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Abstract c Constraint
Pt Total pressure
o ) a Flow angle
The minimization of total ¢ Blade thickness
pressure losses in a compressor > SQP slack variable
cascade flow, using the SQP M Mach number
method and the exact Hessiansg R Residual operator
of both thelobjecFlve function Re Reynolds number based on chord
and c?nstralyts, is pregented. AML Lagrange multipliers
The direct differentiation of o Centering parameter
t?e governing qua?l?né computes v Cascade stagger angle
first-order sensitivities s Solidity
and,lt?e?,lthe secondjorder ) z,y Cartesian coordinates
sen31t}v%t1es are deergd using AVDR Axial velocity density ratio
the adjoint method. This 1s, 1in
fact, much more efficient compared Subscripts
to all other combinations of the
aforementioned techniques yielding n, out Flow domain inlet/outlet
also exact Hessians. In our S Isentropic
problem, the objective function tar Target
corresponds to the difference )
in total pressure between the Superscripts
cascade inlet and outlet. The . .
. t thickness constraint
flow turning through the cascade .
\ . . ; a flow angle constraint
airfoil i1is constrained. Apart

from the exact Newton method,
a quasi Newton method, in which Introduction
the Hesgian matrix is computed
exactly at the first cycle and
then approximately updated, is
also implemented.

The adjoint method has
been widely used in aerodynamic
shape optimization problems
to support gradient-based

optimization algorithms. Itg
Nomenclature major advantage is that the
CPU cost is independent of the
b Design variable number of the design variables.
F Objective function However, the efficiency of the
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optimization algorithm itself
depends on the conditioning of
the problem, which can be roughly
assessed by the properties of

the Hesgian matrix. It is well
known that gradient-based methods
perform poorly in ill-conditioned
problems. This can be alleviated
by either introducing information
from the exact Hessian or
switching entirely to a Newton
method. Below, the term exact
Newton method will be used to
denote a Newton method relying on
exactly computed Hessian matrices.
Note that formulas for the Hessian
matrix which do not take into
account some terms which (in this
paper) proved to be negligible,
are referred to as “exact” Hessian
matrices and the corresponding
descent method will be referred
to as “exact” Newton method. In
contrast, optimization methods
that make use of approximations
to the exact Hessian matrix will
be referred to as “quasi Newton”
methods.

In the CFD community, works
addressing the issue of computing
exact Hessiansg in aerodynamics are
limited. [12], [14], and [4] rely
on automatic differentiation (AD)
tools and various combinations of
discrete adjoint techniques and
direct differentiation of the flow
equations to compute second-order
sensitivities of a functional
related to geometric and flow
input variables. In [6], this was
also extended to the computation
of second-order sensitivities on
a parallel computer. [1]1, [2] and
[3] proposed a preconditioning
technique that introduces
second-order information by
applying Fourier analysis and uses
the so-obtained Hessian symbol.

In previous works by the
same group, [7]1, [8], [9]1, [10]
the authors have computed the
exact Hessian for the objective

function associated with the
inverse design of 2D airfoil
shapes; this was achieved through
the combined use of direct
differentiation of the state
equations and adjoint techniques,
in both continuous and discrete
form. These studies concluded
that the direct-adjoint method

is the one with the lowest CPU
cost. This approach is employed
herein for the minimization of
total pressure losses in a 2D
compressor cascade subject to
geometric and flow constraints.
The direct differentiation and

the discrete adjoint method are
implemented using exclusively hand
differentiation. Compared to AD
techniques which could be used
instead, hand differentiation,
maximizes code efficiency and
economy in memory. Furthermore,
the method provides a mathematical
framework to support robust design
applications, by computing the
exact Hessian with respect to flow
input variables.

Optimization Problem — Mathematical Background

The scope of this study is to
minimize the total pressure losses
in turbomachinery cascade flows,
maintaining the average flow
turning at a desired value and
the airfoil thickness (at several
chordwise positions) greater than
some user-defined minimum values.
This problem can be interpreted as

minimize F = [ pdS— [ . pidS
subject to
= % out (aout - a/ta'r’,out)2 dS =0

and cﬁ =1, —ligry > 0
Here b;, i=1,...,N is the vector

of Bézier control points
parameterizing the cascade
airfoil, U,, m=1,...,M are the
flow variables over the grid
points and {4, r=1,...,R are the
minimum allowed blade thicknesses
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at certain chordwise positions
(subscript 7).

