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Abstract. This paper proposes a Metamodel-Assisted Evolutionary Algorithm
(MAEA) for solving power generating unit commitment (UC ) problems with prob-
abilistic unit outages and locating the scheduling scenario with the minimum ex-
pected total operating cost (TOC ). The evaluation of candidate solutions relies on
Monte Carlo simulations comprising a great number of randomly generated unit
failure scenarios. Seeking the global optimal solution via a population-based search
method, such as an EA, relying on CPU expensive Monte Carlo simulations (evalu-
ation tool), is computationally demanding. The use of surrogate evaluation models
(metamodels, such as artificial neural networks) to inexactly pre-evaluate the EA
population and screen out its non-promising members without undergoing Monte
Carlo based evaluations, is a way to reduce the high CPU cost. The originality of this
paper lies on the selected inputs for the metamodels. For each candidate scheduling
scenario, the TOC s corresponding to a few (about 10) representative failure scenar-
ios are computed and, by presenting them to a trained metamodel, the expected
TOC is predicted. Training patterns are recorded during previous generations. The
optimization kernel is a two-level EA; on the low level, which is exploration-oriented,
a coarsened problem without constraints is solved at negligible CPU cost. The high
level is mostly used for the refinement of promising immigrants, sent by the low
level. There, the full/constrained problem is solved through the decomposition of
the scheduling period in subperiods, handled by a distributed EA, with matching
conditions at the interfaces. The proposed algorithm is tested on the scheduling of
a system with 6 units (gas turbines), for an 168 hour horizon.

Key words: Unit Commitment, Metamodel-Assisted Evolutionary Algorithms,
Stochastic Outages, Monte Carlo Method.

1



C.A. GEORGOPOULOU, K.C. GIANNAKOGLOU / MAEAs for the Stochastic UC Problem

1 INTRODUCTION

A UC problem is defined as follows: given a system of M power generating units
(for instance, gas and/or steam turbines) and a power demand distribution (d(j),
1≤ j ≤ T ) during a T -hour period, find the scheduling of these units that satisfies
the power demand with the minimum TOC. The problem is subject to various time
constraints, such as the duration of the start–up (STUP : T STUP

i ) and shut–down
(SHDN : T SHDN

i ) phases or the minimum time during which each unit must stay
ON or OFF (TRAMP

i ). Candidate solutions are binary strings with M ·T digits,
corresponding to the ON and OFF hourly states of all units.

In [1], a two–level optimization technique based on a single-objective EA was
proposed for solving the UC problems. The search is carried out on two levels.
On the low level, a UC problem of reduced complexity is solved: the time period
is coarsened by forming groups of consecutive time units (hours) whereas the time
constraints are relaxed. Thus, a much simpler problem is solved, using EAs, at neg-
ligible CPU cost. Well performing solutions migrate from the low to the high level,
where the full problem is solved using a distributed EA. It is called “distributed”
since the scheduling horizon is decomposed into a small number of subperiods, each
of which is solved by an EA. EAs optimizing the various subperiods communicate
at their interfaces, where matching conditions should be met. The combind use
of the distributed search scheme on the high level and the injection of promising
solutions into the starting populations of the high-level EAs reduce noticeably the
CPU cost. This is used as the basic search kernel in the present method, for solving
UC problems with stochastic unit outages.

When the UC problem is subject to stochastic unit outages, the optimal schedul-
ing scenario is the one that gives minimum expected TOC. A literature survey on the
solution of the UC problem with probabilistic outages reveals that the Monte Carlo
simulation is the most appropriate tool for evaluating candidate solutions, [2, 3, 4].
To compute the expected TOC of a candidate solution (binary string), an adequate
number (denoted by J) of unit availability/unavailability scenarios, according to
the failure and repair rates of each unit, must be generated at random. The bi-
nary string under consideration is adapted to each one of these scenarios and the
corresponding TOC s are computed. The expected TOC is deduced through their
averaging. Consequently, a single evaluation based on a Monte Carlo simulation
costs as high as J times the cost of evaluating a single UC schedule with all units
available. Employing the Monte Carlo technique within an EA, even a two-level
one, increases significantly the CPU cost.

