
Design-Optimization of a Compressor Blading
on a GPU Cluster

Konstantinos T. Tsiakas, Xenofon S. Trompoukis, Varvara G. Asouti and Kyriakos
C. Giannakoglou

Abstract This paper presents the design/optimization of turbomachinery blades
using synchronous and asynchronous metamodel–assisted evolutionary algorithms
on a GPU cluster. Asynchronous EAs overcome the synchronization barrier at the
end of each generation and exploit better all available computational resources. Ra-
dial basis function networks are used as on–line trained surrogate evaluation models
(metamodels) according to the inexact pre–evaluation (IPE) concept. With the ex-
ception of a few initial evaluations, which are based on the exact evaluation tool,
each new candidate solution is approximately evaluated using local metamodels
and only the most promising among them are, then, re-evaluated using the exact
tool. Suggestions about the number of population members to be re–evaluated on
the CFD tool, in the framework of the IPE scheme, are provided. The effect of us-
ing more than one GPUs to evaluate each candidate solution in the optimization
turnaround time is discussed.

1 Introduction

Nowadays, evolutionary algorithms (EAs) are successfully applied to many scien-
tific fields including engineering sciences, since they can handle single– or multi–
objective, unconstrained or constrained optimization problems by accommodating
any evaluation software as a black–box. EAs main disadvantage is related to the
great number of evaluations required to reach the optimal solution(s). In engineer-
ing problems, based on evaluation software which is computationally demanding
(for instance, a CFD code), this noticeably increases the optimization turnaround
time.

Konstantinos T. Tsiakas, Xenofon S. Trompoukis, Varvara G. Asouti, Kyriakos C. Giannakoglou
National Technical University of Athens (NTUA), School of Mechanical Engineering, Parallel
CFD & Optimization Unit, Lab. of Thermal Turbomachines, Iroon Polytechniou 9, Athens 15780,
Greece, e-mail: {tsiakost,xeftro}@gmail.com, vasouti@mail.ntua.gr, kgianna@central.ntua.gr

1

2 Tsiakas Konstantinos et al.

To decrease the CPU cost and/or the turnaround time of an EA–based optimiza-
tion, the concurrent evaluation of candidate solutions and/or the implementation of
surrogate evaluation models (or metamodels) can be used. Generation–based EAs,
to be referred as “synchronous” in this paper, usually implement the master–worker
paradigm to concurrently evaluate the generation members. Each population mem-
ber can optionally be evaluated on many processors, provided that a parallel evalu-
ation software (such as a parallel CFD code, in CFD–based optimization) is avail-
able. By overcoming the notion of “generation”, the so–called asynchronous EAs
(AEAs) have been developed [1, 2]. AEAs may exploit the available computational
resources better than a synchronous EA relying upon the master–worker paradigm.

On the other hand, metamodels are tools providing low–cost approximations to
the results of costly problem–specific evaluation models. In this work, metamodel–
assisted EAs (MAEAs) with on–line trained local metamodels (radial basis function
- RBF networks) are used according to the Inexact Pre–Evaluation (IPE) scheme of
the candidate solutions. IPE starts after running and archiving a number of individ-
uals using exclusively the problem–specific evaluation model, in order to collect the
minimum number of samples to be used to train the metamodels. In the synchronous
EA, during the IPE phase [10, 9], all population members of each generation are
pre–evaluated on surrogate models built in purpose and only a few top individuals
undergo re–evaluation on the exact model. In the asynchronous EAs, [1, 2], instead
of generating and evaluating a single new individual every time a CPU becomes
idle, a number of trial solutions are generated and pre–evaluated on the metamodel.
Then, the best among them, according to the metamodel, is exactly re–evaluated.

In aerodynamic optimization, additional gain is expected from the use of a GPU–
enabled Navier–Stokes solver to perform the CFD–based evaluation. Many of the
existing CFD solvers running on GPUs use structured grids [15, 4, 11] and thus
profit of the aligned access to the GPU memory, leading to high speed–ups. Ap-
plications based on unstructured grids are still limited and usually based on cell–
centered finite volumes [15]. The GPU–enabled software used in this work solves
the Navier–Stokes equations on unstructured grids using the vertex–centered finite
volume technique [8, 3, 14]. Though this is the most difficult case regarding GPU
memory access, compared to the use of either structured or unstructured grids with
cell–centered finite volumes, the optimization of memory access, are discussed in
[3, 14], along with the use of mixed precision arithmetics [8] makes the code run-
ning 50 times faster on a single GPU than on a single CPU core.

