier
curves, separately for the pressure and suction sides; the
control polygon of each side was formed by 4 control points.
All but the leading and trailing edge control points were
allowed to vary in both chordwise and normal–to–the–chord
direction, summing up to 8 design variables. Though it seems
that this parameterization is “poor”, it proved to be quite
sufficient for such a transonic airfoil.

The imposed constraints restrict the airfoil thickness at var-
ious chordwise positions using an external penalty function
method. The three constraints were:

T (10%)≥3.0%, T (50%)≥2.0%, T (90%)≥0.4%

where T (x) stands for the ratio of the airfoil thickness over
the chord length at x% of the chord. The exit flow angle was
not constrained, since this was “controled” by the second
objective.

The multilevel evaluation method (configured as in table
I) was used, based on the N/S (high level model) and V-II
(low level model) codes. At both levels, search was based
on a MAEA implementing the SPEA2 [31] technique. The
use of RBF networks as metamodels in the multi–objective
problem was in accordance to the techniques presented in
[27]. The two flow solvers have an average CPU cost ratio
of approximately 30 : 1. So, at any synchronization of the
multilevel algorithm (such as a migration phase), after k1

evaluations based on N/S and k2 on V-II, the average CPU
cost was approximately equal to k1+k2/30 calls to the N/S
software (the cost of a N/S run will be referred to as one
“evaluation cost unit”). According to table I, the maximum
number of entries to the Pareto fronts of the two levels was
set to 35 (elite population size). If, at any generation or level,
more than 35 non–dominated solutions were found, thinning
was employed. In table I, all migration frequencies are
measured in generations. So, for instance, the first migration
took place at the end of the 20th low level generation and that
of the 2nd high level generation (synchronization barrier). 15
elite individuals at most migrated to the high level. These are
selected from the current front of non–dominated solutions,
provided that this contains at least 15 solutions; otherwise,
the entire current front (with less than 15 members) migrates
to the high level. At the same time, the low level receives 5
high level elites at most (same procedure). The three demes at
the low level were arranged on a ring, with clockwise (intra–
level) exchange of elite individuals. With the exception of the
first two generations, at each level, the offspring population
size determines the number of local metamodels to be trained
and only a few (re)evaluations (the user defined lower and
upper bounds) were carried out.

This run was made three times using different seeds in the
random number generator. Below we describe one of these
runs which seems to have an “average” performance. The
optimization code was allowed to evolve for a total of 311
total evaluation cost units. This number reflects an evolution
of 209 and 51 generations for the low and high level,
respectively or, equivalently, 1778 calls to the V–II code and



TABLE I

MULTILEVEL EVALUATION ALGORITHM SETTINGS

High Level Low Level

Number of Demes 1 3
Coding Binary Gray Binary Gray
Offspring population size 20 60
Parent population size 5 15
Elite population size 35 35
Intra–level migration frequency - 4
Gen. of first inter–level migration 2 20
Elites imported on 1st migration 15 5
Inter–level migration frequency 5 20
Elites imported otherwise. 6 5
Minimum DB size for IPE 130 150
Exact evaluations per gen. (IPE) 1-3 3-9

249 calls to the N/S code. Upon convergence, the high level
Pareto front consists of 13 individuals and is illustrated in
fig.2. In fig.3 the contour alongside with the Mach number
fields over three of the Pareto front cascades are presented.
A total of 10 inter–level migrations were carried out. During
all of them, the low level passed on useful information to
the single high level deme. In the overall cost given above,
the cost for re–evaluating all migrated individuals with the
evaluation software of the destination level, is included.

A

B

C

Fig. 2. Design of a transonic compressor cascade using Multilevel
Evaluation: The Pareto front obtained after 311 evaluation cost units.

