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Abstract. This paper presents the implementation of the one-shot technique for the solution of design/shape 

optimization problems on NVIDIA Graphics Processing Units (GPUs), for incompressible fluid flow problems. 

One-shot optimization techniques are based on the simultaneous solution of the flow, adjoint and shape 

correction equations. They are efficient alternatives to standard gradient-based algorithms in which, within each 

cycle, the flow and the adjoint equations are solved the one after the other, followed by the update of the shape 

using the computed gradient of the objective function. The aim of this paper is to superimpose the parallel speed-

up gained by GPU-enabling the corresponding software to the gain in efficiency offered by the one-shot 

algorithm. To this end, the experience of the authors’ group in porting Navier-Stokes solvers for compressible 

fluid flows to GPUs is exploited. Key features of the new method are the use of the flow equations for 

incompressible fluids and the solution of the coupled flow-adjoint equations on the GPU. The programmed 

software is used for the shape optimization of the tubes of a heat exchanger and an elbow duct. 

 

 

1 INTRODUCTION 

Gradient-based methods supported by adjoint techniques are frequently used for the design or shape 

optimization of aerodynamic shapes. The main advantage of the adjoint method is the low cost for computing the 

gradient of the objective function, which is almost equal to the cost of the flow equations; this cost is 

independent of the number of the design variables and this is the great advantage of the adjoint method 

compared to other rival methods, such as finite differences. The adjoint equations in discrete form can be 

obtained either directly from the discretized flow (state) equations or by deriving and discretizing the adjoint 

partial differential equations (PDEs). These are referred to as the discrete [1, 2] and the continuous adjoint 

approach [3, 4, 5, 6], respectively.  Each cycle of the optimization, using the standard steepest-descent algorithm, 

involves the solution of the flow and the adjoint equations (solved in segregated manner, i.e. each system of 

equations after the other), the computation of the gradient of the objective function and the shape correction 

based on this gradient. Based on the literature [7, 8], the one-shot optimization technique, which is based on the 

simultaneous solution of the flow, adjoint and shape correction equations, may reduce the overall computational 

cost.  

This paper deals with the one-shot adjoint technique for incompressible flows with heat transfer effects. The 

continuous adjoint approach is adopted, by considering variations of the turbulence model variables with respect 

to the design variables, as originally proposed in [9]. The latter is absolutely necessary for accurate gradients to 

be computed. Since, nowadays, GPUs are used in scientific computing including CFD [10, 11, 12, 13], the 

proposed method is ported to NVIDIA GPUs in order to reduce the wall clock time for the solution of the flow 

and adjoint equations and, as a consequence, the optimization turnaround time.  

GPU implementations of CFD algorithms for either structured [11, 12, 14, 15] or unstructured [10, 13, 16, 

17] grids can be found in the literature. Those for structured grids profit of the fully organized (structured) 

memory accesses and lead to high speed-ups, as memory handling is crucial for the performance of any GPU 

implementation. Regarding GPU-enabled codes for unstructured grids, their parallel performance depends on the 

spatial discretization scheme. For instance, the cell-centered finite volume scheme is more advantageous 

compared to the vertex-centered one, as far as memory access is of concern. This is due to the fact that, in a 

vertex-centered scheme, the number of the adjacent nodes affecting the computation of fluxes crossing the 

boundaries of any finite volume may vary a lot. In contrast, in a cell-centered scheme, the number of adjacent 

cell centers is constant (apart from elements in the vicinity of the boundaries).  

In this work, the GPU implementation of the one-shot adjoint technique is carried out using the vertex-

centered approach. The expected gain in computational cost (compared to the segregated method running on a 

CPU) is expected to result from (a) the use of the one-shot algorithm which is more efficient than the segregated 

(standard) one and (b) the software porting to the GPU. Regarding the latter, the authors already have enough 

experience, for compressible flow predictions and solely for the solution of the flow equations, see [10, 16, 17]. 

This experience is herein transferred to incompressible flow problems and the one-shot adjoint approach. The 
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developed GPU-enabled code is used to solve two problems: (a) the shape optimization of a heat tube exchanger 

for maximum heat transfer and minimum total pressure losses and (b) the design of a duct with 90° turning for 

minimum total pressure losses. The obtained optimal solutions are the same irrespective of the use of the one-

shot or the segregated technique and/or the use of CPUs or GPUs. Here, emphasis is laid to the reduction of the 

optimization turnaround time. 