In this paper, synchronous and asynchronous metamodel–assisted EAs (MAEAs
and AMAEAs) are used for the design optimization of a compressor blading on a
GPU–cluster which consists of four interconnected server blades, with 3 NVIDIA
Tesla M2050 each. In this 12 GPU configuration, various parallelization schemes
are investigated in order to minimize the optimization turnaround time. These in-
clude MAEAs and asynchronous MAEAs (AMAEAs) allowing up to 12 (as many
as the available GPUs) concurrent evaluations. Regarding MAEAs, the impact of
the number of individuals to be re–evaluated on the CFD model is investigated.
An additional investigation of the effect of parallelizing the CFD software on many

Design-Optimization of a Compressor Blading on a GPU Cluster 3

GPUs in the optimization turnaround time is also carried out, for both the MAEA
and AMAEA.

2 The Navier–Stokes Equations Solver – Implementation on
many GPUs

A GPU–enabled Navier–Stokes solver [8, 3, 14] is used for steady 3D incompress-
ible flows for the evaluation of candidate solutions. The GPU–solver may use GPUs
associated with the same or different computational nodes.

2.1 The Navier–Stokes Equations

The pseudo-compressibility approach, introduced by Chorin[5], is used to handle
incompressible fluid flows. By introducing the artificial compressibility β , the mean
flow equations with respect to the rotating frame of reference become

R(W) =
∂W
∂ t

+
∂Finv

j

∂x j
−

∂Fvis
j

∂x j
−S = 0 (1)

where W = [p w1 w2 w3] is the vector of the unknowns, wi, i=1,2,3 are the relative
velocity components and p is the static pressure. Finv, Fvis are the inviscid and vis-
cous fluxes respectively and S is the vector of source terms containing the Coriolis
and centripetal forces,

Finv
j =


βw j

w jw1 + pδ1 j
w jw2 + pδ2 j
w jw3 + pδ3 j

 , Fvis
j =


0

τ1 j
τ2 j
τ3 j



τi j = (ν +νt)

(
∂wi

∂x j
+

∂w j

∂xi

)

Si = 2εk jiwkΩ j + ε jklεhliΩhΩ jxk

Ωi, i = 1,2,3 are the components of the angular velocity vectors. The mean–
flow equations are coupled with the one–equation low–Reynolds number Spalart–
Allmaras [13] turbulence model. The viscosity coefficient is given by νt = ν̃ fv1 ,
where ν̃ is the solution variable in the state turbulence equation, Rν̃ = 0, where

4 Tsiakas Konstantinos et al.

Rν̃ =
∂ (wiν̃)

∂xi
− ∂

∂xi

[(
ν+

ν̃
σ

)
∂ ν̃
∂xi

]
−

cb2

σ

(
∂ ν̃
∂xi

)2

− ν̃P(ν̃)+ ν̃D(ν̃) (2)

The production P(ν̃) and destruction D(ν̃) terms along with fv1 , fw, S̃, and constants
cb1 , cb2 , cw1 and σ are all defined in [13].

2.2 Boundary Conditions and Discretization

Concerning the boundary conditions, the no–slip condition is applied along the solid
walls. At the inlet, the velocity vector profiles are imposed, while at the outlet a
fixed mean pressure value is applied. A zero value of ν̃ is specified along the solid
boundaries.

The discretization of the governing PDEs is based on the time–marching tech-
nique and the vertex–centered finite volume method. Thus, in each pseudo–time
step, equations 1 and 2 are integrated over the finite volumes formed around mesh
nodes. The CFD–solver used may handle unstructured/hybrid meshes consisting of
tetrahedra, pyramids, prisms and hexahedra.

