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Abstract. This paper proposes a truncated Newton algorithm for efficiently solving topology
optimization problems in fluid mechanics, such as the design of ducts with optimal performance.
In topology optimization problems, where the number of design variables i.e. the porosity func-
tion values at each grid cell (in cell-centered methods) or node (vertex-centered), are too many,
the adjoint approach is, by far, the most efficient way to compute the gradient required by any
descent algorithm, since the CPU cost per gradient computation is independent of the number
of the design variables. Although the Newton method requires only a few cycles to locate the
optimal solution, the computation of the exact Hessian matrix is prohibitively expensive since
its cost scales with the number of design variables. The proposed truncated Newton solves
the Newton equation iteratively, without computing the exact Hessian matrix itself. Instead,
Hessian-vector products are efficiently computed using second-order sensitivity analysis based
on the adjoint approach and direct differentiation. Just a few conjugate gradient iterations for
the solution of the Newton equations are enough to satisfactorily accelerate the convergence
rate of the objective function value. Thus far, the truncated Newton was applied to shape opti-
mization problems according to geometrical parameterization schemes which define the design
variables. It is the first time such an algorithm is presented for the solution of topology opti-
mization problems. The method is applied to the topology optimization of ducted laminar flows,
by minimizing the total pressure losses between the given inlet and outlet boundaries of the flow
domain.
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1 INTRODUCTION

Topology optimization is quite a new area of interest in fluid dynamics. In structure mechan-
ics, the first relevant paper dates back to 1988, [1], where the scope was to optimize structures
for maximum stiffness, by controlling the material layout within a predefined space. For this
purpose, a local (i.e. at each grid node or cell, depending on the formulation) criterion that
defines whether this should be treated as solid or not was used. In structural mechanics, other
applications of topology optimization can be found in [2] and [3] for structures with high defor-
mations. Topology optimization methods have also been developed for acoustic problems, [4],
and the design of micromechanisms, [5].

In CFD-based optimization, the first topology optimization methods were developed for
creeping flows, where viscous effects dominate [6, 7]. Setting up a topology optimization
method in fluid mechanics requires some of the flow equations to be replaced by

CFE + α · CSS = 0 (1)

over the computational domain. In eq. 1, CFE denotes the flow equations in their conventional
form (i.e. those to be satisfied at any point within the flow domain, according to the selected flow
model), α is the so-called porosity field and CSS stands for the conditions at the surrounding
solid part of the domain. Topology optimization aims at computing the optimal field of α which
minimizes an objective function F , such as the viscous losses between the pre-specified inlet(s)
to and outlet(s) from the flow domain to be determined. Other objective functions could be used
instead; for instance, a topology optimization problem might aim at designing a flow channel
that maximizes the heat exchange between the flowing fluid and the surrounding solid, etc.
From the practical point of view, particularly when manifolds with more than one exits must be
designed, the problem is usually constrained, since the optimal solution must also fulfill other
requirements, such as a desirable mass flow rate per exit, etc. Based on the above formulation,
the topology optimization problem has as many unknowns (design variables, i.e. porosity α
values) as the number of grid nodes (in vertex-centered schemes) or that of grid cells (in cell-
centered schemes). As such, all gradient-based solution methods, must be supported by tools
for computing the gradient of F at a cost that doesn’t scale with the number of design variables;
this is why, the adjoint method used in this paper is the perfect choice. Upon completion of the
optimization problem, the computed α values determine the shape of the sought flow channel.
Areas with zero α (practically, α ≤ ε; ε is an infinitesimal positive quantity) correspond to
parts of the domain where fluid flows since, there CFE = 0. In contrast, areas with non-zero
α (practically, α ≥ ε) correspond to the surrounding solid since, there, CSS=0. The interface
between the two distinct areas is the boundary (line in 2D or surface in 3D) of the channel to
be designed. In contrast to structural mechanics, the literature of topology optimization in fluid
mechanics is not that rich. In [8], the laminar Navier-Stokes equations were used as the flow
model. In [9], topology optimization for turbulent flows is demonstrated, by making, however,
the frozen turbulence assumption. In the same paper, the adjoint approach is used to compute
the gradient of the total pressure losses function with respect to the porosity control variables.

