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Abstract This paper presents the development and application of the unsteady con-
tinuous adjoint method to the incompressible Navier–Stokes equations and its use
in two different optimization problems. The first is the computation of the optimal
setting of a flow control system, based on pulsating jets located along the surface
of a square cylinder, in order to minimize the time-averaged drag. The second is
dealing with unsteady topology optimization of a duct system with four fixed inlets
and a single outlet, with periodic in time inlet velocity profiles, where the target is
to minimize the time-averaged viscous losses. The presentation of the adjoint for-
mulation is kept as general as possible and can thus be used to other optimization
problems governed by the unsteady Navier–Stokes equations. Though in the exam-
ined problems the flow is laminar, the extension to turbulent flows is doable.

1 Introduction

Adjoint methods [1, 2, 3, 4] are successfully used to compute the gradient of the
objective function with respect to the design variables and support gradient-based
optimization methods. This paper is dealing with the unsteady continuous adjoint
[5, 6, 7, 8] methods, where the adjoint PDEs are firstly derived and, then, discretized.
The primal problem is governed by the unsteady flow equations and time-averaged
performance metrics are used as objective functions. Two optimization problems are
solved: an active flow control and a topology optimization problem.
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Active flow control [9, 10], based on suction of blowing jets, steady or unsteady,
may control the boundary layer of the flow by preventing or delaying separation or
controlling other flow phenomena, such as the Karman vortices generated behind a
cylinder. The case examined here is the unsteady flow developed around a square
cylinder, which is controlled by a set of pulsating jets at fixed locations around the
cylinder, with their amplitudes as the design variables.

On the other hand, topology optimization is a shape parameterization-free design
method, which is used to identify which parts of an extended domain should be
solidified, so as to minimize the objective function which quantifies the quality of the
fluid flow in the remaining, non-solidified, part of the domain. Two major variances
of topology optimization exists, the porosity [11, 12, 13] and the level-set [14, 15]
methods.

The porosity-based class of topology optimization algorithms compute a real-
valued porosity field, a, over an extended domain, which minimizes the objective
function. Domain areas corresponding to the fluid flow are identified as those with
nodal values a = 0 or, practically, a≤ ε where ε is an infinitesimally small positive
number. Remaining areas where a 6= 0 or, practically, a > ε define the part of the
domain to be solidified. In contrast, the level-set method is based on the signed
distance ϕ from the sought solid-fluid interface. If locally ϕ < 0, this cell is a fluid
cell, whereas cells with ϕ > 0 must be solidified. The isolines ϕ = 0 define the solid
walls.

In this paper, the topology optimization is based on the level-set method and
aims at designing a duct system with four fixed inlets and a single fixed outlet, for
minimum time-averaged viscous losses. Unsteadiness is caused by the time–varying
inlet velocity profiles.

In the unsteady adjoint method, a major issue is the storage of the primal solution
fields, at different time steps. When solving the unsteady adjoint equations, informa-
tion travels backwards in time. Also, to solve the adjoint equations at a given time
instant, the primal fields for the same instant must be available. The full-storage of
the primal field evolution in time is memory-wise too expensive and alternatives
must be used. The check-pointing technique [16, 17], which is used in this paper,
stores the primal solution at a number of instants and recomputes the solution at all
other time instants, starting from the closest check-point.

2 Flow Model and Objective Functions

The flow is modeled by the Navier–Stokes equations for the unsteady laminar flow
of an incompressible fluid. The last term in eq. 1, which is activated only in topology
optimization problems, is added. The primal equations are
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where vi and p stand for the velocity components and the static pressure divided
by the density, respectively. ϕ is the signed distance (d or −d) from the solid walls
used in the level set method,

ϕ (x) =

d , if x ∈ solid region (Ωs),
−d , if x ∈ fluidic region (Ω f ),
0 , if x is on the interface.

(3)

H(ϕ) is the Heaviside function and α is a penalty multiplier.
In view of the derivation of the primal equations, needed for the adjoint equa-

tions, the non-differentiable Heaviside function is replaced with the sigmoid func-
tion
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where h takes on a very small positive value determining the shape of the sigmoid
function.

For the numerical solution of the primal equations the SIMPLE algorithm [18]
was used, with a cell-centered, finite-volume discretization scheme.

The first problem examined is the design of an optimal flow control system. It is
about the optimal configuration of a set of pulsating jets activated at fixed locations
along the perimeter of a square cylinder, to minimize the time-averaged drag. The
velocity components of each jet are given by

vm
λ
= (Am sin(2π f m (t− f m

0 ))−Am)nλ , λ = 1,2(3) (4)

where m is the jet counter. Am is the amplitude, f m the frequency and f m
0 the phase of

each jet. Jets are aligned with the outwards, normal to the wall, unit vector. Positive
Am corresponds to blowing and negative Am to suction. The frequencies f m and
phases f m

0 of all jets are the same and fixed to f m = v∞

d [8] and f m
0 = 0, where v∞

is the infinite flow velocity and d is the side length of the square cylinder. The only
design variables are the amplitudes Am. In this case, the period of pulsating jets is
about 6 times shorter than that of the Karman vortices.

