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Abstract 

The minimization of total 
pressure losses in a compressor 
cascade flow, using the SQP 
method and the exact Hessians 
of both the objective function 
and constraints, is presented. 
The direct differentiation of 
the governing equations computes 
first-order sensitivities 
and, then, the second-order 
sensitivities are derived using 
the adjoint method. This is, in 
fact, much more efficient compared 
to all other combinations of the 
aforementioned techniques yielding 
also exact Hessians. In our 
problem, the objective function 
corresponds to the difference 
in total pressure between the 
cascade inlet and outlet. The 
flow turning through the cascade 
airfoil is constrained. Apart 
from the exact Newton method, 
a quasi Newton method, in which 
the Hessian matrix is computed 
exactly at the first cycle and 
then approximately updated, is 
also implemented. 

Nomenclature 

c Constraint 
pt Total pressure 
a Flow angle 
t Blade thickness 
z SQP slack variable 
M Mach number 
R Residual operator 
Re Reynolds number based on chord 
A,/./. Lagrange multipliers 
a Centering parameter 
7 Cascade stagger angle 
s Solidity 
x, y Cartesian coordinates 
AVDR Axial velocity density ratio 

Subscripts 

in, out Flow domain inlet/outlet 
is Isentropic 
tar Target 

Superscripts 

thickness constraint 
flow angle constraint 

b 
F 

Design variable 
Objective function 

Introduction 

The adjoint method has 
been widely used in aerodynamic 
shape optimization problems 
to support gradient-based 
optimization algorithms. Its 
major advantage is that the 
CPU cost is independent of the 
number of the design variables. 
However, the efficiency of the 
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optimization algorithm itself 
depends on the conditioning of 
the problem, which can be roughly 
assessed by the properties of 
the Hessian matrix. It is well 
known that gradient-based methods 
perform poorly in ill-conditioned 
problems. This can be alleviated 
by either introducing information 
from the exact Hessian or 
switching entirely to a Newton 
method. Below, the term exact 
Newton method will be used to 
denote a Newton method relying on 
exactly computed Hessian matrices. 
Note that formulas for the Hessian 
matrix which do not take into 
account some terms which (in this 
paper) proved to be negligible, 
are referred to as "exact" Hessian 
matrices and the corresponding 
descent method will be referred 
to as "exact" Newton method. In 
contrast, optimization methods 
that make use of approximations 
to the exact Hessian matrix will 
be referred to as "quasi Newton" 
methods. 

In the CFD community, works 
addressing the issue of computing 
exact Hessians in aerodynamics are 
limited. [12] , [14] , and [4] rely 
on automatic differentiation (AD) 
tools and various combinations of 
discrete adjoint techniques and 
direct differentiation of the flow 
equations to compute second-order 
sensitivities of a functional 
related to geometric and flow 
input variables. In [6] , this was 
also extended to the computation 
of second-order sensitivities on 
a parallel computer. [1] , [2] and 
[3] proposed a preconditioning 
technique that introduces 
second-order information by 
applying Fourier analysis and uses 
the so-obtained Hessian symbol. 

In previous works by the 
same group, [7], [8], [9], [10] 
the authors have computed the 
exact Hessian for the objective 

function associated with the 
inverse design of 2D airfoil 
shapes; this was achieved through 
the combined use of direct 
differentiation of the state 
equations and adjoint techniques, 
in both continuous and discrete 
form. These studies concluded 
that the direct-adjoint method 
is the one with the lowest CPU 
cost. This approach is employed 
herein for the minimization of 
total pressure losses in a 2D 
compressor cascade subject to 
geometric and flow constraints. 
The direct differentiation and 
the discrete adjoint method are 
implemented using exclusively hand 
differentiation. Compared to AD 
techniques which could be used 
instead, hand differentiation, 
maximizes code efficiency and 
economy in memory. Furthermore, 
the method provides a mathematical 
framework to support robust design 
applications, by computing the 
exact Hessian with respect to flow 
input variables. 