Since its first appearance in [10], the adjoint approach has been efficiently used for the shape
design and optimization of various configurations, [11, 12, 13], by providing the gradient of the
objective function with respect to the design parameters at a cost independent of the number of
these parameters, to efficiently drive a gradient-based optimization method towards the optimal
solution. Extensions of the adjoint approach to the computation of second-order sensitivity
derivatives, for use in the Newton method, can also be found, [14, 15]. In these studies, a
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method for the computation of the exact Hessian matrix was proposed and its use within the
Newton optimization algorithm accelerated the convergence of F to its minimum. However,
since the cost for computing the Hessian matrix still scales with the number of design variables,
its use is restricted to problems with reasonably few of them. Should the problem size increases,
an efficient alternative is the exactly initialized quasi-Newton method, where the exact Hessian
matrix is computed only at the first cycle and, then, is approximately updated as in standard
quasi-Newton methods; however, in the case of topology optimization with so many design
variables, the exact Hessian matrix cannot be computed even once.

Alternatively, the Newton system of equations may be solved iteratively (truncation of the
Newton equations, [16, 17]) requiring only the computation of Hessian-vector products instead
of the complete Hessian matrix. This algorithm applied to shape optimization problems was
presented by the authors in [18]. This method proved to perform well in cases with a relatively
high number of design variables (an order of 50 design variables was used). The truncated
Newton based on the continuous adjoint approach and direct differentiation has also been pre-
sented in variational data assimilation problems in meteorology, [19, 20, 21, 22] and, along with
Automatic Differentiation techniques, in [23].

In this paper, the truncated Newton method is applied to topology optimization of laminar
flows. The design variables are many more than those used in shape optimization problems.
Two applications are shown concerning the design of 2D ducts. The first one, including 38400
design variables (or grid cells) in total, has one inlet and one outlet with a squared blockage
in the center and the second one contains 73600 design variables and has two inlets, two out-
lets and three squared blockages. The truncated Newton algorithm is found to accelerate the
convergence rate, minimizing the objective function value faster and to a lower value than a
conventional gradient-based algorithm.

2 PROBLEM FORMULATION AND OPTIMIZATION METHOD

Let us assume that a flow channel, connecting inlet SI and outlet SO boundaries which are
specified by the designer, must be designed, so as to give a flow with minimum total pressure
losses. The flow is considered to be laminar and the fluid is incompressible. This is a typical op-
timization problem in internal aerodynamics, associated with an objective function expressing
the mass-averaged total pressure losses, by

F = −
∫
SI

(
p+

1

2
v2
)
vinidS −

∫
SO

(
p+

1

2
v2
)
vinidS (2)

Starting point for the formulation of the topology optimization problem, apart from the objective
function of eq. 2, is the system of flow equations which define the so-called state or primal
problem. After artificially introducing the porosity field α into the conventional flow equations
for the laminar flow of an incompressible fluid, these become, [9],

Rp =
∂vj
∂xj

=0

Rv
i = vj

∂vi
∂xj

+
∂p

∂xi

− ∂

∂xj

[
ν

(
∂vi
∂xj

+
∂vj
∂xi

)]
+ αvi=0 , i = 1, 2 (3)

Based on the notation of eq. 1, the last terms in the momentum equations are those previously
abbreviated to CSS in eq. 1. In areas where α ≥ ε, eqs. 3 are satisfied only if vi = 0 and
these define the solid surrounding of the channel, see also [9]. In eqs. 3, p is the static pressure
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divided by the density and ν the kinematic viscosity. Dirichlet boundary conditions are imposed
for the inlet velocities and the outlet pressure whereas zero Neumann conditions for the velocity
at the outlet and the pressure at the inlet.

In the present study, the solution of the state problem is performed using the OpenFOAM c©

software, [24], which is a toolbox equipped with a high-level symbolic application program-
ming interface. OpenFOAM employs a cell-centered storage for the flow variables; in topology
optimization, the porosity values α are also stored at the N grid cell centers.