To maintain the advantages of the EA–based optimization method while extend-
ing it to cope with stochastic unit outages with a reasonably low CPU cost, the
use of surrogate evaluation models within the two-level EA is proposed in this pa-
per. Assisting the EA–based optimization methods for computationally demanding
problems by metamodels is not new. Metamodel–based evaluations displace many
calls to the costly evaluation software during the evolution, leading to very efficient
MAEA, [5, 6, 7]. Metamodels are trained on-the-fly on data collected in the vicinity
of each new offspring. They produce approximate scores which are used to screen out
non–promising population members and restrict costly evaluations on the problem
specific tool only to the most promising among them.
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In a UC problem, where the design variables are binary digits, a new way of train-
ing and using metamodels is proposed. Since the target is to compute the expected
TOC resulting from J (usually some thousands) randomly generated failure–repair
scenarios, the metamodel is presented with the computed TOC values of a few
(Jind¿J , of the order of Jind≈ 10) preselected unit availability/unavailability sce-
narios and approximates the expected TOC. The new method is demonstrated on a
test problem, by laying emphasis to the CPU cost reduction compared to a two-level
EA without metamodels.

2 Problem Formulation

The UC problem with stochastic unit outages has already been defined in Section
1. For each one of the M units, the minimum (Pmin,i, 1≤ i≤M) and maximum
(Pmax,i) power production capacities are known. The values that T STUP

i , T SHDN
i

and TRAMP
i take on are also known. In addition, let AFRi be the average failure

rate (average number of failures per unit time) and ARRi the average repair rate of
unit i; both are assumed to be independent of time, [8].

In the UC problem, optimization variables are the states of all units (subscript

i) at each hour (superscript j). These are represented by binary digits (s
(j)
i = 1 or

0), denoting generating (ON ) or non–generating (OFF, STUP and SHDN ) states,

respectively. Since s
(j)
i =0 corresponds to any of the three non–generating unit states

(OFF, STUP or SHDN ), these can be distinguished only by taking into account
previous or next states of the same unit. Such a binary coding fits perfectly to
the EAs. Since, however, the chromosome consists of M ·T digits, a conventional
EA becomes CPU demanding for high M ·T values. For a given chromosome, the
optimal loads x

(j)
i of the generating units (

Pmin,i

Pmax,i
≤x

(j)
i ≤1) are deduced from the

minimization of the hourly cost, i.e. by solving hourly economic dispatch problems.
To this end, the augmented Lagrange multipliers method (ALM, [9]) is used.

In UC problems without stochastic unit outages, the TOC (in MWh or any
currency) is the objective function to be minimized. This sums up fuel consumption
and penalties for unmet demands, as follows

TOC=
T∑

j=1

M∑
i=1

OC
(j)
i +

T∑
j=1

Φ(∆d(j)) (1)

where the hourly operating cost OC
(j)
i is usually given by polynomials with known

coefficients. If the power demand is not met, TOC is penalized by Φ(∆d(j)), which
is a user–defined polynomial of ∆d(j)=|d(j)−p(j)| and p(j) is the power produced at
the j–th hour. Before being evaluated, all chromosomes are repaired to satisfy time
constraints related to T STUP

i , T SHDN
i and TRAMP

i and, hence, these do not affect
the penalty function.

Eq. 1 is valid irrespective of whether unit outages occur or not. To account for
stochastic unit outages, the expected TOC must be minimized and, thus, a Monte
Carlo simulation is used for the evaluation of each candidate schedule. For a unit
which is committed at the beginning of the scheduling period, the probability of zero
failures in the time interval (0,t) becomes Pfail,i(t)=e−AFRi·t, with a failure density
function given by pfail,i(t) = AFRi · e−AFRi·t. Also, the probability of repairing it
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Figure 1: The UC problem with stochastic outages. A candidate solution (for a single unit; top)
is adapted to a Monte Carlo AV –UAV scenario (middle), giving rise to a repaired chromosome
(bottom) to be evaluated on the adopted cost model.

within t hours from the moment of failure is Prep,i(t) = e−ARRi·t, with a repair density
function prep,i(t)=ARRi · e−ARRi·t. A Monte Carlo AV /UAV scenario is generated
using a sequence of stochastic variables r following the uniform distribution and
the expressions for the corresponding times-to-failure, Tfail,i = − 1

AFRi
ln(r), and

times-to-repair, Trep,i = − 1
ARRi

ln(r). The sequence of randomly selected variables r,
determining the sequence of Tfail,i and Trep,i values, assign availability (AV ; from a
repair up to the next failure) or unavailability (UAV ; from a failure up to the repair)
hourly flags to each unit. The binary digits of the UC chromosome to be evaluated
must be adapted to the AV /UAV unit scenario, as shown in fig. 1. The repaired
UC schedule is evaluated and the corresponding TOC is computed. These steps
are repeated J times, by creating and evaluating J replicates. Finally, the expected
TOC of this candidate solution is computed by averaging the TOC values of the J
replicates.