Optimization Problem - Mathematical Background 

The scope of this study is to 
minimize the total pressure losses 
in turbomachinery cascade flows, 
maintaining the average flow 
turning at a desired value and 
the airfoil thickness (at several 
chordwise positions) greater than 
some user-defined minimum values. 
This problem can be interpreted as 

minimize F = f. ptdS — f ,VtdS 
•Jxn l b -J outl b 

sub jec t t o 
C = 2 -lout (a°ut ~ atar,out) db = 0 

and ct
r=tr — ttar>r > 0 

Here bi, i=l,. .., N is the vector 
of Bezier control points 
parameterizing the cascade 
airfoil, Um, m=l,. .., M are the 
flow variables over the grid 
points and ttar>r, r=l,. .., R are the 
minimum allowed blade thicknesses 
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at certain chordwise positions 
(subscript r) . 

The Lagrangian function of 
the design problem is defined as 

with /i' and z\ be strictly positive 
and R be the number of airfoil 
thickness constraints. The 
solution to the subproblem is used 
to update bi, \\ and Aa as follows: 

and is used to define the 
Karush-Kuhn-Tucker (KKT) 
optimality conditions, [5] , for 
the above problem 

d£ 

dbj 
0 

4 = 0 
ca = 0 

K4 - <rp > o 

I1 = / y ~F>Zrl1r 

Slack variables z\ are introduced 
as extra optimization parameters 
in order to convert the thickness 
inequality constraints to equality 
ones. The Newton method can be 
applied to the KKT conditions. 
This is proved, [5] , to be 
equivalent to defining a quadratic 
optimization subproblem in 
each step, to be solved for 
the subproblem variables di and 
Lagrange multipliers /i' and fj.a; 
such a problem reads 

minimize ±d 
2 '' 

subj ect to 

dbidbj1 ^ dbi% 

^d; = 0 

and -di 

dbi ' 

0 

This is the so-called Sequential 
Quadratic Programming (SQP) 
method. in which all subproblems 
are solved using the Newton method 
for di, /i' and fj.a 

dAL 
dbi dbj 

dc'r 

dbj 
dJ_ 
dbj 

0 

dc\ 
~~dbl 

0 

0 

zl5r 

dca 

' dbi 

0 

0 

0 

0 

Sri 

0 

dbi dbj "•] + dbi db\ ^ r 

dct i t 
— - a • — 7 
dbi l r 

dbi l 

zlnl — a/id 

Adj 

A/4 
A/j,a 

Azi 

— na 

dbi I1 

di-(biT+1-(bi)n 

\ n + l 

n + l 

The Flow Solver 

The flow variables Um are 
derived from the solution of the 
Reynolds-Averaged Navier-Stokes 
[RANS) equations for steady 
flows, Rn=0,n = 1, ...,M. These 
are numerically solved on 
2D unstructured grids with 
triangular-quadrilateral elements, 
using the finite volume technique 
and a vertex-centered, finite 
volume upwind scheme with Roe's 
approximate Riemann solver for 
the convection fluxes, [11]. The 
state equations are coupled with 
the one-equation Spalart-Allmaras 
turbulence model, [13] . 

Computation of First-Order Sensitivities 

The gradient of F with 
respect to bi can be computed 
either as 

dF _ dF dF dUk 

dbi dbi dUk dbi 

where -^ are the outcome of 
the numerical solution of the 
differentiated flow equations 

dixn urin urtn du^ 

(1) 

dbi dbi dUk dbi 

or, equivalently, as 

= 0 (2) 

dF OF c)Rn 

dbi dbi n dbi 

where ^n result from solving the 
adjoint to the flow equations 

dF T dRn 
— - + * n — f = 0 (4) 
dUk dUk 
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Following the adjoint approach 
(eqs. 3 and 4), the computation 
of -gjk can be overcome, reducing 
the overall CPU cost for the 
gradient computation to only 
one additional equivalent 
flow solution (over and above 
that required to solve the 
flow equations). However, the 
computation of -^ cannot be 
avoided if the second-order 
sensitivities are to be computed 
by means of the direct-adjoint 
approach (hereafter, direct 
differentiation is merely 
abbreviated to direct). 

