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Abstract. This paper deals with evolutionary algorithms (EAs) assisted by surrogate
evaluation models or metamodels (Metamodel–Assisted EAs, MAEAs) which are further
accelerated by exploiting the Principal Component Analysis (PCA) of the elite mem-
bers of the evolving population. PCA is used to (a) guide the application of evolution
operators and (b) train metamodels, in the form of radial basis functions networks, on
patterns of smaller dimension. Compared to previous works by the same authors, this
paper also proposes a new way to apply the PCA technique. In particular, the front of
non–dominated solutions is divided into sub–fronts and the PCA is applied “locally” to
each sub–front. The proposed method is demonstrated in multi–objective, constrained,
aerodynamic optimization problems.

1 INTRODUCTION

EAs are capable of handling complex, constrained, multi–objective problems by accom-
modating any analysis/evaluation software, without even having access to its source code.
Being the most known representative of global optimization methods, EAs are widely used
to solve engineering optimization problems. Their only drawback and main reason pre-
venting the extensive use of EAs in large–scale problems is the great number of calls to
the evaluation software required for capturing the optimal solution(s). In real–world ap-
plications, the computational cost per evaluation is often quite high and, in combination
with a great number of optimization unknowns (N>>), the optimization turnaround time
might even become prohibitive. The CFD–based optimization is a typical example.
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As population–based search methods, EAs are amenable to parallelization. The concur-
rent evaluation of candidate solutions on different processors is straightforward. Smarter
usage of a multi–processor system can be made by means of asynchronous EAs, [1], which
overcome the synchronization barrier at the end of each generation.

On the other hand, the most common technique to reduce the CPU cost of the EA–
based optimization is the extensive use of surrogate evaluation models (or metamodels).
They are used to inexpensively approximate the objective function value(s), by replacing
the call to the costly problem–specific evaluation model. Metamodels, after being trained
on previously–seen solutions, can be incorporated into an EA in different ways, depending
on whether their training takes place during (on–line), [7, 14, 11, 8] or separately from
(off–line) the evolution, [3, 13]. In this paper, Metamodel–Assisted EAs (MAEAs) with
on–line trained metamodels, [6, 7], are employed. According to the inexact pre–evaluation
(IPE) approach, with the exception of a few starting generations, all population members
are approximately evaluated using local metamodels trained on the fly, separately for
each one of them. Then, a few of them, practically the most promising among them as
indicated by the metamodel, are re–evaluated on the exact model.

Engineering optimization problems usually have several objectives and/or constraints
and involve a great number of design variables. The high number of design variables
deteriorates the efficiency of a conventional EA, since it requires more evaluations and in-
creases the computational cost. Also, in MAEAs, the metamodels’ training time increases
and the prediction accuracy decreases as the number of design variables increases.

A way to overcome the overall performance degradation, often referred to as the curse
of dimensionality, is to decrease the problem dimension via dimension reduction tech-
niques. This can be done via principal component analysis (PCA) techniques, [5]. In
contrast to other methods in which PCA is exclusively used to reduce the dimension of
the optimization problem, here PCA is used both to guide the application of the evolution
operators (without dimension reduction) and reduce the number of sensory units of the
Radial Basis Function (RBF) networks used as metamodels, [9, 10]. Compared to [9, 10],
there is a novel enhancement of the already published method. PCA is not applied to the
entire elite set but to sub–fronts, after appropriately splitting the set of elite members
into parts. According to this scheme, each parent is transformed using information from
the PCA of the closest in the design space sub–front. By doing so, the EA requires less
evaluations compared to [9]. The proposed method is demonstrated in three cases con-
cerned with the aerodynamic design of an isolated airfoil, the aeroelastic design of a wind
turbine blade and the preliminary design of a supersonic business jet.

2 PCA–ENHANCED EAs AND MAEAs

The principal component analysis of a data set in the design space leads to new or-
thogonal linear combinations of the “original” variables, each of which with a different
variance. Once the principal components are computed, the first one is associated with
the largest variance, the second one is perpendicular to the first and associated with the
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next largest variance and so forth.
Without loss in generality, let us assume that a multi–objective optimization (MOO)

problem is to be solved. In each generation, the PCA of the elite set is carried out.
In single–objective optimization (SOO) problems, instead of the front of non–dominated
solutions, the elite set can be formed by the current optimal and a few near–optimal
solutions.