The minimization of F , eq. 2, subject to eqs. 3, can be performed via steepest descent,
quasi-Newton or (exact) Newton methods. The use of the adjoint method in either of them is
practically the only affordable way to compute the derivatives of F , for reasons explained in
the introduction. This paper sticks with the use of Newton methods which will be employed
without, however, computing the exact Hessian of F . The Newton method is based on

δ2F

δαmδαn

δαn = − δF

δαm

, αn|k+1 = αn|k + δαn|k (4)

where k is the optimization cycle counter.
As mentioned in the introduction, the most efficient way of computing the Hessian matrix

δ2F
δαmδαn

, has a computational cost that scales with the number of design variables N . Theoreti-
cally, it is straightforward to extend the methods presented in [14, 15] to topology optimization
and conclude that the most efficient way to compute the Hessian of F is by employing the Di-
rect Differentiation (DD) method for δF

δαm
, followed by the Adjoint Variable (AV) method for the

δ2F
δαmδαn

. The DD approach requires the solution of PDEs similar to eqs. 3, for the derivatives of
the flow variables with respect to the porosity. N systems of the DD equations must be solved;
the cost for solving each one of them is practically equal to the cost of solving the state problem,
i.e. the flow equations. Throughout this paper, this cost will be denoted by EFS (“Equivalent
Flow Solution”). Therefore, in contrast to shape optimization problems which, comparatively,
have a reasonable number of design variables, the DD-AV approach cannot be used to solve
problems with excessively high N values, such as topology optimization problems.

To the authors’ knowledge, this paper presents, for the first time in the literature, the imple-
mentation of the truncated Newton method for the solution of topology optimization problems.
Following a previous work by the authors, [18], dealing with the use of truncated Newton in
shape optimization, the purpose of the present paper is to extend the same technique to topology
optimization and assess its performance with comparisons to other possible solution techniques.

Here, the truncated Newton method is based on the use of the Conjugate Gradient (CG)
method with MCG cycles for the solution of linear systems, where MCG should be relatively
small to keep the computational cost at low levels.

The CG-based truncated Newton method for optimization problems was inspired by the way
the CG method solves any linear system, such as Amnxn = qm, (m,n) ∈ [1, N ]. Starting from
the initialization xρ=x0 and the corresponding residuals rρ=r0=Amnx

0
n − q0m and s0m=−r0m,
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the following steps,

wm = Anmsn, m ∈ [1, N ]

η =
rρmr

ρ
m

smwm

xm
ρ+1 = xm

ρ + ηsm, m ∈ [1, N ]

rm
ρ+1 = rm

ρ + ηwm, m ∈ [1, N ]

β =
rρ+1
m rρ+1

m

rρmr
ρ
m

sm = −rρ+1
m + βsm, m ∈ [1, N ] (5)

must be performed iteratively (ρ ← ρ+1; ρ is the CG cycle counter) as long as the norm
of the new residual rρ+1 exceeds a user-defined threshold value. The cost of each CG cycle,
comprising the previous six steps, is approximately equal to the cost of performing the matrix-
vector multiplication of the first step. Based on the previous stopping criterion, the CG method
is expected to terminate after MCG cycles, where MCG ≤ N .

In optimization problems, the Newton equation, eq. 4, looks similar to the aforementioned
linear system example, if Amn = δ2F

δαmδαn
and qm = − δF

δαm
. The non-linearity of eq. 4, due

to the non-linear state equations, requires the CG iterative algorithm to be performed within
the optimization loop (counter k = 1, . . . , kmax). As already mentioned, the number of CG
cycles (MCG) (inner loop within each optimization cycle) is a small, user-defined integer. In
each optimization cycle, four main steps must be executed: (a) solve the flow equations, anew
(b) compute δF

δαm
(c) compute the Hessian-vector products δ2F

δαmδαn
αn and, finally, (d) solve eq.

4 iteratively by employing MCG cycles of the CG algorithm. The computation of the first-
order gradient is conducted using the continuous adjoint approach. Hessian-vector products are
computed using the AV-DD method. The latter means that the (continuous) adjoint variable
(AV) method is used to compute the gradient, followed by the direct differentiation (DD) of the
flow and adjoint equations to compute the Hessian-vector products (see section 3).

