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Abstract 
This paper is concerned with optimization methods which, in combination with CFD-based 
analysis tools, can efficiently be used for the design-optimization of hydraulic turbine blades. 
It particularly focuses on metamodel-assisted evolutionary algorithms (MAEAs) used as 
either stand-alone tools or the main components of a hierarchical optimization algorithm 
(hierarchical MAEAs or HMAEAs). In a HMAEA, search is carried out on regularly 
communicating levels using models or search tools of different complexity and CPU cost; two 
levels are often sufficient though this is not mandatory. Additional economy in the CPU cost 
required to reach a successful design can be achieved by using surrogate evaluation models 
(the so-called metamodels) for the major part of search on each level. The metamodels exploit 
the “experience” gained during the evolution to approximately pre-evaluate new offspring 
generated by the EA and select the most promising among them for re-evaluation on the 
problem-specific tool. The metamodels used herein are radial basis function networks, trained 
on the fly on a small number of previously evaluated individuals in the vicinity of each 
offspring. Basic tuning parameters of a HMAEA are the parent and offspring population sizes 
per level, the minimum number of previously evaluated individuals that must be available 
prior to the metamodel-based pre-evaluations, the size of training pattern sets, the percentage 
of the population selected to undergo exact evaluation, the frequency of interlevel data 
migrations as well as the migration policy rules (determining the migrating individuals and 
the individuals to be displaced by them).  In this paper, the theory of HMAEAs is presented 
and, then, emphasis is laid to the parametric study of the most important “tuning” parameters 
of MAEA, which is its basic component. This study is based on two-objective designs of 
Francis and Kaplan runners. In the companion paper, the application of hierarchical MAEAs 
on the design-optimization of hydraulic turbine blades is presented. 
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INTRODUCTION 
To be competitive and deal with strictly constrained contracts, hydropower industries rely on 
modern methods for the design-optimization of hydraulic turbines and their components. 
Short delivery times for new products (runners, etc) must often be met. For this purpose, CFD 
tools and optimization techniques, such as evolutionary algorithms (EAs), gradient-based 
methods, etc, are in use. The two joint papers by the same groups present an integrated 
optimization procedure which can be adapted to the design of optimal blades of runners, by 
considering more than one objectives and/or more than one operating points. Compared to 
conventional methods, the present method is based on hierarchical metamodel-assisted EAs 
(HMAEAs) and aims at reducing the overall CPU cost of the optimization process. The 
presentation of HMAEAs and a few relevant parametric studies (on real problems, such as the 
design of Francis and Kaplan runners) helping the reader to become acquainted with them are 
presented in the paper in hand; their use on hydro turbine blade optimization, with discussions 
on the objectives and constraints used, are exposed in the companion paper [1]. 
  EAs are popular in engineering design due to their ability to handle single- and multi-
objective, constrained optimization problems by repetitively calling to the analysis software 
for the evaluation of candidate solutions. Multi-objective problems are solved by computing 
fronts of Pareto optimal (non-dominated) solutions, from which a single solution can be 
chosen only after employing additional decision-making criteria. EAs ask for no access to the 
analysis source code used as an “evaluation black-box” which, when presented by a set of 
values of design variables, computes the fitness or cost value(s) of the corresponding 
candidate solution. Thus, even commercial (such as CFD tool) evaluation software can readily 
be used. If, however, a single evaluation is computationally demanding, this increases 
noticeably the CPU cost of the optimization. To overcome this problem, the use of low cost 
surrogate models or metamodels (polynomial response surfaces, artificial neural networks, 
etc) in place of the problem-specific tool, has been proposed. This gives rise to the so-called 
metamodel-assisted EAs (MAEAs, [2]). There are several ways to incorporate metamodels 
within the evolution. The method employed herein uses local metamodels (radial basis 
function networks, in specific) trained on the fly on some of the neighboring previously-
evaluated individuals. The metamodel-based evaluations serve to pre-screen the population 
members so as to select only the most promising among them, which will then undergo exact 
evaluations on the CFD tool. As shown in [3,4,5], by Inexactly Pre-Evaluating (IPE 
technique) the population in each generation, the CPU cost can be reduced by even an order 
of magnitude and the delivery time of new products is thus shortened. 