In particular, the elite set is brought into the form of a standardized data set X with
zero mean value and unit standard deviation along all directions. Based on X, covariance
matrix P is computed as

PN×N =
1

ϵ
XXT (1)

where ϵ is the elite set size. Using the spectral decomposition theorem [2], P is written as

PN×N = UΛUT (2)

where Λ is a diagonal matrix with the eigenvalues and U a N×N matrix formed by the
eigenvectors of P as rows.

Compared to [10], in this paper the front of the non–dominated solutions is divided
into a user–defined number of sub–fronts (fig. 1) and the PCA is applied locally to each
sub–front.

f1

f2

Figure 1: Schematic representation of the division of the non–dominated individuals into three sub–
fronts.

The two ways of taking advantage of PCA are briefly described below. Section 2.1
describes how the principal components can be used to drive the evolution operators.
Section 2.2 describes how the PCA is used to reduce the number of sensory nodes of the
metamodel. The combined use of these two options is straightforward.
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2.1 PCA–enhanced evolution operators

The evolution operators are applied to a temporarily transformed (rotated) design
space according to the principal components computed by the PCA. If x⃗i is a candidates’
solution design vector, the vector e⃗i aligned with the principal component directions, is
defined as follows

e⃗i = U(x⃗i − µ⃗X) (3)

where µ⃗X is the vector of mean (over the elite set) design variables. Once the design space
becomes aligned with the principal component directions, the application of crossover and
mutation operators follows. The crossover operator is applied to the transformed parent
population genotypes. If local PCAs are applied to various sub–fronts, the parents design
vector is rotated based on the PCA of the sub–front that each parent is associated with
(the closest, in terms of Euclidean distances, in the design space).

Concerning mutation, an increased mutation probability along the directions with small
variances is required. To this end, instead of using a constant, user–defined, mutation
probability pm, the mutation probability assigned to each principal component (index i)
is given by [10]

pim = αpm + (1− α)pm
N

DV

· Vmax − Vi

Vmax − Vmin

(4)

where α∈ [0, 1], Vi is the variance of the current elite set with respect to the ith principal
component, Vmax = max{V1, ..., VN}, Vmin = min{V1, ..., VN} and

DV =
N∑
i=1

Vmax − Vi

Vmax − Vmin

(5)

Each mutated offspring is, then, transformed back to the original design space. This
inverse transformation, from e⃗i to x⃗i, is given by

x⃗i = U−1e⃗i + µ⃗X (6)

Note that since U is an orthogonal matrix, its inversion has negligible CPU cost.

2.2 EA with PCA–assisted metamodels

An additional role of PCA in MAEAs is to reduce the problem dimension with a
large number of design variables so as to overcome the so–called curse of dimensionality.
When handling high–dimensional optimization problems, an increased number of training
patterns is required to build an accurate metamodel and this increases a lot the cost of the
training procedure. The reduction of the number of sensory nodes of a metamodel (RBF
network), through PCA, increases its prediction accuracy and accelerates the training
process.
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The eigenvectors included in matrix U , eq. 2, are associated with the variances of
the design variables and can be used to identify the directions where the elite members
are less or more scattered (high variance indicates scattered data whereas small variance
corresponds to less scattered data). Based on this, a user–defined number of RBF network
sensory units, in fact those corresponding to the directions of the design space with high
variances, are filtered out. Consequently, the RBF network is trained on lower dimension
data and this turns out to yield more reliable networks, trained at lower cost.

This truncation applies only during the RBF network training. In particular, during the
IPE phase, for all population members, a local metamodel is built by selecting training
patterns following the procedure described in detail in [8]. The training patterns are
rotated (eq. 3) and, then, their components associated with the higher eigenvalues are
excluded from the training.

3 APPLICATIONS

The proposed methodology is applied in three cases in the field of aerodynamics, namely
the preliminary design of a supersonic business jet, the aeroelastic design of a wind tur-
bine blade and the aerodynamic design of an isolated airfoil. In what follows the term
M(PCA)AEA(PCA) will be used to denote a MAEA where both the evolution operators
and the metamodels are assisted by the PCA.