The inviscid numerical fluxes are computed using the Roe’s approximate Rie-
mann solver [12] with second–order accuracy. The stresses on the finite volume
faces are computed based on the velocity gradients, the computation of which at the
mid-point of each edge (PQ) is given by

∂wi

∂x j

∣∣∣∣
PQ

=
1
2

[
∂wi

∂x j

∣∣∣∣
P
+

∂wi

∂x j

∣∣∣∣
Q

]
−

[
1
2

[
∂wi

∂x j

∣∣∣∣
P
+

∂wi

∂x j

∣∣∣∣
Q

]
n j −

wQ
i −wP

i
(PQ)

]
n j (3)

where n j is the normal to the finite volume interface. Coriolis and centripetal forces
are added as source terms.

2.3 Numerical Solution

The discretized Navier–Stokes equations are solved iteratively according to the
scheme

∂R
∂W

∆W =−R(W), Wk+1 = Wk +∆W (4)

with k denoting the pseudo-time iteration. The pseudo-time step is calculated locally
at each mesh node, based on stability criteria.

In order to maximize the parallel efficiency of the GPU–enabled solver and re-
duce the device memory requirements, the solver uses Mixed Precision Arithmetics
(MPA) [8], which does not harm the accuracy of the results, due to the delta formula-
tion presented in equation 4. In the proposed MPA scheme, DPA (Double Precision

Design-Optimization of a Compressor Blading on a GPU Cluster 5

Arithmetics) is used for computing both the LHS and RHS terms. Then, SPA (Single
Precision Arithmetics) is used to store the memory–consuming LHS terms, whereas
DPA is used for the RHS (i.e. the residuals) of equation 4.

2.4 Implementation on many GPUs

The flow solver, written in the CUDA programming environment, uses the MPI pro-
tocol for the inter–node communications. Each CPU–process is executed on a dif-
ferent computing node and controls the GPUs associated with this node. Generally,
the number of CPU–processes is not equal to the number of mesh partitions since
each CPU–process controls many on–node GPUs each of which is associated with
a single mesh partition. For the communication between the on–node GPUs, event–
stream synchronizations have been employed. Besides, GPUs on the same node use
the common CPU (pinned) memory for data interchange. In order to increase the
parallel efficiency of the CFD solver, data interchange overlap with computations;
thus, GPU cores remain active even while data are transferred through the available
devices.

In the beginning, the CPU–process with rank 0 reads and broadcasts the data
input which include the flow conditions, the nodal coordinates and the connectiv-
ity of mesh elements per subdomain. It also constructs the necessary lists of mesh
nodes shared by adjacent subdomains, for which data communications are neces-
sary. Then, each CPU–process performs the computation of topology- and mesh re-
lated data supporting the finite volume method for the subdomains associated with
the GPUs controlled by this CPU–process. The computed data are copied to the
GPUs, where the numerical solution of the Navier–Stokes equations takes place
through successive GPU kernel launches, data interchange and synchronizations.

As already mentioned, the flow solver uses unstructured grids and the vertex–
centered finite volume technique. This is the most difficult case regarding GPU
memory access, because (a) the use of unstructured grids leads to “unstructured”
memory access due to the random grid element numbering and (b) in the vertex-
centered approach the number of neighboring nodes per grid node varies from node
to node. On the other hand, in the cell-centered finite volume technique the number
of neighboring elements per element is a priori known; for instance, in 3D grids
with tetrahedral elements, each internal tetrahedron has 4 adjacent tetrahedra. The
optimization of memory access [3, 14] together with the use of mixed precision
arithmetics (MPA) [8] makes the flow solver running on a single GPU about 50
times faster than its counterpart running on a single CPU core.

6 Tsiakas Konstantinos et al.

3 The EA–based Optimization Platform

The design optimization of the compressor blading presented in this work is based
on EAs, using the capabilities of the optimization platform EASY [6] developed
by the authors’ group. In order to decrease the computational cost of the EA–based
optimization, the concurrent evaluation of candidate solutions together with surro-
gate evaluation models (or metamodels) are implemented. Synchronous and asyn-
chronous metamodel–assisted EAs (MAEAs and AMAEAs) are used to quantify
the parallel efficiency from the concurrent evaluation of candidate solutions.

