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Abstract. The shape optimization of a Hydromatrix® turbine runner using an asynchronous metamodel-

assisted evolutionary algorithm is presented. The optimization problem is subject to constraints and is 

computationally demanding, since candidate runner geometries are evaluated by means of calls to a CFD code. 

The use of an asynchronous, rather than a conventional (synchronous or generation-based) evolutionary 

algorithm, aims at maximizing the parallel performance of the design process on any system of interconnected 

(likely, heterogeneous) processors and minimizing the turnaround optimization time. On the other hand, the use 

of metamodels contributes to a noticeable reduction of the computational cost, since the costly CFD evaluations 

are restricted only to promising solutions. The design is performed at three operating points (the best efficiency 

point, one part- and one full-load points); the quality of candidate runner shapes is quantified by post-

processing the computed pressure coefficient distribution over the blades, the computed outlet mass flow and 

swirl profiles and also in terms of the cavitation index, resulting thus to three objective functions to be 

minimized. Results are presented in the form of a Pareto front in the 3D objective function space. 

 

1 INTRODUCTION 

 

Hydromatrix® is an innovative solution for the development of low head hydropower sites [1]. It makes use 

of a number of relatively small, axial flow, fixed blade type turbine generator units, comprising a factory 

assembled grid or “matrix”. The individual turbine generator units (also known as “modules”) are designed for 

collaborative operation, with great flexibility in their setting. The most common ways of installing matrix 

turbines is in one, two or three rows (Figure 1). The number of matrix turbines and their arrangement in rows 

depends on the existing civil structure and its position relative to the head- and tail-water elevations.  

 

 
Figure 1. Hydromatrix®: arrangement of matrix turbines in a dam. 

 

The lifting or removal of modules from their operating position, similarly to a sliding gate (Figure 2), enables 

the passage of flood water and simplifies the inspection and maintenance of matrix turbines. Matrix turbines can 

easily be integrated into an existing dam and gate structures as well as in greenfield projects. Their most 

important advantages, compared to conventional low-head solutions, are:  

 The required civil construction works are minimal and so does the hydroplant total cost. 

 Both geological and hydrological risks (flooding during construction) are kept as small as possible. 

 Project schedules, construction and installation time are minimal. 
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 Inflict on the environment is minimal, too. 

 

 
Figure 2. Hydromatrix®: in case of flood conditions, inspection or maintenance, some or all of the modules can 

easily be removed using a small crane. 

 

This paper deals with the design of a Hydromatrix® turbine runner using an asynchronous metamodel-

assisted evolutionary algorithm (AMAEA) [2, 3] based on a CFD code as evaluation software. The optimization 

is carried out on a multi-processor platform, where the use of any generation-based EA makes several processors 

to remain idle, at the end of each generation, for the purpose of synchronization, waiting for the last 

evaluation(s) to be completed on the last working processor(s). The use of an asynchronous EA overcomes the 

synchronization barrier at the end of each generation (a notion which, however, doesn’t exist anymore), 

maximizing thus the parallel efficiency by fully exploiting all available processors. Over and above, since in 

either synchronous or asynchronous EAs, the optimization turnaround time may increase a lot if the problem-

specific evaluation tool (CFD code) is costly, low-cost surrogate evaluation models (or metamodels) are used [3, 

4, 5]. In specific, the asynchronous EA is further enhanced by on-line trained radial basis function networks 

(acting as metamodels) so as to reduce the overall CPU cost of the optimization. As it will be explained in detail 

below, once a CPU becomes idle, instead of a single individual, a number of trial individuals are generated. All 

these trial individuals are inexactly pre-evaluated on properly trained local metamodels and the “best” among 

them, according to the metamodels, undergoes evaluation on the CFD tool running on the idle processor. The 

computational cost for generating and approximating trial individuals is negligible, compared to the cost of a 

CFD-based evaluation. This enables a design-optimization procedure with affordable CPU cost and, practically, 

the maximum possible parallel speed-up (almost 100%, at least theoretically). 

The optimization problem is handled as a three objective one and the outcome of the optimization is a front 

of non-dominated solutions (i.e. a Pareto front), forming a surface in the 3D objective function space. Solutions 

selected among the members of the computed Pareto front are further analyzed and compared. 