To conclude, the Monte Carlo evaluation of a single population member of the
EA costs as many as J schedule repairs and the solution of J ·T economic dispatch
problems. Even for short–term UC problems, this cost is important since J is
usually of the order of 104.

3 The Two–Level MAEA

For the solution of the UC problem with probabilistic unit outages, the pro-
posed method employs a two–level MAEA, inspired by the two-level EA for solving
conventional UC problems, as proposed by the authors in [1].

The coarse variant of the problem to be solved on the low level is defined before-
hand. Consecutive time units (hours), which may accomodate the same or similar
scheduling scenarios, are clustered together to form Tc (Tc¿T ) coarse time units.
The coarsened problem is optimized (low level optimization) via a binary encoded
EA, without considering constraints related to the transient phases or starting states
of units. Also, during the low level process, all units are considered to be continu-
ously available. Because of the reduced number of variables (M ·Tc bit string) the
CPU cost of defining and solving the low level problem is negligible.No metamodels
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are used.
Prior to proceeding to the high level where the detailed problem with all con-

straints is solved, the optimal solution to the coarsened problem is expanded, re-
paired and evaluated on the expected TOC using a Monte Carlo simulation with J
randomly generated AV /UAV scenarios. The J corresponding replicates are sorted
in terms of their TOC values and classified into Jind (Jind¿J) groups. An “indica-
tive” (median) replicate from each group is selected.

On the high level, the system operation during T hours is optimized by consid-
ering all constraints, i.e. initial unit states and time constraints (T STUP

i , T SHDN
i ,

TRAMP
i ) through proper repairing of each candidate chromosome, as explained in

[1]. To further reduce the CPU cost of the high level optimization, a distributed
optimization scheme is used: the scheduling period splits into K (user–defined)
subperiods, each of which is solved using a MAEA. Each subproblem is associated
with a chromosome of T ·M/K digits and an objective function which is the sum of
the TOC of the corresponding partition and penalties for possible inconsistencies
with the neighboring “optimal” schedules. The optimization process is employed
sequentially and iteratively, until all matching conditions at the interfaces are met.

To describe the two steps of the MAEA–based optimization scheme, we will as-
sume that the optimization is carried out on a single level (the low level) and that
on the high level the decomposition of the scheduling period in subperiods is not
activated. Thus, in the first step, the (µ, λ) MAEA (with µ parents and λ offspring)
starts exactly as a conventional EA by evaluating the first generation members on
the Monte Carlo method (evaluation of J replicates) and archiving in a database,
for each individual, only the TOC values of the Jind representative replicates, paired
with the expected TOC as computed using J replicates.

In second step, in each generation assisted by metamodels, the entire population
is firstly evaluated on the Jind representative replicates. Then, for each individual, a
radial basis function network (RBF, [10]) is trained on a small number of previously
evaluated individuals which are close to the new individual (distances are measured
in <Jind). The trained network approximates the expected TOC by presenting the
Jind previously computed TOC values to its sensory units. Procedures for selecting
“optimal” training sets for the RBF networks are recommended in [7, 5]. Once
approximations to the expected TOC of all the population members have been
computed, a few top of them (according to the metamodel predictions) are re–
evaluated on the Monte Carlo method and the same, initially generated, J replicates.
Let σ be the percentage of the offspring population selected for re–evaluation. The
parent selection operator is applied to the λ offspring, among which the expect TOC
values of σλ of them are “exactly” (Monte Carlo) evaluated and the rest are merely
predicted by the RBF network. The offspring population of the next generation is
formed through the standard evolution operators.