Jointly with or separately from the IPE technique, the search for optimal solutions can 
be based on hierarchical schemes. A two-level structure is the easiest way to employ 
hierarchy during the optimization; though more levels can be used and have been used by the 
authors in other cases, herein we stick with only two. On the high level, which is responsible 
for delivering the optimal solution(s), search is based on an analysis tool with sufficient 
accuracy (for instance, an accurate flow solver and adequately fine meshes). On the low 
level, less accurate but less CPU demanding tools are used (for example, low fidelity CFD 
tools and/or coarser grids). So, any evaluation on the low level is less costly and search aims 
at exploring the design space at low cost. A two-way communication between the two levels, 
based on the “controlled” migration of promising individuals, is used. The hierarchical search 
which is based on MAEAs will be referred to as hierarchical MAEA or HMAEA, [6].  

The rest of the paper is organized as follows: the multi-objective, constrained EA, 
MAEA and HMAEA platforms are presented. Then, a number of investigations are carried 
out to “tune” the MAEAs, prove that they outperform conventional EAs and shed light into 
the most efficient way of using them. This study is carried out on the two-objective 
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optimization of Francis and Kaplan runners. In the companion paper [1], the so-tuned MAEA 
is used on each level of a hierarchical scheme (HMAEA) to design hydraulic turbine rotors.  
 
METAMODEL-ASSISTED OPTIMIZATION – HIERARCHICAL MAEAs 
Evolutionary Algorithms (EAs) are optimization methods capable of locating optimal 
solutions to single and multi-objective [8] optimization (SOO or MOO) problems through the 
evolution of populations of candidate solutions. EAs handle three populations of candidate 
solutions, namely offspring Sλ, parent Sμ and elite Sa. These interact during the application of 
the evolution (parent selection, crossover, mutation) and elitist operators which imitate the 
natural evolution mechanisms. The elite set is populated by the best individuals found thus 
far. In SOO, Sa degenerates to a single solution. In MOO, it includes all or some of the non-
dominated solutions; by definition a solution A dominates B if A is no worse than B for all 
objectives and wholly better for at least one objective. Once the non-dominated solutions are 
available, extra decision criteria are required for choosing among them. This final Sa is also 
referred to as the Pareto front of optimal solutions. EAs for MOO are based on EAs for SOO 
with the additional use of a process that transforms the objective function vectors to scalar 
utilities (equivalent to the scalar objective function in a SOO). This is often referred to as 
fitness assignment and incorporates dominance and proximity based criteria. In constrained 
optimization problems, candidate solutions are penalized accordingly. Herein, all penalties are 
computed using exponential functions that multiply the elements of the cost function vector.  
 

EAs can also benefit from the use of metamodels in order to reduce their computational 
burden (MAEAs); herein, we make use of radial basis function networks (RBFNs) as 
metamodel [9]. They act as low cost approximation tools and require the existence of a 
database (DB) of exactly evaluated individuals to be trained on. The optimization algorithm 
starts as a conventional EA (without using metamodels) and, once the minimum number of 
evaluations has been carried out, the offspring pre-evaluation on the metamodel starts. The 
DB is populated by the exactly evaluated individuals. Locally trained metamodels are used; 
i.e. for each offspring, its closest DB entries are identified and an RBFN is trained on them. 
The λe most promising population members (out of the λ offspring), according to the 
metamodel-based fitness, are selected to undergo exact (re-)evaluation using the costly 
evaluation tool. All exactly evaluated individual are archived in the DB. This algorithm has 
been proposed in [3,4,5] where this was referred to as IPE (Inexact Pre-Evaluation) method; 
the relevant flowchart is shown in figure 2.  
 

 
 
Figure 2. Schematic presentation of a MAEA. During the first few generations, all offspring 
are evaluated using the exact evaluation tool and recorded into the DB. Then, the Inexact Pre-
Evaluation (IPE) phase begins, during which all exactly (re-) evaluated individuals are 
recorded in the DB, to be used to train the metamodels in the forthcoming generations. 
 