 

2 THE ONE-SHOT ADJOINT ALGORITHM 

2.1 Development of the continuous adjoint method 

The Navier-Stokes equations for incompressible flows, including the energy equation and the one-equation 

Spalart-Allmaras turbulence model [18], constitute the system of state or flow PDEs 
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where 𝑝, 𝑣𝑖 , 𝑇 denote the static pressure, the velocity components and the static temperature and 𝜈  stands for the 

Spalart-Allmaras model variable. These quantities constitute the so-called vector of state or flow variables. The 

state equations are solved using the pseudo-compressibility method, by introducing appropriate time-derivatives 

in all of them and the artificial compressibility coefficient 𝛽 in (1a). In the above equations, 𝜌 is the constant 

density, 𝑥𝑖 , 𝑖 = 1,2 are the Cartesian coordinates, 𝛼, 𝑎𝑡  are the bulk and turbulent thermal diffusivities, 𝜈 is the 

bulk viscosity, 𝜈𝑡 = 𝑓𝑣1
𝜈  is the turbulent viscosity and 𝑃 𝜈  , 𝐷 𝜈   stand for the production and destruction terms 

respectively, as described in detail in [18]. In incompressible flows, eqs (1a), (1b) and (1d) are solved in a 

coupled manner and, after these converge to a user-defined convergence level, eqn (1c) is solved separately to 

provide the temperature field. 

For laminar flows with heat transfer, such as the shape optimization of a tube heat exchanger studied below, 

the solution of the turbulence model equation (1d) is omitted; consequently, 𝜈𝑡 = 𝑎𝑡 = 0. For the second 

examined case which is concerned with the optimization of an elbow duct, where the flow is turbulent without 

however heat transfer effects, the system of equations (1a), (1b) and (1d) is solved. Note that the development 

that follows considers the full system of eqs (1). 

Based on the continuous adjoint method, to compute the gradient of the objective function 𝐹, the augmented 

function 𝐹𝑎𝑢𝑔  is defined as the sum of 𝐹 and the field  𝛺  integral of the residual of eqs (1) multiplied by the 

adjoint variables (𝑞, 𝑢𝑖 , 𝑇𝑎 , 𝜈 𝑎)  ,  𝐹𝑎𝑢𝑔 = 𝐹 +    𝑞𝑅𝑝 + 𝑢𝑖𝑅𝑣𝑖
+ 𝑇𝑎𝑅𝑇 + 𝜈 𝑎𝑅𝜈  𝛺

 d𝛺. Note that 𝑞 (adjoint pressure) is 

the adjoint to 𝑝, 𝑢𝑖  (adjoint velocity) is the adjoint to 𝑣𝑖 , 𝑇𝑎   (adjoint temperature) is the adjoint to 𝑇 and 

𝜈 𝑎  (adjoint Spalart-Allmaras model variable) is the adjoint to 𝜈 . The variation of 𝐹𝑎𝑢𝑔  with respect to the design 

variables‟ vector, 𝑏  ∈ 𝑅𝑁, is expressed as follows, [19], 
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(2) 

where 𝑆 is the boundary of the domain (comprising the inlet 𝑆𝐼, outlet 𝑆𝑂 and solid walls 𝑆𝑊) and 𝑛𝑘  are the 

components of the unit normal vector to any boundary segment 𝑑𝑆. 

 

The development of the field integrals of eqn (2), based on the Gauss divergence theorem, gives rise to 
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(3) 

The adjoint field equations (4) and their boundary conditions are derived by forcing all field and boundary 
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integrals depending on the variations in the state variables 
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The corresponding boundary conditions result from the elimination of the last integral (along 𝑆) in eqn (3). 

For instance, at the inlet, 𝑢𝑖𝑛𝑖 = 𝑣𝑖𝑛𝑖 , 𝑢𝑖𝑡𝑖 = 0, (where 𝑡𝑖  are components of the tangent to the boundary unit 

vector) for the velocity components and zero Dirichlet conditions must be applied for 𝜈 𝑎  and 𝑇𝑎 . Zero Dirichlet 

conditions are also imposed to 𝑢𝑖 , 𝜈 𝑎   and 𝑇𝑎  and zero Neumann to 𝑞 along the solid walls. The boundary 

conditions at the outlet require a much lengthy development which is omitted in the interest of space; the reader 

may find more about this development in [9].  