The time-averaged (squared) drag force is expressed as
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J1=
1

2T

∫
T

D2(t)dt (5)

where T is the flow period. In the uncontrolled case, the flow period is the Kar-
man vortices’ period whereas in the optimally controlled case T stands for the jets’
period. D is the time-dependent drag force
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where ri are the components of the unit vector aligned with the farfield velocity
and Sw stands for the solid wall boundary. The last term in eq. 6 stands for the
contribution of jets on the forces acting upon the body, at the jets locations. A similar
study, for a circular cylinder, can be found in [8].

The second problem is concerned with the design of an optimal duct system
connection fixed inlets with a single outlet. The flow is unsteady since time-varying
inflow conditions are imposed. The velocity at each inlet is still given by eq. 4,
where Am(> 0), f m and f m

0 have fixed values. The problem is handled as a topology
optimization problem on an extended domain where the level set values ϕ at each
cell center are the design variables.

The objective function to be minimized is the time- and mass-averaged total pres-
sure losses between the inlets SI and the outlet SO. This is mathematically expressed
as
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1
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2

v jv j

)
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with a term expressing a volume constraint being added to it. The constraint function
is

c =
[∫

Ω
H (ϕ)dΩ

Vall
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]2

=

(
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)2

(8)

where Vall is the volume of Ω , V is the volume occupied by fluid, Vsolid that of
the solidified part of the domain and Vtar gives the desired percentage of Ω to be
solidified. After including the equality constraint of eq. 8, the objective function
becomes

J2 = Jpt −λc+wc2 (9)

where λ is a Lagrangian multiplier and w a weight associated with the constraint.
During the optimization loop, both are updated according to the Augmented La-
grange Multiplier (ALM) algorithm [19]. λ is initialized with a zero value and w
with a small positive value. At the end of each optimization cycle, w is multiplied
by a user-defined positive factor γ > 1 (unless it exceeds wmax) and λ is updated as
λ new = λ old−2woldc.
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3 The Continuous Unsteady Adjoint Method

3.1 Field Adjoint Equations

The augmented objective function Lk is defined as the sum of Jk and the time-space
(T−Ω ) integrals of the products of the state equations and the corresponding adjoint
fields. So,

Lk =Jk+
∫

T

∫
Ω

uiRv
i dΩdt+

∫
T

∫
Ω

qRp dΩdt, k = 1,2 (10)

where ui and q are the adjoint velocities and pressure, respectively.
The derivatives of Lk w. r. t. the design variables bm, after applying the Leibniz

theorem, become
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By applying the Green-Gauss theorem and eliminating the integrals which de-
pend on variations in the flow variables w. r. t. bm, the field adjoint equations are
derived. These are
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= 0 (12)

Ru
i =−

∂ui

∂ t
− v j

∂ui

∂x j
+u j

∂v j

∂xi
+

∂q
∂xi
− ∂

∂x j

[
ν

(
∂ui

∂x j
+

∂u j

∂xi

)]
+αH (ϕ)ui = 0

(13)

Since both objective functions, J1 and Jpt , comprise only boundary integrals, their
derivatives δJ1

δbm
and δJpt

δbm
are defined only at these boundaries and do not contribute

to the adjoint field equations. The c constraint term, added to Jpt to form J2, contains
a volume integral which contributes only to the sensitivity derivatives. Since none
of the objective functions contributes to the field adjoint equations, the same field
adjoint equations are valid for both. Of course, in the flow control optimization
problem, the last term in eq. 13 vanishes.

After eliminating the integrals depending on the variations in flow quantities, the
sensitivity derivatives are expressed, in the most general form, as
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where S= SI∪SO∪Sw or S= S∞∪Sw is the boundary and Du
i = uiv jn j+ν

(
∂ui
∂x j

+
∂u j
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)
n j−

qni , Eu
i =−νui and Dq = u jn j.
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By substituting the derivative of each objective function into eq. 14, the elimina-
tion of the boundary integrals which depend on the variation in the flow variables
gives the adjoint boundary conditions. The remaining terms give the expression of
the sensitivity derivatives to be used in the descent algorithm.

3.2 Boundary Conditions & Sensitivity Derivatives for J1

The derivative of the ’mean drag’ objective function w. r. t. bm is
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)
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After substituting eq. 15 into eq. 14, the elimination of the boundary integrals de-
pending on the variation of the flow variables w. r. t. bm gives the adjoint boundary
conditions at every time step.