Sλ 
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HMAEAs are enhanced MAEA variants which outperform conventional EAs or single-
level MAEAs in many engineering applications, including CFD cases. Conceptually, a 
HMAEA establishes a multilevel search mechanism and splits the computational burden 
among the levels. On the low level, a low cost exploration of the search space is carried out 
through global search methods, less demanding or less accurate evaluation tools or by even 
using reduced design variable sets, etc. The higher levels make use of accurate and, thus, 
more expensive tools, enhanced parameterizations global or local optimization tools. These 
levels mainly serve to refine immigrants from the lower levels. Intercommunication and two-
way migrations of individuals between adjacent levels are necessary. The number of levels, 
the frequency of migration and the number of immigrants are user-defined parameters. 

 
Figure 4. Illustration of a two-level hierarchical optimization scheme employing different MAEAs 
on each level [7]. Note that each level must maintain its own DB since different evaluation tools are 
in use. All migrated solutions must be re-evaluated on the destination level. 
 
ASSESSMENT OF MAEAs IN RUNNER DESIGN PROBLEMS 
Design optimization of a Francis Runner - Parametric study on MAEAs 
The first test case is concerned with the design optimization of a Francis runner, figure 5, 
aiming at achieving a pressure coefficient cp distribution with appropriate features while 
minimizing cavitation. The runner has 17 blades and its external diameter is 0.34 m. It is 
designed to operate at 40 m head, volume flow rate at discharge equal to 0.38 m3/s and 
rotating speed equal to 58.84 rad/s. The analysis of the flow field is based on an Euler flow 
solver which, along with the grid generation tool, determines the CPU cost per evaluation. 

The first objective function F1 is defined after post-processing the numerically predicted 
cp distributions at the crown, mid-span and band and expresses how monotonic and constantly 
decreasing the load profiles along the blade cuts are. The second objective F2 is equal to the 
opposite of the minimum pressure on the blade which should be minimized to reduce or avoid 
cavitation. For further details on the objectives, the reader should turn to the companion paper 
[1] where parameterization issues are also discussed. In brief, Bezier polynomials are used to 
model the blade hydrofoil cuts and their control points constitute the optimization variables 
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[10]. A number of constraints related to pressure, mass and swirl distributions along the blade 
and/or the outlet and discharge of the runner are imposed. 
 

 

Figure 5.  Francis runner: view of the flow channel on the meridian plane (top-left), 3D view 
of a single blade (top-right) and 3D view of the entire turbine (bottom). 
 

In this case, the optimal use of metamodels within the IPE technique is investigated. The 
performance of three MAEA configurations with the same parent, offspring and elite 
populations (μ=20, λ=40 and a=40, respectively) but different numbers of exactly re-
evaluated members per generation (λe=3, 6 and 10 candidate solutions) are compared. For the 
sake of comparison, a conventional EA (λe=λ) is also used. We abbreviate each method 
variant to (μ,λ,a;λe). In figure 6, the three fronts of non-dominated solutions computed at the 
cost of 400 calls to the Euler code are shown. The presented fronts of non-dominated 
solutions are approaching the real Pareto front but, after 400 evaluations, the algorithm is not 
considered to be fully converged. However, the comparison of performances can better be 
seen at this stage of the evolution. The best performing variant is (20,40,40;6) and will, 
finally, capture the sought Pareto front earlier than any other variant tested (not shown here). 
As shown in figure 7, the MAEA(20,40,40;6) variant noticeably outperforms conventional 
EAs (denoted by MAEA(20,40,40;40) or, merely, MAEA(20,40,40)).  