After numerically solving the discretized adjoint PDEs, eqs (4), with their boundary conditions, the variation 

in 𝐹𝑎𝑢𝑔  become independent of variations in the state variables; so, the remaining integral terms (marked as term 

A in eqn (3)) yield the gradient of the objective function. Regarding the discretization of the state or adjoint 

PDEs, these can be handled through similar schemes. However, it is important to note that, even if the energy 

equation (in system (1)) is decoupled from the remaining ones and can thus be solved separately, the adjoint 

energy equation, eqn (4c) remains coupled with the other adjoint equations, due to the presence of terms 

depending on 𝑇𝑎  in eqs (4b) and (4d).   

2.2 The one-shot technique – Solution algorithm and discretization scheme 

The one-shot optimization method, employed in this paper, relies on the coupled solution of the flow and 

adjoint equations, namely eqs (1) and (4), along with the updating of the shape based on the computed gradient 

of 𝐹. More about the one-shot technique and its effect on a GPU-enabled solver are presented as the paper 

develops.  

In the present work, eqs (1) and (4) are integrated on unstructured grids using the vertex-centered finite 

volume technique. A typical finite volume (𝛺𝑃), formed around a grid node P, is illustrated in figure 1. Let 

𝑈   =  𝑝, 𝑣𝑖 , 𝑇, 𝜈 , 𝑞, 𝑢𝑖 , 𝑇𝑎 , 𝜈 𝑎  denote the vector of the flow and adjoint variables. 

 

 

Q∂ΩPQ
P

 
Figure 1: Vertex-centered finite volume 𝛺𝑃  (hatched area) formed around node P, on an unstructured grid. 

𝜕𝛺𝑃𝑄  denotes the boundary of 𝛺𝑃  associated with grid edge 𝑃𝑄. 

 

The iterative point implicit Jacobi method is employed for updating the 𝑈    values at each one-shot cycle (𝑛), 

as follows 
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𝛥𝑈   𝑃
𝑛+1,𝑗+1

=  𝐷𝑃
𝑛 −1  −𝑅  𝑃

𝑛 −  𝑍𝑄
𝑛𝛥𝑈   𝑄

𝑛+1,𝑗

𝑄∈𝑛𝑒𝑖  𝑃 

  (5) 

where 𝑗 denotes Jacobi iterations performed within each cycle; the maximum number of Jacobi iterations is 

defined by the user. 𝛥𝑈    denotes the correction to the flow and adjoint variables, used to update their values 

 𝑈   𝑃
𝑛+1 = 𝑈   𝑃

𝑛+𝛥𝑈   𝑃
𝑛+1  at the end of each cycle (index 𝑛), just before reshaping the body to be designed. 𝐷, 𝑍 are 

the diagonal and non-diagonal left-hand-side (l.h.s.) coefficient matrices, respectively. Both result from the first-

order discretization of the governing PDEs. Note that all computations are performed with second-order spatial 

accuracy but this affects only the residual 𝑅  𝑃 of the discretized equations. Ignoring second-order accuracy for the 

l.h.s. matrices reduces the computational stencil; during the Jacobi iterations, node 𝑃 is affected only by  𝑛𝑒𝑖 𝑃  

nodes directly linked with it by an edge. Based on the finite-volume technique,  𝑅  𝑃 is formed by accumulating 

the inviscid and viscous fluxes crossing its 𝑛𝑒𝑖 𝑃  boundary parts 𝜕𝛺𝑃𝑄. It should be noted that in vertex-

centered approach used herein, 𝑛𝑒𝑖 𝑃  varies from node to node; thus, different number of fluxes should be 

computed and summed up per grid node 𝑃. This is a key factor for the performance of the GPU implementation. 

The numerical fluxes are computed based on the 1D Roe approximate Riemann solver [20], whose 

implementation requires the values of 𝑈    along with their spatial derivatives at nodes 𝑃, 𝑄.  

 

3 IMPLEMENTATION ON GPUS  

GPU programming issues ensuring that the software developed for the solution of the one-shot adjoint 

method has maximum parallel efficiency are discussed. The developed code is compared in terms of the 

optimization turnaround time with the corresponding code running on a CPU. 