2 THE ASYNCHRONOUS METAMODEL-ASSISTED EVOLUTIONARY ALGORITHM  

 The basic features of AMAEA [2, 3] used herein, including comments on how surrogate evaluation models 

are implemented and parallelization issues are briefly discussed in the following sections. In what follows, only 

the variant solving multi-objective (with M functions to be minimized) optimization problems by computing 

Pareto fronts of non-dominated solutions is presented; from this description, the reader can readily extract the 

single-objective AMAEA.  

 

2.1 Basic Features 

The asynchronous EA [2] this paper relies on utilises a number of search agents located at the nodes of a 2D 

structured mesh. This is referred to as the “supporting mesh” with dimensions 21 nn  , where 1n and 2n are user 

defined integers (Figure 3).  The mesh is divided into a number ( 4/21nn ) of demes with six nodes each; each 

deme comprises five search agents and a single pole. It overlaps with four adjacent ones and this overlapping 

enables the inter-deme exchange of genetic material. To regularize the communication between demes, the 

supporting mesh is considered to be periodic along its two pairs of opposite sites; for instance, the top-left deme, 

apart from its two physically adjacent demes, communicates also with the top-right and bottom-left demes of the 

supporting mesh.  

The role of each pole is to store the best-so-far individual (local best) computed by the search agents of its 

deme and, through them, to affect the formation of new candidate solutions. On the other hand, search agents:  



Irida A. Skouteropoulou et al. 

a) generate (based on evolution principles and the relative operators) new candidate solutions,  

b) organize evaluation on the problem-specific evaluation tool on idle CPUs and  

c) provide the mechanism for exploiting the outcome of each evaluation by archiving the (local or global) 

best-so-far individuals on the associated poles.  

 
 

Figure 3.Demes’ topology on a 46 supporting mesh. Its six demes are clearly marked. Poles are marked with 

black circles. Regarding the deme associated with pole P1, its agent A3 is also shared with the adjacent deme 

associated with P2 etc, whereas A5 is the only non-shared agent. Dashed lines indicate the mesh periodicity. 

 

During the initial phase of the algorithm evaluations are assigned to all available processors, by selecting 

agents and generating the corresponding individuals at random. Upon completion of any evaluation, the 

corresponding agent receives its objective function value(s) and a decision on whether the just evaluated 

individual must displace or not the affected pole(s) is to be made. This decision is based upon dominance 

criteria, by comparing the evaluated individual agentx


 and the existing polex


. If agentx


dominates polex


, polex


 is 

displaced by agentx


. If polex


dominates agentx


, no displacement takes place. In case that there is no absolute 

domination, other criteria including a partially stochastic selection are used. The non-dominated solutions form a 

dynamically updated elite set. Also, the values of all individuals paired with the corresponding objective 

function value(s) are stored in a database (DB). 

The selection of the new individual to undergo evaluation on the CPU which just became idle is determined 

through a series of inter- and intra-deme processes, which are based on two priority metrics related to each 

agent’s cost and age. More specifically, each pole is assigned a dynamically changing priority pPr , which is the 

product of an age-based age
pPr and a cost-based t

p
cosPr  priority, namely t

p
age
pp

cosPrPrPr  . For each pole, age
pPr  

is the average age of its agents; the age of an agent is defined as the difference of the serial number of the last 

evaluation carried out by this agent from that of the current evaluation. The cost-based priority t
p
cosPr  is defined 

using strength- and density-based criteria applied to the individuals stored at the poles. The next agent to 

undergo evaluation is chosen from the deme of the pole with the highest priority pPr . Within this deme, the 

agent with the maximum age is selected.  

After having selected the agent, a new candidate solution is generated via an intra-deme process, through the 

application of recombination and mutation operators. The recombination scheme used is inspired by the mutant 

vectors used in differential evolution [7] and is restricted within the chosen deme. A non-uniform mutation 

scheme with a small user-defined probability is applied. 