3.1 Preliminary design of a supersonic business jet

The first two–objective application deals with the preliminary design of a supersonic
business jet for maximum range (R) and minimum take–off weight (TOW). The design
variables (13 in total) are related to the flight conditions, the fuel weight and the aircraft
geometry. This is in fact a multi–disciplinary optimization problem which involves disci-
plines such as aerodynamics, structures/weights, propulsion etc, each of which is modeled
using low–fidelity models.

In this application, computations based on standard MAEA and M(PCA)AEA(PCA)
in the two variants of the latter in which PCA is driven by either the entire elite front or
two sub–fronts, have been carried out and their results are compared. In all three runs,
a (µ, λ)=(30, 90) MAEA (with µ parents and λ offspring) was used and the metamodel–
based IPE phase started once the database (DB) recorded the first 100 entries (already
evaluated individuals). Then, in each subsequent generation, 5 to 10 individuals were
re–evaluated on the problem–specific tool. A stopping criterion of 2000 evaluations was
imposed. A comparison of the obtained fronts of the three methods is shown in fig. 2. In
either form, the M(PCA)AEA(PCA) outperforms the standard MAEA. Furthermore, as
expected, the local application of PCA performs better compared to the use of a single
PCA of the entire elite set.
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Figure 2: Preliminary design of a supersonic business jet: Comparison of the fronts of non–
dominated solutions computed using MAEA (filled triangles), M(PCA)AEA(PCA) (empty circles) and
M(PCA)AEA(PCA)local (filled squares) at the cost of 2000 evaluations.

3.2 Aeroelastic design of a wind turbine blade

The second optimization problem is about the aeroelastic design of a wind turbine blade
for maximum annual energy production (AEP) and minimum mass (m). The rotation
speed of the blade is ΩR=1.267rad/s and the AEP is determined using the whole range
of wind speeds between cut–in and cut–out wind speed, with Vin=5m/s and Vout=25m/s
up to the rated wind speed (in this case, for a 5MW wind turbine, Vrated equals 11.35m/s).
The optimization is subject to constraints for the flapwise bending moment at the blade
root (Mf,root) and the maximum flapwise (σf,max) and edgewise σe,max stresses, as

Mf,root≤10000kNm , σf,max≤64000kN/m2 , σe,max≤90000kN/m2 (7)

For each blade section an I–beam structural model is assumed, fig. 3, using two spar
caps joined together by a shear web. The design variables are the blade chord, twist

shell

shear web

spar caps

Figure 3: Aeroelastic design of a wind turbine blade: Schematic representation of the I–Beam structural
model for each blade section.
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and thickness, the I–beam base length, the spar caps, shear web and shell thickness at 9
preselected spanwise positions. Targeting realizable designs, the objective functions are
also constrained, as follows

AEP ≥10GWh , m≤20tn (8)

The evaluation of each candidate solution was based on the Blade Element Momentum
model included in NTUA’s aeroelastic software GAST (General Aerodynamic and Struc-
tural numerical Tool, [12]). This case was studied using only the M(PCA)AEA(PCA)
using (µ, λ)= (30, 90) and a termination criterion of 10000 evaluations. The metamodel
was activated once 500 feasible (non–violating the constraints) solutions were stored in
the DB and during the IPE phase, 9 to 15 individuals were re–evaluated on the GAST
software. The resulted fronts of non–dominated solutions are compared in fig. 4, where in
this case too the local application of PCA is proved to yield better solutions.
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Figure 4: Aeroelastic design of a wind turbine blade: Comparison of the fronts of non–dominated solu-
tions computed using M(PCA)AEA(PCA) (empty circles) and M(PCA)AEA(PCA)local (filled squares)
at the same CPU cost.

3.3 Design of an isolated airfoil

The last case is a two–objective, constrained, optimization problem concerned with the
design of an isolated airfoil for minimum drag (CD) and maximum lift (CL) coefficient.
The flow conditions are: free–stream Mach number M∞ = 0.3, flow angle a∞ = 4o and
Rec=6.2 × 106. The airfoil is parameterized using two Bézier curves, separately for the
pressure and suction sides, with 8 control points each. Only the internal control points of
each Bézier curve may vary, summing up to 24 design variables.