3.1 The NVIDIA’s GTX 285 Graphics Card 

The numerical computations to be presented have been carried out on a NVIDIA‟s Ge-Force GTX 285 

graphics card whose peak performance is estimated to 1063 GFLOPs. It is based on the GT200 architecture and 

comprises 30 Streaming Multiprocessors (SMs) grouped in 10 Texture Processor Clusters (TPCs). Each SM 

consists of 8 Streaming (Scalar) Processors (SPs), a multithreaded instruction unit, 2 Special Function Units for 

transcendental operations and 16 KB of on-chip shared memory. Threads, grouped in blocks, are distributed to 

SMs and then the instruction unit per SM organizes them in groups of 32 (warp) and addresses each thread to a 

single SP according to the SIMT (Single Instruction Multiple Threads) architecture. Thus, the same code (called 

kernel), for different data sets, is executed on the SPs of the same SM. Independent SMs may execute different 

parts of the same code. So the programmer is prompted to split the problem into coarse sub-problems and, then, 

into finer pieces (assigning for instance each thread to a single grid node) which can be solved in parallel.  

Furthermore, threads of the same block can interchange data through the fast shared memory per SM. 

Synchronization instruction is available as well. The number of threads per block is defined by the programmer 

restricted by the kernel memory and register requirements (GTX 285 GPU enables 16384 32-bit registers per 

SM), along with the fact that each block can only be assigned to a single SM and each SM can execute up to 

1024 threads.  

3.2 The Navier-Stokes equations solver on the GPU  

The efficient porting of an in-house compressible Navier-Stokes equations solver employing the vertex-

centered finite volume technique on unstructured/hybrid grids, from the CPU to the GPU using the CUDA 

architecture, has been described in three recent publications by the same group [10, 16, 17]. Both 2D/3D, 

unsteady/steady computations were carried out and the corresponding speed-up values exceeded 48 for double 

(DPA) or 70 for single precision arithmetic (SPA) computations, depending on the grid size. In [16], the use of a 

mixed precision arithmetic (MPA) scheme was proposed as a more efficient alternative to the DPA one, without 

reducing the prediction accuracy. In MPA, the memory demanding l.h.s. coefficient matrices are stored in single 

precision variables. This reduces the memory transactions and increases the performance of the GPU-enabled 

software. Based on [10], speed-up values of the MPA/GPU implementation exceeded 51. 

Two different flux computing schemes were employed and compared, in terms of parallel speed-up, in [17]. 

In the first scheme, the computation and accumulation of fluxes (right-hand-side (r.h.s.) terms, i.e. residuals) and 

l.h.s. coefficient matrices (𝐷 and 𝑍, eqn (5)) were all based on the same kernel for all grid nodes. For each node, 

by sweeping all edges emanating from it, one-by-one, the corresponding inviscid and viscous fluxes were 

computed. The cumulative sum of these fluxes yielded the nodal residuals of equations. The same kernel 

computed also the coefficient matrices 𝐷 and 𝑍, which are stored by node and edge, respectively. In the second 
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proposed scheme, two kernels were sequentially executed. Firstly, through an edge-based kernel (i.e. threads 

were associated with grid edges), fluxes were computed and stored by edge. In this scheme, at the expense of 

extra GPU memory requirements, each numerical flux associated with a single edge was computed once, as 

opposed to the first scheme in which all fluxes were computed twice. The edge-based kernel was followed by a 

node-based (with threads associated with the grid nodes) one, which accumulated fluxes already stored by edge, 

to compute the r.h.s. and l.h.s. terms for each node. The first scheme, which is more computational intensive but 

less memory demanding (leading to less and coalesced memory accesses), had better performance and led to 

higher speed-up values.  

Recall that the present paper is dealing with incompressible flows and extends previous findings to the 

numerical solution of the adjoint equations, over and above the flow equations, in the one-shot fashion in 

specific. 

3.3 The one-shot optimization algorithm on the GPU 

In any GPU-enabled software, a sequence of routines which concurrently process data on the GPU are called 

and synchronized by the CPU. The developed software for the GPU is schematically illustrated in figure 2. The 

CPU reads the input data (such as the coordinates and the IDs of the unstructured grid nodes, the flow boundary 

conditions, etc.) and computes the necessary pieces of information related to the grid topology and connectivity 

as well as geometrical quantities related to the integration of the governing equations over the finite-volumes 

centered at grid vertices. These are communicated to the GPU, where the Navier-Stokes, adjoint and shape 

correction equations are solved. The proposed algorithm includes a first phase during which the flow and, then, 

the adjoint equations are solved in a segregated manner, up to a user-defined tolerance for the corresponding 

residuals. In the second phase, the one-shot algorithm is applied; during this phase, within each cycle, one 

pseudo-time step of both the flow and adjoint equations, followed by the shape correction, is performed.   