B. Inverse Design of an Isolated Airfoil using Multilevel
Search

This case is concerned with the inverse design of an
isolated airfoil with free–stream Mach number equal to
M∞=0.5 and angle of attack equal to a∞=3.0◦. The target
was to reproduce a given pressure distribution along the
airfoil contour which was parameterized using Bézier curves
with 7 control points on each side. Three of them (per side)
were allowed to vary, summing up to 12 design variables. No
constraints were imposed. The multilevel optimization was
set up using two levels. At the low level a MAEA was used
in order to pinpoint the promising areas on the design space

Fig. 3. Design of a transonic compressor cascade using Multilevel
Evaluation: Indicative Pareto front members from fig.2, corresponding to
members A, B and C (top to bottom). For each member the corresponding
airfoil contour and Mach number field is illustrated.

and guide the high level search which employed the trust
region SQP technique. The configuration is summarized in
table II. The offspring population entry in the aforementioned
table for level 1 (SQP level) denotes the number of design
vectors updated using the SQP method. At both levels, the
N/S solver was used for inviscid flows (Euler equations).
The derivatives required for the SQP method were computed
using the adjoint method, [24]. The cost of solving the adjoint
equations was approximately equal to the cost of solving
the flow equations. So, we assume that each high level
evaluation (one call to the flow solver and the solution of
the adjoint equations) costs one evaluation cost unit whereas
each evaluation at the low level costs .5 units. The overall
cost of the optimization was 650 evaluation cost units, or
300 high level evaluations and 700 low level ones. The two
levels exchanged their elite individuals four times using the
inter–level migration agent. It was, however, only during the
first and third inter–level migrations that the best individual
from the low level outperformed the current best individual
of the high level (the stopping criterion for the low level
optimization was set to two ineffective migrations). Fig.4
illustrates the SQP convergence of two immigrants, one of
the first and the other of the third inter–level migration. The
first one achieves a very good cost reduction (by almost
two orders of magnitude, finitial = 5.44 · 10−4, ffinal =
7.41 · 10−6) while the second results to a reduction of about
half an order of magnitude (finitial =4.86 · 10−6, ffinal =
1.30 · 10−6), for it already lies very close to the optimal



solution; as in the previous case the run was performed
using three different initial seedings for the random number
generator and the ”average performance” run corresponds
to the presented results. The convergence of the multilevel
algorithm is shown in fig.5 along with the convergence of
a MAEA using the low–level configuration. The pressure
coefficient of the final and reference (the one used to compute
the target pressure distribution) airfoil are illustrated in fig.
6.

Fig. 4. Inverse design of an isolated airfoil using Multilevel Search: SQP
convergence of two selected individuals during the first and third inter–level
migrations.

Fig. 5. Inverse design of an isolated airfoil using Multilevel Search:
Convergence of the high level algorithm (trust region SQP) and comparisson
with an “averaged” conventional MAEA.

C. Design of a Compressor Cascade using Multilevel Pa-
rameterization

This case is concerned with the design of the blade airfoil
of a 2D axial compressor stator cascade, for minimum total
pressure losses (minimum ω, at the following flow condi-
tions: Re=4.0 · 105, M1 =0.6 and α1 =53.6◦. The stagger
angle was kept constant and equal to 30◦. The CFD analysis
software was the V-II code and the search tool was a MAEA,

Fig. 6. Inverse design of an isolated airfoil using Multilevel Search:
Pressure coefficient (CP ) of the target airfoil and final solution obtained
from the Multilevel algorithm.