In both MAEA and AMAEA, all evaluated individuals, paired with the corre-
sponding objective function values, are stored in a database (DB). Once a predefined
minimum number of DB entries has been archived, the IPE phase (implemented dif-
ferently in the synchronous and asynchronous mode) starts. On–line trained meta-
models are used during the IPE phase. Radial basis function (RBF) networks are
trained separately for each new individual on its closest (in terms of Euclidean dis-
tances in the normalized design space) DB entries. In constrained problems, such
as the one studied herein, candidate solutions violating one or more constraints are
penalized using an exponential penalty function.

In the following sections, the basic features of the MAEA and AMAEA, with
emphasis on the parallelization model and the IPE implementation, are described.

3.1 Metamodel–Assisted EA (MAEA)

The synchronous or generation–based (µ,λ)EA and (µ,λ)MAEA, [7]) in each gen-
eration handle three populations, namely the parent (with µ members), the offspring
(with λ members) and the elite (with ε members) ones. The µ parents result from
the application of the parent selection operator to the offspring and elite popula-
tions of the previous generation. The λ offspring are formed from the parents, via
the application of evolution operators, such as crossover, mutation, etc., including
elitism.

The first few generations are performed as a conventional EA and the MAEA
starts once there are “enough” training patterns in the DB. During the IPE phase
all population members are pre–evaluated on surrogate models trained on–the–fly
and only a few (λIPE <<λ) top population members, i.e. the most promising based
on the metamodel, are re–evaluated on the CFD model. The λIPE value may vary
between a lower (λIPE,min) and an upper (λIPE,max) user–defined bound. Initially,
only the λIPE,min top individuals are re–evaluated; then, some more, up to λIPE,max
in total, may be re–evaluated too, based on a number of criteria.

The parallelization of EA and MAEA is based on the master–worker paradigm
where the master assigns the λ evaluations to the available GPUs (NGPU). The num-
ber of CPU processes (NCPU) is equal to NGPU if the evaluation of a candidate solu-
tion is assigned to a single GPU or NCPU <NGPU if assigned to more than one GPUs,
as described in section 2.4. In the general case where λ <NGPU , the first NGPU evalu-

Design-Optimization of a Compressor Blading on a GPU Cluster 7

Fitness

Assignment

Stopping

Criterion

End

Evolution

Operators

Inexact

Pre-Evaluation

DB

Exact

Evaluations

Sorting

New offspring

population

Store in DB

Yes

No

Fig. 1 Schematic representation of the IPE phase in a (synchronous) MAEA.

ations are assigned to the NGPU devices. The remaining evaluations within the same
generation are then assigned to GPUs that become idle anew. The master waits for
all GPUs to complete their evaluations before proceeding to the next generation. In
the case of a MAEA, the master undertakes the IPE and assigns the λIPE evaluations
to the available GPUs.

3.2 Asynchronous Metamodel–Assisted EA (AMAEA)

In the asynchronous EA (AEA) and AMAEA, [1, 2], the population members are
associated with the nodes of a supporting mesh which is periodic along its opposite
sides. The mesh is subdivided into demes of six nodes each, namely a pole, which
acts as the deme’s front–end where the best individual of the deme is stored, and
five evaluation agents, figure 2. Demes interact through the shared supporting grid
nodes. The application of the evolution operators is restricted within each deme.

Asynchronous EAs overcome the notion of generation and better exploit the
available computational resources, in comparison to the master–worker paradigm.
In particular, the optimization starts by randomly generating individuals and assign-
ing their evaluation to the available GPUs. Upon completion of the evaluation of
any individual, the corresponding GPU becomes idle. Instantaneously, a new indi-
vidual to undergo evaluation is generated through intra– and inter–deme operations.
An intra–deme operation, based on dominance criteria, decides whether the just

8 Tsiakas Konstantinos et al.

A2

A1

A5 A4

A3P

Fig. 2 Topology of a 4× 4 supporting mesh of an asynchronous EA or MAEA. For the deme
associated with pole P, agents A1 to A4 are shared with its four neighbouring demes whereas agent
A5 is the only non–shared one.

evaluated individual must displace the corresponding pole(s) storing the best so–far
computed solution on the deme. Then, an inter–deme operation selects, based on
priority criteria, the next agent to undergo evaluation, [1].

