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Abstract  

A design-optimization method for hydraulic machinery is proposed. Optimal designs are obtained using the 
appropriate CFD evaluation software driven by an evolutionary algorithm which is also assisted by artificial neural 
networks used as surrogate evaluation models or metamodels. As shown in a previous IAHR paper by the same 
authors, such an optimization method substantially reduces the CPU cost, since the metamodels can discard numerous 
non-promising candidate solutions generated during the evolution, at almost negligible CPU cost, without evaluating 
them by means of the costly CFD tool. The present paper extends the optimization method of the previous paper by 
making it capable to accommodate and exploit pieces of useful information archived during previous relevant 
successful designs. So, instead of parameterizing the geometry of the hydraulic machine components, which inevitably 
leads to many design variables, enough to slow down the design procedure, in the proposed method all new designs 
are expressed as weighted combinations of the archived ones. The archived designs act as the design space bases. The 
role of the optimization algorithms is to find the set (or sets, for more than one objectives, where the Pareto front of 
non-dominated solutions is sought) of weight values, corresponding to the hydraulic machine configuration(s) with 
optimal performance. Since the number of weights is much less that the number of design variables of the 
conventional shape parameterization, the design space dimension reduces and the CPU cost of the metamodel-assisted 
evolutionary algorithm is much lower. The design of a Francis runner is used to demonstrate the capabilities of the 
proposed method. 
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1. Introduction  
In the hydropower industry, CFD tools (Euler and Navier-Stokes solvers) combined with modern optimization 
techniques, such as evolutionary algorithms (EAs) [1], [2] are often used instead of the expensive, in both time 
and resources, lab tests.  

It is well known that the EAs, due to their ability to locate global optima in multi-objective, constrained 
optimization problems supported by black-box evaluation tools (even commercial software), have gained 
popularity in design-optimization problems in engineering. Their main disadvantage, though, is the excessive 
CPU cost when used along with costly evaluation tools, such as the 3D flow analysis software simulating the 
flow in hydraulic machinery components. To alleviate this drawback, hierarchical schemes and/or low cost 
surrogate models (often referred to as “metamodels”) are used [1], [2]. An efficient way of using metamodels 
(polynomial response surfaces, artificial neural networks, etc.) within an EA is by assigning the 
inexpensive/inexact pre-evaluation (IPE, [4], [5], [6]) of the population members to them. More precisely, 
they act as screening tools distinguishing promising from non-promising individuals in each generation and 
allowing only the former to be re-evaluated by the expensive and accurate (based on a designer’s decision) 
CFD tool. On the other hand, hierarchical optimization methods employ more than one problem-specific 
evaluation models, with different modeling accuracy and CPU cost, [7].     

It should not escape notice that, when a new hydraulic machinery component (a runner, for instance) is to be 
designed, there is always a certain amount of useful information (at least in the form of design “directives”) 
included in similar previous successful designs, even if the latter had to operate at (slightly) different conditions. 
The most evident way to exploit archived designs is by modifying the “closest” one(s) based on human 
experience. The designer often selects one or more previous designs, corresponding to similar problems, and 
revises them in order to make them fit to the new problem specifications. This leads to faster response times but 
the designer is unavoidably biased towards previously designed configurations and, so, she/he might come up 
with a good, rather than the optimal, design. This paper presents a method which is capable to exploit previous 
designs within an automated design-optimization procedure by simultaneously reducing the number of design 
variables (exploiting geometry correlations between successful designs). To demonstrate the new method, the 
design of a multi-operating-point Francis turbine runner, using the aforementioned method is presented. 
Through comparison with a standard EA-based design, the efficiency of the proposed method is shown. 

2.  “Conventional” hydraulic machinery parameterization. 
The standard way of parameterizing hydraulic machinery shapes (such as blades, the hub and shroud 
generatrices, etc.) is by means of Bezier curves and/or B-Splines. Without loss in generality, in a design-
optimization algorithm, the blade shape can be modeled by superimposing a parameterized thickness 
distribution on a parameterized mean camber surface. Figs. 1 to 7 demonstrate the basic features of such a 
parameterization and introduce (some of) the design variables. For instance, fig. 1 shows typical spanwise 
distributions of the mean camber surface angles at the leading (LE) and trailing (TE) edges. The 
circumferential position of the blade LE and TE, in the spanwise direction, are shown in fig. 2. Finally, fig. 3 
shows how the mean camber surface curvature can be defined by the so-called ζ angle distributions (more 
details are beyond the scope of this paper) for the LE and TE. In all these curves, the coordinates of all or 
some of the control points are the design variables.  

The contours of the LE/TE and the hub/shroud generatrices on the meridional plane are parameterized by 
means of Bezier curves with 4 (LE and TE) and 14 (hub and shroud) control points each, as in fig. 6. The so-
defined mean camber surface, a number of dimensionless chordwise thickness distributions for the suction 
and pressure sides (blade profiles, as in fig. 4) and the spanwise thickness distributions for the two blade 
sides (fig. 5), together define the blade shape, such as the one shown in fig.7.  