3 THE CONTINUOUS AV METHOD IN TOPOLOGY OPTIMIZATION

The computation of the first-order sensitivity derivatives using the continuous AV method is
based on a formulation presented in [9] for the functional of eq. 2. The augmented objective
function Faug is introduced

Faug = F +

∫
Ω

uiR
v
i dΩ +

∫
Ω

qRpdΩ (6)

and its sensitivities with respect to the design variables αm read

δFaug

δαm

=
δF

δαm

+

∫
Ω

ui
δRv

i

δαm

dΩ +

∫
Ω

q
δRp

δαm

dΩ (7)

where ui are the adjoint to the velocity components vi and q is the adjoint pressure. The result-
ing terms are treated by using the Green–Gauss theorem. For instance, the viscous terms are
integrated by parts, as follows

−
∫
Ω

νui
∂

∂xj

[
∂

∂xj

(
δvi
δαm

)]
dΩ = −

∫
S

νui
∂

∂xj

(
δvi
δαm

)
njdS +

∫
S

ν
∂ui

∂xj

δvi
δαm

njdS

−
∫
Ω

ν
∂2ui

∂x2
j

δvi
δαm

dΩ (8)
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−
∫
Ω

νui
∂

∂xj

[
∂

∂xi

(
δvj
δαm

)]
dΩ = −

∫
S

νui
∂

∂xi

(
δvj
δαm

)
njdS +

∫
S

ν
∂ui

∂xj

δvj
δαm

nidS

−
∫
Ω

ν
∂2ui

∂xi∂xj

δvj
δαm

dΩ (9)

where S = SI ∪ SO ∪ SW , SW being the initial solid walls of the domain Ω (i.e. its contour,
excluding SI and SO) where the topology optimization problem is solved.

Using eqs. 8 and 9 and treating the remaining terms in a similar way, eq. 7 gives

δFaug

δαm

=
δF

δαm

+

∫
S

[
ujvjni + uivjnj + ν

(
∂ui

∂xj

+
∂uj

∂xi

)
nj − qni

]
δvi
δαm

dS

−
∫
S

ν
δ

δαm

(
∂vi
∂xj

+
∂vj
∂xi

)
njuidS

+

∫
Ω

{
−vj

(
∂uj

∂xi

+
∂ui

∂xj

)
− ν

∂

∂xj

(
∂ui

∂xj

+
∂uj

∂xi

)
+

∂q

∂xi

+ αui

}
δvi
δαm

dΩ

+

∫
S

ujnj
δp

δαm

dS−
∫
Ω

∂uj

∂xj

δp

δαm

dΩ+

∫
Ω

uivi
δα

δαm

dΩ (10)

By eliminating field integrals containing the variations in the flow variables, the field adjoint
equations

Rq =
∂uj

∂xj

= 0

Ru
i = −vj

(
∂ui

∂xj

+
∂uj

∂xi

)
− ν

∂

∂xj

(
∂ui

∂xj

+
∂uj

∂xi

)
+

∂q

∂xi

+ αui = 0 , i = 1, 2 (11)

are derived. All boundary integrals must be processed in a similar way. It can be shown that
(a) along SI , the normal primal and adjoint velocities must be equal and the tangential adjoint
velocities must be zeroed, i.e.

u〈n〉=v〈n〉, u〈t〉=0

(b) along SO, the following two conditions must be satisfied,

q =ujvj+u〈n〉v〈n〉 + ν

(
∂ui

∂xj

+
∂uj

∂xi

)
njni −

3

2
v2〈n〉 −

1

2
v2〈t〉 (12a)

0 =u〈t〉v〈n〉 + ν

(
∂ui

∂xj

+
∂uj

∂xi

)
njti − v〈n〉v〈t〉 (12b)

and (c) along SW , the conditions

u〈n〉=0, u〈t〉=0

should be met. Once the adjoint PDEs and their boundary conditions are satisfied, the sensitivity
derivatives result from eq. 10, as follows

δF

δαm

=

∫
Ω

uivi
δα

δαm

dΩ = um
i v

m
i Ω

m (13)
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where m indicates the cell index. The above analysis is restricted to laminar flows. For shape
optimization problems, the authors have already presented the exact continuous adjoint ap-
proach to the Spalart-Allmaras turbulence model, [25]. It seems straightforward to extend this
to the truncated Newton method, but this is beyond the scope of this paper. In such a case, a
very “careful” treatment at the regions close to the wall is required.

Working with steepest descent, the values of α could be updated by

αn|k+1 = αn|k − η
δF

δαn

∣∣∣∣k (14)

where η is a user-defined small positive scalar value and k the optimization cycle counter. The
steepest descent approach will be used as reference, for comparing the convergence of the trun-
cated Newton algorithm with.