The Lagrangian function of
the design problem is defined as

L= F =\ — )\

and is used to define the
Karush-Kuhn-Tucker (KKT)
optimality conditions, [5], for
the above problem

i°
db;

c—2t=0
=0

Mzt —opd >0
1
= XT: ﬁzfnlﬁ

Slack variables z¢

are introduced
as extra optimization parameters
in order to convert the thickness
inequality constraints to equality
ones. The Newton method can be
applied to the KKT conditions.
This is proved, [5], to be
equivalent to defining a quadratic
optimization subproblem in
each step, to be solved for
the subproblem variables d; and
Lagrange multipliers pf and u%;
such a problem reads
minimize 1d1ﬂ7% d; +—dFd
subject to @ Tdi=0
and mfd —zt=0

This is the so-called Sequential
Quadratic Programming (SQP)
method. in which all subproblems

are solved using the Newton method
for d;, pt and p®

&L dof  dc® 0

dbidb; b dbs Ad;
P00 0 Oy App |
do* Aps |
de g 0 0 H
db; Az
0 Ztérl 0 Miérl
d* L dc®
dbsdb; Tordi; & +dbt _TI‘T_W/‘
de, ¢
d_biddi — Z,r
dbi di
Z’V’l’["r’ - O-Md

with pf and 2! be strictly positive

and R be the number of airfoil
thickness constraints. The
solution to the subproblem is used
to update b;, Af and A% as follows:

di — (by)" = (by)"

The Flow Solver

The flow variables U, are
derived from the solution of the
Reynolds-Averaged Navier-Stokesg
(RANS) equations for steady
flows, R,=0,n = 1,...,M. These
are numerically solved on
2D unstructured grids with
triangular-quadrilateral elements,
using the finite volume technique
and a vertex-centered, finite
volume upwind scheme with Roe’s
approximate Riemann solver for
the convection fluxes, [11]. The
state equations are coupled with
the one-equation Spalart-Allmaras
turbulence model, [13].

Computation of First—Order Sensitivities

The gradient of F with
respect to b; can be computed
either as

dP‘4765’+ OF dUy
db;  8b;  OUy db;

where %%—are the outcome of

the numerical solution of the

differentiated flow equations
dR, oR, OR, dUy

o o av, a0 @

or, equivalently, as

dF  OF 0
__'::T_'+’Wn_giz (3)
db;  9b; 0b;
where W, result from solving the
adjoint to the flow equations

oF oR,

a—Uk+‘Ijn—aUk =0 (4)
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Following the adjoint approach
(egs. 3 and 4), the computation
of %%f can be overcome, reducing
the overall CPU cost for the
gradient computation to only

one additional equivalent

flow solution (over and above
that required to solve the

flow equations) . However, the
computation of %%f cannot be
avoided if the second-order
sensitivities are to be computed
by means of the direct-adjoint
approach (hereafter, direct
differentiation is merely

abbreviated to direct).

Computation of Second—Order Sensitivities

Similar to the gradient
computation, the Hessian
matrix can be computed by
re-differentiating the functional
with respect to b; to get

d*F P?F o*°F dU, ?F  dUy

dbydh,  Ob,0b, | 90,00y db, | 9URdb, by

PF dUy dUy, +£ 42U,
oULoU,, db; db; — OUy db;db;

(5)
The second-order sensitigities
of the flow variables, é%%? are
obtained by differentiating eq.
2, leading to
d’R, 9°R,, 9%R,, dU; 9%°R,, dU,

db;db;,  9b,0b;, ' 9b;0U, db; | 9U.0b, db;
R, dU,dU,, 0R, d°U,
dUdU,, db; db; ' 9Uy dbdb;

(6)

Multiplying ;ggg,sﬂith the adjoint
7 A0;

variables and adding it to eg. 5

gives

PP PP PF U 9P dU
doudh,  Ob,0b, | 06,00 db, | 0ULDb, db;
—_——
hl h2
PF U dU,, R, N
900U, db, db, ' "9b,0b;
——
h3 h4
&R, dU, &R, dU,
" 900U, db, |30, db,
hb
&R, dUy dU,,
" 900Uy, db; db;
h6
oF R\ d°U,
v,
+ <6Uk + 6Uk> dbydb,

hT

+ v

+ v

By satisfying the same adjoint
equations that were used for the
first-order sensitivities, eq.

4, term “h7” can be eliminated.
Furthermore, since F is an
integral over the inlet and outlet
boundaries and b; control the
airfoil shape, terms “hl” and

“h2" also vanish. So, the Hessian
becomes
d2F _ 9*F @dUm 3R, n
db;db; - 2ULBU,, db; db; n@bﬁb_j
N———
h3 R4
2 2
U 0*R,, dUy 0*R,, dU,

" 9b;0U,, db;
hb5
2R, dUy dU,,

" 9Udb; db;

+¥ — 8
" oULOU,, db; db; 8)
h6
. dc®
To computi the gradient ji and
Hessian -2¢- of the flow turning

db;db;
constraint, a similar development

to that already presented for F is
to be made. Hence

de®  9c® ga R,
ab,  ab o,

(9)
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and
dct P dU dU,,
dbidb; — 8ULOU,, db; db;
o 9"Ro_dUy
" b;oUy db; ' " OULOb; db;
2
e 0“R, ngdUh
oULOU,, db; db;

o PRy
" 9b;0b;
. 9*R, dU,

+ U

(10)

where the new adjoint variables U7
result from

0c | Ga Ry

a0, " Vman, ~° (1)

and %%f are computed by eq. 2.
The gradient and Hessian of the
thickness constraint function
are computed with a simple,
straightforward closed-form

derivation.