The tool used to evaluate each individual applies a viscous–inviscid flow interaction
method based on an integral boundary layer method, coupled with an external flow solver,
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[4]. To prevent the formation of unacceptably thin airfoils, geometrical constraints on the
airfoil thickness t(x) at three chordwise positions (x), are imposed, namely

t(0.25c)≥0.12c, t(0.5c)≥0.12c, t(0.75c)≥0.05c (9)

where c is the chord length. The constraint violation check is performed into two stages.
Airfoils with a severe violation of even a single geometrical constraint were immediately
rejected by assigning a death penalty to their objective functions, without undergoing
evaluation using the flow solver. On the other hand, other airfoils which violated the
thickness constraints to a lesser extent, underwent flow evaluation for computing their
objective function values which were, then, penalized using an exponential penalty term.

This case was studied with MAEA and M(PCA)AEA(PCA) by applying PCA on a
single front of non–dominated solutions and on two sub–fronts and the results obtained
are compared. In the case of the local application of PCA, the first sub–front corresponds
to the “family” of low lift–low drag airfoils, whereas the second to that of high lift–
high drag airfoils. To separate the two sub–fronts a simple criterion was used. In each
generation, after computing/updating the current elite set, its median was used as the
threshold between the two airfoil “families”.

In both cases, a stopping criterion of 1500 evaluations was imposed. A (µ, λ)=(20, 60)
MAEA is used and metamodels were applied once 300 feasible solutions were stored in
the DB. During the IPE phase, in each generation, 5 to 8 individuals were re–evaluated
on the integral boundary layer method.
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Figure 5: Optimization of a 2D isolated airfoil: Comparison of the computed fronts of non–
dominated solutions computed using MAEA (filled triangles), M(PCA)AEA(PCA) (empty circles) and
M(PCA)AEA(PCA)local (filled squares).
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Figure 5 compares fronts of non–dominated solutions computed by the three methods at
the same cost, practically the same number of evaluations. M(PCA)AEA(PCA) was able
to capture parts of the Pareto front which MAEA couldn’t. Though, in the low lift–low
drag region, MAEA computed some individuals dominating those of M(PCA)AEA(PCA),
in the high lift–high drag region MAEA’s performance was very poor. Regarding the two
variants of M(PCA)AEA(PCA), individuals resulted from the local application of PCA
were better spread along the front and the majority of them dominated those from PCA
on the entire elite set. Three airfoil shapes from each sub–front, i.e. the low lift–low drag
and high lift–high drag ones are shown in figs. 6 and 7 respectively. From the presented
airfoil shapes, the two “families” can easily be distinguished. As shown in fig. 5, this
sub–division of the elite front is beneficiary for the search method.

Figure 6: Optimization of a 2D isolated airfoil: Three airfoil shapes corresponding to the low lift–low
drag part of the Pareto front (first sub–front) shown in fig. 5. From left to right the three airfoils yield
the following CL, CD values: (0.707, 0.00901), (0.817, 0.00918) and (0.894, 0.00948).

Figure 7: Optimization of a 2D isolated airfoil: Three airfoil shapes corresponding to the high lift–high
drag part of the Pareto front (second sub–front) shown in fig. 5. From left to right the three airfoils yield
the following CL, CD values: (0.968, 0.00978), (1.096, 0.010678) and (1.19, 0.01136).

4 CONCLUSIONS

This paper reconfirms the superiority of the so–called M(PCA)AEA(PCA) algorithm,
originally proposed and assessed in [10], using three test problems. In each generation of
the EA, the analysis of the population members using information related to the principal
directions, as extracted by the characteristics of the current elite individuals, is used to
(a) reduce the dimensionality of the RBF networks, by making their training easier and
their predictions more dependable and (b) apply the evolution operators in a properly
transformed space. In addition, this paper demonstrated the increase in performance
offered by the local application of the PCA–driven actions during a M(PCA)AEA(PCA)
run. Locality is related to the splitting of the current front of non–dominated solutions into
sub–fronts, in each of which an independent PCA is performed. The better performance of
the proposed scheme is justified by the fact that candidate solutions at the different edges

9



Varvara G. Asouti, Stylianos A. Kyriacou and Kyriakos C. Giannakoglou

of a Pareto front may have very different characteristics, the “averaging” of which through
the single PCA could be problematic. In this paper, restricted to two–objective problems
with constraints, the current front of non–dominated solutions was decomposed into two
sub–fronts, using its dynamically changing median. On–going research is related to the
automation of the whole process and criteria for splitting the current front, including
optimization problems with more than two objectives.
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