In AMAEAs, the metamodels are activated only after completing and archiving
a user–defined minimum number of exact evaluations. From this point on (figure 3),
for each idle processor, NIPE trial individuals are instantaneously generated by the
evolution operators applied within the corresponding deme. For each one of them,
a local metamodel is trained and an approximate (“inexact”) fitness value is com-
puted. Then, the “best” among the NIPE individuals, according to the metamodel, is
the one to undergo re–evaluation by the problem–specific (CFD) tool.

4 Design–Optimization of a Compressor Blade

This section presents the optimization of a peripheral compressor cascade. The ex-
isting (reference) compressor comprises 12 blades and operates at 1300 rpm. Air in
axial direction enters at velocity of 15.28 m/s. The blades are mounted on the hub,
with a hub–to–tip radius ratio equal to 0.6 and form a 0.005 m clearance with the
stationary shroud. In this paper, the blade is redesigned for minimum viscous losses
defined as the averaged relative total pressure difference between the rotor inlet and
outlet (∆PtR). A constraint to maintain the operating point of the reference config-
uration is imposed in terms of the mass averaged difference of the total pressure
between the cascade outlet and inlet (∆Pt).

Design-Optimization of a Compressor Blading on a GPU Cluster 9

Determine Next

Agent to Evaluate

Inexact

Pre-Evaluation

DB

Assign Exact

Evaluation

Sorting

New Individual(s)

Store in DB

A GPU is idle

Fitness

Assignment

Stopping

Criterion
End

Yes

No

Fig. 3 Schematic representation of the IPE phase as implemented by an AMAEA.

4.1 Parameterization and Grid Generation

The blade shape is defined by superimposing parameterized thickness profiles on
a parameterized mean–camber surface. Bezier control polygons are used to specify
the distributions of all geometrical quantities. The design variables, 38 in total, are
the coordinates of the control points of Bezier curves used to:

1. generate the meridional projection of the leading (LE) and trailing (TE) edges,
as well as the hub and shroud generatrices (figure 4),

2. parameterize the spanwise distributions of (a) the mean–camber surface angles
at the LE and TE, (b) the circumferential position of the blade LE and TE and (c)
the mean–camber surface curvature,

3. parameterize the non-dimensional thickness profiles at a number of spanwise
positions (figure 5, left) and

4. dimensionalize the thickness distribution along the spanwise direction (figure 5,
right).

For the evaluation of each candidate solution, a 3D unstructured mesh with about
400000 nodes is generated using an in–house grid–generation software. The final
grid comprises hexahedra and prisms over the blade surface, prisms over the casing
and tip region, tetrahedra at the inner part of the domain and a zone of pyramids at
the interface between hexahedra and tetrahedra. The CFD evaluation relies on the
solver described in section 2.

10 Tsiakas Konstantinos et al.

z

R

Fig. 4 Parameterization of the hub and shroud generatrices and the meridional projection of the
leading and trailing edges. Curves and their corresponding Bezier polygons are shown.

spanwise distance

th
ic
k
n
e
s
s

Fig. 5 Parameterization of a non-dimensional thickness profile, at certain spanwise positions (left)
and the spanwise maximum thickness distribution (right).

4.2 Optimization Results and Discussion

This case is studied using both MAEA and AMAEA with 12 concurrent evaluations,
i.e. with NCPU =NGPU = 12, i.e. each evaluation is assigned to one GPU. For the
MAEA λ =48, µ=16 were used. The offspring population size (λ) was selected to
be a multiple of NGPU in order to get the “maximum” parallel efficiency from the
master–worker model. In the AMAEA, a 8×8 supporting mesh (2) is used, which
corresponds to 16 poles and 48 evaluation agents.

For both synchronous and asynchronous variants, 27 to 40 training patterns are
used for each RBF network and the IPE started once the first 80 (non–penalized, i.e.
feasible) individuals were evaluated and stored in the DB. Using the MAEA, two
different optimization runs were carried out. In the first one, λIPE = 12 members
are selected to be re–evaluated on the CFD code whereas, in the second one, λIPE

Design-Optimization of a Compressor Blading on a GPU Cluster 11

value was allowed to vary between λIPE,min = 5 and λIPE,min = 8. This range was
decided so as to have some idle GPUs and measure the effect on the optimization
turnaround time. For the AMAEA, NIPE =8 trial individuals are generated and pre–
evaluated before assigning the “best” of them to the idle GPU for evaluation on the
flow solver.