To summarize, based on the previous discussion and the relevant figures, a turbine runner (stator, rotor 
and casing) design often yields more than 300 design variables. This will be referred to as the “conventional” 
parameterization which could be (and has been) used along with an EA for designing a new optimal shape. 
However, even by using the advanced EA variants (such as a metamodel-assisted EA or MAEA and/or 
hierarchical search), the CPU cost is still high. This paper aims at further reducing this cost and, for this 
reason, previous designs are exploited, leading to just a few design variables to cope with.  
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Figure 1: Spanwise distributions of  
mean camber surface angle β at the LE 
(blue) and TE (green); both are 
parameterized using Bezier curves with 5 
control points each. 

Figure 2: Circumferential position of 
the LE (blue) and TE (green) of the 
blades, in the spanwise direction; both are 
parameterized using Bezier curves with 5 
control points each. 

Figure 3: Spanwise distributions of the 
mean camber surface curvature 
(represented by the so-called ζ angle) at 
the LE (blue) and TE (green); 
parameterization as in figs. 1 and 2. 

 

 

Figure 4: Dimensionless chord-wise thickness distributions for the suction (red) and pressure (blue) sides; both are 
parameterized using Bezier curves with 9 control points each. 

 

 
 

 

Figure 5: Spanwise absolute thickness 
distributions for pressure (red) and 
suction (blue) side; parameterization as in 
figs. 1 and 2. 

Figure 6: Parameterized meridional 
contour. 

Figure7: Mean camber surface (blue) 
and the superimposed thickness profiles 
(green) generate the 3D blade. 

3.  Designing a new component based on archived designs 

Let us assume that a small number of previous designs are available. These designs must have been 
performed for similar problems and archived with respect to all design variables, in conformity with the 
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same parameterization. Let us denote by )b,,b,(b=GEO i
n

ii
i ...21 , i=1,m the m archived designs. Let jb  (j=1,n) 

denote the “conventional” design variables as described in Section 2. It is a simple matter to assume that any 
new design new

jb (j=1,n) may result from the combination of m archived designs, by means of weights 

iw (i=1,m). This is, in fact, equivalent to a multi-linear interpolation scheme, namely 
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Without loss in generality, we may assume that ]0,1[∈iw . Setting up an optimization method merely 
based on eq. 1 leads to a parsimonious set of unknowns (or design variables, namely the m values of 

iw ;recall that m is a quite small number compared to n). However, since (a) m is small and (b) a multi-linear 
interpolation with the same weight for all variables comprising the same archived design is used, the 
flexibility and effectiveness of such a method is questionable.  

Among other, the set of the archived solutions reveals the statistical distribution of each design variable 
and, consequently, this can also be used to set the bounds of the design space. In place of eq. 1, the nonlinear 
equations  
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can be used to define each new design. In eq. 2, Φj are appropriate nonlinear functions. Based on the 
assumption that the archived designs (which will otherwise be referred to as design bases) correspond to 
operating conditions correlated to the new ones, the new design should conform to a normal distribution. 
Should this be the case, the sigmoid cumulative distribution function could be used for Φj  [10].  
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where μ (mean) and σ (standard deviation) are calculated for each “conventional” design variable (j); 
schematically: 
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The use of the cumulative distribution function, eq. 3, practically confines bi within μi±3σi. To overcome 
this limitation, a single extrapolation variable Ψ which multiplies all computed (based on the archived 
designs) σ values and, thus, extends the search space, is introduced. Ψ is used as follows, 
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With either eq. 1 or eq. 2, an optimization problem with m weights (the number m of design bases is 
considered to be small) as unknowns is neither effective nor flexible. Such a method may overcome the 
curse of dimensionality (since the number of design variables is no more depending on n) but may lead to 
sub-optimal solutions. For this reason, the grouping of design variables that correlate with each other must 
also be used. Correlated design variables such as, for instance, those defining the mean camber surface angle 
at LE, etc, are grouped together. After forming these groups, different weights are associated with each one 
of them. This is why the new weights are denoted by wi,k, where the first index corresponds to the ith design 
basis and the second one to the kth group of design variables (which bi belongs to). In conclusion, in place of 
either eq. 1 or eq. 2, the following equation 
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is used. 
 
Based on eq. 5, an optimization problem with m·K unknowns (or m·K+1, to also account for Ψ), where K 

is the number of design variable groups, is set up. Search methods, such as EA (or MAEA), with the 
proposed parameterization may locate the global optimum, much more efficiently than an EA (or MAEA) 
based on the conventional parameterization. In this paper, the MAEA of the EASY optimization software 
developed and brought to market by NTUA, [8], is used. Locally valid, on-line (i.e. during the evolution) 
trained metamodels (radial basis function networks) are used to approximately pre-evaluate the population 
members by overcoming the evaluation of non-promising individuals. In the so-called IPE (Inexact Pre-
Evaluation, ([4], [5], [6], [7]) technique of the EASY optimization platform, [8], only a small percentage of 
the population in each generation is evaluated by the exact and costly evaluation tool. The exactly evaluated 
individuals, in all but a few starting generations (in which the metamodels cannot be used since the database 
of previously evaluated individuals does not contain enough information for training the metamodels), are all 
pinpointed by the metamodels.  