We next investigate two important parameters affecting the metamodel-based IPE of 
population members during the evolution. These are the size of the training pattern set used 
for each one of the new population members and the size of the starting DB, i.e. the minimum 
number of DB entries that must be archived before activating metamodels and the IPE 
screening. We tested two different configurations for each one of these parameters and the 
results are shown in figures 8 and 9. It should become clear that the training pool size, formed 
by the closest already evaluated solutions to any new individual, is not fixed; instead, the user 
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defines a lower and upper acceptable size. Several criteria are used to determine the most 
appropriate size and guarantee that there is “adequate” data around the new individual, in all 
directions in the search space. So, in figure 8, the performances of local RBF networks as 
metamodels, trained with [40,50] and [80,90] neighbouring database entries, are compared. 
With the same number of Euler-based evaluations, the RBF networks trained on fewer 
patterns perform better. From a certain point of view, this reconfirms the decision of using 
local metamodels. By even neglecting the (slightly) higher training cost when more training 
patterns are used, figure 8 demonstrates that it is more advantageous to use a limited number 
of training data in the close neighbourhood of the new individual. On the other hand, figure 9 
serves to show the most appropriate “timing” for starting the use of the metamodel-based 
filter. Two computations, where the metamodel action started after 200 and 100 Euler-based 
evaluations are compared. By comparing the two fronts of non-dominated solutions, 
computed at the same CPU cost, we conclude that there is no clear superiority of any of them. 
Practically, this figure (and some other runs, not shown here) dictates that the IPE should start 
once the database gets between 100 and 200 entries. 

For the same case, we also tested the possibility of improving the prediction capabilities 
of metamodels by using enhanced RBF networks. As such, we tested the RBF networks 
enhanced by the autocatalytic action of the so-called importance factors, as described in the 
Appendix. As shown in figure 10, the use of the enhanced RBF networks greatly improves the 
performance of MAEA(20,40,40;6). 
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Figure 6. Francis runner optimization: 
Comparison of the fronts of non-dominated 
solutions computed after 400 Euler-based 
evaluations using three MAEA variants. All the 
other parameters, used to adjust the use of 
metamodels, were the same. 

Figure 7. Francis runner optimization: 
Comparison the fronts of non-dominated 
solutions computed by the best performing 
MAEA(20,40,40;6) and a conventional EA after 
500 Euler-based evaluations. All empty boxes 
are clearly dominated by the filled ones and this 
shows the advantages of using metamodels.  

 
Use of MAEAs on the design optimization of a Kaplan Runner 
This test case shows how MAEAs can be also implemented in the design optimization of 
Kaplan runners. The runner has 3 blades and an external diameter of 0.34 m. The head and 
volume flow rate, at the design point, are 7 m and 0.66 m3/s, respectively. The rotating speed 
is 126 rad/s. Targets are related to the optimality of the cp profiles (at crown, mid-span and 
band, F1) and the minimization of the cavitation effect (F2).   
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Figure 8. Francis runner optimization: Study of 
the role of the size of the training pattern pool 
for the local metamodels. Non-dominated 
solutions computed after 400 Euler-based 
evaluations using MAEA(20,40,40;6) based on 
RBF networks trained on (a) 80 to 90 and (b) 40 
to 50 training patterns per new individual. 

Figure 9. Francis runner optimization: Non-
dominated solutions for two different database 
sizes at the starting generation of the IPE phase, 
namely for 100 and 200 archived members. 
Both runs correspond to the same CPU cost (400 
exact evaluations). 
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Figure 10. Francis runner optimization: Comparison of the Pareto fronts of optimal solutions found 
after 400 exact evaluations for a MAEA with and without the use of Importance Factors. 
 

Each design is parameterized using Bezier polynomials, as in the previous case. The 
control point coordinates constitute the optimization variables and, thus, they were allowed to 
vary among user-defined bounds. All candidate solutions were forced to respect the list of 
constraints described in the problem formulation section of the companion paper [1].  