 

2.2 Implementation of Surrogate Evaluation Models 

As in [3], without however the grid-enabling issues presented there, the AMAEA is based on an 

implementation of the inexact pre-evaluation (IPE) technique within the already described asynchronous 

algorithm. The idea of pre-evaluating individuals for indentifying whether each of them is worth a CFD-based 

re-evaluation can be found in previous publications by the same group, such as [4, 5, 6], which however are 

concerned with generation-based EAs. The IPE task is differently applied in asynchronous EAs (i.e. in 

AMAEAs, see also [3]) due to the inability to concurrently handle a population of candidate solutions. To 

perform the IPE task, the DB of previously evaluated individuals must be used. Once the number of DB entries 
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exceeds a user–defined minimum, i.e. when the DB can provide enough patterns (hopefully adequately spread 

over the design space) for training the surrogate evaluation models, the IPE task starts. During the latter, instead 

of generating a single new individual to undergo evaluation per agent, IPEN  trial individuals are generated. All 

of them are associated with the same agent. The IPEN  value is user-defined. For each trial member, a local 

radial basis function (RBF) network [8] is trained using neighboring (with distances measured in the design 

space) individuals carefully selected from the DB. The training pattern selection algorithm can be found in [4]. 

For each trial individual, the RBF networks provide approximations to the objective function value(s). The later 

are rank sorted using a dominance metric and the “best” of them, according to the RBF network based 

predictions, is selected to undergo evaluation on the idle CPU. Note that selecting training patterns, training the 

RBF network and approximating the objective function value(s) have all together negligible CPU cost, 

compared to the cost of a single evaluation on the CFD software. 

3 DESIGN-OPTIMIZATION OF THE HYDROMATRIX® RUNNER 

The design-optimization of a matrix turbine runner using the aforementioned AMAEA is handled as a three 

objective optimization problem. All objectives must be minimized. Let us firstly define the objective functions 

for each operating point under consideration; these will de denoted by jf , by temporarily omitting the 

superscript related to the operating point (see below). The first objective function ( 1f ) is related to the “smooth” 

interfacing of flows developed within the runner and the draft tube. Given that the draft tube is fixed, specific 

swirl and axial velocity distributions at the exit of the runner are required. Thus, 1f  is defined as the weighted 

sum of the deviations of the outlet swirl and axial velocity distributions from target curves defined by the 

designer. The second objective function ( 2f ) is related to the loading of the blades which must present the 

minimum variations over the blade surface; thus, 2f  expresses the standard deviation of the pressure 

distribution along the chordwise direction, at eleven equidistant spanwise locations. Finally, the third objective 

function ( 3f ) controls cavitation and equals to the cavitation index 2
refminref ρUpp=

2

1
/)(   [9] ( minp is the 

minimum pressure over the blade surface and refref Up , are the pressure and velocity at a reference point, 

respectively).  

In this work, the runner is designed so as to perform optimally at the best efficiency point (BEP), one part- 

and one full-load points. They correspond to height H equal to 5.8 , 2.4 and 10meters, respectively. So, 

regarding the AMAEA, the three objectives ( 1F , 2F  and 3F ) to be minimized are the weighted sums of 1f , 2f  

and 3f at the three operating points, 

jOP

i

j

ji fwF 




3

1

 

where i  denotes the objective and j  the operating point. In the above equation, jw  are appropriate weights. 

For the last two objectives, weights 11 w  (at the BEP) and 1.032  ww (at the part- and full-load points) are 

employed. For the first objective 11 w  and 032  ww . Constraints on the mass flow rates at the three points 

are also imposed. For each of them, apart from the heightH , the desirable mass flow rate is specified. Since the 

latter results from the CFD analysis, candidate geometries which cannot meet the value defined by the designer 

(practically, those that deviate more than %10  from the target value) are considered as infeasible.  

Recall that, this paper is dealing with the design of the runner blade only. However, each CFD-based 

evaluation is carried out over a flow domain which includes also the stator. The mixing plane model is used to 

cope with the stator-rotor interaction. The hub and shroud generatrices are given and the stator blades are fixed. 

The runner has 4 blades. Each runner blade shape is modeled by superimposing a known thickness distribution 

onto a parameterized mean camber surface (Figure 5). Since the blade thickness distribution cannot vary, the 

runner blade shape is controlled only by the parameters defining its mean camber surface. The design variables 

are the coordinates of the control points of the Bezier curves used to parameterize the spanwise distributions of 

(a) the mean camber surface angles at the leading (LE) and trailing (TE) edges, (b) the circumferential position 

of the blade LE and TE and (c) the mean camber surface curvature. Overall, there are 52 design variables.  
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Figure 4. Schematic representation of the runner blade parameterization. Eleven spanwise blade profiles 

generated over the mean camber surface using the thickness distributions (left) and the surface grid of the blade 

(right) are shown. 