The adjoint boundary conditions along Sw, SI and SO, at every time-step, are Sw:
ui =−D(t)

T ri and S∞: ui = 0; for the whole domain Ω , the initial condition at t = T
is ui|t=T = 0.

The incoming or outgoing adjoint velocity is proportional to the instantaneous
value of drag D(t); this is the origin of the unsteady adjoint flow.

Finally, the sensitivities of J1 w. r. t. the control variables bm = Am are given by
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3.3 Boundary Conditions & Sensitivity Derivatives for J2

For the time-averaged total pressure losses, used in topology optimization, the ad-
joint boundary conditions are derived by substituting the derivative of J2 w. r. t. bm
in eq. 14 and eliminating terms depending on the derivatives of the flow fields. The
derivative of J2 w. r. t. bm is

δJ2
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(17)
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The adjoint boundary conditions are Sw: ui = 0, SI : u(n) =
v(n)
T , u(t) = 0, SO: q =

u(n)v(n)+ν

(
∂u(n)

∂n +
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v(t)v(n) = 0 and the initial condition for the adjoint field, at t = T , is ui|t=T = 0. The
indices (n) and (t) stand for the normal and tangent components to the boundary.

The sensitivity derivatives of J2 w. r. t. bm, where bm are the ϕ values at the
cell-center, are
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=
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3.4 Check-pointing

For the solution of the unsteady adjoint equations, the primal fields at all time steps
must be available. Since the adjoint information travels backwards in time, in order
to use the primal fields at each time step, these should have been stored during the
solution of the primal equations. Due to memory limitations, this is replaced by the
binomial check-pointing technique.

The check-pointing technique is a compromise between memory consumption
and CPU cost. Instead of storing the primal solutions at every time step, which
is very memory consuming, only those at a predefined number of time-instances,
called check-points, are stored; from them, the primal solution in every other time-
instant is re-computed.

The binomial check-pointing method uses a binomial distribution of check-points
in time, for which it can be proved [17] that the number of flowfield recomputations
is minimal for given numbers of check-points and time-steps. The distribution of
check-points is dynamically updated as time progresses, so that, at any given time-
step, each check-point is always in the optimal position in time, as dictated by the
binomial distribution.

4 Results

In both optimization problems, the steepest descent method [19]

bnew
m = bold

m −η
δJk

δbm
(19)

is used to update the design variables values, after solving the adjoint equations.
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4.1 Flow Control Optimization

The Reynolds number of the flow around the cylinder is Re=100. Five jets were
equi-distributed along each side of the square cylinder, the placement of which can
be seen in fig. 5. All 20 jets share the same frequency f m=v∞/d = 10Hz and phase
f m
0 =0. Recall that the optimization variables are the amplitudes Am of the jets and

the minimization of J1 is targeted.
The time step for the simulation is ∆ t =4 ·10−4. Two variants were tried. In the

first variant, the so-called ”full-in-time” approach, the flow computation was per-
formed for 11 periods of time in each optimization circle. It was decided to discard
the solution during the first 5 periods, so as to get rid of the transient phase of the
primal problem and do the same for the last 5 to also avoid the transient phase of
the adjoint problem. Only the intermediate period, which is considered representa-
tive of the periodic primal and adjoint phenomena, was used to calculate sensitivity
derivatives and the value of the objective function. In the second variant, to be re-
ferred to as the ”fast-in-time” approach, only one period of time is simulated in each
optimization cycle. After the numerical solution of the primal equations for a single
period of time, the adjoint equations were solved for this period. Then, the sensitiv-
ity derivatives were computed using the solution to the primal and adjoint equations,
for this single period, and the design variables were updated.

Because the transient effects were not discarded, the computed sensitivities were
not exact but the CPU cost per optimization cycle was lower. In order to reduce
transient effects, the results at the last time-step of the previous period/cycle were
used as initialization for the primal flow in the next optimization cycle. For the
adjoint equations, the first time-instant was used instead, since time goes backwards.
At the end of the optimization process, both the primal and the adjoint equations
were converged to a periodic solution.

In this case, 400 check-points were used and enough optimization cycles were
performed for both variants to converge. The convergence of both approaches is
presented in fig. 1. The ”fast-in-time” simulation appears to be twice as fast as the
”full-in-time” one. As such, the ”fast-in-time” approach was exclusively used in the
second problem.

As both variants converged to a similar mean drag value and, except convergence,
only the outcome of the ”fast-in-time” approach is shown.

The time variation in the drag and lift coefficients for the uncontrolled and con-
trolled cases are shown in figs. 3 and 4. The resulted reduction in the amplitude
of the oscillating lift force is nothing more than a by-product of the optimization
process and is attributed to the controlled flow field symmetry.