4 Method Application

In the examined case ([3]), the scheduling of M=6 units on a weekly period (T=168
hours) with the demand distribution of fig. 2 (top), is optimized. Units’ features are

all given in table 1. The terms OC
(j)
i and Φ(∆d(j)) in eq. 1, are linear functions of
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Table 1: Features of the power generation system.

[Pmin, Pmax] [MW ] OCi(Pi) [$] TSTUP [h] TRAMP [h] AFRi ×10−4 ARRi

u1 [55.7, 137.0] 2707.12P1 22 8 7.5 0.1554
u2 [25.0, 107.0] 2247.00P2 0 8 7.5 0.1554
u3 [11.0, 51.0] 1219.41P3 0 6 7.5 0.1554
u4 [11.0, 51.0] 1243.89P4 0 6 7.5 0.1554
u5 [40.0, 162.0] 5645.70P5 2 3 7.5 0.1554
u6 [10.0, 46.0] 2321.16P6 0 0 7.5 0.1554
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Figure 2: Demand (in MWh) distribution for the scheduling horizon (top) and definition of the
coarse level problem (bottom).

the produced power (Pi, MWh) per unit and the unserved demand (130∆d(j) $),
respectively.

For the detailed problem in hand, each candidate solution is encoded using
6 × 168 = 1008 binary digits. This is a quite long chromosome that makes nec-
essary the use of the two-level search method. During the preparatory phase, this
chromosome is shortened significantly due to the coarsening process, which yields 46
coarse time units, fig. 2 (bottom). So, on the coarse level, a candidate chromosome
comprises only 6×46=276 digits. On the high level, the 168 hour scheduling period
is separated into 6 subperiods (of 28 hours each). Each subperiod is optimized using
a MAEA which handles populations of µ=20 parents, λ=40 offspring and chro-
mosomes of 168 digits length. For the first two generations, all offspring members
are evaluated on the Monte Carlo simulation based on J=8000 AV /UAV scenaria.
Then, metamodels (RBF networks) are trained on Jind=10 TOCs, corresponding to
the repaired chromosome with respect to 10 “indicative” outage scenarios selected
among the J replicates.

For solving the UC problem, the proposed two-level MAEA is compared to a
conventional EA and a MAEA, where the proposed way to train metamodels is used
on a single-level evolution scheme. Fig. 3 illustrates the convergence of the three
algorithms. The conventional EA drifts slowly and endlessly towards a good solution.
The single-level MAEA performs even better, improving the performance of the
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Figure 3: Left–top: Coarse level optimal solution captured with neglected CPU cost. Left–bottom:
Fine level optimal solution found at the CPU cost of only 120 exact (Monte Carlo) evaluations.
Right: Convergence of a conventional EA, a single-level MAEA and the proposed two-level MAEA
in terms of the CPU cost in Monte Carlo simulations with J=8000 AV /UAV scenaria.

latter. The proposed two-level MAEA outperforms both single-level algorithms.
The coarse level optimization results to a sufficiently good but sub-optimal solution,
(fig. 3, left–top) at a negligible CPU cost. This solution serves as good initialization
on the fine level, where only a few iterations are required to trace the optimal solution
(fig. 3, left–bottom).

5 Conclusions

A two-level metamodel-assisted EA for the solution of the UC problem with
stochastic unit outages was presented. The backbone for programming the pro-
posed method is the generic multilevel optimization platform EASY 1, developed
by the Lab. of Thermal Turbomachines of NTUA. This algorithm was inspired
by the concept of hierarchical distributed MAEAs, initially developed for solving
computationally demanding optimization problems in aeronautics. The evaluation
software that computes the expected TOC (objective function) relies on the Monte
Carlo method, which involves the evaluation of thousands of randomly generated
availability/unavalability scenarios. The proposed method leads to considerable re-
duction in CPU cost thanks to the use of on-line trained metamodels. A novel way of
using metamodels in optimization problems which involve Monte Carlo simulations
was proposed. For each individual, instead of evaluating all Monte Carlo scenarios,
it suffices to compute the TOCs of just a few pre-selected ones and, then, use a
metamodel to guess the expected TOC. The optimization cost is further reduced by
performing a two-level evolutionary search, with an exploration-oriented (low) and
an exploitation- or refinement-oriented (high) level. On the high level, the use of
distributed evolution improves even more the algorithms performance.
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