During the evolutionary optimization, the evaluation of each candidate solution (i.e. each new runner 

geometry) consists on (i) the blade surface generation based on the corresponding values of the design variables 

(ii) the grid generation and (iii) the numerical solution of the flow (Euler) equations using software developed by 

Andritz-Hydro. These steps are schematically shown in Figure 5.  

The CPU cost of each evaluation, including the numerical solution of the flow at all three operating points, 

may vary between 10 sec and 14 min on an Intel Core Duo processor. The difference in the CPU cost is due to 

the extended design space of the problem that may often lead to infeasible geometries for which the optimization 

algorithm skips their evaluation on the CFD software by just penalizing them. Furthermore, in the beginning of 

the optimization, a lot of individuals usually fail to satisfy the imposed mass flow constraints; these are also 

penalized by overcoming CFD-based evaluations. The existence of many infeasible solutions (either due to 

geometrical or flow constraints) is a good reason for selecting the asynchronous algorithm that enables the 

exploitation of all available computational resources without idle periods of time. Practically, each time an 

evaluation fails, a new individual to undergo evaluation is immediately assigned to the temporarily idle CPU. 

Note that, if a synchronous algorithm was used, some CPUs would often remain idle for a while, due to the 

synchronization barrier at the end of each generation.  

This design was performed on16 interconnected CPUs using an AMAEA with a 1010 supporting mesh 

(i.e. with 75 agents and 25 poles). Metamodels were applied after the first 300  entries have been stored in the 

DB, by generating and approximately evaluating 8IPEN different trial members. The optimization was 

configured to terminate after 2000CFD-based evaluations.   

                

         

    

                      

 

Figure 5. The three steps of the CFD-based evaluation of a candidate runner geometry. From left to right: blade 

surface generation, grid generation and the pressure field computed by the numerically solving the flow 

equations at a single operating point.  

 



Irida A. Skouteropoulou et al. 

Figure 6 presents the front of non-dominated solutions computed by the AMAEA. For this front, the 

solutions stored at each of the 25 poles of the supporting mesh are shown in Figure 7. From the 24 non-

dominated solutions of the computed front, 14 are identical to the solutions currently stored at the poles of the 

supporting mesh. This was expected since at the poles the best-so-far (non-dominated) solution of their deme is 

stored. In Figure 8, the evaluations performed by each agent (left part) and deme (right part), expressed as 

percentage (%) of the total number of evaluations, are also shown. One may notice that the evaluations are 

“equally” shared among the 25 demes; also, as expected, agents belonging exclusively to one deme (for instance 

agents 5, 7, 9, 25, etc) usually perform less evaluations than agents shared between two demes each.  

 

 

Figure 6. Front of non-dominated solutions computed at the expense of 2000 CFD-based evaluations. 

 
Figure 7. Front of the computed non-dominated solutions (red spheres), plotted along with the “local-best” 

solutions (blue octahedra) stored at the poles at the end of 2000 CFD-based evaluations.  

 

An indicative solution (cube marked with A, Figure 6) selected from the computed front is further analyzed 

in detail and the obtained results are shown in Figures 9 to 12. In particular, Figure 9 presents the result of the 

numerical solution of the flow equations at the BEP point. The pressure coefficient distribution shown in Figure 

10 confirms the very low cavitation danger at this operating point. The computed outlet velocity distributions 

(Figure 10, right) fit perfectly to the draft tube that follows. Concerning the full-load operating point (Figure 11), 

the pressure coefficient distributions indicate a small possibility of cavitation close to the shroud. The outlet 

axial velocity distribution remains reasonably good with a higher swirl. At the part-load operating point (Figure 

12), the possibility of cavitation close to the shroud remains but this is moved towards the pressure side (see the 

crossing pressure profiles there). The outlet velocity distributions indicate an increase in swirl but in the opposite 

direction than at the BEP and full-load points. From the presented results, one may realize the changes in the 

A 

D

  

B 

C 
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performance characteristics at the three operating points. Recall that the weights at the BEP are an order of 

magnitude higher than those associated with the other two operating points. An immediate consequence is that, 

when operating at the part- and full-load points, with a predefined mass-flow, the possibility of cavitation is 

higher and, also, a worse matching with the draft tube is expected. 

 

 
Figure 8. Evaluations performed by each of the supporting mesh agents (left) and demes (right), as a percentage 

(%) of the total number of evaluations.  