Each one-shot cycle involves the following steps: 

1. Computation/accumulation of the numerical fluxes (for both the Navier-Stokes and adjoint equations) 

crossing the finite volume boundaries, to come up with the nodal residuals and the l.h.s. coefficient 

matrices; this corresponds to the first flux computing scheme described in 3.2.  

2. Updating the flow/adjoint field by performing a user-defined number of Jacobi sub-iterations. 

3. Computation of the gradient of F with respect to each design variable. Each gradient component is 

assigned to a different SM, increasing thus, even more, the parallel efficiency. 

4. Updating the design variables‟ values based on the so-computed gradient and steepest descent. 

5. Reshaping the part of the domain boundary which is controlled by the design variables. 

6. Deforming the existing grid and adapting it to the new boundaries. Since, in the one-shot algorithm, 

each cycle yields small changes in the designed shape, simple analytical functions are used for the 

movement of grid nodes, [21]. Through the movement of nodes, the need for remeshing the 

computational domain is avoided. 

7. Computation of the updated geometrical data for the deformed grid. 

3.3 A few comments on programming issues 

A distinguishing feature of the developed GPU-enabled software is the use of the vertex-centered technique 

for the integration of the Navier-Stokes and adjoint equations on unstructured grids. This approach calls for 

delicate memory handling in order to maximize the parallel efficiency of the code due to the random numbering 

of the grid nodes and the variable number of surrounding nodes per node. Efficient ways of accessing the 

memory demanding l.h.s. coefficient matrices (𝐷, 𝑍) of the discretized equations (5) can be found in [10, 16, 17]. 

According to these, the 16 threads of a half-warp, executed concurrently, access a sequence of data forming a 

128 Byte segment of the GPU global memory, maximizing the memory bandwidth. Besides, for the less memory 

demanding r.h.s. terms (nodal residuals) the fast GPU texture memory is employed to hide the high latency of 

the GPU global memory. Moreover, in this paper, a grid vertex ID renumbering technique is used to further 

reduce the time needed for read/write operations from/to the GPU global memory. According to this technique, 

threads running in parallel access nearby GPU global memory spaces. 
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Figure 2: Flowchart of the GPU one-shot implementation. The first phase, in which the flow and adjoint 

equations are solved the one after the other up to a user-defined accuracy, is omitted.  

 

 

4 APPLICATIONS 

4.1 Design of a tube heat exchanger 

The first problem is concerned with the shape optimization of the tubes of a staggered tube bank heat 

exchanger, for minimum volume-averaged total pressure losses f1 and maximum heat exchange f2 between the 

inlet (SI) to and the outlet (So) from the flow domain, as  

 

𝑓1 =  − 
1

𝜌
 𝑝 +

1

2
𝜌𝑣2 𝑣𝑖

𝑆𝐼,𝑂

𝑛𝑖𝑑𝑆 

𝑓2 = − 𝑇
𝑆𝐼,𝑂

𝑑𝑆 

 

Here, ni  correspond to the components of the normal to the boundary vector and 𝑣 is the velocity vector norm. In 

this case, the objective function 𝐹 is defined by concatenating the two objectives fi into a single scalar 

function, F = ω1f1 + ω2f2, where ω1 = 0.9, ω2 = 0.1 are chosen as weighting factors. In industrial and power 

engineering applications, heat exchangers with banks of tubes are widely used as evaporators or cooling heat 

exchangers. The tube length in the longitudinal direction is much larger than its width, making this 2D study 

physically consistent with the flow over the mid-span plane of heat exchangers. The heat exchanger and the 

boundaries of the 2D computational domain are shown in figure 3. The computational domain is periodic along 

its sidewalls and contains only four tubes. The outlet boundary is extended several chord-lengths downstream the 

last tubes. The fluid enters the domain with temperature 293K, the flow Reynolds number based on the vertical 

distance h ( h = 2c, where c = 1 is the chord of the tube, figure 3) is equal to 160, while, high temperature fluid 

flows inside the tubes in order to ensure constant wall temperature 353K. The tube shape is symmetric along the 

horizontal axis and is parameterized using Bezier-Bernstein polynomials, with 8 control points on each side. 