TABLE II

MULTILEVEL SEARCH ALGORITHM SETTINGS

High Level Low Level

Number of Demes - 2
Coding - Binary Gray
Offspring population size 5 40
Parent population size - 10
Elite population size 2 10
Intra–level migration frequency - 4
Gen. of first inter–level migration 2 1
Elites imported on 1st migration 5 10
Inter–level migration frequency 10 30
Elites imported otherwise 5 4
Steepest descent step 0.001 -
SQP Trust Region(min) 3% -
SQP Trust Region(max) 15% -
SQP Trust Region(initial) 5% -
Minimum DB size for IPE - 150
Exact evaluations per gen. (IPE) - 2-10

at both optimization levels. The multilevel configuration is
given in table III. A number of constraints were imposed
regarding the blade thickness at three chordwise locations
and the flow exit angle, using an external penalty function
method. The constraints are listed below:

T (10%)≥5.5%, T (50%)≥7.5%, T (90%)≥2.0%, α2≤30◦

Two Bézier curves were used to parameterize the airfoil
sides, each one with 7 (low level) or 17 (high level) control
points. Transformations between the two parameterizations
were made according to equation 1.

Two inter–level migrations proved to be sufficient. The
low level elites transferred useful information to the high
level only during the first migration cycle. At the end of
the first migration, the lower and upper bounds of the
design variables, at the high level, had to be adapted to the
immigrants. With the new individuals, the high level MAEA
rapidly approached the area around the global optimum. As a
consequence, during the second migration, the best solution



TABLE III

MULTILEVEL PARAMETERIZATION ALGORITHM SETTINGS

High Level Low Level

Number of Demes 1 2
Coding Binary Binary
Offspring population size 30 40
Parent population size 6 10
Elite population size 5 10
Intra–level migration frequency - 4
Gen. of first inter–level migration 1 12
Elites imported on 1st migration 10 5
Inter–level migration frequency 6 15
Elites imported otherwise. 4 5
Minimum DB size for IPE 150 150
Exact evaluations per gen. (IPE) 1-2 2-4

Fig. 7. Design of a compressor cascade using Multilevel Parameterization:
Statistics on the quality of immigrants, during the inter–level migrations.

Fig. 8. Design of a compressor cascade using Multilevel Parameterization:
Convergence of the multilevel algorithm.

at the high level was very good and the low level could not
provide a better individual. Since the termination criterion
for the inter–level migration was set to one unsuccessful
migration, the second migration caused the lower level search
to terminate (fig. 7). The aforementioned strict termination
criterion was imposed on purpose since the evaluation cost at
each level was the same (same code). We recall that the low
level tool approaches faster the optimal solution not because
of the lower cost of the corresponding evaluation model but
due to the lower dimension of the search space; for the same
reason, metamodels performed better, too. Fig.8 illustrates
the convergence plot of the multilevel algorithm. The final
solution satisfies all the imposed constraints and yields a
cascade with ω = 1.88%.

Finally, the design process was repeated using a single–
level MAEA (configured exactly as the high level MAEA).
An average convergence of this algorithm (three runs) is pre-
sented in fig.8, too. The multilevel algorithm outperforms the
single–level MAEA. It is important to stress that the coarse
parameterization was unable to locate the final solution (the
run with the small number of control points was repeated up
to the end, i.e. without the termination criterion imposed by
the inter–level migration algorithm, and could only slightly
improve the best low level solution shown in fig.8; the new
convergence is shown in the figure), due to the coarse airfoil
parameterization. In contrast, the low level greatly assisted
the search at the high level, even after a single migration.

V. CONCLUSIONS & ON–GOING RESEARCH

In this paper a general–purpose multilevel optimization
platform was presented. At each level, the search for the
optimal solution can be based on different evaluation tools,
search algorithms or design variable sets. These three tech-
niques have been used separately, although it is straightfor-
ward to use them in combination. The performance of their
combined use is actually under investigation.

One– and two–objective problems have been examined.
It has been shown that all three multilevel techniques yield
optimal solutions on a limited computational budget. They
use the low level to explore the search space at low com-
putational cost and restrict the use of the computationally
expensive high level only for the refinement of promising
solutions.

Although parallelization issues are beyond the scope of
this paper, all runs have been performed on a heteroge-
neous PC cluster. A central manager allows the optimal
use of the cluster, by assigning each evaluation request to
the appropriate computational resource through user–defined
specifications (i.e. minimum required memory).
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