Computation of Second-Order Sensitivities 

S imi l a r t o the g r a d i e n t 
computat ion, t he Hessian 
ma t r ix can be computed by 
r e - d i f f e r e n t i a t i n g the f u n c t i o n a l 
with r e s p e c t t o bi t o ge t 

d2F 82F 
+ 

d2F dUk d2F dUk 

+ dbidbj dbidbj dbidUk dbj dUkdbj db + 

+ 
d2F dUkdUm OF d2Uk 

+ dUkdUm dbi dbj dUk dbidbj 
(5) 

The second-order sensitivities 
d'Uk 

dbidb* of the flow variables, 
obtained by differentiating eq. 
2, leading to 

d Rn d RTl 

dbidbj dbidbj ' dbidUk dbj ' 8Ukdbj db{ 

82Rn dUk | 82Rn dUk | 

+ 
d2Rn dUk dUm , 8Rn d2Uk 

+ dUkdUm dbi dbj dUk dbidbj 
(6) 

g i v e s 

d2F d2F d2F dUk d2F dUk 

dbidbj dbidbj dbidUk dbj dUkdbj dbt 

hi hi 

d2F dUkdUm T d2Rn 

dUkdUm dbi dbj 

h3 

T d2Rn dUk T d2Rn dUk 

' dbidUk dbj dUkdbj dbi 

+ *n 
d2Rn dUkdU„ 

dUkdUm dbi dbj + 
he 

dF_ + ^ dRn\ d2Uk 

, dUk
 n dUk ) dbidbj 

hi 

(7) 

By satisfying the same adjoint 
equations that were used for the 
first-order sensitivities, eq. 
4, term nh7" can be eliminated. 
Furthermore, since F is an 
integral over the inlet and outlet 
boundaries and bi control the 
airfoil shape, terms "hi" and 
"/i2" also vanish. So, the Hessian 
becomes 

d2F d2F dUkdUm T d2Rn 

dbidbj dUkdUm dbi dbj 

h3 

T d2Rn dUk T d2Rn dUk 

' dbidUk dbj ' dUkdbj dbi 

+ *n 
d2Rn dUk dUm 

dUkdUm dbi dbj 
(8) 

he 

To compute the gradient dca 

and 

Hessian of the flow turning 
dbi dbj 

c o n s t r a i n t , a s i m i l a r d e v e l o p m e n t 
t o t h a t a l r e a d y p r e s e n t e d f o r F i s 
t o b e made. Hence 

M u l t i p l y i n g £b~[£. w i t h t h e a d j o i n t 
v a r i a b l e s and a d d i n g i t t o e q . 5 

dca 

dk 

dca dR 

dbi n dbi 
(9) 
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and 

d2ca 

dbidbj 

d2ca dUk dUm 

dUkdUm dbi dbj 
d2Rn 

n dbidbj + 
d2Rn dUk 92i?n dtf* 

I ^ 77 

ndbidUk dbj n8Ukdbj db 

d2Rn dUk dUm 
ndUkdUm dh dbj 

(10) 

where the new adjoint variables \&^ 

result from 

dca
 T „ dRn 

&uk ^ n duk 
= o ( I D 

and dUk are computed by eq. 2. 

The gradient and Hessian of the 

thickness constraint function 

are computed with a simple, 

straightforward closed-form 

derivation. 

Case Study - The "exact" Newton method 

The proposed method based on 

eqs. 8 and 10 was applied to the 

total pressure losses minimization 

of a 2D compressor cascade with 

7 = 30°, s=0.65 and AVDR = 0.93. 

All terms comprising the Hessian 

matrix expression (eq. 8) were 

programmed and only the terms 

depending on the sensitivities of 

the turbulence model were omitted. 

The outlet isentropic Mach number 

was set to Mouti,s=0.45, the inlet 

angle to ajn=47° and the desirable 

flow turning was ciin — aout=22° . Each 
airfoil side was parameterized 

using eight Bezier control points. 

The ordinates of three of them 

for each side were chosen as 

design variables, yielding six 

design variables in total. The 

airfoil thickness distribution 

was constrained not to decrease 

below 95% of its initial value. 

Examining the Hessian for the 

functional and constraint (fig. 