Three of them were allowed to vary both on the chord and the normal-to-the-chord direction summing up to 12 

design variables in total. All tube cross sections are identical and located in predefined positions. The 

computational grid is formed by generating structured-like layers of triangles around each tube and, then, by 

filling in the remaining domain with triangular elements using the advancing front technique. 
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Figure 3: Schematic representation of the computational domain of a staggered tube bank heat exchanger.  

 

Figure 4 compares the convergence histories of the one-shot and the segregated technique, both running on 

the GPU, in terms of wall clock time. The first one-shot cycle, where the flow and adjoint equations are 

separately solved up to a user-defined accuracy (exactly as in the first cycle of the segregated technique), is 

omitted for both techniques. It is clear that the one-shot technique (on the GPU) reaches the optimal shape about 

1.8 times faster than the segregated technique (on the GPU). The parallel speed-up, computed vis-à-vis to the 

CPU, for an unstructured grid with ~80K nodes, which proved to be adequate for grid-independent 

computations, is approximately 40x. A GTX 285 graphics card and a single core of a 2xQuad Core Intel Xeon 

CPU (2.00 GHz, 4096 KB cache size) have been employed for the aforementioned runs. For the compilation of 

the CPU code the GNU Fortran compiler version 4.1.2 was used, with full optimization options. The initial and 

the optimal tube shapes are shown in figure 5; either the segregated or the one-shot algorithm give the same 

optimal shapes.  

 

Figure 4: Comparison of the wall clock time required for the tube heat exchanger‟s design using the segregated 

and the one-shot technique on GPUs.  

 

 

 
 

(a) f1 = 0.89, f2 = 35.23 (b) f1 = 0.70, f2 = 34.10 
 

Figure 5: The initial (a) and the optimal (b) tube shape obtained by the one-shot optimization. 
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4.2 Design of a duct with 90° flow turning 

The second case deals with the design of an elbow duct, turning the flow by 90° which is designed for 

minimum volume-averaged total pressure losses (𝐹 = 𝑓1). The duct solid walls were parameterized using two 

Bezier-Bernstein polynomials, with 7 control points each. The domain inlet and outlet boundaries are located far 

upstream and far downstream the elbow starting and ending cross-sections. As before, the computational grid is 

formed by generating structured-like layers of triangles around the wall boundaries and filling in the remaining 

domain with triangular elements using the advancing front technique.  

The convergence histories of the one-shot and the segregated techniques on GPUs, as a function of wall clock 

time are presented in figure 6. As before, the very first (segregated) cycle is not plotted for both methods. One-

shot reaches the optimal shape ~1.7 times faster than the segregated technique. This gain is superimposed to the 

speed-up obtained (34x for a grid of ~40K nodes, employing the same computational platforms mentioned in 

4.1) by using GPUs. The initial and the optimal elbow and the velocity field of the optimal solution are shown in 

figure 7. 

 

Figure 5: Comparison of the wall clock time required for the design of the elbow using the segregated and the 

one-shot technique on GPUs.  

 

 

          
 Figure 7: The initial (dotted line) and the optimal (bold line) elbow shape (left) and the velocity field of the 

optimal solution (right). 

 

5 CONCLUSIONS - DISCUSSION 

This paper demonstrated the advantage of using the one-shot adjoint technique for solving design-

optimization problems on GPUs. Compared to previous works by the same group related to the porting of CFD 

solvers to NVIDIA‟s GPUs, there are three major extensions and novelties, namely: (a) the solution of the 

incompressible, rather than compressible, fluid flow equations, (b) the solution of the adjoint to the flow 

equations, corresponding to an objective function that includes viscous losses and heat transfer effects and (c) 

the coupling of the solution scheme used for the system of flow and adjoint equations, which is usually referred 
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to as the one-shot technique. Considering the “usual” parallel speed-up gained from porting and running the 

CFD software on the GPU, the additional implementation of the one-shot technique almost divides the 

computational cost by 2. 

The parallel speed-up obtained in this paper (for the incompressible equations and the coupled system of 

flow and adjoint equations) appears to be smaller than that obtained in [10, 16, 17] (in which the reader may find 

a parametric study regarding the effect of the grid size on the parallel speed-up). This is related to the size of 

computational grids. For instance, by generating and using a very dense unstructured grid of about 180K nodes 

in the tube heat exchanger case (though such grid is much finer than needed for this problem) the achieved 

speed-up reaches 48x.  
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