 

4   Application: Design of a Francis runner  

A multi-objective, multi-operating-point design-optimization of a Francis turbine runner is presented as 
proof of concept. The quality of a Francis runner is evaluated by considering the pressure coefficient Cp 
distribution over the blade as well as the outlet velocity profile distributions. Herein, the target is to design 
the entire runner (including the meridional hub and shroud contours) and, based on the conventional 
parameterization, an excessive number of designs variables (as many as 336!) would have been used. 

To ensure performance stability, the runner to be designed is desirable to yield optimal performance at 
three operating points (peak point H=40m, part load H=33m and full load H = 48.4m). The three-operating-
point design is handled as an optimization problem with two objectives, i.e. a Pareto front is sought. The first 
objective quantifies the outlet swirl and mass-flow distributions and the second is related to the quality of the 
Cp  plots at the three operating points. In specific: 

     • Objective 1 (F1): minimization of the weighted sum of two quantities, namely (a) the deviation of 
the outlet swirl distribution from the target one and (b) the deviation of the outlet mass-flow distribution 
from the target one (see, for instance, fig. 12). 

     • Objective 2 (F2): minimization of the standard deviation of the load along the chordwise direction, 
by considering the computed Cp distributions along a number (herein, 11) of spanwise equally distributed 
blade profiles (fig. 13). 

The value of each objective function is computed for each operating point separately and, then, the 
“overall” value Fi is set equal to the weighted sum of the corresponding values for the three operating points.  

In the sake of safety against cavitation, inequality constrains are imposed on the σ-histogram. For all 
operating points, the σ-histogram  should be less or equal than a safety-factor times plant σbegin, where σbegin 
is the value of σ that cavitation starts for the specific plant. Note that the σ-histogram is an approximation to  
σ, [9], 
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In the present study, three previous successful designs are used as design bases. The “conventional” 
design parameters were clustered to form 6 groups: leading and trailing edge relative circumferential 
position (fig. 2), leading and trailing edge angles (fig. 1), pressure and suction side thickness distributions 
(fig. 5), meridional contour and profiles (figs. 4 and 6). Based on this grouping, 6 weights per design basis 
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are introduced. Including the extrapolation variable Ψ, 3x6+1=19 optimization variables in total (much less 
than the >300 design variables of the “conventional” parameterization) are, finally, used. 

 

 
 

Figure 8: Hypervolume indicator plots for the computed 
fronts of non-dominated solutions. The horizontal axis 
corresponds, practically, to CPU cost.  

 

Figure 9: Fronts of non-dominated solutions computed at 
the cost of 1500 evaluations. 

 

   Comparisons between the performance of MAEAs using the “conventional” Francis runner 
parameterization (336 design variables) and that of the proposed method (19 design variables) are displayed 
in figs. 8 and 9. In fig. 8, the two optimizations carried out are compared in terms of the hypervolume 
indicator, characterizing the quality of the computed Pareto fronts. The hypervolume indicator quantifies the 
part of the design space which is dominated by the Pareto front members; higher values correspond to better 
fronts of non-dominated solutions. As shown in fig. 8, an extra advantage of using the method proposed in 
this paper is that it substantially facilitates the use of the artificial neural networks, acting as metamodels. 
Using metamodels that replace, as much as possible, the number of costly problem-specific (i.e. CFD-based) 
evaluations, it is possible to overcome difficulties related to their training or the deterioration of their 
predictive abilities due to the increased number of input parameters. The final fronts of non-dominated 
solutions are presented in fig. 9. From the front computed using the new parameterization, a single design 
(point “A” on fig. 9) was selected and used in some other figures, for the purpose of comparison. For the 
same purpose, the three geometry bases (previous successful designs) are also presented, all of them at the 
peak load point. 

5   Conclusions. 

An optimization platform that combines evolutionary algorithms with the ability to exploit information 
contained in previous successful designs, in order to reduce the computational burden, is used to design a 
Francis runner. New designs are defined as combinations of the previous successful designs, after clustering 
similar design variables into groups and associating one weight per group of variables and archived design. 
This leads to a reasonably small number of design variables, even by an order of magnitude smaller than that 
of “conventional” parameterizations, and reduces the optimization cost of the evolutionary algorithm. This 
cost can be reduced even more by using metamodels (artificial neural networks) to screen out non-promising 
solutions during the evolution, at low cost. The artificial neural networks used profit also of the reduction of 
the design space dimension, since they become much more dependable.  
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Figure 10:  Design “A” (yellow: pressure side, light blue: 
suction side) in comparison with the geometry bases (red: 
pressure side, blue: suction side).    

Figure 11:  Optimal blade “A” ; mean camber surface and 
absolute thickness profiles. 
 

 
 

  

  

Figure 12 : Swirl and mass distributions (contributing to F2) for the optimal solution “A” (top-left), the three bases. Target 
curves are shown in red. Design “A” is by far closer to the target distribution than any of the bases. 
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Figure 13: Cp profiles (contributing to F1) for the optimal solution “A” (top-left), the three bases. The chordwise load stability 
of  “A”, compared to the bases, is absolutely clear. 

 