A snapshot of the optimized flow, at an arbitrary time instant, is presented in
fig. 5. The Karman vortices of the uncontrolled flow were suppressed and both the
primal and adjoint flows are symmetric in space. Also, the wake in the adjoint flow,
developed in the upwind direction, is visible.

The computed optimal jet amplitudes are shown in fig. 2. Slots 4 to 10 create
symmetric vortices above and below the cylinder and slots 1 to 3 push them away.
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These vortices do not allow the Karman street to be developed and produce a sym-
metric flow field around the horizontal axis.
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Fig. 1 Flow control optimization - mean drag minimization of a square cylinder, at Re = 100.
Convergence of both ”-in-time” approaches. The x-axis corresponds to simulated periods of time.
For the ”full-in-time” approach, each optimization cycle solves 11 primal and 6 adjoint periods,
while the ”fast-in-time” approach solves for only 1 primal and 1 adjoint period per cycle. From
this case, a speed-up of about ×2 was achieved by using the ”fast-in-time” approach.

Slot Amplitude
1 0.0437
2 0.0792
3 0.0836
4 0.0488
5 −0.0416
6 −0.0374
7 −0.0163
8 −0.0127
9 0.0756
10 0.0577
11 0.0034

Fig. 2 Flow control optimization - mean drag minimization of a square cylinder, at Re = 100. Jet
locations and slot widths are shown. The computed optimal amplitudes of the pulsating jets are
listed and sketched.
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Fig. 3 Flow control optimization - mean drag minimization of a square cylinder, at Re= 100. Drag
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) for the uncontrolled case and the optimally controlled configuration. The
mean drag coefficient was reduced from ∼ 1.6 to ∼ 0.3.
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Fig. 4 Flow control optimization - mean drag minimization of a square cylinder, at Re = 100. Lift
coefficient Cl for the uncontrolled and the optimally controlled configuration. The lift was almost
stabilized to zero, though this was not included in the objective function.
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Fig. 5 Flow control optimization - mean drag minimization of a square cylinder at Re = 100. The
optimal solution is shown. Snapshot of the vorticity field at a random time instant. Primal (top) and
adjoint (bottom) vorticity fields.

4.2 Unsteady Topology Optimization

The topology optimization was carried out on an empty square box, 2mx2m, with
four inlets of 5cm each and a single 15cm outlet. The set-up of the inlets and outlets
is shown in fig. 6. The velocity at each inlet is expressed by eq. 4. All inlet velocity
profiles share the same amplitude Am = 1m/s and frequency f m = 10Hz, but each
had each own phase, f 1

0 = 0.05, f 2
0 = 0, f 3

0 = 0.075 and f 4
0 = 0.025. The percentage

of the square box volume to be solidified was initially set at 60% or, in eq. 8, Vtar =
0.6. For the sake of comparison, a second optimization was carried out using Vtar =
0.8. The target is to minimize J2.

In this case, only the ”fast-in-time” approach was used.
The optimal shape of the duct, for each constraint, is shown in fig. 6 and the

progress of the optimization algorithm in fig. 7. Also, four snapshots of the velocity
field are presented in fig. 8, for Vtar = 0.6, each corresponding to the time instant at
which the velocity of each inlet jet is at its maximum value.

5 Conclusions

The development of the unsteady continuous adjoint method to the incompressible
Navier–Stokes equations was presented for two optimization problems. The first is a
flow control optimization, using pulsating jets, of the unsteady flow around a square
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Fig. 6 Unsteady Topology Optimization. The Ĥ(ϕ) field showing the optimal duct computed by
the optimization loop. Left: Vtar = 0.6, Right: Vtar = 0.8, Red areas (Ĥ(ϕ)≈ 1) indicate the solidi-
fied part of the domain whereas the blue one (Ĥ(ϕ)≈ 0) is the fluid. Left: the inlet velocity vectors
at this instant are also shown, so as to make clear that the four incoming mass flow rates are not in
phase.

cylinder and the second is a level-set optimization problem to design an optimal
duct system in a box with four inlets, a single outlet and unsteady inlet boundary
conditions, under a volume constraint.

On the flow control problem the optimal amplitude for each jet, as well as its
type (blowing or suction) were identified. On the topology optimization problem,
the optimal duct systems were identified for different volume constraints, based on
the level-set topology method.

In all cases, the binomial check-pointing method was used to overcome the mem-
ory requirements of the unsteady adjoint method.

The ”fast-in-time” technique was formulated, where the optimization is based on
an approximation of the sensitivity derivatives, due to transient effects. Using this
technique, though more optimization cycles are needed, each one of them is much
cheaper in CPU cost and the over-all time needed by the ”fast-in-time” technique is
about half the time needed by its ”standard” counterpart.
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