4 COMPUTATION OF HESSIAN-VECTOR PRODUCTS

Once the gradient of F is computed through eq. 13 using the AV method, its expression is
differentiated (DD) to yield δ2F

δαmδαn
and, then, multiplied with sn so as to give the Hessian-vector

products appearing in the CG algorithm (eq. 5, for Amn = δ2F
δαmδan

)

δ2F

δαmδαn

sn =

∫
Ω

(
vi
δui

δαn

sn + ui
δvi
δαn

sn

)
δα

δαm

dΩ =

∫
Ω

(ūivi + uiv̄i)
δα

δαm

dΩ

= (ūm
i v

m
i + um

i v̄
m
i ) Ω

m (15)

where δvi
δαn

sn = v̄i and δui

δαn
sn = ūi are new fields to be computed. To this end, the flow and

adjoint equations (eqs. 3 and 11, respectively) are differentiated w.r.t. α and, then, multiplied
with s yielding two new systems of PDEs, which can be solved for v̄i and ūi. The first system
is

∂v̄j
∂xj

=0

v̄j
∂vi
∂xj

+ vj
∂v̄i
∂xj

+
∂p̄

∂xi

− ∂

∂xj

[
ν

(
∂v̄i
∂xj

+
∂v̄j
∂xi

)]
+ αv̄i + svi=0 , i = 1, 2 (16)

whereas the second

∂ūj

∂xj

= 0

−v̄j
(
∂ui

∂xj

+
∂uj

∂xi

)
− vj

(
∂ūi

∂xj

+
∂ūj

∂xi

)
− ν

∂

∂xj(
∂ūi

∂xj

+
∂ūj

∂xi

)
+

∂q̄

∂xi

+ αūi + sui = 0, i = 1, 2 (17)

The boundary conditions for systems 16 and 17 are derived from the differentiation of the flow
and adjoint boundary conditions w.r.t. αm and the multiplication with sm. At the inlet,

v̄〈n〉= ū〈n〉 = 0

v̄〈t〉= ū〈t〉=0

∂p̄

∂xj

nj=
∂q̄

∂xj

nj=0 (18)
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at the outlet,

p̄ = 0 (19a)
∂v̄i
∂xj

nj = 0 (19b)

q̄=uj v̄j+ūjvj+u〈n〉v̄〈n〉+ū〈n〉v〈n〉 + ν

(
∂ūi

∂xj

+
∂ūj

∂xi

)
njni

− 3v〈n〉v̄〈n〉 − v〈t〉v̄〈t〉 (19c)

0=u〈t〉v̄〈n〉+ū〈t〉v〈n〉 + ν

(
∂ūi

∂xj

+
∂ūj

∂xi

)
njti − v̄〈n〉v〈t〉 − v〈n〉v̄〈t〉 (19d)

and along the solid walls

v̄i = ūi = 0
∂p̄

∂xj

nj =
∂q̄

∂xj

nj = 0 (20)

The cost for solving systems 16 and 17 is almost equal to that of solving twice the flow
equations, i.e. equal to 2 EFS. Thus, the overall cost of each optimization cycle for the truncated
Newton algorithm based on the segregated handling of the governing equations, is equal to
(2+2MCG) EFS. This cost comprises one solution of eqs. 3, one of eqs. 11 and MCG solutions
of eqs. 16 and 17.

Particularly for topology optimization problems, numerical experiments have shown that it is
much faster to solve the optimization problem equations (eqs. 3, 11, 16 and 17) in a “one shot”
or “all-at-once” manner, i.e. by performing one iteration of the iterative scheme (such as Jacobi,
Gauss Siedel, etc.) per system of equations, and then update the α values using eq. 4 or 14.
This can be attributed to the fact that the flow fields change drastically from one optimization
cycle to another (so there is no reason to let the state equations converge) and is facilitated by
the fact that, in topology optimization, there is no mesh change or deformation. Keeping this in
mind, the cost of the optimization algorithms presented in the next section will be measured in
linear solver iterations (LSI) instead of EFS, with the cost ratio being as discussed above (2 LSI
per steepest descent iteration and 2 + 2MCG LSI per truncated Newton iteration).

5 CASE STUDIES

The proposed adjoint-based truncated Newton method for topology optimization is demon-
strated in two cases. The first case is concerned with a square design domain with area equal to
1× 1 length units including one inlet and one outlet boundary with lengths equal to 0.2 m each,
and a square body (“obstacle”) at the middle of the domain. A computational grid of 38400
cells is used, which implies that there are 38400 design variables or unknown α values. The
velocity profile at the inlet is parabolic with its maximum value equal to 0.28 m/s.