 

 

Figure 9. 3D view of the matrix turbine for the selected non-dominated solution marked with A in Figure 6. The 

predicted pressure field at the BEP is shown. 

 

Figure 10. Detailed analysis of the non-dominated solution A, at the BEP. Chordwise pressure coefficient 

distributions at 11 equidistant spanwise locations (left) and normalized outlet velocity distributions (Ca: axial, 

Cu: peripheral; right). The non-dimensional spanwise coordinate measures from the hub to the shroud. 
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Figure 11. Detailed analysis of the non-dominated solution A, at the full-load point. Chordwise pressure 

coefficient distributions at 11 equidistant spanwise locations (left) and normalized outlet axial/peripheral 

velocity distributions (right).  

 

Figure 12. Detailed analysis of the non-dominated solution A, at the part-load operating point. Chordwise 

pressure coefficient distributions at 11 equidistant spanwise locations (left) and normalized outlet 

axial/peripheral velocity distributions (right). 

To better understand the computed Pareto front characteristics, three more points (B, C and D; see Figure 6) 

selected from the front of non-dominated solutions are compared. Values of the objective functions (F1, F2, F3), 

and their constituents (f1, f2, f3), for each operating point, are shown in Table 1. Recall that F1=f1, so the 

optimization takes into account the quality of the velocity profiles at the runner exit, at the BEP only. Based on 

this table, solution D performs better with respect to f1 at the BEP, ensuring optimal matching with the draft tube. 

Solutions A and B have equally low f1 values (slightly greater than that of D) so that their matching with the 

existing draft tube is expected to be reasonably good. Based on Figure 13 (right) solution A, B and D give an 

almost flat axial velocity profile along the spanwise direction, being too close to the target distribution (not 

shown here). In contrast, for solution C, the axial velocity distribution in the spanwise direction varies a lot; this 

deviation from the flat target distribution is one of the reasons for the high f1 value, see Table 1. Regarding, the 

peripheral velocity distributions, also shown in Figure 13 (right), solutions A, B and D are also very close to the 

target distribution (included in the figure). Solution C deviates from the target distribution and this also 

contributes to the increase of the f1 (or F1) value. At the BEP, solution C has almost constant loading along the 

blade surface (lower f2 value) and this can be confirmed by Figure 13 (left).  

 

Front 

Point 
F1 F2 F3 

Best efficiency point Full-load point Part-load point 

f1 f2 f3 f2 f3 f2 f3 

A 0.025 0.589 0.818 0.025 0.232 0.584 0.216 1.009 3.345 1.324 

B 0.026 0.359 2.396 0.026 0.268 2.043 0.345 2.333 0.565 1.191 

C 0.109 0.344 1.533 0.109 0.214 1.290 0.284 1.50 1.011 0.926 

D 0.019 1.578 1.037 0.019 0.419 0.715 0.279 0.649 11.306 2.570 

Table 1 : Objective functions values (F1, F2, F3) along with their constituents (f1, f2, f3), for the four non-

dominated  from the Pareto front.  
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Figure 13. Comparison of the four selected non-dominated solutions at the BEP. Chordwise pressure coefficient 

distributions at the shroud (left) and normalized outlet velocity distributions (right).  

 

At the full-load point, solution A has the best loading along the blade surface (lower f2 value) and this is 

confirmed by Figure 14 (left). Regarding the cavitation index (f3 value), solution D has the lowest cavitation risk 

at the full-load point. At the part-load point solution B, has the better blade loading (f2) (see also Figure 14; 

right) whereas solution C is the safest with respect to cavitation. 

 

 

Figure 14. Chordwise pressure coefficient at the shroud of the four selected non-dominated solutions at the full- 

(left) and part-load points (right). 

4 CONCLUSIONS 

In this paper the design - shape optimization of a Hydromatrix® turbine runner, using an asynchronous 

metamodel-assisted evolutionary algorithm (AMAEA) was presented. Given that the optimization problem was 

highly constrained and the cost per evaluation may vary a lot, the use of the asynchronous algorithm presents 

noticeable advantages since this fully exploits the available CPUs by almost vanishing idle computing times. 

The design was carried out at three operating points, using three objectives per operating point and appropriate 

weights defined by the designer. The so-computed Pareto front of non-dominated solutions allows various 

decisions to be made afterwards, based on additional criteria. 
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