The optimization was carried out using conventional EAs (60,40,60) and MAEAs 
(60,40,60;10); the IPE technique is used with λe=0.15λ. Figure 11 presents the fronts of non-
dominated solutions after 2800 and 3500 exact evaluations. After 3500 evaluations, the 
optimization is adequately converged. It is obvious that MAEA outperforms EA at both 
instants during the optimization. Two extreme members of the MAEA front have been post-
processed and their performance is compared and contrasted in figure 13.  
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Figure 11. Kaplan runner optimization: 3-dimensional view of the Kaplan runner under 
investigation.  
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Figure 11. Kaplan runner optimization: Non-dominated solutions after 2800 (left) and 3500 
(right) exact evaluations.  
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Figure 13. Kaplan runner optimization: Pressure coefficient (cp) profiles at hub for the 
“extreme” elite members on the non-dominated front (computed by the MAEA; figure 11, 
right). The continuous line corresponds to the member with the best cp profiles (21 cavitation 
loci on the blade), whereas the dashed line corresponds to the one that minimizes the 
cavitation effect (2 cavitation loci, only). For the first one, the difference in cp between 
pressure and suction side is decreasing “more constantly” than for the second one, resulting to 
decreasing load production along the blade,.  
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CONCLUSIONS 
An optimization platform that combines surrogate models and evolutionary search, in order to 
reduce the computational burden of engineering optimization applications such as the design 
of hydraulic turbine components, was presented and tested. The use of metamodels in the 
framework of MAEAs, improves significantly the efficiency of conventional EAs. Moreover, 
further CPU gain can be achieved by implementing MAEAs in a two-level (hierarchical) 
structure. An investigation on the optimal calibration of MAEAs was presented on the design 
of a Francis runner, aiming at both (a) cavitation reduction and (b) cp profile improvement.  
During this study, we tried to optimally adjust the number of promising offspring members 
that undergo exact evaluation at each generation of the MAEA. Additionally, optimal MAEA 
results were compared to those of a conventional EA so as to prove the superiority of the 
former. Comparison of MAEAs and EAs was also done through a second hydraulic Kaplan 
runner design case, with similar objectives. In the companion paper [1], an extended 
discussion on the problem formulation and the proposed two-level – multi operating 
optimization process, that makes use of the optimization tools presented and tested herein, is 
given. The optimization tool used herein is software EASY [6], developed and brought to 
market by the National Technical University of Athens.  
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APPENDIX 
 
RBF Networks Enhanced by Importance Factors 
An RBF network comprises three layers, namely the input, hidden and output layer, [9], as 
shown in figure A.1 (with a single output node for sake of simplicity). Signals propagate 
through the network in the forward direction, from the input to the output layer, by 
performing a nonlinear mapping followed by a linear one. The latter is related to the weight 
coefficients wk that must be computed during the training on a number of available patterns. 
An RBF network to be used within a MAEA should have N input units, i.e. as many as the  
design variables. The hidden layer includes K nodes, associated with the so–called RBF 
centers c(k). At each hidden neuron a nonlinear mapping of the input signals to a single value 
is carried out using the radial-basis activation function G:RN→R, acting on the distance of 
input x from the corresponding center c(k) Є RN. A widely used activation function is the 
Gaussian function, ( )2 2( , ) exp /G h r h r= , where ( )

2

kh x c= −  

The values that the radii or widths r take on may considerably affect the prediction 
abilities of the network; these are computed using heuristics, [9]. The output layer includes as 
many nodes as the responses of the network. The single response we are dealing with is 
expressed by the sum of the weighted output signals from the hidden neurons, as follows                   

( )( )
1 2

( ) ,K k
kk

o x w G x c r
=

= −∑  

Figure A.1 RBF network with N inputs, K hidden neurons and a single output.  
 

The idea of RBF networks with Importance Factors (IFs), as proposed in [3], was to 
make the last expression sensitive to the effect each design variable has on the response. So, 
instead of the “isotropic” norm ( )

2

kx c− , a weighted norm is used, which is defined as 

(k) ( ) 2
wei 1

||x-c  || ( )N k
n n nn

I x c
=

= −∑ by introducing the importance factors In, n = 1,N. By 
definition, a high In value denotes high sensitivity of the response (i.e. the cost function) with 
respect to the n–th input variable, whereas low In values denote the opposite. The computation 
of In is based on the RBF network predictions; it is important that these are computed from 
and used by the RBF networks. Their computation is based on the current best solution 
(superscript (b)) and the In values are updated whenever a better solution is found. For the new 
best solution, the corresponding local RBF network is built and N partial derivatives ( )b

no x∂ ∂  
are computed using the network. Using these derivatives, the importance factors values are 
computed as  

( ) ( )

1

b b
N

n i
n i

o oI
x x=

⎛ ⎞∂ ∂
= ⎜ ⎟

∂ ∂⎝ ⎠
∑ . 

 