The convergence histories in terms of computational CPU cost units of the three
optimization runs are presented in figure 6. The AMAEA performs better for the
same computational cost. It is interesting to comment on the differences between the
two MAEA runs. The use of variable λIPE value is beneficiary for the optimization
algorithm (though some GPUs remain idle during the re–evaluation) compared to
the λIPE =NGPU option.

 0.22

 0.225

 0.23

 0.235

 0.24

 0.245

 0.25

 0.255

 0.26

 0 50 100 150 200 250

∆P
tR

Computational cost units

MAEA λ=12
MAEA λ=5...8

AMAEA

Fig. 6 Comparison of the convergence history of MAEA and AMAEA.

Comparison of the relative total pressure losses between the reference and the
optimal blading at two transverse cross–sections at axial positions z=0.59cax and
z=1.80cax (the z–origin is at the LE and cax is the axial chord) are shown in figures
7 and 8. It can be seen that, in the optimal blade, the high pressure losses region,
corresponding to the tip clearance vortex, is minimized.

The corresponding objective function and constraint values are compared in table
1.

4.3 Concurrent evaluations using CFD on many GPUs

Aiming at further minimizing the optimization turnaround time, apart from the
“smart” use of metamodels and the concurrent evaluations discussed thus far, the

12 Tsiakas Konstantinos et al.

Fig. 7 Comparison of the relative total pressure between the reference (left) and the optimal (right)
cascade at a transverse cross–section located at axial position z= 0.59cax. The PtR field at z=
0.59cax subtracted from the average inlet PtR value is shown.

Fig. 8 Comparison of the relative total pressure between the reference (left) and the optimal (right)
cascade at a transverse cross–section located at axial position z= 1.80cax. The PtR field at z=
1.80cax subtracted from the average inlet PtR value is shown.

Table 1 Comparison of the objective function and constraint values between the reference and the
optimized blade.

Reference blade Optimized blade

objective: Losses (∆PtR) 0.329 0.224
constraint: ∆Pt 0.53 0.54

Design-Optimization of a Compressor Blading on a GPU Cluster 13

Fig. 9 Pressure distribution on the optimal geometry obtained by the AMAEA–based optimization.

parallelization of the evaluation software on many GPUs is also considered. In this
paper, for parallelizing the evaluation software, one should take into account the
search method (synchronous or asynchronous), the possible use of IPE and the com-
putational system in hand (4 computational nodes with 3 Tesla M2050 GPUs on
each node).

If an evaluation can be carried out on a single GPU (depending on the computa-
tional domain size and the memory of each GPU) the use of asynchronous search
with IPE is recommended, as described in the previous section.

Should the computational domain be partitioned and run on many GPUs, things
become more complicated. As described in section 2.4, running the Navier–Stokes
solver on many GPUs can be done using a single CPU thread for the GPUs on the
same node, MPI for GPUs on different nodes or a combination of both if more than
3 GPUs are involved. So, one should also select the “best” configuration, i.e. which
GPUs (devices) from which node should undertake each evaluation.

Now, assume that a computational domain is partitioned into two subdomains. In
such a case, 6 concurrent evaluations should be carried out. The CFD software may
run on two GPUs of either the same node or different nodes. Using a single CPU
thread to manage more than one GPUs on the same node, the parallel speed–up is
greater than that of using MPI for GPUs on different nodes. So, for the asynchronous
search, assigning as many evaluations as possible to pairs of GPUs belonging to the
same node (4 in the GPU cluster under consideration) is the best practice in terms
of the optimization turnaround time. For the synchronous search, if the offspring

14 Tsiakas Konstantinos et al.

population is a multiple of 6 (as many as the concurrent evaluations), all combi-
nations will practically lead to the same optimization turnaround time, since the
synchronization barrier is determined by the slowest evaluation.

If 3 GPUs are required at minimum for each evaluation, then assigning 4 con-
current evaluations on the 3 GPUs of each node is the optimal choice for both syn-
chronous and asynchronous search on the available GPU cluster.