The second case also uses the same square domain as Ω and has two inlet and two outlet
boundaries with length equal to 0.2 m each and three square bodies inside. The computational
grid consists of 73600 cells.

The distributions of the optimal primal and adjoint velocity magnitudes for the first case,
computed using the truncated Newton approach, are shown in fig. 1. The same fields computed
using steepest descent are shown in fig. 2. The optimal porosity distributions using the two
approaches is presented in fig. 3. Slight differences can be observed after close inspection.
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Figure 1: Topology optimization of a duct with a single obstacle. Distributions of the optimal primal and (top-left),
adjoint velocity (top-right) magnitudes, computed using the truncated Newton approach.

Figure 2: Topology optimization of a duct with a single obstacle. Distributions of the optimal primal and (left),
adjoint velocity (right) magnitudes, computed using steepest descent.

However, as shown below, the convergence rates and the optimal value of the objective function
differ.

The convergence rates of steepest descent and truncated Newton for the first case are shown
in fig. 4, in terms of CPU cost (LSI). All the equations are solver in a one-shot manner.

In fig. 4 (top) the red solid line corresponds to the convergence of the steepest descent al-
gorithm and the other lines correspond to the convergence of the truncated Newton algorithm,
initialized from different phases of the steepest descent one. The use of steepest descent at the
first optimization phase offers a good initialization for the truncated Newton method. It can be
seen that the cycle at which the truncated Newton starts, does not affect much the optimized re-
sult. Thus, it is recommended to start the truncated Newton cycles after the steepest descent has
only partially converged, overcoming the first “rough” one-shot cycles, at which the truncated
Newton might face numerical difficulties.

In fig. 4 (top) a parametric study of the number of conjugate gradient sub-iterations is shown.
The four curves marked with TN, correspond to MCG = 5, MCG = 10, MCG = 20 and
MCG = 40. It can be deduced that, for the problem at hand, the lower MCG value gives the best
convergence of the truncated Newton algorithm, since higher MCG values increase the cost per
optimization cycle without proportionally accelerating the convergence.
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Figure 3: Topology optimization of a duct with a single obstacle. Distributions of the optimal porosity variable
computed using the truncated Newton approach (left) and steepest descent (right).

For the second case, the optimal velocity distributions using steepest descent and truncated
Newton are shown in fig. 5. Although the figures are much alike, there are slight differences
that allow the objective function value to convergence 4% lower when using the truncated New-
ton algorithm instead of the steepest descent one, fig. 6. This can be related to the fact that in a
problem with more than 70000 variables, steepest descent can be easily trapped to a local mini-
mum, whereas the second-order truncated Newton method has a greater possibility to overcome
it.

6 CONCLUSIONS

The truncated Newton algorithm with conjugate gradient sub-iterations was applied for the
first time in the literature to the topology optimization of duct flows. The number of design
variables was equal to the number of grid cells, which was 73600 in the largest case examined.
Using so many design variables would have made the cost of computing the exact Hessian pro-
hibitive. Instead, the truncated Newton algorithm, utilizing the (continuous) AV-DD method to
compute Hessian-vector products instead of the exact Hessian, proved to accelerate the conver-
gence to the optimal topology, when compared to the steepest descent algorithm, which was,
however, an essential ingredient of the process, since it was used to initialize it. The CPU cost
has decreased in both cases examined and the objective function value converged deeper when
compared to a pure steepest descent approach, by avoiding entrapment to local minima.
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Figure 4: Topology optimization of a duct with a single obstacle. Convergence of pt losses ( F
1
2v

2
inmin

, where min is
the inlet volume flow rate and vin is the inlet velocity magnitude) using the truncated Newton algorithm, initialized
after different steepest descent steps (top) and using different number of conjugate gradient sub-iterations (bottom).
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Figure 5: Topology optimization of a duct with three obstacles. Optimal primal velocity distributions computed
using the truncated Newton approach (left) and steepest descent (right).
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, where min is
the inlet volume flow rate and vin is the inlet velocity magnitude) using the truncated Newton algorithm, starting
after the application of steepest descent for 1000 cycles.
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