Case Study — The “exact” Newton method

The proposed method based on
eqs. 8 and 10 was applied to the
total pressure losses minimization
of a 2D compressor cascade with

v = 30°, s=0.65 and AVDR = 0.93.
A1l terms comprising the Hessian
matrix expression (eq. 8) were

programmed and only the terms
depending on the sensitivities of
the turbulence model were omitted.
The outlet isentropic Mach number
was set to Myu::s=0.45, the inlet
angle to a;,=47° and the desirable
flow turning was a;, — aem:=22°. Each
alrfoil side was parameterized
using eight Bézier control points.
The ordinates of three of them
for each side were chosen as
design variables, yielding six
design variables in total. The
airfoil thickness distribution
was constrained not to decrease
below 95% of its initial value.
Examining the Hessian for the
functional and constraint (fig.

1) in all optimization cycles
(results from the first cycle

are displayed here), we conclude
that the term marked with “hé” is
negligible. So, this term will

be dropped hereafter, for the sake
of CPU cost reduction.
of the above, the final expression
of the Hessian of F, which will
be used during the optimization

process, becomes

In view

¢*F &R, _9°F dUydU,
dbydb; " 0b;ob; | 0ULOU, db; db;
g OB dUy 9°R, dUj,
" 90Uy, db; | " 9URdb; db;
(12)

Eg. 12 gives the so-called
“exact” Hessian, to make a
distinction from eqg. 8 which
gives the exact Hesgsian.

erm
[ ] term "h4" e

term "h6" —o-

exact Hessian —— |
" " .
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Figure 1: Comparison of terms

appearing in the expression for
the Hessgian matrix in eg. 8 (for
the functional, top) and eg. 10
(for the flow turning constraint
function, bottom) .
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“Exact” Newton vs. Quasi Newton Optimization

Plots of the decrease in
total pressure losses during
the optimization are shown in
fig. 2 with respect to the
optimization cycles and the
total CPU cost. The optimal
geometry, which conforms to
the set of constraints, is
demonstrated in fig. 3. The
flow separation region over the
optimized airfoil is reduced, as
can be sgeen in fig. 4. Further
reduction without violation of
either the angle or thickness
constraints was not possible. A
close-up view of the Mach field
near the airfoil can be seen in
fig. 5. The Newton algorithm
converges slightly faster than
the “exactly initialised” quasi
Newton algorithm and conforms
slightly better to the angle

Functional cost

Functional cost
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. . . .
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constraint, fig. 6, due to the
more accurate computation of the
Hessian at all cycles, even though
the cost of the Newton method per
optimization cycle is notably

Figure 2: Total pressure losses
reduction using the “exact” and
quasi Newton algorithms, plotted
in terms of optimization cycles

hlgier. ngweyer, fo? ilhlghii (top) and total CPU cost, measured
i ?r © esign varlé €8, € by the number of Jacobi iterations
quasi Newton method, 1s expected
(bottom) .

to perform much better. “Pure”
quasi Newton runs (i.e. with the 0.6 T

. . L . Initial ——
unit matrix used to initialize the Optimal ——

Hessian) were made for the case
examined above. Their performance 0.4 |
depended heavily on the initial
steepest-descent step and was,
in any case, worse than both 0.2 |
the Newton and the quasi Newton
methods presented herein.

Conclusions—Discussion

A method for the design of 2D x
compressor cascades for minimum
total pressure losses subject
to a number of geometric and
flow constraints was presented.
The method presented was based
on the combined use of direct

Figure 3: Initial and optimized
geometry. The z and y axes are
not in scale.
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Figure 4: Friction coefficient
distribution over the initial and
optimal airfoil.
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P

Figure 5: Close-up view of the
Mach number field in the region
close to the initial (up) and
optimal (down) airfoil.

differentiation and discrete
adjoint method to compute first-
and second-order sensitivities
of the objective and constraint
functions. To overcome the
high CPU cost caused by the

1
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Quasi Newton -
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Figure 6: Convergence plots

of the flow turning constraint
using the “exact” Newton and quasi
Newton algorithms.

N+2 equivalent flow solutions

per optimization cycle, which
were required to compute exact
gradients and Hessians, a quasi
Newton method was devised, in
which the computation of the
exact Hessian is made once, in
the beginning of the algorithm; in
all subsequent cycles, the Hessian
is updated using a quasi-Newton
method and the exactly computed
gradient (which is obtained
through the discrete adjoint
method). A contribution of this
paper 1s a proposal for a simpler
Hessian formula (referred to as
the “exact” Hessian within the
paper) which resulted from the
elimination of non-important
terms as indicated by numerical
experiments. The “exact” Hessian
matrix is also useful for the
computation of the robustness of
aerodynamic shapes, when robust
design methods are in use.
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