5 Conclusions

In this paper, metamodel–assisted evolutionary algorithms, synchronous (MAEA)
and asychronous (AMAEA), are used in combination with a parallel GPU–enabled
CFD solver, in order to reduce the overall optimization time of a low speed com-
pressor blading. The overall turnaround time is shown to be greatly reduced by (a)
appropriately tuning the IPE scheme, (b) using asynchronous search in order to min-
imize the idle time, (c) using GPUs for the exact evaluation tool (CFD) instead of
CPUs, and (d) “smartly” distributing the concurrent evaluations on the available
GPUs of the cluster, especially in cases where the CFD solver is obliged to run on
more than one GPUs. Thus, by appropriately combining all the above techniques
and features, the use of evolutionary algorithms for aerodynamic optimization prob-
lems, can be made very appealing, in terms of optimization turnaround time, even
in large scale industrial applications.

References

1. V.G. Asouti and K.C. Giannakoglou. Aerodynamic optimization using a parallel asynchronous
evolutionary algorithm controlled by strongly interacting demes. Engineering Optimization,
41(3):241–257, 2009.

2. V.G. Asouti, I.C. Kampolis, and K.C. Giannakoglou. A grid-enabled asynchronous
metamodel-assisted evolutionary algorithm for aerodynamic optimization. Genetic Program-
ming and Evolvable Machines (SI:Parallel and Distributed Evolutionary Algorithms, Part
One), 10(3):373–389, 2009.

3. V.G. Asouti, X.S. Trompoukis, I.C. Kampolis, and K.C. Giannakoglou. Unsteady CFD com-
putations using vertex-centered finite volumes for unstructured grids on Graphics Processing
Units. International Journal for Numerical Methods in Fluids, 67(2):232–246, 2011.

4. T. Brandvik and G. Pullan. An accelerated 3D Navier–Stokes solver for flows in turboma-
chines. Journal of Turbomachinery, 133(2):619–629, 2011.

5. A. Chorin. A numerical method for solving incompressible viscous flow problems. Journal
of Computational Physics, 2(1):12–26, August 1967.

6. K.C. Giannakoglou. The EASY (Evolutionary Algorithms SYstem) software,
http://velos0.ltt.mech.ntua.gr/EASY., 2008.

7. I.C. Kampolis and K.C. Giannakoglou. A multilevel approach to single- and multiobjec-
tive aerodynamic optimization. Computer Methods in Applied Mechanics and Engineering,
197(33-40):2963–2975, 2008.

Design-Optimization of a Compressor Blading on a GPU Cluster 15

8. I.C. Kampolis, X.S. Trompoukis, V.G Asouti, and K.C. Giannakoglou. CFD-based analysis
and two-level aerodynamic optimization on graphics processing units. Computer Methods in
Applied Mechanics and Engineering, 199(9-12):712–722, 2010.

9. M.K. Karakasis and K.C. Giannakoglou. On the use of metamodel-assisted, multi-objective
evolutionary algorithms. Engineering Optimization, 38(8):941–957, 2006.

10. M.K. Karakasis, A.P. Giotis, and K.C. Giannakoglou. Inexact information aided, low-cost,
distributed genetic algorithms for aerodynamic shape optimization. International Journal for
Numerical Methods in Fluids, 43(10-11):1149–1166, 2003.

11. A. Khajeh-Saeed and J. Blair Perot. Direct numerical simulation of turbulence using GPU
accelerated supercomputers. Journal of Computational Physics, 235:241–257, 2013.

12. P. Roe. Approximate Riemann solvers, parameter vectors, and difference schemes. Journal of
Computational Physics, 43(2):357–372, 1981.

13. P. Spalart and S. Allmaras. A one–equation turbulence model for aerodynamic flows. La
Recherche Aérospatiale, 1:5–21, 1994.

14. X.S. Trompoukis, V.G. Asouti, I.C. Kampolis, and K.C. Giannakoglou. CUDA implementa-
tion of Vertex-Centered, Finite Volume CFD methods on Unstructured Grids with Flow Con-
trol Applications, chapter 17. Morgan Kaufmann, 2011.

15. B. Tutkun and F. Edis. A GPU application for high-order compact finite difference scheme. In
22nd International Conference on Parallel CFD 2010, Kaohsiung, Taiwan, May 17–21 2010.