1) in all optimization cycles 

(results from the first cycle 

are displayed here), we conclude 

that the term marked with "h6" is 

negligible. So, this term will 

be dropped hereafter, for the sake 

of CPU cost reduction. In view 

of the above, the final expression 

of the Hessian of F, which will 

be used during the optimization 

process, becomes 

d2F T d2Rn d2F dUkdUm 

dbidbj n dbidbj dUkdUe dbi dbj 

T d2Rn dUk T d2Rn dUk 

dbidUk dbj dUkdbj dbi 
(12) 

Eq. 12 gives the so-called 

"exact" Hessian, to make a 

distinction from eq. 8 which 

gives the exact Hessian. 

exact Hessian — B — 
term "p3" —•-
term "hi" —•-
term "po" --*---
term "h6" 

Hessian element 

Figure 1: Comparison of terms 

appearing in the expression for 

the Hessian matrix in eq. 8 (for 

the functional, top) and eq. 10 

(for the flow turning constraint 

function, bottom). 
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"Exact" Newton vs. Quasi Newton Optimization 

Plots of the decrease in 
total pressure losses during 
the optimization are shown in 
fig. 2 with respect to the 
optimization cycles and the 
total CPU cost. The optimal 
geometry, which conforms to 
the set of constraints, is 
demonstrated in fig. 3. The 
flow separation region over the 
optimized airfoil is reduced, as 
can be seen in fig. 4. Further 
reduction without violation of 
either the angle or thickness 
constraints was not possible. A 
close-up view of the Mach field 
near the airfoil can be seen in 
fig. 5. The Newton algorithm 
converges slightly faster than 
the "exactly initialised" quasi 
Newton algorithm and conforms 
slightly better to the angle 
constraint, fig. 6, due to the 
more accurate computation of the 
Hessian at all cycles, even though 
the cost of the Newton method per 
optimization cycle is notably 
higher. However, for a higher 
number of design variables, the 
quasi Newton method, is expected 
to perform much better. "Pure" 
quasi Newton runs (i.e. with the 
unit matrix used to initialize the 
Hessian) were made for the case 
examined above. Their performance 
depended heavily on the initial 
steepest-descent step and was, 
in any case, worse than both 
the Newton and the quasi Newton 
methods presented herein. 

Conclusions-Discussion 

A method for the design of 2D 
compressor cascades for minimum 
total pressure losses subject 
to a number of geometric and 
flow constraints was presented. 
The method presented was based 
on the combined use of direct 

4J 
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D . 0 0 4 8 5 
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Quasi 

\®^k$ 
\ &F 

••• t 
• • 
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-
rTW^ 

**€**. %> ^ > 

^zV 

D 2 0 C 
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4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 C 

Figure 2: Total pressure losses 
reduction using the "exact" and 
quasi Newton algorithms, plotted 
in terms of optimization cycles 

(top) and total CPU cost, measured 
by the number of Jacobi iterations 
(bottom). 

Initial 
Optimal 

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Figure 3: Initial and optimized 
geometry. The x and y axes are 
not in scale. 
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"Exact" Newton '—m— 
Quasi Newton --G~-

wM T 
25.06 

25.04 

a o 

Optimization Cycle 

Figure 4: Friction coefficient 

distribution over the initial and 

optimal airfoil. 

Figure 6: Convergence plots 

of the flow turning constraint 

using the "exact" Newton and quasi 

Newton algorithms. 

0.05 0.25 0.45 0.65 

Figure 5: Close-up view of the 

Mach number field in the region 

close to the initial (up) and 

optimal (down) airfoil. 

N+2 equivalent flow solutions 

per optimization cycle, which 

were required to compute exact 

gradients and Hessians, a quasi 

Newton method was devised, in 

which the computation of the 

exact Hessian is made once, in 

the beginning of the algorithm; in 

all subsequent cycles, the Hessian 

is updated using a quasi-Newton 

method and the exactly computed 

gradient (which is obtained 

through the discrete adjoint 

method). A contribution of this 

paper is a proposal for a simpler 

Hessian formula (referred to as 

the "exact" Hessian within the 

paper) which resulted from the 

elimination of non-important 

terms as indicated by numerical 

experiments. The "exact" Hessian 

matrix is also useful for the 

computation of the robustness of 

aerodynamic shapes, when robust 

design methods are in use. 

differentiation and discrete 

adjoint method to compute first-

and second-order sensitivities 

of the objective and constraint 

functions. To overcome the 

high CPU cost caused by the 
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